

Procedurally Generating an

Artificial Galaxy

Department of Statistics

Bachelor Thesis, 15 ECTS

Supervisor: Björn Holmquist

March 2016

Author: Olof Elfwering

Abstract

The idea of procedurally generating artificial worlds has been around for a

long time. It is used both for CGI effects in movies and, more prominently,

for video games. It is done by big companies and small teams; professionals

as well as beginners and hobbyists. It is an instrumental tool that enables even

the smallest of development teams to create large worlds. While there is a lot

of inspiration to draw from, the undertaking may be daunting for the beginner.

The goal of this paper is to give an introduction to some of the concepts by

taking us through the steps to procedurally generate a virtual galaxy full of

stars and planets. Something simple that can be taken much further. We

analyse statistical data and observations of space to create about 30 equations

that superficially mimics a spiral galaxy with 100 billion solar systems, all

with the help of some basic probability theory.

Sammanfattning

Idén om att processuellt generera artificiella världar är gammal. Metoden

används både för CGI effekter i filmer och, framförallt, för tevespel. Det görs

av stora företag och mindre studios; av professionella programmerare såväl

som nybörjare och hobbyister. Det är ett kraftfullt verktyg som möjliggör

även små team att skapa enorma världar. Men även om det finns mycket

inspiration att hämta kan det framstå som en svår uppgift för nybörjaren.

Målet med denna uppsats är att ge en introduktion till några av de

grundläggande koncepten genom att gå igenom stegen för att processuellt

generera en virtuell galax full med stjärnor och planeter. Något enkelt som

kan utvecklas vidare. Vi analyserar statistiska observationer av rymden för att

skapa ungefär 30 ekvationer som ytligt efterliknar en spiralgalax med 100

miljarder solsystem, allt med hjälp av grundläggande sannolikhetslära.

1

1. Introduction

Instead of having artists design everything in the virtual world of a videogame

or a CGI sequence in a movie, certain aspects can be handed over to

algorithms for procedural generation. This can either be done beforehand or

as the scene plays out. It can be as simple as generating numbers that

determines random positions for objects designed by artists. Like making a

forest out of trees for example. Or it can be more complex, like procedurally

generating the trees themselves and place them in natural formations.

The main benefit of procedurally generating something rather than making

it yourself is quantity. For an artist, every tree takes time to create and place

in a scene. With procedural generation, the time investment is restricted to

making the algorithm. As soon it’s done you can generate as many trees as

you like. The same is true for procedural generation in general.

Procedural generation can also have an effect on the form of interaction in

a videogame. This became clear when Rogue came out in 1980. The game

generated a new world every time you started it, which made every play-

through unique and removed the possibility of memorizing the layout, forcing

you to think on your feet. Without the ability to study specific locations the

player is led to decipher the rules that generate the world. Rather than

memorizing what’s inside a particular room, one might start to associate

certain kinds of rooms with certain things (Wichman 1997 & Parish 2007).

In this paper, our goal is to define a set of algorithms for generating an

artificial galaxy with stars and planets, something that might be suitable for a

simple game. Space is a popular environment for procedural generation,

partly because of the scope, and partly because of the relative ease of

mimicking the superficial arrangement of celestial bodies. What follows is

just a rudimentary example, but a rather powerful one at that. We will place

stars in the formation of a spiral galaxy, base their characteristics on real data

and give them their own planetary system. The general idea can be described

in the following way:

Real

world

 Observational

data

 Statistical

analysis

 Writing

equations

 Generated

world

The focus of this paper is on the statistical analysis and formulating the

equations which are, with a couple of clearly stated exceptions, of my own

design. These equations are part of a game that I am working on. The game

is made with Leadwerks Game Engine (2016) and the code is written in Lua.

With the purpose of presenting a generalizable approach I give the math, but

not the specific code since its syntax is specific to Leadwerks and my game.

Before we start the analysis and creation of the equations, though, we get

an introduction to how computers generate random numbers: a crucial

element of what we are about to do.

2

2. Pseudorandom Number Generation

While you have the ability to roll a die, spin a wheel or toss a coin to generate

random numbers, computers are restricted to so-called pseudorandom number

generators (PRNG's). Their basic principal is simple: an input number, called

a seed, is transformed into a seemingly random output number by an

algorithm. An example of such an algorithm is the outdated middle-square

method. It will take a seed of up to four digits, square it into an eight digit

number, adding zeroes in front if necessary, and output the four middle digits

of this new number (Introduction to Random Number Generators 2007). Like

all PRNG's, this algorithm will always generate the same output from the

same seed. It is a deterministic process that generate numbers that appear to

be random, i.e. pseudorandom numbers.

The middle-square method was designed with simplicity in mind, which

makes it a good example of the general principle behind a PRNG. As it would

happen, it also makes it a good example of potential problems with a PRNG.

Imagine the seeds between 0 and 9. They will all output 0. Furthermore, if we

run a sequence of seeds through the algorithm, subsequent outputs will be

higher with intermittent drops. To get rid of this pattern you need to run the

output numbers through the algorithm a few more times. The problem is that

doing this will increase the number of outputs that are 0, after six times the

pattern is gone, but 316 out of the 10 000 possible seeds will generate the

output 0. In general, we do not want any specific outputs to be more common

than others, nor do we want there to be any pattern between the outputs of

subsequent seeds.

There is a wide range of PRNG's with fewer problems, ones that are

actually used. Among them, the linear congruential generator is the most

common. In the same way that you can choose how many times to run the

seeds through the middle-square algorithm, the linear congruential generator

can be configured in different ways with different results, some of which are

better than others. It is slightly more complicated than the middle-square

method, but understanding an algorithm is not a prerequisite for using it.

Taking note of its properties, however, may be.

Most programming languages have some integrated PRNG-function that

output numbers from a uniform probability distribution, meaning that every

possible output number has the same probability. This is what basic PRNG-

functions generally do. It’s the same principle as rolling a die. And just like

there are crooked dice, there are PRNG-functions claiming to have a uniform

distribution that actually don’t. The rand() function in C++ is a good example

of this. It’s a linear congruential generator with a specific implementation that

makes lower output numbers more common than higher ones (C++ Resource

Network 2015, Sourceware 2015). If you are relying on this number to be

from a uniform distribution in your calculations, using this function might

alter your predictions. So, while you may not need to understand the

3

algorithm on a deep level, knowing about its deficiencies is important. Such

knowledge could come from a deep comprehension of the algorithm, a

statistical analysis of it, or from simply reading the documentation. I use the

random() function in the Lua Mathematical library (Ierusalimschy 2003), it’s

got its limitations, but is suitable for our needs.

3. The Positioning of Stars

Galaxies take on a multitude of different shapes, but we regard the spiral as

the epitome: it’s what we think of when we think of a galaxy. Therefore, we

want to generate a reasonably sized spiral galaxy. We give it a diameter of

100 000 light-years (ly), a thickness of 1000 ly and about 100 billion solar

systems. Any way you look at it, that’s an awful lot of information to handle

all at once, which means we need to break it down into smaller pieces. This

can be done in different ways, we elect to go with the convention and split it

into cubes stacked in a three-dimensional grid. The size of all cubes are

10×10×10 ly. Next, we need to distribute our stars into these cubes in a way

that mimics the shape of a spiral galaxy. To do that, we start by thinking in

two dimensions, looking down at a spiral-shaped galaxy below, like what we

have in Figure 1.

The two dimensions in Figure 1, X and Y, are integers ranging from -5000

to +4999. They mark the coordinates of our cubes, or squares rather, as we

momentarily disregard the third dimension. The only information we have on

these squares are their positions in the grid. We cannot do a whole lot with

this information directly, but we can transform it into something more useful.

Figure 1. Top down-view of a spiral

For computational reasons the resolution is set to 800×800 so only 0.64 % of all the squares

are shown. Darker colour signifies more stars, see Appendix 1 for the code written in R.

-5000 0 4999

-5000

0

4999

Y

X

4

At the centre (X,Y) = (0,0) is the centre of the galaxy. In equation (1) we use

the Pythagorean theorem to calculate the distance between a given square

with coordinates (X,Y) and the centre. In equation (2) we use trigonometry to

get the angle between the X-axis and the shortest line from the centre to that

given square.

Distance(X, Y) = DX,Y = √X2 + Y2 (1)

Angle(X, Y) = AX,Y = arctan(Y/X) (2)

These two statistics can be put into an equation to determine the comparative

density of stars in a given square in Figure 1. Imagine a slice of the spiral and

make a graph out of it. Put distance to the core on the horizontal axis and

density of stars on the vertical axis. The shape of the graph will depend on the

angle of the slice, but in general we expect to see a spike at the core, the

density of stars will be at its highest here. The highest density is set to 1, the

meaning of which is determined later, and the minimum is 0, meaning no stars

in that square, this gives us equation (3). Dividing by 200 sets the radius of

the core at 2000 light years (200 × width of square), raising to the power of 2

determines the development in the rate that the density decreases as the

distance increases, slowly at first and faster as the distance increases. The

equations in this paper will have many constants like these: numbers that may

be exchanged to get differing effects, some of these numbers will be explained

while some, for the sake of brevity, will not.

Core(X, Y) = 1 − (DX,Y/200)
2

 (3)

After the spike at the core, we also expect a spike every time we intersect an

arm, these spikes should widen and lessen in magnitude the further we get

from the core. To get a spiral shape, the spikes must move as the angle

changes. This can be done with a correctly configured sinewave multiplied

with a diminishing exponential function of the distance. Adding a constant

and subtracting a simple function of the distance will raise the floor from 0

near the core, so that there are some stars in-between the arms. All this is

achieved by equation (4). Dividing the distance in the exponential function

with 1500 sets the length of the galaxy’s arms and the transformation of the

distance within the sine function sets the width of the arms. If we were to

remove the angle variable we would get a galaxy core with rings around it,

like the Sombrero galaxy. Multiplying the angle variable by two would

double the number of arms. Removing the sine function would give a simple

elliptical shape like the Andromeda galaxy. With some minor tinkering we

could get a more general way of generating different kinds of galaxies, but

for a spiral galaxy this specific equation is a decent start:

Arms(X, Y) = e−
DX,Y
1500 × 0.5 × sin ((0.5 × DX,Y)

0.35
− AX,Y)

2

+ 0.5 −
DX,Y

10000
 (4)

5

Figure 2. Stellar density and distance at a given angle

The final two-dimensional density is then determined by equation (5), which

is a simple maximum of equation (3), equation (4) and 0. This density varies

between 1 and 0, denoting how many stars one square has in relation to the

others. The density varies based on the coordinates of a square in a way that

will generate a spiral shape. With A = 0, this generates the curve in Figure 2.

And when we go through all the combinations of X and Y (all the squares),

give a darker shade for a higher density and arrange them in the grid we get a

spiral shape like the one in Figure 1 (Figure 1 only shows a subset of all

combinations, the resolution is set to 800 × 800, see Appendix 1 for the

specific code written in R).

Density(X, Y) = max(Core(X, Y), Arms(X, Y),0) (5)

We now have a model for creating a two-dimensional galaxy, but we

obviously want three dimensions. So we bring in (Z), an integer ranging from

-50 to +49. This gives us a three-dimensional grid (X,Y,Z). With one cube at

every combination of X, Y and Z, we have 10 000 × 10 000 × 100 = 1010

cubes.

The density of stars in every cube is set by its position in the grid, this has

already been done for X and Y, so it’s time for Z. The density should be higher

near Z = 0, which is the central plane of the galaxy, and fall to zero as it gets

far away. Roughly corresponding to what a spiral galaxy looks like in profile.

To do this we can modify the density in equation (5) by multiplying it with

an exponential equation of Z that reaches 1 at Z = 0 and falls to 0 at Z = ± 50.

This gives us equation (6).

Density(X, Y, Z) = Density(X, Y) × (1 − (
Z

50
)
4

) (6)

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

D
e

n
s
it
y

Distance

6

Figure 3. Stellar density with noise at central plane

For computational reasons the resolution is set to 800×800 so only 0.64 % of all the cubes

at Z = 0 is shown. Darker colour signifies more stars in a cube, 0 = white and 99 = black.

Any cube will have only a slight difference in density compared to the

adjacent ones, we can see this by the smoothness of the spiral in Figure 1.

This means that going from one cube in the grid to the next will mean little

change in the number of stars. To make the structure more chaotic we will

add some stochastic noise. This can be done in multitude of different ways:

what follows is just an example.

We generate a random number (U0) from a continuous uniform

distribution between 0 and 1, U(0,1) for short. In theory this number has an

infinite number of decimals, but in practice our PRNG sets a limit. We

subtract 0.5 from the generated number which gives a 50 percent chance of a

negative difference. The difference is then raised to the power of three to

make outcomes closer to 0 more probable. It is then multiplied with 2.2 to

increase the spread somewhat. Raising this number would increase the spread

further. This transformation is then multiplied with Density(X,Y,Z) in

equation (7). By doing this we get a higher variance for denser regions.

We also want to get the total number of stars to 100 billion. To do this we

need the mean number of stars per cube to be about 10 (with 1010 cubes: 10

× 1010 = 100 billion stars). In other words: when we calculate the number of

stars in a cube with coordinates (X,Y,Z) in equation 7, the mean needs to be

about 10.

To get it there, we need to know the mean value of Density(X,Y,Z). This

mean can be retrieved by calculating the density for all combinations of X, Y

and Z. But since there are so many combinations (1010) we may opt to

estimate the mean by taking a random sample of 100 000 cubes, i.e.

generating random numbers from uniform distributions that cover the ranges

-5000 0 4999

-5000

0

4999

Y

X

7

of X,Y and Z, insert them into our equations and calculate the density of the

randomly selected cubes. Doing this gives us the estimated mean 0.129. If we

multiply Density(X,Y,Z) with 78 we get a new (estimated) mean of just over

10 stars per cube, which brings us to over 100 billion in the entire galaxy.

Equation (7) gives us the number of stars in a cube(X,Y,Z). The result is

rounded to the nearest integer. As illustrated by Figure 3 we maintain the

shape but loose the smoothness.

Stars(X, Y, Z) = round(78 × Density(X, Y, Z) × (1 + 2.2 × (U0 − 0.5)3)) (7)

Equation (1) through (6) determines the relative density of stars in the cubes

in a way that creates a three-dimensional, albeit rather flat, spiral shape, only

one percent as thick as it is wide. Equation (7) then takes us away from that

perfect pattern and adds some stochastic noise, giving us a probability

distribution dependent on spatial position. The minimum number of stars in a

cube will be 0 and the maximum will be 99, this many stars appear when both

Density(X,Y,Z) and U0 are close to 1. Restricting the maximum number of

stars means a restriction in the amount of information the computer will have

to handle at any one time. We chose to multiply the stochastic component

with 2.2 partly in order to keep the maximum number of stars per cube under

100.

The last step in determining the spatial distribution of stars is to generate

the location of the stars within each cube. We will generate three random

numbers (U1, U2, and U3) from U(0,1) for each star. These numbers determine

the stars position in the three dimensions where 0 is at one edge of the cube

and 1 is at the other. The likelihood of any stars getting too close to one

another is miniscule, we could add further restrictions to prohibit it, but elect

not to do so in this model.

It is a simple model, but it works. We can move through the galaxy,

generate stars as we enter new cubes and drop the stars in distant cubes as we

leave them behind. The number of cubes and stars in memory at the same

time can be set as we see fit, but the minimum ought to be 27 (the cube we

are in plus one extra in every direction i.e. a 3×3×3 grid). If we were to only

have the one, stars would pop up right in front of us as we move from one

cube to another.

In order for a cube to look the same as we return and generate stars in it a

second time, we must always select the same set of seeds for the same cube.

This can be done by making the seed selection a function of the cubes position

in the grid (X,Y,Z), but we need to make sure that no two cubes get the same

seed as that would make them identical. Equation (8) gives an example of

how the seed for U0 can be set, guaranteeing that no two cubes get the same

seed.

𝑆𝑒𝑒𝑑 = 5 × (109 + 105 + 10) + 𝑋 × 106 + 𝑌 × 102 + 𝑍 (8)

8

Since U1, U2, and U3 should be unique for every star they need to get unique

seeds. This can be done by setting the seed of U1 to that of U0 plus 1011

multiplied with the stars number (going by the order in which it was generated

among the stars in its cube). The seeds for U2, and U3 can be set similarly but

with 1013 and 1015 respectively instead of 1011, the exponent is increased by

two for every new variable since the maximum number of stars in a cube (99)

is a two-digit number. Equation (8) works on a similar principle, basically

reserving certain positions in the seed for certain variables. This is one of

many ways to guarantee that every generated number gets a unique seed.

4. Stellar Characteristics

We have a way of generating about 100 billion stars in the superficial

arrangement of a spiral galaxy, but the stars are all the same: simple dots in

space. We need to differentiate them by determining their luminosity, size

and colour. We will do this based on observations of real stars.

In order to limit ourselves, we focus solely on the so-called main sequence

stars. They account for about 90 % of all stars and there is a correlation

between heat, size, luminosity and frequency among them. Like all stars, they

are categorized by their surface temperature, from warm to cold, in the

categories O, B, A F, G, K and M. Warmer main sequence stars are larger,

more luminous and less frequent than colder ones. There is also a continuous

range of colours, from the blue O to the orange M.

We want to generate one number that can determine all of these aspects. It

will be a number from U(0,1) called U4 and similar to U1 through U3, its seed

will be that of U0 (from equation (8)) + 1017 multiplied with the stars number.

Based on observations (LeDrew, 2001, p.33), all the stellar classes can be

assigned an estimated share of the total number of main sequence stars. These

shares are seen in the penultimate column of Table 1. To its right is a column

of the cumulative share, which is what our generated number corresponds to.

This means that a generated number between 0 and 0.7645629 should get

characteristics corresponding to the M-class, one between 0.7645629 and

0.8859221 should get ones corresponding to the K-class and so on. As the

table shows, these classifications separate continuous scales for radius and

luminosity. These continuous scales are what we want to mimic.

9

Table 1. Observational based distribution of stellar characteristics

Class Radius Luminosity Share Cum. Share

M 0.08 – 0.7 0.000158 – 0.086 0.7645629 0.7645629

K 0.7 – 0.96 0.086 – 0.58 0.1213592 0.8859221

G 0.96 – 1.15 0.58 – 1.54 0.0764563 0.9623784

F 1.15 – 1.4 1.54 – 4.42 0.0303398 0.9927182

A 1.4 – 1.8 4.42 – 21.2 0.0060679 0.9987861

B 1.8 – 6.6 21.2 – 26800 0.0012136 0.9999997

O 6.6 – 12 26800 – 78100000 0.0000003 1.0000000

Characteristics and shares are for main-sequence stars, classed by the Yerkes classification system.

Data from LeDrew (2001), Kaltenegger & Wesley (2009) and Stellar Luminosity Calculator (2014).

4.1. Luminosity

We start with luminosity. It ranges from less than one thousandth to 78.1

million times as bright as the sun. We need a transformation that can turn

0.7645629 into 0.086, 0.8859221 into 0.58, 0.9623784 into 1.54, etc. If we

had more data this could be done more elegantly, but we will simply find

some transformation that puts us in the ballpark. There seems to be a

logarithmical relation between luminosity and cumulative share, but it might

not be that simple. The range of luminosity is rather extreme.

We could think of the process as fitting a line to the eight data points (the

class-borders), we would then transform the data and find some linear

regression. The problem with doing this is to find a way that fits the data well.

We are not interested in absolute deviations: a deviation of 2.5 would be

catastrophic for the borders of the M-class but highly negligible for the O-

class. Instead, we are interested in the relative deviations.

To solve this problem, we construct an algorithm that cycles through

different combinations of values for the parameters of a transformation. Then

we try different transformations, optimize their parameters with the algorithm

and compare them with one another. This process lands us with the

transformation in equation (9). To get the best combination of values for the

parameters we run it through the algorithm and single out the more interesting

ranges of parameter values.

Luminosity = A + B × (−
log(1−U4)

C
)
D

 (9)

The algorithm is rather inefficient as it is set to cycle through all possible

combinations, including the obviously bad ones. Therefore we want to limit

the sets to cycle through. The algorithm calculates the overall relative

deviance from the data points for every combination of values for the

parameters and saves the set with the best fit. It is written in R and the code

for this specific transformation can be found in Appendix 2. When we run the

algorithm we get the specific values on the parameters seen in equation (10).

10

Since the transformation approaches infinity as our generated number

approaches 1 we also cap it at 78 100 000 (the upper limit for the O-class).

Luminosity = min (0.00016 + 45 × (−
log(1−U4)

4.6
)
5.4

, 78100000) (10)

4.2. Radius

After luminosity, we want to generate the stars radius measured in solar radii.

The range is from 8 percent to 12 times that of the sun, this range is rather

reasonable and we end up with the transformation in equation (11).

Radius = SR = min(0.08 − 0.43912 × log(1 − U4) , 12) (11)

The transformations in equations (10) and (11) maintain the general trend but

create aberrations from the data in Table 1. If this was a problem they might

be amended, but we would never get spot-on, and we are already rather close

as it is.

4.3. Colour

Generating the colour can be done in a similar way to luminosity and size. If

we break it down to the RGB components we can make three different

transformations. The desired numbers can be seen in Table 2 where the

cumulative shares have been amended to reflect that the colours represent the

middle of each class. The RGB-values are expressed in the range [0,1], but

could simply be multiplied with 255 if the [0,255] range is to be used.

This time, we don’t just want transformations that gets us close to the data.

We want transformations that never diverge in the wrong way. If we were to

get just a little less of blue and red for the F-class for example, we would end

up with a greenish star. If we want something that looks somewhat realistic

we need to steer clear of generating colours that stars don’t have.

We start with red and blue. Red is strictly decreasing and blue is strictly

increasing. Fitting a line as closely as we can to the data we end up with the

transformations in equations (12) and (13).

Table 2. Observational based distribution of stellar colours in RGB

Class Red Green Blue Cum. share

M 1 0.662745098 0.435294118 0.3822815

K 1 0.866666667 0.705882353 0.8250998

G 1 0.956862745 0.909803922 0.9246997

F 0.984313725 0.97254902 1 0.9773497

A 0.792156863 0.847058824 1 0.9956247

B 0.666666667 0.749019608 1 0.9993747

O 0.607843137 0.690196078 1 0.9999998

Shares are for main-sequence stars, colours represent the mean in the Yerkes classification system.

Data from LeDrew (2001) and Kaltenegger & Wesley (2009).

11

Red = min(0.62 + (− log(U4))
0.2, 1) (12)

Blue = min (0.25 + 0.9 × (−
log(1−U4)

4.4
)
0.7

 ,1) (13)

To prevent unwanted deviations, we make the beginning of green into a

function of blue and U4 (equation (14)), and the decline at the end into a

separate function of U4 (equation (15)) that takes over when the first one

exceeds 0.99.

Green = Blue +
0.25

(1+2×U4)
2 (14)

Green = 1 −max ((U4 − 0.95)2,
U4
1000

3.5
) (15)

At this point we have taken our initial U(0,1) value from the PRNG and turned

it into five. We have transformed a uniform probability distribution into five

values that mimics the superficial characteristics of stars on a continuous

scale. The number of different stars we can generate is limited only by the

number of different outputs we get from our PRNG.

What we did was to go from one uniform probability distribution to a set

of cumulative distribution functions. A cumulative distribution function gives

the probability of getting a certain value or anything lower than it. This is the

general method for generating pseudorandom numbers from non-uniform

distributions. Since all five values are derived from the same U(0,1) value

they have a strict deterministic bond with one another, quite like the main-

sequence stars in the night sky.

There’s a myriad of different probability distributions with different

characteristics that are more or less suitable in different situations. Some

programming languages come with functions that do these transformations

for you, but finding the code to do it yourself is simple. If we had better data,

we might have been able to select one of these well-known distribution by

calculating some of the moments and compare them with moment generating

functions. In the end, we would probably end up with something similar

though.

Our approach gave us slightly altered versions of common distributions.

For example: the transformation in equation (11) gives the radius of the stars

an exponential distribution with a lower bound which makes it a two-

parameter exponential distribution, but then we impose a higher bound which

makes it something else.

Our approach manages to mimic the superficial characteristics of main-

sequence stars from the smallest to the largest and everything in between. Not

spot on, but close enough for superficial resemblance.

12

5. Stargazing

The first characteristic we generated was luminosity. Among other things,

this variable determines the distance from which a star is visible. The fact that

M-class stars on the main sequence are so dim means that none are visible

from earth without a telescope (Croswell 2002). All the stars we see in the

night sky are of the brighter and less common variety. This needs to be

reflected in our generated galaxy.

We do this by calculating the apparent brightness as a function of the

distance to the star and its luminosity, which we generated in equation (10)

(the distance can be calculated by using the Pythagorean theorem twice). The

luminosity we generated is applicable right at the star itself and is emanating

in every direction in the shape of a sphere. The further we are from the star,

the larger the sphere. The same amount of light gets spread out over a larger

surface area. To calculate the apparent brightness we simply divide the

luminosity with the surface of a sphere that has the star at its centre and our

position on its surface, as in equation (16) which is a well-known equation

(Palma 2014).

Apparentbrightness =
Luminosity

4×π×Distance2
 (16)

At a certain distance, a stars apparent brightness gets so low that it becomes

invisible to the naked eye. For the sun (Luminosity = 1), this happens at about

72 light years going by the calculations in Celestia (2013). We could lower

this to limit the number of visible stars if necessary. It might also be prudent

to segment the generation of stars depending on how far away they can be

seen, creating stellar classes of our own, but we’ll leave that be in this model.

Planets reflecting the light of their star can also be said to have a certain

amount of luminosity, but it’s incredibly small. This means that we don’t need

to generate individual bodies in a solar system until we get close.

6. Major Bodies of a Solar System

When we get close to a solar system (within 0.1 ly or so), the first thing we

need to do is determine the number of stars in it. As much as a third of all

solar systems are believed to have more than one star (Lada 2006). If it turns

out to be a binary system, it could either be a substantially smaller star orbiting

a large one, which means the smaller star could be treated like a planet, or

two somewhat similar stars orbiting a common barycentre. If you are far away

either of these cases will appear as a single dot. In the first case the dimmer

star would get visible as you get closer. In the second, the single dot would

separate into two. Smaller stars may be part of a larger stars system, but are

less likely to have a similar or smaller star in a system of their own (Lada

2006). To roughly approximate this relationship we turn to equation (17) for

determining the probability of a generated star having another star of similar

13

size in its system. Since we don’t have all that much to go on there is some

room for artistic license. We set the probability to 1 percent for smallest and

largest stars let it peak at about 52 percent in the G-class with an overall mean

of about 24 percent.

Probabilityofmultiplestars = max(exp(U4 − 1) − 0.37 − U4
40, 0.01) (17)

To determine the outcome we then generate a new number from U[0,1] that

we call U5. If U5 is smaller than the probability determined in equation (17)

there will be two similarly large stars in the system, we disregard the

possibility of there being more than that. We can set the seed for U5 to the

generated number U4, make sure that the seed isn’t truncated. Then, if we

have a binary system, we need to determine the size of the second star, which

will be slightly smaller than the first one. To do this we generate yet another

number (U6) which can get the same seed as U5 minus one. U6 is used to

transform the number we generated for the first star (U4) into something

slightly smaller in equation (18). This transformed number is then used to

determine the characteristics of the second star in the same way that U4

determined those of the first one, which we’ll call the primary.

Secondstarstatistic = U4 × (U4 + U6 × (1 − U4)) (18)

The orbit of the two stars can take on a number of different forms but we will

limit ourselves to them being on opposite sides of the same orbit. We will also

limit these orbits, and all others, to perfect circles on the same plane. The

orbital period can be determined based on their masses and the distance

between them. Their masses, in turn, can be calculated from their luminosity

thanks to a known relation among main-sequence stars (Duric 2004, p.19-20).

A generalized transformation derived from this relation is seen in equation

(19) where a=0.23 and b=2.3 for luminosity<0.03; a=1 and b=4 for

luminosity<16; a=1.5 and b=3.5 for luminosity<54 666; a=3200 and b=1 for

the rest.

StellarMassforstari = SMi = (
Luminosity

a
)
b

 (19)

The distance between the stars may vary. By generating yet another number

from U(0,1) called U7, with the same seed as U5 minus two, equation (20)

will determine this distance to somewhere between 10 and 100 000 times the

radius of the larger star calculated in equation (11) (called SR and measured

in solar radii), shorter distances are more common. The masses and the

distance can then be put into equation (21) to determine the orbital period

measured in earth years. Equation (21) is a transformation of the general

formula for determining orbital velocity and G is the gravitational constant

which is equal to 6.674×10-11. The other constant is there to give us the orbital

14

period in Earth years and was retrieved by inputting the mass of the Sun and

Earth as well as the distance between the Sun and the Earth and transforming

that to 1. Inputting the distance between the Sun and Jupiter and the masses

of the Sun and Jupiter in equation (21) gives us 11.86 which is the length of

a Jovian year measured in Earth years.

StarDistance = SD = SR × ((1 − U7) × 21 + U7
20 × 100000) (20)

Orbitalperiod =
π×SD1.5

√G×(SM1+SM2)×1087679925
 (21)

On to the creation of planets and smaller stars. For binary systems, this will

be done once for each star and one time for the barycentre. We need to

determine the orbit, mass, size, rotation period and axial tilt for each object.

To determine the orbit we start with the distance to the star. Going by some

very general observations of our own solar system we limit this distance to

somewhere between 10 and 10 000 times the radius of the star and make

closer orbits more likely. In reality it is obviously the mass of the star and

planet in question that may set the upper limit of an orbit, but this limit is also

hampered by the proximity of other stars pulling a faraway planet out of its

orbit. Rather than taking all that into account we choose the easy route and

make a reckless approximation that still maintains the illusion of accuracy.

For orbits around one of the stars in a binary system, we set the upper limit

at a quarter of the distance between the two stars. For orbits around the

barycentre in such a system, we set the lower limit at 1.5 times the distance

between the stars and the upper one at 10 000 times the radius of the primary

star.

To prevent any two planets from having too similar orbits we start inward

and work our way toward the edge, making a planets distance into a function

of the previous planets distance (planet i-1). As soon as a planet is generated

too far away, it is removed and no more planets are generated. Each potential

planet gets its own random number generated from U(0,1) called U8 which

has the same seed as U5 plus the planets number (i). The planets numbers are

determined by the order in which they were generated.

Equation (22) determines the planets distance to the star. Di-1 is the

generated distance for the previous planet, so it does not exist for the first one,

it is also erroneous when switching from generating one kind of orbit to

another in a binary system. If the planet is orbiting a star, this fist Di-1 is

therefore set to 10 × SR, where SR is the stellar radius measured in solar radii,

generated in equation (11), if it is orbiting a binary systems barycentre it is

set to 1.5 times the distance between the stars.

The distance in equation (22) is measured in solar radii. For orbits around

a lonely star or the barycentre in a binary system, planets getting a distance

of more than 10 000 × SR will be dropped. For orbits around one of the two

stars in a binary system, that limit is set to half the distance between the stars,

15

as stated previously. Once a planet is dropped no more planets are generated

for that star/barycentre. In a binary system, orbits will be generated

sequentially, e.g. first for the barycentre, then the primary star, and lastly the

secondary star, but the planets id-numbers continue counting up as no system

should have multiple planets with the same id.

PlanetiDistance = Di = Di−1
1.1 − (log(U8

10) −
1

1600
) × 10 (22)

After determining the distance we move on to mass and size. Planets that are

too close to their star will lose much of their atmosphere (Tian & Toon 2005),

this rules out gas giants close to the star. To mimic this, any planet less than

800 × SR (Jupiter is about 1040) from its star will not be a gas giant. If it is

further away than that however, it is likely to be one. So for planets closer

than 800 × SR to their star, equation (23) is used to determine mass and for

ones further away, equation (24) is used. Both equations express the mass in

relation to our sun and require a new number generated from U(0,1) called

U9, the seed may be set to that of U5 + 100 multiplied with the planet number.

To determine the radius expressed in solar radii we use equation (25) which

makes smaller planets denser. In order to get some small stars we use equation

(26) to replace planets that get a mass over 0.0012 with small stars, but only

if the primary star has a radius of more than 0.5 solar radii. The range of

possible sizes for the star in orbit is then dependent on the size of the primary

star as equation (26) is a function of the primary’s generated number (U4).

This additional generation of stars helps bring up the overall number of

binary systems from the 24 percent determined in equation (17) toward one

third, which is the real world estimate (Lada 2006).

Planetimass(inner) = (0.13 + 20 × (U9 − 0.5)3 + 2 × U9
2) × 10−6 (23)

Planetimass(outer) = (622 + 5 × (10 × (U9 − 0.5))3) × 10−6 (24)

Planetiradius = 0.058 × exp ((
mass

600
)
0.2

) − 0.0665 (25)

Minorstarstatistic =
U4

3+10×U9
 (26)

The output from equation (26) is used to determine the characteristics of the

minor star in the same way that U4 was used for the primary. This smaller star

could get planets of its own, and the other planets could get moons, but we

leave it out of this model lest we get into too many details and repetitious

equations.

Knowing the mass and the distance of the planets, we can determine their

orbital period with equation (21), we only need to exchange SD with the

distance to the planet or minor star derived in equation (22), and SM1 or SM2

(whichever one it is not orbiting) with the mass of the planet or minor star. If

we have two similar stars and are determining an orbit around the barycentre

we keep both SM1 and SM2 and add the planets mass at their position (inside

the brackets) in the equation.

16

There are only two things left to generate now: the rotation period and the

axial tilt. The rotation period has a relation to the planets mass and the

proximity to the star it orbits. More massive planets generally rotate faster

than smaller ones. Planets closer to the sun generally rotate slower, up to the

point where they become tidally locked, meaning that the same side is always

facing the star, just like the same side of the moon is always facing the earth.

I.e. the maximum rotation period of a planet is equal to its orbital period

(which we call OPi for planet i). As a matter of fact, the suns gravity is forcing

the rotation period of all planets toward their orbital period, it just happens

faster with closer objects since the gravitational force is stronger there.

Massive planets rotating faster may be due to a historical concentration of

mass that sped up their initial rotation speed.

This initial rotation period is a stochastic component, to capture this fact

we generate yet another number from U(0,1) called U10 which gets the seed

of U5 plus 104 multiplied with the planet number. Since a planet may have a

negative rotation in relation to its orbit (giving it a negative rotation period),

but absolutely not a rotation period equal, or too close, to zero (if a planet

were to make a revolution in the blink of an eye it would seize to be a planet)

we may transform U10 in equation (27) or (28). To determine which

transformation should be used we generate yet another number from U(0,1)

called U10 which gets the seed of U5 plus 106 multiplied with the planet

number. If U10 is less than 0.1 we use equation (27), otherwise we use

equation (28), i.e. we guess that the probability of a planet rotating in the same

direction it orbits is 90 percent. This initial rotation period is then altered in

equation (29) to account for the distance to the star and the mass of the planet,

all rotational periods are measured in Earth years.

InitialRotationPeriod(negative) = IRP = 90 × U10
5 − 100 (27)

InitialRotationPeriod(positive) = IRP = 0.01 + 100 × U10
10 (28)

RotationPeriod = IRP × (
SR0.9

distance×mass
)
0.5

 (29)

The very last characteristic we generate is the axial tilt, it can be somewhere

between 0 and 90 degrees in relation to the planets orbit. We only have our

own solar system to go on here, and from that we determine that minor tilts

are more common, but major ones are not unprecedented. Just like the rotation

period, planets close to their star are forced into alignment and have very little

tilt, while planets further away may diverge more. To mimic this we calculate

a distance modifier in equation (30) that shifts the mean tilt closer to 0 for

planets near the star. This distance modifier is then accounted for when

calculating the axial tilt in equation (31) where we generate our last number

from U(0,1) called U11 which has the seed of U5 plus 108 multiplied with the

planet number.

17

DistanceModifier = DM = min (
(Distance/SR0.9)

3

105
 ,51.42857) (30)

Axialtilt = DM × (U11
5 + 10 × (0.55 + (U11 − 0.5)5)) (31)

7. Discussion

Based on data and some rather general observations we have generated a

massive, albeit rather empty, world. We split our artificial world into cubes

aligned in a grid and determined the number of stars in every cube in a way

that created a spiral shape, reminiscent of a spiral galaxy. This was not a

particularly accurate way of doing it as stars tend to be grouped together in

clusters and these clusters then form the shape of a much less symmetrical

spiral (or whatever shape the galaxy in question has).

When determining the characteristics of the stars we choose to be more

accurate even though we limited ourselves to the main-sequence stars. Going

by actual observational data we came up with a way of generating the

characteristics that would mimic their actual distribution. Lastly we generated

additional stars and planets for the solar systems and determined their orbits

in a way that, while hardly being accurate, managed to mimic accuracy.

The approach is a mix between analysing observational data to retrieve the

best fitting probability distributions for the stars and letting more anecdotal

data and astronomical hypothesis inform the probability distributions for

things like the likelihood of binary star systems and the characteristics of

planets. As our knowledge of other solar systems expand due to new

discoveries by the Kepler space observatory and future missions, it ought to

be easy to find a much better model for generating planets.

The world generated by the equations in this paper may not be particularly

interesting in its current state, but it could be taken so much further using the

same principles. We could generate moons, asteroid fields and planetary

rings. We could determine the atmospheric and planetary composition of the

celestial bodies. We could generate supernovas, pulsars, quasars, black holes

and additional galaxies.

Going by the planets position, rotation period, axial tilt and atmospheric

composition we could determine temperature and climate. For the right kinds

of planets we could then set a probability for life and generate alien plants

and creatures. All the planets could get procedurally generated surfaces using

the diamond-square algorithm, fractals, Brownian motion, simplex noise and

other techniques.

Vladimir Romanyuks SpaceEngine (2015) is a good example of taking a

few of those extra steps and using more accurate algorithms.

18

8. References

Celestia, computer software 2013. Available from:

<http://www.shatters.net/celestia>. [18 December 2015].

C++ Resource Network 2015, rand. Available from:

<http://www.cplusplus.com/reference/cstdlib/rand/>. [21 December 2015].

Croswell, K 2002. The Brightest Red Dwarf. Available from:

<http://kencroswell.com/thebrightestreddwarf.html>. [2 January 2016].

Duric, Nebojsa (2004). Advanced astrophysics, Cambridge University Press,

Cambridge.

Ierusalimschy, Roberto (2003), The Mathematical Library. Available from:

<http://www.lua.org/pil/18.html>. [21 March 2016].

Kaltenegger, L & Traub, WA 2009, ‘Transits of Earth-like Planets’, The

Astrophysical Journal, vol. 698, no. 1, pp. 519-527.

Lada, CJ 2006, ’Stellar Multiplicity and the IMF: Most Stars Are Single’, The

Astrophysical Journal Letters, vol. 640, no. 1, pp. 60-63.

LeDrew, G 2001, ‘The Real Starry Sky’, Journal of the Royal Astronomical

Society of Canada, vol. 95, no. 1, pp. 32-35.

Leadwerks Game Engine, computer software 2016. Available from:

<http://www.leadwerks.com>. [21 march 2016].

Palma, C 2014, Luminosity and Apparent Brightness. Available from:

<https://www.e-education.psu.edu/astro801/content/l4_p4.html>. [12 January

2016].

Parish, J 2007, Roguish Charm. Available from:

<http://www.1up.com/features/essential-50-rogue>. [18 January 2016].

Sourceware 2015. Available from:

<https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=stdlib/random_r.c;hb=

HEAD>. [21 December 2015].

SpaceEngine, computer software 2015. Available from:

<http://en.spaceengine.org/>. [4 December 2015].

Tian, F & Toon, O 2005, ‘Transonic Hydrodynamic Escape of Hydrogen from

Extrasolar Planetary Atmospheres’, The Astrophysical Journal, vol. 621, no. 1,

pp. 1049-1060.

Introduction to Random Number Generators, 2007. Available from:

<http://www3.nd.edu/~mcbg/tutorials/2006/tutorial_files/randomNum/howItwo

rks.html>. [15 December 2015].

Stellar Luminosity Calculator, 2014. Available from:

<http://astro.unl.edu/classaction/animations/stellarprops/stellarlum.html>. [16

January 2015].

Wichman, GR 1997, A Brief History of “Rogue”. Available from:

<http://www.wichman.org/roguehistory.html>. [18 January 2015].

http://www.shatters.net/celestia/
http://www.cplusplus.com/reference/cstdlib/rand/
http://kencroswell.com/thebrightestreddwarf.html
http://www.lua.org/pil/18.html
http://www.leadwerks.com/
https://www.e-education.psu.edu/astro801/content/l4_p4.html
http://www.1up.com/features/essential-50-rogue
https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=stdlib/random_r.c;hb=HEAD
https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=stdlib/random_r.c;hb=HEAD
http://en.spaceengine.org/
http://www3.nd.edu/~mcbg/tutorials/2006/tutorial_files/randomNum/howItworks.html
http://www3.nd.edu/~mcbg/tutorials/2006/tutorial_files/randomNum/howItworks.html
http://astro.unl.edu/classaction/animations/stellarprops/stellarlum.html
http://www.wichman.org/roguehistory.html

19

Appendix 1

Stellar density at central plane of virtual spiral galaxy

win.graph(6,6)

par(las=1, mar=c(4,4,4,4))

resolution = 800

limits = c(-resolution/2, resolution/2)

plot(resolution, axes=FALSE, ann=FALSE, xlim=limits, ylim=limits)

axis(1,-1:1*resolution/2,las=1,lab=c(-5000,0,4999))

axis(2,-1:1*resolution/2,las=1,lab=c(-5000,0,4999))

box()

mtext("Y", side=2, line=3, cex=1.2)

mtext("X", side=1, line=2.5, cex=1.2)

oldpercent=0

for(i in 1:resolution){

 for(j in 1:resolution){

 x = 10000*(i-resolution/2)/resolution

 y = 10000*(j-resolution/2)/resolution

 distance = (x^2+y^2)^0.5

 angle = atan(y/x)

 core = 1 - (distance/200)^2

 arms = exp(-distance/1500)*0.5*sin((0.5*distance)^0.35-angle)^2+

 0.5-distance/10000

 density = max(core,arms,0)

 if(is.na(density)){density = 1}

 color = paste0('gray',round(100-density*100))

 lines(i-resolution/2,j-resolution/2, type='p', cex=0.1, pch=15, col=color)

 }

 percent = round(i/resolution*100)

 if(percent != oldpercent){print(c(percent," %"),quote=FALSE)}

 oldpercent = percent

}

20

Appendix 2

Luminosity transformation parameter estimation

p = c(0,0.76,0.89,0.96,0.99,0.998,0.9999997,1.0000000)

lum = c(0.000158,0.086,0.58,1.54,4.42,21.2,26800,78100000)

diff2 = Inf; result = NA; lum2 = NA; lum1={}

for (i in 1:100){

 for (j in 1:100){

 for (k in 1:100){

 for (l in 1:100){

 a = i/10^5; b = j; c = k/10; d = l/10

 for (m in 1:length(p)){

 lum1[m] = min(a+b*(-log(1-p[m])/c)^d, 78100000)

 }

 diff1 = sum(abs(1-lum/lum1))

 if (diff1 < diff2){

 result = matrix(c(a,b,c,d), nrow=4,ncol=1)

 lum2=lum1

 A=a; B=b; C=c; D=d

 diff2=diff1

 }

 }

 }

 }

 print(c(i,"%"), quote=FALSE)

}

par(mfrow=c(1,2));lumseq={}

a="log(Luminosity)";b="log(Generated Luminosity)"

for (m in 1:10000){lumseq[m] = min(A+B*(-log(1-m/10000)/C)^D, 78100000)}

plot(p,log(lum), xlab=expression('U'[4]),ylab=a)

lines(1:10000/10000,log(lumseq),col='red')

plot(log(lum),log(lum2),type='o',xlab=a,ylab=b)

abline(c(0,0),c(1,1),col='red')

comparison=matrix(c(lum,lum2),nrow=length(p),ncol=2)

dimnames(comparison) = list(p,c("Actual","Estimate"));comparison

dimnames(result) = list(c("A =","B =","C =","D ="),"Estimates:"); result

