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Abstract 

The idea of procedurally generating artificial worlds has been around for a 

long time. It is used both for CGI effects in movies and, more prominently, 

for video games. It is done by big companies and small teams; professionals 

as well as beginners and hobbyists. It is an instrumental tool that enables even 

the smallest of development teams to create large worlds. While there is a lot 

of inspiration to draw from, the undertaking may be daunting for the beginner. 

The goal of this paper is to give an introduction to some of the concepts by 

taking us through the steps to procedurally generate a virtual galaxy full of 

stars and planets. Something simple that can be taken much further. We 

analyse statistical data and observations of space to create about 30 equations 

that superficially mimics a spiral galaxy with 100 billion solar systems, all 

with the help of some basic probability theory. 

Sammanfattning 

Idén om att processuellt generera artificiella världar är gammal. Metoden 

används både för CGI effekter i filmer och, framförallt, för tevespel. Det görs 

av stora företag och mindre studios; av professionella programmerare såväl 

som nybörjare och hobbyister.  Det är ett kraftfullt verktyg som möjliggör 

även små team att skapa enorma världar. Men även om det finns mycket 

inspiration att hämta kan det framstå som en svår uppgift för nybörjaren. 

Målet med denna uppsats är att ge en introduktion till några av de 

grundläggande koncepten genom att gå igenom stegen för att processuellt 

generera en virtuell galax full med stjärnor och planeter. Något enkelt som 

kan utvecklas vidare. Vi analyserar statistiska observationer av rymden för att 

skapa ungefär 30 ekvationer som ytligt efterliknar en spiralgalax med 100 

miljarder solsystem, allt med hjälp av grundläggande sannolikhetslära. 
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1. Introduction 

Instead of having artists design everything in the virtual world of a videogame 

or a CGI sequence in a movie, certain aspects can be handed over to 

algorithms for procedural generation. This can either be done beforehand or 

as the scene plays out. It can be as simple as generating numbers that 

determines random positions for objects designed by artists. Like making a 

forest out of trees for example. Or it can be more complex, like procedurally 

generating the trees themselves and place them in natural formations. 

The main benefit of procedurally generating something rather than making 

it yourself is quantity. For an artist, every tree takes time to create and place 

in a scene. With procedural generation, the time investment is restricted to 

making the algorithm. As soon it’s done you can generate as many trees as 

you like. The same is true for procedural generation in general. 

Procedural generation can also have an effect on the form of interaction in 

a videogame. This became clear when Rogue came out in 1980. The game 

generated a new world every time you started it, which made every play-

through unique and removed the possibility of memorizing the layout, forcing 

you to think on your feet. Without the ability to study specific locations the 

player is led to decipher the rules that generate the world. Rather than 

memorizing what’s inside a particular room, one might start to associate 

certain kinds of rooms with certain things (Wichman 1997 & Parish 2007). 

In this paper, our goal is to define a set of algorithms for generating an 

artificial galaxy with stars and planets, something that might be suitable for a 

simple game. Space is a popular environment for procedural generation, 

partly because of the scope, and partly because of the relative ease of 

mimicking the superficial arrangement of celestial bodies. What follows is 

just a rudimentary example, but a rather powerful one at that. We will place 

stars in the formation of a spiral galaxy, base their characteristics on real data 

and give them their own planetary system. The general idea can be described 

in the following way: 

 

Real 

world 

 Observational 

data 

 Statistical 

analysis 

 Writing 

equations 

 Generated 

world 

 

The focus of this paper is on the statistical analysis and formulating the 

equations which are, with a couple of clearly stated exceptions, of my own 

design. These equations are part of a game that I am working on. The game 

is made with Leadwerks Game Engine (2016) and the code is written in Lua. 

With the purpose of presenting a generalizable approach I give the math, but 

not the specific code since its syntax is specific to Leadwerks and my game. 

Before we start the analysis and creation of the equations, though, we get 

an introduction to how computers generate random numbers: a crucial 

element of what we are about to do. 
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2. Pseudorandom Number Generation 

While you have the ability to roll a die, spin a wheel or toss a coin to generate 

random numbers, computers are restricted to so-called pseudorandom number 

generators (PRNG's). Their basic principal is simple: an input number, called 

a seed, is transformed into a seemingly random output number by an 

algorithm. An example of such an algorithm is the outdated middle-square 

method. It will take a seed of up to four digits, square it into an eight digit 

number, adding zeroes in front if necessary, and output the four middle digits 

of this new number (Introduction to Random Number Generators 2007). Like 

all PRNG's, this algorithm will always generate the same output from the 

same seed. It is a deterministic process that generate numbers that appear to 

be random, i.e. pseudorandom numbers. 

The middle-square method was designed with simplicity in mind, which 

makes it a good example of the general principle behind a PRNG.  As it would 

happen, it also makes it a good example of potential problems with a PRNG. 

Imagine the seeds between 0 and 9. They will all output 0. Furthermore, if we 

run a sequence of seeds through the algorithm, subsequent outputs will be 

higher with intermittent drops. To get rid of this pattern you need to run the 

output numbers through the algorithm a few more times. The problem is that 

doing this will increase the number of outputs that are 0, after six times the 

pattern is gone, but 316 out of the 10 000 possible seeds will generate the 

output 0. In general, we do not want any specific outputs to be more common 

than others, nor do we want there to be any pattern between the outputs of 

subsequent seeds. 

There is a wide range of PRNG's with fewer problems, ones that are 

actually used. Among them, the linear congruential generator is the most 

common. In the same way that you can choose how many times to run the 

seeds through the middle-square algorithm, the linear congruential generator 

can be configured in different ways with different results, some of which are 

better than others. It is slightly more complicated than the middle-square 

method, but understanding an algorithm is not a prerequisite for using it. 

Taking note of its properties, however, may be. 

Most programming languages have some integrated PRNG-function that 

output numbers from a uniform probability distribution, meaning that every 

possible output number has the same probability. This is what basic PRNG-

functions generally do. It’s the same principle as rolling a die. And just like 

there are crooked dice, there are PRNG-functions claiming to have a uniform 

distribution that actually don’t. The rand() function in C++ is a good example 

of this. It’s a linear congruential generator with a specific implementation that 

makes lower output numbers more common than higher ones (C++ Resource 

Network 2015, Sourceware 2015). If you are relying on this number to be 

from a uniform distribution in your calculations, using this function might 

alter your predictions. So, while you may not need to understand the 
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algorithm on a deep level, knowing about its deficiencies is important. Such 

knowledge could come from a deep comprehension of the algorithm, a 

statistical analysis of it, or from simply reading the documentation. I use the 

random() function in the Lua Mathematical library (Ierusalimschy 2003), it’s 

got its limitations, but is suitable for our needs. 

3. The Positioning of Stars 

Galaxies take on a multitude of different shapes, but we regard the spiral as 

the epitome: it’s what we think of when we think of a galaxy. Therefore, we 

want to generate a reasonably sized spiral galaxy. We give it a diameter of 

100 000 light-years (ly), a thickness of 1000 ly and about 100 billion solar 

systems. Any way you look at it, that’s an awful lot of information to handle 

all at once, which means we need to break it down into smaller pieces. This 

can be done in different ways, we elect to go with the convention and split it 

into cubes stacked in a three-dimensional grid. The size of all cubes are 

10×10×10 ly. Next, we need to distribute our stars into these cubes in a way 

that mimics the shape of a spiral galaxy. To do that, we start by thinking in 

two dimensions, looking down at a spiral-shaped galaxy below, like what we 

have in Figure 1. 

The two dimensions in Figure 1, X and Y, are integers ranging from -5000 

to +4999. They mark the coordinates of our cubes, or squares rather, as we 

momentarily disregard the third dimension. The only information we have on 

these squares are their positions in the grid. We cannot do a whole lot with 

this information directly, but we can transform it into something more useful. 

Figure 1. Top down-view of a spiral  

 
For computational reasons the resolution is set to 800×800 so only 0.64 % of all the squares 

are shown. Darker colour signifies more stars, see Appendix 1 for the code written in R. 
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At the centre (X,Y) = (0,0) is the centre of the galaxy. In equation (1) we use 

the Pythagorean theorem to calculate the distance between a given square 

with coordinates (X,Y) and the centre. In equation (2) we use trigonometry to 

get the angle between the X-axis and the shortest line from the centre to that 

given square. 

 

Distance(X, Y) = DX,Y = √X2 + Y2  (1) 

Angle(X, Y) = AX,Y = arctan(Y/X)  (2) 

 

These two statistics can be put into an equation to determine the comparative 

density of stars in a given square in Figure 1. Imagine a slice of the spiral and 

make a graph out of it. Put distance to the core on the horizontal axis and 

density of stars on the vertical axis. The shape of the graph will depend on the 

angle of the slice, but in general we expect to see a spike at the core, the 

density of stars will be at its highest here. The highest density is set to 1, the 

meaning of which is determined later, and the minimum is 0, meaning no stars 

in that square, this gives us equation (3). Dividing by 200 sets the radius of 

the core at 2000 light years (200 × width of square), raising to the power of 2 

determines the development in the rate that the density decreases as the 

distance increases, slowly at first and faster as the distance increases. The 

equations in this paper will have many constants like these: numbers that may 

be exchanged to get differing effects, some of these numbers will be explained 

while some, for the sake of brevity, will not. 

 

Core(X, Y) = 1 − (DX,Y/200)
2

  (3) 

 

After the spike at the core, we also expect a spike every time we intersect an 

arm, these spikes should widen and lessen in magnitude the further we get 

from the core. To get a spiral shape, the spikes must move as the angle 

changes. This can be done with a correctly configured sinewave multiplied 

with a diminishing exponential function of the distance. Adding a constant 

and subtracting a simple function of the distance will raise the floor from 0 

near the core, so that there are some stars in-between the arms. All this is 

achieved by equation (4). Dividing the distance in the exponential function 

with 1500 sets the length of the galaxy’s arms and the transformation of the 

distance within the sine function sets the width of the arms. If we were to 

remove the angle variable we would get a galaxy core with rings around it, 

like the Sombrero galaxy. Multiplying the angle variable by two would 

double the number of arms. Removing the sine function would give a simple 

elliptical shape like the Andromeda galaxy. With some minor tinkering we 

could get a more general way of generating different kinds of galaxies, but 

for a spiral galaxy this specific equation is a decent start: 

 

Arms(X, Y) = e−
DX,Y
1500 × 0.5 × sin ((0.5 × DX,Y)

0.35
− AX,Y)

2

+ 0.5 −
DX,Y

10000
 (4) 
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Figure 2. Stellar density and distance at a given angle 

 
 

The final two-dimensional density is then determined by equation (5), which 

is a simple maximum of equation (3), equation (4) and 0. This density varies 

between 1 and 0, denoting how many stars one square has in relation to the 

others. The density varies based on the coordinates of a square in a way that 

will generate a spiral shape. With A = 0, this generates the curve in Figure 2. 

And when we go through all the combinations of X and Y (all the squares), 

give a darker shade for a higher density and arrange them in the grid we get a 

spiral shape like the one in Figure 1 (Figure 1 only shows a subset of all 

combinations, the resolution is set to 800 × 800, see Appendix 1 for the 

specific code written in R). 

 

Density(X, Y) = max(Core(X, Y), Arms(X, Y),0)  (5) 

 

We now have a model for creating a two-dimensional galaxy, but we 

obviously want three dimensions. So we bring in (Z), an integer ranging from 

-50 to +49. This gives us a three-dimensional grid (X,Y,Z). With one cube at 

every combination of X, Y and Z, we have 10 000 × 10 000 × 100 = 1010 

cubes. 

The density of stars in every cube is set by its position in the grid, this has 

already been done for X and Y, so it’s time for Z. The density should be higher 

near Z = 0, which is the central plane of the galaxy, and fall to zero as it gets 

far away. Roughly corresponding to what a spiral galaxy looks like in profile. 

To do this we can modify the density in equation (5) by multiplying it with 

an exponential equation of Z that reaches 1 at Z = 0 and falls to 0 at Z = ± 50. 

This gives us equation (6). 

 

Density(X, Y, Z) = Density(X, Y) × (1 − (
Z

50
)
4

)  (6) 
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Figure 3. Stellar density with noise at central plane 

 
For computational reasons the resolution is set to 800×800 so only 0.64 % of all the cubes 

at Z = 0 is shown. Darker colour signifies more stars in a cube, 0 = white and 99 = black. 

 

Any cube will have only a slight difference in density compared to the 

adjacent ones, we can see this by the smoothness of the spiral in Figure 1. 

This means that going from one cube in the grid to the next will mean little 

change in the number of stars. To make the structure more chaotic we will 

add some stochastic noise. This can be done in multitude of different ways: 

what follows is just an example. 

We generate a random number (U0) from a continuous uniform 

distribution between 0 and 1, U(0,1) for short. In theory this number has an 

infinite number of decimals, but in practice our PRNG sets a limit. We 

subtract 0.5 from the generated number which gives a 50 percent chance of a 

negative difference. The difference is then raised to the power of three to 

make outcomes closer to 0 more probable. It is then multiplied with 2.2 to 

increase the spread somewhat. Raising this number would increase the spread 

further. This transformation is then multiplied with Density(X,Y,Z) in 

equation (7). By doing this we get a higher variance for denser regions. 

We also want to get the total number of stars to 100 billion. To do this we 

need the mean number of stars per cube to be about 10 (with 1010 cubes: 10 

× 1010 = 100 billion stars). In other words: when we calculate the number of 

stars in a cube with coordinates (X,Y,Z) in equation 7, the mean needs to be 

about 10.  

To get it there, we need to know the mean value of Density(X,Y,Z). This 

mean can be retrieved by calculating the density for all combinations of X, Y 

and Z. But since there are so many combinations (1010) we may opt to 

estimate the mean by taking a random sample of 100 000 cubes, i.e. 

generating random numbers from uniform distributions that cover the ranges 
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0
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of X,Y and Z, insert them into our equations and calculate the density of the 

randomly selected cubes. Doing this gives us the estimated mean 0.129. If we 

multiply Density(X,Y,Z) with 78 we get a new (estimated) mean of just over 

10 stars per cube, which brings us to over 100 billion in the entire galaxy.  

Equation (7) gives us the number of stars in a cube(X,Y,Z). The result is 

rounded to the nearest integer. As illustrated by Figure 3 we maintain the 

shape but loose the smoothness. 

 

Stars(X, Y, Z) = round(78 × Density(X, Y, Z) × (1 + 2.2 × (U0 − 0.5)3)) (7) 

 

Equation (1) through (6) determines the relative density of stars in the cubes 

in a way that creates a three-dimensional, albeit rather flat, spiral shape, only 

one percent as thick as it is wide. Equation (7) then takes us away from that 

perfect pattern and adds some stochastic noise, giving us a probability 

distribution dependent on spatial position. The minimum number of stars in a 

cube will be 0 and the maximum will be 99, this many stars appear when both 

Density(X,Y,Z) and U0 are close to 1. Restricting the maximum number of 

stars means a restriction in the amount of information the computer will have 

to handle at any one time. We chose to multiply the stochastic component 

with 2.2 partly in order to keep the maximum number of stars per cube under 

100. 

The last step in determining the spatial distribution of stars is to generate 

the location of the stars within each cube. We will generate three random 

numbers (U1, U2, and U3) from U(0,1) for each star. These numbers determine 

the stars position in the three dimensions where 0 is at one edge of the cube 

and 1 is at the other. The likelihood of any stars getting too close to one 

another is miniscule, we could add further restrictions to prohibit it, but elect 

not to do so in this model. 

It is a simple model, but it works. We can move through the galaxy, 

generate stars as we enter new cubes and drop the stars in distant cubes as we 

leave them behind. The number of cubes and stars in memory at the same 

time can be set as we see fit, but the minimum ought to be 27 (the cube we 

are in plus one extra in every direction i.e. a 3×3×3 grid). If we were to only 

have the one, stars would pop up right in front of us as we move from one 

cube to another. 

In order for a cube to look the same as we return and generate stars in it a 

second time, we must always select the same set of seeds for the same cube. 

This can be done by making the seed selection a function of the cubes position 

in the grid (X,Y,Z), but we need to make sure that no two cubes get the same 

seed as that would make them identical. Equation (8) gives an example of 

how the seed for U0 can be set, guaranteeing that no two cubes get the same 

seed. 

 

𝑆𝑒𝑒𝑑 = 5 × (109 + 105 + 10) + 𝑋 × 106 + 𝑌 × 102 + 𝑍 (8) 
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Since U1, U2, and U3 should be unique for every star they need to get unique 

seeds. This can be done by setting the seed of U1 to that of U0 plus 1011 

multiplied with the stars number (going by the order in which it was generated 

among the stars in its cube). The seeds for U2, and U3 can be set similarly but 

with 1013 and 1015 respectively instead of 1011, the exponent is increased by 

two for every new variable since the maximum number of stars in a cube (99) 

is a two-digit number. Equation (8) works on a similar principle, basically 

reserving certain positions in the seed for certain variables. This is one of 

many ways to guarantee that every generated number gets a unique seed. 

4. Stellar Characteristics 

We have a way of generating about 100 billion stars in the superficial 

arrangement of a spiral galaxy, but the stars are all the same: simple dots in 

space. We need to differentiate them by determining their luminosity, size 

and colour. We will do this based on observations of real stars. 

In order to limit ourselves, we focus solely on the so-called main sequence 

stars. They account for about 90 % of all stars and there is a correlation 

between heat, size, luminosity and frequency among them. Like all stars, they 

are categorized by their surface temperature, from warm to cold, in the 

categories O, B, A F, G, K and M. Warmer main sequence stars are larger, 

more luminous and less frequent than colder ones. There is also a continuous 

range of colours, from the blue O to the orange M. 

We want to generate one number that can determine all of these aspects. It 

will be a number from U(0,1) called U4 and similar to U1 through U3, its seed 

will be that of U0 (from equation (8)) + 1017 multiplied with the stars number.  

Based on observations (LeDrew, 2001, p.33), all the stellar classes can be 

assigned an estimated share of the total number of main sequence stars. These 

shares are seen in the penultimate column of Table 1. To its right is a column 

of the cumulative share, which is what our generated number corresponds to. 

This means that a generated number between 0 and 0.7645629 should get 

characteristics corresponding to the M-class, one between 0.7645629 and 

0.8859221 should get ones corresponding to the K-class and so on. As the 

table shows, these classifications separate continuous scales for radius and 

luminosity. These continuous scales are what we want to mimic. 
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Table 1. Observational based distribution of stellar characteristics 

Class Radius Luminosity Share Cum. Share 

M 0.08 – 0.7 0.000158 – 0.086 0.7645629 0.7645629 

K 0.7 – 0.96 0.086 – 0.58 0.1213592 0.8859221 

G 0.96 – 1.15 0.58 – 1.54 0.0764563 0.9623784 

F 1.15 – 1.4 1.54 – 4.42 0.0303398 0.9927182 

A 1.4 – 1.8 4.42 – 21.2 0.0060679 0.9987861 

B 1.8 – 6.6 21.2 – 26800 0.0012136 0.9999997 

O 6.6 – 12 26800 – 78100000 0.0000003 1.0000000 

Characteristics and shares are for main-sequence stars, classed by the Yerkes classification system. 

Data from LeDrew (2001), Kaltenegger & Wesley (2009) and Stellar Luminosity Calculator (2014).  

4.1. Luminosity 

We start with luminosity. It ranges from less than one thousandth to 78.1 

million times as bright as the sun. We need a transformation that can turn 

0.7645629 into 0.086, 0.8859221 into 0.58, 0.9623784 into 1.54, etc. If we 

had more data this could be done more elegantly, but we will simply find 

some transformation that puts us in the ballpark. There seems to be a 

logarithmical relation between luminosity and cumulative share, but it might 

not be that simple. The range of luminosity is rather extreme.  

We could think of the process as fitting a line to the eight data points (the 

class-borders), we would then transform the data and find some linear 

regression. The problem with doing this is to find a way that fits the data well. 

We are not interested in absolute deviations: a deviation of 2.5 would be 

catastrophic for the borders of the M-class but highly negligible for the O-

class. Instead, we are interested in the relative deviations. 

To solve this problem, we construct an algorithm that cycles through 

different combinations of values for the parameters of a transformation. Then 

we try different transformations, optimize their parameters with the algorithm 

and compare them with one another. This process lands us with the 

transformation in equation (9). To get the best combination of values for the 

parameters we run it through the algorithm and single out the more interesting 

ranges of parameter values. 

 

Luminosity = A + B × (−
log(1−U4)

C
)
D

  (9) 

 

The algorithm is rather inefficient as it is set to cycle through all possible 

combinations, including the obviously bad ones. Therefore we want to limit 

the sets to cycle through. The algorithm calculates the overall relative 

deviance from the data points for every combination of values for the 

parameters and saves the set with the best fit. It is written in R and the code 

for this specific transformation can be found in Appendix 2. When we run the 

algorithm we get the specific values on the parameters seen in equation (10). 
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Since the transformation approaches infinity as our generated number 

approaches 1 we also cap it at 78 100 000 (the upper limit for the O-class). 

 

Luminosity = min (0.00016 + 45 × (−
log(1−U4)

4.6
)
5.4

, 78100000)  (10) 

4.2. Radius 

After luminosity, we want to generate the stars radius measured in solar radii. 

The range is from 8 percent to 12 times that of the sun, this range is rather 

reasonable and we end up with the transformation in equation (11). 

 

Radius = SR = min(0.08 − 0.43912 × log(1 − U4) , 12) (11) 

 

The transformations in equations (10) and (11) maintain the general trend but 

create aberrations from the data in Table 1. If this was a problem they might 

be amended, but we would never get spot-on, and we are already rather close 

as it is. 

4.3. Colour 

Generating the colour can be done in a similar way to luminosity and size. If 

we break it down to the RGB components we can make three different 

transformations. The desired numbers can be seen in Table 2 where the 

cumulative shares have been amended to reflect that the colours represent the 

middle of each class. The RGB-values are expressed in the range [0,1], but 

could simply be multiplied with 255 if the [0,255] range is to be used. 

This time, we don’t just want transformations that gets us close to the data. 

We want transformations that never diverge in the wrong way. If we were to 

get just a little less of blue and red for the F-class for example, we would end 

up with a greenish star. If we want something that looks somewhat realistic 

we need to steer clear of generating colours that stars don’t have. 

We start with red and blue. Red is strictly decreasing and blue is strictly 

increasing. Fitting a line as closely as we can to the data we end up with the 

transformations in equations (12) and (13). 

Table 2. Observational based distribution of stellar colours in RGB 

Class Red Green Blue Cum. share 

M 1 0.662745098 0.435294118 0.3822815 

K 1 0.866666667 0.705882353 0.8250998 

G 1 0.956862745 0.909803922 0.9246997 

F 0.984313725 0.97254902 1 0.9773497 

A 0.792156863 0.847058824 1 0.9956247 

B 0.666666667 0.749019608 1 0.9993747 

O 0.607843137 0.690196078 1 0.9999998 

Shares are for main-sequence stars, colours represent the mean in the Yerkes classification system. 

Data from LeDrew (2001) and Kaltenegger & Wesley (2009). 
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Red = min(0.62 + (− log(U4))
0.2, 1)  (12) 

Blue = min (0.25 + 0.9 × (−
log(1−U4)

4.4
)
0.7

 ,1)  (13) 

 

To prevent unwanted deviations, we make the beginning of green into a 

function of blue and U4 (equation (14)), and the decline at the end into a 

separate function of U4 (equation (15)) that takes over when the first one 

exceeds 0.99. 

 

Green = Blue +
0.25

(1+2×U4)
2  (14) 

Green = 1 −max ((U4 − 0.95)2,
U4
1000

3.5
)  (15) 

 

At this point we have taken our initial U(0,1) value from the PRNG and turned 

it into five. We have transformed a uniform probability distribution into five 

values that mimics the superficial characteristics of stars on a continuous 

scale. The number of different stars we can generate is limited only by the 

number of different outputs we get from our PRNG.  

What we did was to go from one uniform probability distribution to a set 

of cumulative distribution functions. A cumulative distribution function gives 

the probability of getting a certain value or anything lower than it. This is the 

general method for generating pseudorandom numbers from non-uniform 

distributions. Since all five values are derived from the same U(0,1) value 

they have a strict deterministic bond with one another, quite like the main-

sequence stars in the night sky. 

There’s a myriad of different probability distributions with different 

characteristics that are more or less suitable in different situations. Some 

programming languages come with functions that do these transformations 

for you, but finding the code to do it yourself is simple. If we had better data, 

we might have been able to select one of these well-known distribution by 

calculating some of the moments and compare them with moment generating 

functions. In the end, we would probably end up with something similar 

though. 

Our approach gave us slightly altered versions of common distributions. 

For example: the transformation in equation (11) gives the radius of the stars 

an exponential distribution with a lower bound which makes it a two-

parameter exponential distribution, but then we impose a higher bound which 

makes it something else. 

Our approach manages to mimic the superficial characteristics of main-

sequence stars from the smallest to the largest and everything in between. Not 

spot on, but close enough for superficial resemblance. 
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5. Stargazing 

The first characteristic we generated was luminosity. Among other things, 

this variable determines the distance from which a star is visible. The fact that 

M-class stars on the main sequence are so dim means that none are visible 

from earth without a telescope (Croswell 2002). All the stars we see in the 

night sky are of the brighter and less common variety. This needs to be 

reflected in our generated galaxy. 

We do this by calculating the apparent brightness as a function of the 

distance to the star and its luminosity, which we generated in equation (10) 

(the distance can be calculated by using the Pythagorean theorem twice). The 

luminosity we generated is applicable right at the star itself and is emanating 

in every direction in the shape of a sphere. The further we are from the star, 

the larger the sphere. The same amount of light gets spread out over a larger 

surface area. To calculate the apparent brightness we simply divide the 

luminosity with the surface of a sphere that has the star at its centre and our 

position on its surface, as in equation (16) which is a well-known equation 

(Palma 2014). 

 

Apparentbrightness =
Luminosity

4×π×Distance2
  (16) 

 

At a certain distance, a stars apparent brightness gets so low that it becomes 

invisible to the naked eye. For the sun (Luminosity = 1), this happens at about 

72 light years going by the calculations in Celestia (2013). We could lower 

this to limit the number of visible stars if necessary. It might also be prudent 

to segment the generation of stars depending on how far away they can be 

seen, creating stellar classes of our own, but we’ll leave that be in this model.  

Planets reflecting the light of their star can also be said to have a certain 

amount of luminosity, but it’s incredibly small. This means that we don’t need 

to generate individual bodies in a solar system until we get close. 

6. Major Bodies of a Solar System 

When we get close to a solar system (within 0.1 ly or so), the first thing we 

need to do is determine the number of stars in it. As much as a third of all 

solar systems are believed to have more than one star (Lada 2006). If it turns 

out to be a binary system, it could either be a substantially smaller star orbiting 

a large one, which means the smaller star could be treated like a planet, or 

two somewhat similar stars orbiting a common barycentre. If you are far away 

either of these cases will appear as a single dot. In the first case the dimmer 

star would get visible as you get closer. In the second, the single dot would 

separate into two. Smaller stars may be part of a larger stars system, but are 

less likely to have a similar or smaller star in a system of their own (Lada 

2006). To roughly approximate this relationship we turn to equation (17) for 

determining the probability of a generated star having another star of similar 
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size in its system. Since we don’t have all that much to go on there is some 

room for artistic license. We set the probability to 1 percent for smallest and 

largest stars let it peak at about 52 percent in the G-class with an overall mean 

of about 24 percent.  

 

Probabilityofmultiplestars = max(exp(U4 − 1) − 0.37 − U4
40, 0.01) (17) 

 

To determine the outcome we then generate a new number from U[0,1] that 

we call U5. If U5 is smaller than the probability determined in equation (17) 

there will be two similarly large stars in the system, we disregard the 

possibility of there being more than that. We can set the seed for U5 to the 

generated number U4, make sure that the seed isn’t truncated. Then, if we 

have a binary system, we need to determine the size of the second star, which 

will be slightly smaller than the first one. To do this we generate yet another 

number (U6) which can get the same seed as U5 minus one. U6 is used to 

transform the number we generated for the first star (U4) into something 

slightly smaller in equation (18). This transformed number is then used to 

determine the characteristics of the second star in the same way that U4 

determined those of the first one, which we’ll call the primary. 

 

Secondstarstatistic = U4 × (U4 + U6 × (1 − U4))  (18) 

 

The orbit of the two stars can take on a number of different forms but we will 

limit ourselves to them being on opposite sides of the same orbit. We will also 

limit these orbits, and all others, to perfect circles on the same plane. The 

orbital period can be determined based on their masses and the distance 

between them. Their masses, in turn, can be calculated from their luminosity 

thanks to a known relation among main-sequence stars (Duric 2004, p.19-20). 

A generalized transformation derived from this relation is seen in equation 

(19) where a=0.23 and b=2.3 for luminosity<0.03; a=1 and b=4 for 

luminosity<16; a=1.5 and b=3.5 for luminosity<54 666; a=3200 and b=1 for 

the rest.  

 

StellarMassforstari = SMi = (
Luminosity

a
)
b

  (19) 

 

The distance between the stars may vary. By generating yet another number 

from U(0,1) called U7, with the same seed as U5 minus two, equation (20) 

will determine this distance to somewhere between 10 and 100 000 times the 

radius of the larger star calculated in equation (11) (called SR and measured 

in solar radii), shorter distances are more common. The masses and the 

distance can then be put into equation (21) to determine the orbital period 

measured in earth years. Equation (21) is a transformation of the general 

formula for determining orbital velocity and G is the gravitational constant 

which is equal to 6.674×10-11. The other constant is there to give us the orbital 
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period in Earth years and was retrieved by inputting the mass of the Sun and 

Earth as well as the distance between the Sun and the Earth and transforming 

that to 1. Inputting the distance between the Sun and Jupiter and the masses 

of the Sun and Jupiter in equation (21) gives us 11.86 which is the length of 

a Jovian year measured in Earth years. 

 

StarDistance = SD = SR × ((1 − U7) × 21 + U7
20 × 100000) (20) 

Orbitalperiod =
π×SD1.5

√G×(SM1+SM2)×1087679925
  (21) 

 

On to the creation of planets and smaller stars. For binary systems, this will 

be done once for each star and one time for the barycentre. We need to 

determine the orbit, mass, size, rotation period and axial tilt for each object.  

To determine the orbit we start with the distance to the star. Going by some 

very general observations of our own solar system we limit this distance to 

somewhere between 10 and 10 000 times the radius of the star and make 

closer orbits more likely. In reality it is obviously the mass of the star and 

planet in question that may set the upper limit of an orbit, but this limit is also 

hampered by the proximity of other stars pulling a faraway planet out of its 

orbit. Rather than taking all that into account we choose the easy route and 

make a reckless approximation that still maintains the illusion of accuracy. 

For orbits around one of the stars in a binary system, we set the upper limit 

at a quarter of the distance between the two stars. For orbits around the 

barycentre in such a system, we set the lower limit at 1.5 times the distance 

between the stars and the upper one at 10 000 times the radius of the primary 

star. 

To prevent any two planets from having too similar orbits we start inward 

and work our way toward the edge, making a planets distance into a function 

of the previous planets distance (planet i-1). As soon as a planet is generated 

too far away, it is removed and no more planets are generated. Each potential 

planet gets its own random number generated from U(0,1) called U8 which 

has the same seed as U5 plus the planets number (i). The planets numbers are 

determined by the order in which they were generated.  

Equation (22) determines the planets distance to the star. Di-1 is the 

generated distance for the previous planet, so it does not exist for the first one, 

it is also erroneous when switching from generating one kind of orbit to 

another in a binary system. If the planet is orbiting a star, this fist Di-1 is 

therefore set to 10 × SR, where SR is the stellar radius measured in solar radii, 

generated in equation (11), if it is orbiting a binary systems barycentre it is 

set to 1.5 times the distance between the stars.  

The distance in equation (22) is measured in solar radii. For orbits around 

a lonely star or the barycentre in a binary system, planets getting a distance 

of more than 10 000 × SR will be dropped. For orbits around one of the two 

stars in a binary system, that limit is set to half the distance between the stars, 
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as stated previously. Once a planet is dropped no more planets are generated 

for that star/barycentre. In a binary system, orbits will be generated 

sequentially, e.g. first for the barycentre, then the primary star, and lastly the 

secondary star, but the planets id-numbers continue counting up as no system 

should have multiple planets with the same id. 

 

PlanetiDistance = Di = Di−1
1.1 − (log(U8

10) −
1

1600
) × 10 (22) 

 

After determining the distance we move on to mass and size. Planets that are 

too close to their star will lose much of their atmosphere (Tian & Toon 2005), 

this rules out gas giants close to the star. To mimic this, any planet less than 

800 × SR (Jupiter is about 1040) from its star will not be a gas giant. If it is 

further away than that however, it is likely to be one. So for planets closer 

than 800 × SR to their star, equation (23) is used to determine mass and for 

ones further away, equation (24) is used. Both equations express the mass in 

relation to our sun and require a new number generated from U(0,1) called 

U9, the seed may be set to that of U5 + 100 multiplied with the planet number. 

To determine the radius expressed in solar radii we use equation (25) which 

makes smaller planets denser. In order to get some small stars we use equation 

(26) to replace planets that get a mass over 0.0012 with small stars, but only 

if the primary star has a radius of more than 0.5 solar radii. The range of 

possible sizes for the star in orbit is then dependent on the size of the primary 

star as equation (26) is a function of the primary’s generated number (U4). 

This additional generation of stars helps bring up the overall number of 

binary systems from the 24 percent determined in equation (17) toward one 

third, which is the real world estimate (Lada 2006). 

 

Planetimass(inner) = (0.13 + 20 × (U9 − 0.5)3 + 2 × U9
2) × 10−6 (23) 

Planetimass(outer) = (622 + 5 × (10 × (U9 − 0.5))3) × 10−6 (24) 

Planetiradius = 0.058 × exp ((
mass

600
)
0.2

) − 0.0665 (25) 

Minorstarstatistic =
U4

3+10×U9
  (26) 

 

The output from equation (26) is used to determine the characteristics of the 

minor star in the same way that U4 was used for the primary. This smaller star 

could get planets of its own, and the other planets could get moons, but we 

leave it out of this model lest we get into too many details and repetitious 

equations. 

Knowing the mass and the distance of the planets, we can determine their 

orbital period with equation (21), we only need to exchange SD with the 

distance to the planet or minor star derived in equation (22), and SM1 or SM2 

(whichever one it is not orbiting) with the mass of the planet or minor star. If 

we have two similar stars and are determining an orbit around the barycentre 

we keep both SM1 and SM2 and add the planets mass at their position (inside 

the brackets) in the equation. 
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There are only two things left to generate now: the rotation period and the 

axial tilt. The rotation period has a relation to the planets mass and the 

proximity to the star it orbits. More massive planets generally rotate faster 

than smaller ones. Planets closer to the sun generally rotate slower, up to the 

point where they become tidally locked, meaning that the same side is always 

facing the star, just like the same side of the moon is always facing the earth. 

I.e. the maximum rotation period of a planet is equal to its orbital period 

(which we call OPi for planet i). As a matter of fact, the suns gravity is forcing 

the rotation period of all planets toward their orbital period, it just happens 

faster with closer objects since the gravitational force is stronger there. 

Massive planets rotating faster may be due to a historical concentration of 

mass that sped up their initial rotation speed.  

This initial rotation period is a stochastic component, to capture this fact 

we generate yet another number from U(0,1) called U10 which gets the seed 

of U5 plus 104 multiplied with the planet number. Since a planet may have a 

negative rotation in relation to its orbit (giving it a negative rotation period), 

but absolutely not a rotation period equal, or too close, to zero (if a planet 

were to make a revolution in the blink of an eye it would seize to be a planet) 

we may transform U10 in equation (27) or (28). To determine which 

transformation should be used we generate yet another number from U(0,1) 

called U10 which gets the seed of U5 plus 106 multiplied with the planet 

number. If U10 is less than 0.1 we use equation (27), otherwise we use 

equation (28), i.e. we guess that the probability of a planet rotating in the same 

direction it orbits is 90 percent. This initial rotation period is then altered in 

equation (29) to account for the distance to the star and the mass of the planet, 

all rotational periods are measured in Earth years. 

 

InitialRotationPeriod(negative) = IRP = 90 × U10
5 − 100 (27) 

InitialRotationPeriod(positive) = IRP = 0.01 + 100 × U10
10 (28) 

RotationPeriod = IRP × (
SR0.9

distance×mass
)
0.5

  (29) 

 

The very last characteristic we generate is the axial tilt, it can be somewhere 

between 0 and 90 degrees in relation to the planets orbit. We only have our 

own solar system to go on here, and from that we determine that minor tilts 

are more common, but major ones are not unprecedented. Just like the rotation 

period, planets close to their star are forced into alignment and have very little 

tilt, while planets further away may diverge more. To mimic this we calculate 

a distance modifier in equation (30) that shifts the mean tilt closer to 0 for 

planets near the star. This distance modifier is then accounted for when 

calculating the axial tilt in equation (31) where we generate our last number 

from U(0,1) called U11 which has the seed of U5 plus 108 multiplied with the 

planet number. 
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DistanceModifier = DM = min (
(Distance/SR0.9)

3

105
 ,51.42857) (30) 

Axialtilt = DM × (U11
5 + 10 × (0.55 + (U11 − 0.5)5)) (31) 

7. Discussion 

Based on data and some rather general observations we have generated a 

massive, albeit rather empty, world. We split our artificial world into cubes 

aligned in a grid and determined the number of stars in every cube in a way 

that created a spiral shape, reminiscent of a spiral galaxy. This was not a 

particularly accurate way of doing it as stars tend to be grouped together in 

clusters and these clusters then form the shape of a much less symmetrical 

spiral (or whatever shape the galaxy in question has). 

When determining the characteristics of the stars we choose to be more 

accurate even though we limited ourselves to the main-sequence stars. Going 

by actual observational data we came up with a way of generating the 

characteristics that would mimic their actual distribution. Lastly we generated 

additional stars and planets for the solar systems and determined their orbits 

in a way that, while hardly being accurate, managed to mimic accuracy. 

The approach is a mix between analysing observational data to retrieve the 

best fitting probability distributions for the stars and letting more anecdotal 

data and astronomical hypothesis inform the probability distributions for 

things like the likelihood of binary star systems and the characteristics of 

planets. As our knowledge of other solar systems expand due to new 

discoveries by the Kepler space observatory and future missions, it ought to 

be easy to find a much better model for generating planets. 

The world generated by the equations in this paper may not be particularly 

interesting in its current state, but it could be taken so much further using the 

same principles. We could generate moons, asteroid fields and planetary 

rings. We could determine the atmospheric and planetary composition of the 

celestial bodies. We could generate supernovas, pulsars, quasars, black holes 

and additional galaxies. 

Going by the planets position, rotation period, axial tilt and atmospheric 

composition we could determine temperature and climate. For the right kinds 

of planets we could then set a probability for life and generate alien plants 

and creatures. All the planets could get procedurally generated surfaces using 

the diamond-square algorithm, fractals, Brownian motion, simplex noise and 

other techniques. 

Vladimir Romanyuks SpaceEngine (2015) is a good example of taking a 

few of those extra steps and using more accurate algorithms.  
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Appendix 1 

 

################################################################# 

#####    Stellar density at central plane of virtual spiral galaxy 

 

win.graph(6,6) 

par(las=1, mar=c(4,4,4,4)) 

resolution = 800 

limits = c(-resolution/2, resolution/2) 

plot(resolution, axes=FALSE, ann=FALSE, xlim=limits, ylim=limits) 

axis(1,-1:1*resolution/2,las=1,lab=c(-5000,0,4999)) 

axis(2,-1:1*resolution/2,las=1,lab=c(-5000,0,4999)) 

box() 

mtext("Y", side=2, line=3, cex=1.2) 

mtext("X", side=1, line=2.5, cex=1.2) 

oldpercent=0 

for(i in 1:resolution){ 

 for(j in 1:resolution){ 

  x = 10000*(i-resolution/2)/resolution 

  y = 10000*(j-resolution/2)/resolution 

  distance = (x^2+y^2)^0.5 

  angle = atan(y/x) 

  core = 1 - (distance/200)^2 

  arms = exp(-distance/1500)*0.5*sin((0.5*distance)^0.35-angle)^2+ 

  0.5-distance/10000 

  density = max(core,arms,0) 

  if(is.na(density)){density = 1} 

  color = paste0('gray',round(100-density*100)) 

  lines(i-resolution/2,j-resolution/2, type='p', cex=0.1, pch=15, col=color) 

 } 

 percent = round(i/resolution*100) 

 if(percent != oldpercent){print(c(percent," %"),quote=FALSE)} 

 oldpercent = percent 

}  
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Appendix 2 

 

################################################################# 

#####  Luminosity transformation parameter estimation 

 

p = c(0,0.76,0.89,0.96,0.99,0.998,0.9999997,1.0000000) 

lum = c(0.000158,0.086,0.58,1.54,4.42,21.2,26800,78100000) 

diff2 = Inf; result = NA; lum2 = NA; lum1={} 

for (i in 1:100){ 

 for (j in 1:100){ 

  for (k in 1:100){ 

   for (l in 1:100){ 

    a = i/10^5; b = j; c = k/10; d = l/10 

    for (m in 1:length(p)){ 

     lum1[m] = min(a+b*(-log(1-p[m])/c)^d, 78100000) 

    } 

    diff1 = sum(abs(1-lum/lum1)) 

    if (diff1 < diff2){ 

     result = matrix(c(a,b,c,d), nrow=4,ncol=1) 

     lum2=lum1 

     A=a; B=b; C=c; D=d 

     diff2=diff1 

    } 

   } 

  } 

 } 

 print(c(i,"%"), quote=FALSE) 

} 

par(mfrow=c(1,2));lumseq={} 

a="log(Luminosity)";b="log(Generated Luminosity)" 

for (m in 1:10000){lumseq[m] = min(A+B*(-log(1-m/10000)/C)^D, 78100000)} 

plot(p,log(lum), xlab=expression('U'[4]),ylab=a) 

lines(1:10000/10000,log(lumseq),col='red') 

plot(log(lum),log(lum2),type='o',xlab=a,ylab=b) 

abline(c(0,0),c(1,1),col='red') 

comparison=matrix(c(lum,lum2),nrow=length(p),ncol=2) 

dimnames(comparison) = list(p,c("Actual","Estimate"));comparison 

dimnames(result) = list(c("A =","B =","C =","D ="),"Estimates:"); result 


