Är gröna energibolag i det gröna?

En studie om relationen mellan oljepriset och gröna energibolags aktiepriser

Hampus Åkerstrand
Carl-Johan Östblom

25 maj 2016
Sammanfattning

Titel År gröna energibolag i det gröna? – En studie om relationen mellan oljepriset och gröna energibolags aktiepriser

Seminariedatum 31 maj 2016

Kurs NEKH01

Författare Hampus Åkerstrand och Carl-Johan Östblom

Handledare Dag Rydorff

Nyckelord VAR, gröna energibolag, olja, index

Syfte Denna uppsats syfte är att undersöka relationen mellan oljepriset och europeiska gröna energibolags aktiepriser för att således utgöra ett underlag för investerare och beslutsfattare.

Teoretiskt perspektiv Uppsatsen bygger på tidigare forskning kring oljeprisfluktuationer, gröna energibolag och tidigare appliceringar av vektor autoregressiva modeller.

Empiri Uppsatsens empiri består av veckobaserad sekundärdata från Thomson Reuters Datastream.

Slutsats I denna uppsats presenteras resultat som indikerar att oljepriset inte har en statistisk signifikant påverkan på europeiska gröna energibolags aktiepriser. Detta resultat skiljer sig från en liknande amerikansk studies resultat. Däremot ser vi att det index som vi skapar uppvisar signifikanta effekter på oljepriset i olika tester. Resultatet tolkas med försiktighet på grund av heteroskedasticitet i data och för att förändrad efterfrågan på olja i Europa kan utgöra den bakomliggande orsaken till sambandet.
Innehåll

Förkortningar och Noteringar ... 5

1 Introduktion .. 6

2 Bakgrund ... 10

2.1 Oljeprisfluktuationer .. 10

2.1.1 Orsaker bakom oljeprisfluktuationer ... 10

2.2 Tidigare forskning .. 12

2.3 Gröna energibolag .. 14

2.4 Imperfekta substitut ... 16

3 Data .. 17

3.1 G-INDEX: Index för europeiska gröna energibolag .. 17

3.2 Oljepriset ... 20

3.3 Teknologiindex STOXX® Europe 600 Technology ... 20

4 Metod ... 22

4.1 Vektor autoregressiv modell (VAR) .. 22

4.2 Enhetsrottest .. 22

4.2.1 Kointegration ... 24

4.3 VAR:s uppbyggnad ... 24

4.3.1 Antalet laggar ... 26

4.3.2 Variablernas konstruktion ... 26

4.4 Heteroskedasticitet .. 27

4.5 Autokorrelation .. 28

4.6 Multikollinearitet ... 29

4.7 Granger-kausalitet .. 30

4.8 Impulsresponsfunktion ... 31

5 Resultat .. 33

5.1 Enhetsrottest .. 33

5.2 Kointegrationstest ... 36

5.3 Vektor Autoregressiv Modell (VAR) ... 36

5.3.1 Val av antalet laggar .. 36

5.3.2 Autokorrelation, heteroskedasticitet och multikollinearitet .. 38

5.3.3 VAR med två laggar .. 43
5.3.4 Granger-kausalitet ... 46
5.3.5 Impulserpansfunktion ... 47
5.4 Sammanfattning av resultat ... 49
6 Diskussion ... 50
6.1 Vidare forskning ... 52
6.2 Avslutning .. 53
7 Referenser ... 54
Förkortningar och Noteringar

AIC: Akaike Informationskriterium

ADF: Augumented Dickey-Fuller

BNEF: Bloomberg New Energy Finance

EMEA: Europa Mellanöstern och Asien

ERIX: European Renewable Energy Index

G-INDEX: Aktieprisindex över europeiska gröna energibolag

HAC: Newey-West heteroskedasticitet och autokorrelation konsekventa standardfel

IEA: International Energy Agency

IRF: Impulsresponsfunktion

NREL: National Renewable Energy Laboratory

MK: Minsta Kvadratmetoden

OIL: Avistapriset på Brent råolja

OPEC: Organization of the Petroleum Exporting Countries

SC: Schwarz Informationskriterium

STX6: Europeiska teknologiaktieindexet STOXX® Europe 600 Technology

VAR: Vektor Autoregressiv Modell

VECM: Vector Error Correction Model

VIF: Varians Inflationsfaktorer

WEC: World Energy Council

(-1): En tidsperiods laggit värde

(-2): Två tidsperioders laggit värde
1 Introduktion

"Climate action is central for the future of our planet, while a truly European energy policy is key for our competitiveness. Today's package proves that tackling the two issues simultaneously is not contradictory, but mutually reinforcing. It is in the EU’s interest to build a job-rich economy that is less dependent on imported energy through increased efficiency and greater reliance on domestically produced clean energy. … the renewables target of at least 27 % is an important signal: to give stability to investors, boost green jobs and support our security of supply" (Europeiska Kommissionen, 2014b).

Det ovanstående citatet berör Europeiska Kommissionens klimatmål för år 2030. Europeiska Kommissionens före detta ordförande anser att ökade klimatsatsningar och utökad användning av förnybara energikällor ska likställas med en utveckling av medlemsstaternas konkurrenskraft (Europeiska Kommissionen, 2014b). Om EU:s målsättning är att medlemsländerna i högre grad
ska förlita sig på förnybar energi kan detta utgöra tydliga signaler och drivkrafter för fortsatta investeringar i denna sektor.

Som tidigare nämnt har oljan länge präglats av plötsliga prisfluktuationer. År 2008 inträffade ett liknande prisfall som vi kan se i nedanstående figur 1.1, där båda prisfallen år 2008 och år 2014 markerats.

Figur 1.1. Prisutveckling för Brent råolja mellan 1997-2016 illustreras i euro per fat. Oljeprisfallen 2008 och 2014 markeras med ▲. Källa: Thomson Reuters Datastream

Samtidigt som oljepriset skapar ekonomisk oro kvarstår den europeiska ambitionen om att förlita sig mer på förnybar energi. Om ett prisfall i olja medför positiva effekter för investeringar i gröna energibolag kan oron kring oljeprisfluktuationer möjligvis vara felplacerad i detta avseende. Likväl kan relationen mellan oljepriset och aktiepriser för gröna energibolag i Europa utgöra ett underlag för beslutsfattare samt ge en indikation på hur den framtida utvecklingen av grön energi kan utformas. Tidigare forskning kring relationen mellan oljepriset och aktiemarknaden är kluven och utgår ofta från den amerikanska marknaden. På grund av dessa anledningar är syftet med denna uppsats att undersöka relationen mellan oljepriset och gröna energibolags aktiepriser i Europa.

Metoden denna uppsats applicerar för att undersöka relationen mellan oljepriset och aktiepriser för europeiska gröna energibolag utgår från en vektor autoregressiv modell med historisk prisdata. Analysen av modellens resultat och variablernas relation fördjupas med hjälp av ett Granger-kausalitetstest och en impulsresponsfunktion. Resultatet visar att oljepriset har en insignifikant påverkan på gröna energibolags aktiepriser samtidigt som gröna energibolags aktiepriser har en påverkan på oljepriset. Detta resultat tolkas med försiktighet på grund av heteroskedasticitet i data och modellens struktur.

Denna uppsats inleds med att redogöra en empiriskt belagd bakgrund till oljeprisfluktuationer samt gröna energibolag i kapitel 2. I detta kapitel presenteras även tidigare forskning för att ge läsaren en förståelse kring tidigare teorier och resultat. I enlighet med tidigare forskning inkluderades priset på ett teknologiindex, STOXX® Europe 600 Technology, i modellen för att även undersöka relationen mellan gröna energibolag och teknologiindustrin i Europa. Därefter i kapitel 3 presenteras de data som används. I kapitel 4 beskrivs de modeller som appliceras, med fokus på en vektor autoregressiv modell för att undersöka relationen mellan oljepriset och gröna energibolags aktiepriser. Denna modell är sällan använd på grundnivå på grund av dess komplexitet och således ges en ingående förklaring av modellens bakomliggande teori och dess applicering för att ge läsaren en god förståelse kring vektor autoregressiva modellers uppbyggnad. Därefter presenteras modellens resultat i kapitel 5 och slutligen förs en diskussion.
rörande uppsatsens resultat i kapitel 6, tillsammans med förslag till vidare forskning och en avslutning.
2 Bakgrund

2.1 Oljeprisfluktuationer

Oljeprisfluktuationer har sedan länge betraktats som en indikation på ekonomisk orolighet i världen. Oljan har uppvisat en påtaglig ekonomisk betydelse för alla världens länder, och därför har råvarans prisfluktuationer både ett stort politiskt, så väl som ett ekonomiskt intresse. Omfattande analyser av oljeprisfluktuationer har genomförts sedan efterkrigstiden, då storleken på oljans utvinning och handel blev av väsentlig betydelse för världsekonomin (Yan, 2012).

Genom dessa analyser har oljans prisfluktuationer kopplats till många makroekonomiska faktorer för både exporterande och importerande länder. Däremot saknas konsensus kring vilken inverkan oljans prisfluktuationer har på olika aktiemarknader. Vissa studier visar en negativ korrelation mellan oljepriset och aktiemarknader samtidigt som andra studier konstaterat dessa som oberoende av varandra (Kilian och Park, 2009).

För att undersöka oljeprisets relation till aktiepriser för gröna energibolag i Europa presenterar denna uppsats inledningsvis de bakomliggande faktorerna som orsakar prisfluktuationerna på oljemarknaden.

2.1.1 Orsaker bakom oljeprisfluktuationer

De bakomliggande orsakerna till oljeprisfluktuationer är många, och har analyserats ingående i flera studier. Utöver de faktorer som presenteras nedan, är det sannolikt att det existerar ytterligare faktorer som kan ha en inverkan på oljepriset, till exempel politiska beslut eller omvärldshändelser. Dessutom har de faktorer som presenteras påverkat oljepriset i skiftande utsträckning och annorlunda i utformning beroende på vilken urvalsperiod som studeras. Det är dock väsentligt att ge en övergripande redogörelse av de bakomliggande orsakerna till oljeprisfluktuationer, då dessa tillför en konkret koppling mellan råvaran och gröna energibolag.

Oljemarknaden är global vilket gör att förändringar i globalt utbud eller global efterfrågan orsakar förändringar i oljepriset. De bakomliggande orsakerna till förändringar i globala marknadskraften är för många för att alla räknas upp i denna uppsats, men vissa av orsakerna kan fortfarande ge betydelsefulla förklaringar till oljeprisfluktuationer. Global efterfrågan på många olika industriella råvaror höjdes drastiskt under tidigt 70-tal. Orsaken till efterfrågehöjningen var att USA, Europa samt Japan för första gången under efterkrigstiden befann sig i en gemensam

Det senaste oljeprisraset som inträffade år 2014 kom efter en period av relativt stabila priser kring 80 euro per fat. Efter priset sjönk oljepriset till uppehöjande låga nivåer under 40 euro per fat som vi kan se i figur 1.1. Den främsta anledningen till detta priskras bedöms vara en utbudskock orsakad av Organization of the Petroleum Exporting Countries (OPEC) men också till följd av att världsekonomiska tillväxttutikter fallit något under förväntade nivåer (Sveriges Riksbank, 2015).

Det är möjligt att prishöjning 2014 har gett upphov till finansiella följdeffekter som kan vara gynnsamma för andra tillgångar på energimarknaden. Till skillnad från tidigare prisfall under 1900-talet har energimarknaden utvecklats kraftigt under 2000-talet. Genom stora satsningar på forskning och utveckling på nya energikällor har framsteg resulterat i flera substitut till oljan, exempelvis biobränslen med mera. Genom fortsatt teknikutveckling och ökad kostnadsseffektivisering såväl i produktionsledet som i användarledet utgör dessa substitut till de mer traditionella energiinvesteringarna som oljan (Baffes et al. 2015).

I nästa del av denna uppsats diskuteras de ekonomiska effekter oljeprisfluktuationer har enligt tidigare forskning.
2.2 Tidigare forskning

Oljeprisfluktuationer skapar finansiella följdeffekter för de länder och aktörer som har en koppling till oljepriset. Uppvisar oljan en hög prisvolatilitet kan detta leda till att kapital allokeras till investerare med andra spar-, investerings- och riskpreferenser. Dessutom innebär ett lägre oljepris en real inkomstökning för företag och hushåll i oljeimporterande länder. Ett prisfall kan utöra en strategisk möjlighet att omplacera statliga medel i länder där oljan är subventionerad. När det globala oljepriset sjunker blir en statlig subvention av ringa betydelse i jämförelse med tider av högre oljepriser (Husain et al. 2015).

Under tidsperioder då USA var mer beroende av olja har alla sektorer på aktiemarknaden uppvisat en större känslighet för prisfluktuationer än när landet förlitats sig mer på andra tillgångar. Studien visar även att korrelationen mellan oljepriset och amerikanska börsen är generellt negativ, dock i varierande utsträckning och beroende på vilken sektor som studeras (Pescatori och Mowry, 2015).

Park och Ratti (2008) undersöker real aktieavkastning i USA och i 13 europeiska länder med oljeprisfluktuationer som utgångspunkt. Deras resultat visar att oljeprischocker har en statistiskt signifikant effekt på reala aktieavkastningar i de undersökta europeiska länderna, dock i varierande omfattning.

Oljeprisfluktuationers effekter utifrån tidigare forskning kan summeras som varierande beroende på vilken tidsperiod och vilka aktörer som studeras. Relationen till oljepriset för länder och företag är bunden till deras beroendeställning till råvaran och således skiljer sig oljeprisfluktuationers effekter mellan olika aktörer.
Vi har inte påträffat någon studie som undersöker relationen mellan oljepriset och aktiepriser för gröna energibolag i Europa. Företag som är verksamma inom oljebranschen är i synnerhet beroende av oljeprisets utveckling. Det är samtidigt möjligt att oljeprisfluktuationerna under 2000-talet har konsekvenser för andra företag som inte är direkt kopplade till oljans pris, exempelvis gröna energibolag, i enlighet med de resultat som presenterats i amerikanska studier. Eftersom världens framtida tillgång av olja är osäker samtidigt som råvaran uppvisar kraftiga fluktuationer i pris är oljan en energikälla av strategisk innebörd för alla världens länder (Yan, 2012).

2.3 Gröna energibolag

Figur 2.1. Nya investeringar i grön energi i miljarder euro per region för Europa, Mellanöstern och Asien (EMEA), Asien-Stillahavsområdet (APAC), Amerika (AMER). Källa: (Mills, 2015)

2.4 Imperfekta substitut

3 Data

För att undersöka relationen mellan oljepriset och gröna energibolags aktiepriser insamlas ett urval av europeiska gröna energibolags aktiepriser som inkluderas i ett eget konstruerat aktieprisindex (G-INDEX). Därefter har data på priset per fat Brent råolja samt priset på det europeiska teknologiindexet STOXX® Europe 600 Technology samlats in. Alla priser som presenteras i denna uppsats är nominella och i valutan euro för att undvika valutaeffekter. Data över dessa variablers historiska priser är hämtad från Thomson Reuters Datastream.

3.1 G-INDEX: Index för europeiska gröna energibolag

G-INDEX består av 19 gröna energibolag noterade på europeiska börsmarknader. I tabell 3.1 listas bolagen med namn, året för börsnotering samt bolagens marknadsvärde i mars 2016. Som vi kan se har majoriteten av inkluderade bolag börsnoterats under de senaste 15 åren och vid år 2000 var endast fyra av de inkluderade energibolagen börsnoterade.
Tabell 3.1. Alla bolag i G-INDEX. Tabellen sorteras efter datum för börsnotering. Källa: Thomson Reuters Datastream

<table>
<thead>
<tr>
<th>Bolag</th>
<th>Land</th>
<th>Börsnotering</th>
<th>Marknadsvärde 2016-03 (Miljoner Euro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbund AG</td>
<td>Österrike</td>
<td>1997-01</td>
<td>1807</td>
</tr>
<tr>
<td>Albioma SA</td>
<td>Frankrike</td>
<td>1997-01</td>
<td>416</td>
</tr>
<tr>
<td>Vestas Wind Systems A/S</td>
<td>Danmark</td>
<td>1998-05</td>
<td>13551</td>
</tr>
<tr>
<td>PNE Wind AG</td>
<td>Tyskland</td>
<td>1998-12</td>
<td>133</td>
</tr>
<tr>
<td>Solarworld AG</td>
<td>Tyskland</td>
<td>2000-05</td>
<td>151</td>
</tr>
<tr>
<td>Energiekontor</td>
<td>Tyskland</td>
<td>2000-05</td>
<td>187</td>
</tr>
<tr>
<td>Gamesa Corp. Technologica SA</td>
<td>Spanien</td>
<td>2000-11</td>
<td>4712</td>
</tr>
<tr>
<td>Nordex SE</td>
<td>Tyskland</td>
<td>2001-04</td>
<td>2129</td>
</tr>
<tr>
<td>Falck Renewables S.p.A.</td>
<td>Italien</td>
<td>2002-02</td>
<td>296</td>
</tr>
<tr>
<td>Futurekten</td>
<td>Frankrike</td>
<td>2005-06</td>
<td>107</td>
</tr>
<tr>
<td>Verbio Vereinigte Bioenergi</td>
<td>Tyskland</td>
<td>2006-10</td>
<td>420</td>
</tr>
<tr>
<td>AFC Energy PLC</td>
<td>Storbritannien</td>
<td>2007-04</td>
<td>68</td>
</tr>
<tr>
<td>Solaria Energia Y Medio Ambiente</td>
<td>Spanien</td>
<td>2007-06</td>
<td>68</td>
</tr>
<tr>
<td>Terna Energy</td>
<td>Grekland</td>
<td>2007-11</td>
<td>262</td>
</tr>
<tr>
<td>EDP Renovaveis SA</td>
<td>Spanien</td>
<td>2008-06</td>
<td>5657</td>
</tr>
<tr>
<td>SMA Solar Technology AG</td>
<td>Tyskland</td>
<td>2008-07</td>
<td>1442</td>
</tr>
<tr>
<td>Elsős Vind B</td>
<td>Sverige</td>
<td>2009-06</td>
<td>50</td>
</tr>
<tr>
<td>Enel Green Power S.p.A.</td>
<td>Italien</td>
<td>2010-11</td>
<td>9400</td>
</tr>
<tr>
<td>Scatec Solar ASA</td>
<td>Norge</td>
<td>2014-10</td>
<td>354</td>
</tr>
</tbody>
</table>

I processen att skapa ett index finns två vedertagna tillvägagångssätt för att fastställa bolagens indexvikter. Det första alternativet är att förse alla bolagen med samma vikt i indexet, något som ofta kallas för ett oviktat index. I det andra alternativet tilldelas bolagen olika vikter baserat på deras storlek, oftast marknadsvärde, vilket benämns som ett värde-viktat index.

Om ett aktieindex konstrueras med ett litet antal komponenter är det sannolikt att uppvisas indexprisfluktuationer är till följd av företagsspecifika aktieprisfluktuationer. Ett index med ett för litet antal komponenter återspeglar därför inte hur en specifik marknad eller sektor reagerar på exempelvis oljeprisfluktuationer utan visar hur relationen mellan vissa specifika bolags aktiepriser och oljepriset ser ut. Likväl kommer prisfluktuationerna i ett index med för få komponenter vara till följd av den idiosynkratiska risken som utgår från företagsspecifika händelser och som inte återger generell information om marknaden eller sektorn av intresse (Bodie, Kane och Marcus, 2013). Då denna uppsats undersöker relationen mellan oljepriset och

3.2 Oljepriset
I denna uppsats används avistapriset på Brent råolja för att representera oljepriset på världsmarknaden. Brent råolja är betraktad som en vedertagen proxy för det globala oljepriset (Kilian, 2015).

3.3 Teknologiindex STOXX® Europe 600 Technology

4 Metod

4.1 Vektor autoregressiv modell (VAR)

Denna uppsats använder en Vektor Autoregressiv Modell (VAR) för att empiriskt undersöka relationen mellan gröna energibolags aktiepriser och oljepriset. VAR används för att utföra prognoser på interrelaterade tidsserier samt analysera de dynamiska effekter som uppstår vid slumpartade störningar i ett systems variabler. En fördel med att använda VAR i jämförelse med simultana ekvationsmodeller är att VAR inte förutsätter en definition av variabler som exogena eller endogena. I de fall finansiell teori tydligt definierar utvalda variablers funktionsform kan detta argument ses som överflödigt men i praktiken underlättar denna egenskap då det sällan existerar allenarådande svar till vilka variabler som skall behandlas som exogena vid konstruerandet av ekonometriska modeller (Brooks, 2008).

4.2 Enhetsrotstest

För att kunna analysera tidsseriedata med VAR är en förutsättning att utvalda data är stationära. Stationära tidsserier har konstanta varianser, kovarianser och ett konstant medelvärde eller linjär trend över tid. En icke-stationär tidsserie kan sakna en eller flera av dessa egenskaper. Det är

En icke-stationär regression exemplifieras med nedanstående ekvation (1):

$$Y_t = \alpha + \beta Y_{t-1} + \delta t + u_t$$

I detta fall är koefficienten $\beta = 1$ vilket är synonymt med att processen är icke-stationär. $\delta \neq 0$ representerar en deterministisk trend över tid och α är intercept (Dougherty, 2011).

ADF test kan specificeras på olika sätt beroende på tidsseriedatas struktur, med eller utan intercept och tidstrend. Beroende på hur testet specificeras kan olika resultat uppnås. En tidstrend bör inkluderas i testspecificationen om illustrationer av data ger en indikation på en specifik trend över tid. Likaså kan ett intercept inkluderas i testet om dataillustrationen visar ett intercept som är signifikant skilt från noll (Verbeek, 2004). Konstruktionen av ADF testet beskrivs i följande ekvation (2):

$$Y_t = \beta_1 + \beta_2 Y_{t-1} + \cdots + \beta_{p+1} Y_{t-p} + u_t$$

Där $|\beta_2 + \cdots + \beta_{p+1}| < 1$ är synonymt med att tidsserien är stationär, då enhetsröterna inte är signifikanta i ADF testet.

Vid förekomsten av enhetsröter kan data justeras för dess icke-stationära struktur. En metod för att omvandla data till stationär är differentiering. Genom differentiering beräknas differensen mellan en eller flera observationer i följd, exempelvis $Y'_t = Y_t - Y_{t-1}$. En sådan differentierad

4.2.1 Kointegration

4.3 VAR:s uppbyggnad

Anledningen till att VAR betecknas som autoregressiv är på grund av att variblernas föregående värden inkluderas som förklarande variblenter i regressionen. En VAR med en lagg, eller en VAR av första ordningen, är följaktligen en modell som inkluderar alla variblernas värden från en föregående tidsperiod.

En VAR av första ordningen kan illustreras med ett system bestående av två variblenter, \(Y_t\) och \(X_t\), enligt nedanstående struktur i ekvation (3). Vad som karaktäriserar VAR:s uppbyggnad är att respektive varibel kan förklaras utifrån dess egna föregående värden, likväl av de andra variblernas laggade värden.

\[
\begin{align*}
Y_t &= \alpha_1 + \beta_{11}Y_{t-1} + \beta_{12}X_{t-1} + u_{1t} \\
X_t &= \alpha_2 + \beta_{21}Y_{t-1} + \beta_{22}X_{t-1} + u_{2t}
\end{align*}
\]

(3)
Där den stokastiska feltermen (impulsen) betecknas $u_{i,t}$, där $i \in (1, 2)$. Feltermerna har alla medelvärdet noll, konstanta standardavvikelser och är oberoende av laggade värden på Y och X. Dessa feltermor representerar all variation i diverse variabler som inte kan förklaras med hjälp av de inkluderade variablerna.

Om β_{12} är signifikant indikerar detta på att historiska värden för X från en tidsperiod tillbaka förklarar samtidiga värden på Y. Om β_{21} är statistiskt signifikant förklarar historiska värden på Y samtidiga värden för X.

Syftet med att applicera VAR är dock inte detsamma som vid en klassisk MK estimering. Det stora antalet koefficienter som inkluderas i VAR är inte utgångspunkten för modellens analys. Appliceringen av VAR möjliggör analys av kausaliteten och illustrering av variablers respons till chocker. Således beskriver VAR dynamiken i utvald data och relationen mellan utvald data i större grad än att resultera i ett mått på olika variablers påverkan på en beroende variabel (Henriques och Sadorsky, 2008).

En viktig egenskap med VAR är dess förmåga att komprimera ekvationssystem till behändiga uttryck, särskilt vid hanteringen av ett multivariat system. Vi kan specificera ovanstående ekvation (3) enligt följande system i ekvation (4):

$$
\begin{bmatrix}
Y_t \\
X_t
\end{bmatrix} =
\begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix} +
\begin{bmatrix}
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22}
\end{bmatrix}
\begin{bmatrix}
Y_{t-1} \\
X_{t-1}
\end{bmatrix} +
\begin{bmatrix}
u_{1t} \\
u_{2t}
\end{bmatrix}
$$

(4)

Då VAR inkluderar historiska värden behöver antalet laggar att inkludera i modellen specificeras. Ekonometrisk teori saknar dock ett allenarådande svar till hur många laggar en

4.3.1 Antalet laggar

4.3.2 Variablernas konstruktion

en direkt inverkan på andra variabler placeras först i faktoriseringen, följt av variabler utan lika direkta effekter (Kilian, 2011). Om finansiell teori bidrar med en naturlig ordning kan modellen konstrueras utifrån teoretisk förklaring (Brooks, 2008). I denna uppsats placeras oljepriset först, följt av STX6 och därefter G-INDEX vid applicering av tester där variablers ordning är av betydelse. Detta bör återspeglar den faktiska relationen mellan variablerna på ett adekvat sätt, då en chock i det globala oljepriset antagligen har en tydligare, direkt, påverkan på gröna energibolags aktiepriser i jämförelse med den effekt gröna energibolags aktiepriser har på oljepriset. På samma sätt har antagligen teknologimarknaden en mer direkt inverkan på gröna energibolag än vad gröna energibolag har på teknologimarknaden.

4.4 Heteroskedasticitet

För att kontrollera data för heteroskedasticitet appliceras Whites test. Då vår modell inkluderar ett litet antal variabler så inkluderas koristermer i testet.

Whites test för heteroskedasticitet undersöker om den estimerade feltermen i en regression förklaras av de förklarande variaberna i en modell. Testekvationen illustreras enligt följande ekvation (5).

\[\hat{u}_t^2 = \alpha_1 + \alpha_2X_{2t} + \alpha_3X_{3t} + \alpha_4X_{2t}^2 + \alpha_5X_{3t}^2 + \alpha_6X_{2t}X_{3t} + \nu_t \] (5)

Där \(\nu_t \) är en normalfördelad felterm som är oberoende av \(u_t \). Testregressionen utförs med \(\hat{u}_t^2 \) som beroende variabel. Detta är feltermens estimerade varians givet att feltermens väntevärde är
noll. Testregressionen undersöker således om den estimerade feltermens varians varierar systematiskt med någon av de inkluderade variablerna i modellen. Whites test applicerar ett F-test under nollhypotesen att ingen av koefficienterna, förutom konstanten, är signifikant skilda från noll och följaktligen att feltermen är homoskedastisk då den inte beror på de förklarande variablernas värden (Brooks, 2008).

4.5 Autokorrelation

Om VAR innehåller en ekvation vars felterm inte är oberoende av dess tidigare värden är feltermen autokorrelerad. Feltermen i ekvationen fängar upp influenser från exogena variabler som inte är inkluderade i ekvationen men som påverkar ekvationens beroende variabel. För att feltermen ska vara oberoende, kan inte influenser som påverkar den beroende variabeln uteslutas från modellen om dessa influenser är korrelerad med sina tidigare värden. Autokorrelation är vanligare när kortare intervall mellan observationer studeras, då ju längre intervall det mellan observationerna desto mindre är sannolikheten att uteslutna effekter kan påverka nästkommande observation (Dougherty, 2011).

Denna studie applicerar ett Breusch-Godfrey LM test för att kontrollera förekomsten av autokorrelation. Detta test utförs på den estimerade feltermen i en regression, nedan exemplifierad i ekvation (6) som \(\hat{u}_t \). Breusch-Godfrey LM test undersöker relationen mellan den estimerade feltermen samt flera av dess laggade värden.

\[
\hat{u}_t = \gamma_1 + \gamma_2 X_{2t} + \gamma_3 X_{3t} + \gamma_4 X_{4t} + \rho_1 \hat{u}_{t-1} + \rho_2 \hat{u}_{t-2} + \rho_3 \hat{u}_{t-3} + \cdots + \rho_r \hat{u}_{t-r} + \nu_t \tag{6}
\]

Där \(\nu_t \) är en normalfördelad felterm vars väntevärde är noll med konstant varians, \(r \) är antalet laggar som inkluderas i testet. Testet utförs under nollhypotesen att ingen av koefficienterna för \(u_t \) : s laggade värden är signifikanta, det vill säga att ingen korrelation existerar bland modellens feltermen. Om nollhypotesen förkastas för en enskild variabel kan testet inte säkerställa att
resterande delar av modellen även lider av autokorrelation och såldes kan förekomsten av autokorrelation konstateras (Brooks, 2008).

En fördel med autoregressiva modeller är att autokorrelationen är geometriskt avtagande och kan elimineras genom att utöka antalet laggar i modellen (Brooks, 2008). Denna metod tar inte hänsyn till det antalet laggar som fastställs genom informationskriterium-proceduren men är ökningen i informationskriterierna relativit liten kan detta vara ett godtagbart sätt att kringgå problematiken med autokorrelation.

4.6 Multikollinearitet

Ett implicit antagande vid MK-skattning är att förklarande variabler inte är korrelerade med varandra. Om ingen korrelation existerar mellan förklarande variabler benämns dessa som ortogonala (Brooks, 2008).

Antagandet kring ortogonala variabler är inte realistiskt i praktiken, då en viss korrelation mellan förklarande variabler ofta är oundviklig inom finans. I de fall när korrelationen mellan förklarande variabler är för hög resulterar detta i multikollinearitet. Den höga korrelationen mellan modellens förklarande variabler försämrar modellens förmåga att utröna varje variablers specifika effekt på den beroende variablen. Problemet med multikollinearitet är att standardfelen för korrelerade variablers koefficienter blir för höga. Vid multikollinearitet blir även modellens R^2-värde för högt vilket leder till att regressionen ger ett intryck av att utgöra en välfungerande estimering trots att individuella variabler är insignifikanta (Brooks, 2008).

En metod för att undersöka förekomsten av multikollinearitet är att kontrollera Varians Inflationsfaktorer (VIF). VIF kvantifierar hur hög grad av multikollinearitet som existerar i en regression genom att estimera hur mycket av en koefficients varians som inte kan förklaras genom skattade parametrar (Baum, 2006).
VIF illustreras enligt följande ekvation (7).

\[VIF_i = \frac{1}{1 - R_i^2} \]

Där \(VIF_i \) visar till vilken grad variansen för en förklarande variabel är påverkad av de andra förklarande variablerna till följd av att de inte är ortogonala. \(R_i^2 \) betecknar förklaringsgraden för en specifik förklarande variabel, med resterande förklarande variabler som oberoende i en regression. Om variablerna är ortogonala resulterar detta i en VIF på 1, då \(R_i^2 \) är noll i sådant fall. Då finansiella variabler sällan är ortogonala är en VIF-faktor över 10 ett rekommenderat gränsvärde för att fastställa multikollinearitet (Baum, 2006).

4.7 Granger-kausalitet

Granger-kausalitetstest säkerställer även att om X Granger-påverkar Y så bör laggar av X vara signifikanta förklarande variabler i ekvationen för Y. Testet använder en F-fördelning för att se om laggad information om en variabel ger statistiskt signifikant information om en annan variabels samtidiga värden. Om ingen variabels laggar är signifikanta för att förklara en annan variabel i samma system, benämns dessa som oberoende.

Granger-kausalitetstest konstrueras enligt följande ekvation (8) och (9) med \(p \) laggar.

\[Y_t = \alpha_0 + \alpha_1 Y_{t-1} + \cdots + \alpha_p Y_{t-p} + \beta_1 Y_{t-1} + \cdots + \beta_p Y_{t-p} + u_{Yt} \]

\[X_t = \alpha_0 + \alpha_1 Y_{t-1} + \cdots + \alpha_p Y_{t-p} + \beta_1 X_{t-1} + \cdots + \beta_p X_{t-p} + u_{Xt} \]

(8)

(9)
Testet utförs under nollhypotesen att ingen Granger-kausalitet existerar, det vill säga $\beta_i = 0$ där $i \in (1, p)$ (Brooks, 2008).

4.8 Impulseresponsfunktion

En impulsresponsfunktion (IRF) är ytterligare ett verktyg för att analysera VAR. IRF visar vilken effekt en variabel i VAR kan ha på en annan. IRF visar även under hur många tidsperioder denna effekt varar. IRF visar således en variabels mottaglighet för en chock i de andra variablen som inkluderas i VAR. Mer konkret kan man säga att IRF visar hur mycket, och under hur många efterföljande tidsperioder, en variabel påverkas när en chock, motsvarande en standardavvikelse, sker i feltermen för en annan variabel.

Nedanstående ekvation (10) illustrerar en VAR av första ordningen.

$$Y_t = A_1 Y_{t-1} + u_t \quad (10)$$

Där $A_1 = \begin{bmatrix} 0,5 & 0,3 \\ 0,0 & 0,2 \end{bmatrix}$ i detta exempel.

Enligt tidigare avsnitt kan ekvationen uttryckas i ett system av vektorer och matriser vilket presenteras i ekvation (11).

$$\begin{bmatrix} Y_{1t} \\ Y_{2t} \end{bmatrix} = \begin{bmatrix} 0,5 & 0,3 \\ 0,0 & 0,2 \end{bmatrix} \begin{bmatrix} Y_{1t-1} \\ Y_{2t-1} \end{bmatrix} + \begin{bmatrix} u_{1t} \\ u_{2t} \end{bmatrix} \quad (11)$$

IRF undersöker i detta fall effekten av en chock med en standardavvikelse i Y_1:s felterm, vid $t = 0$, enligt ekvation (12).

$$Y_0 = \begin{bmatrix} u_{10} \\ u_{20} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$Y_1 = A_1 Y_0 = \begin{bmatrix} 0,5 & 0,3 \\ 0,0 & 0,2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,5 \\ 0 \end{bmatrix}$$

$$Y_2 = A_1 Y_1 = \begin{bmatrix} 0,5 & 0,3 \\ 0,0 & 0,2 \end{bmatrix} \begin{bmatrix} 0,5 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,25 \\ 0 \end{bmatrix}$$
Effekten från chocken vid $t = 0$ fortsätter med avtagande inverkan över ett antal tidsperioder. Samma effekt kan illustreras för Y_{2t}, och resultatet kan även generaliseras för mer invecklade modeller. För att undvika långa härledningar för diverse variabel presenterar dataprogrammet Eviews resultatet i diagramform, vilket även är behändig då interaktionen mellan flera variabler kan ha en otydlig utformning. När IRF utförs med hjälp av Eviews är det viktigt att påpeka att effekten på en variabel utgår från att denna variabel inledningsvis antar värdet noll. Således tvingar IRF tidigare effekter till noll för att sedan kunna utföra IRF. Detta test bygger på den tidigare nämnda Cholsey-faktoriseringen av variablerna i VAR, där variabeln med mest direkt inverkan på resterande variabler bör placeras först i IRF (Brooks, 2008).
5 Resultat

I denna del av uppsatsen appliceras VAR för att undersöka relationen mellan oljepriset, G-INDEX och STX6. Alla tester utförs med signifikansnivån fem procent.

5.1 Enhetsrotstest

Enhetsrotstestet ADF genomförs på alla variabler i icke-differentierade värden under nollhypotesen att enhetsrötter existerar i data. Resultatet presenteras i tabell 5.1.

Tabell 5.1. Enhetsrottest på utvalda variabler i dess icke-differentierade form under nollhypotesen att enhetsrot existerar

<table>
<thead>
<tr>
<th>Enhetsrottest</th>
<th>p-värde</th>
<th>Nollhypotes: INDEX har en enhetsrot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmented Dickey-Fuller test</td>
<td>0,616</td>
<td></td>
</tr>
<tr>
<td>statistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*MacKinnon (1996) ensidiga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-värden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nollhypotes: OIL har en</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enhetsrot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test</td>
<td>0,435</td>
<td></td>
</tr>
<tr>
<td>statistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*MacKinnon (1996) ensidiga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-värden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nollhypotes: STX6 har en</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enhetsrot</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test</td>
<td>0,066</td>
<td></td>
</tr>
<tr>
<td>statistik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*MacKinnon (1996) ensidiga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-värden</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enligt detta resultat kan nollhypotesen inte förkastas för någon variabel. Då förekomsten av enhetsrötter i data inte kan förnekas är alla variabler icke-stationära i deras ursprungliga form. Testet utförs utan intercept eller trend specificerat. Ett test med denna specifikation är det som har högst statistisk signifikans. ADF med andra specificationer uppvisar högre p-värden för alla
inkluderade variabler, och därför kan vi säkerställa att testet tar hänsyn till den aktuella datastrukturen genom att utesluta intercept och trend.

För att illustrera problematiken med icke-stationär data skapas en VAR av första ordningen med data i dess ursprungliga form. Resultatet presenteras i tabell 5.2.

Tabell 5.2. VAR av första ordningen med icke-differentierade variabler

<table>
<thead>
<tr>
<th>VAR Estimeringar</th>
<th>INDEX</th>
<th>OIL</th>
<th>STX6</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX(-1)</td>
<td>0,993</td>
<td>0,008</td>
<td>-0,002</td>
</tr>
<tr>
<td>t-värde</td>
<td>257,5</td>
<td>1,461</td>
<td>-0,920</td>
</tr>
<tr>
<td>OIL(-1)</td>
<td>-0,036</td>
<td>0,993</td>
<td>0,005</td>
</tr>
<tr>
<td>t-värde</td>
<td>-1,358</td>
<td>243,1</td>
<td>0,357</td>
</tr>
<tr>
<td>STX6(-1)</td>
<td>0,021</td>
<td>0,000</td>
<td>0,986</td>
</tr>
<tr>
<td>t-värde</td>
<td>2,043</td>
<td>-0,152</td>
<td>170,9</td>
</tr>
<tr>
<td>C</td>
<td>-2,433</td>
<td>0,350</td>
<td>3,373</td>
</tr>
<tr>
<td>t-värde</td>
<td>-0,808</td>
<td>0,747</td>
<td>1,963</td>
</tr>
<tr>
<td>Justerad R^2</td>
<td>0,990</td>
<td>0,988</td>
<td>0,977</td>
</tr>
</tbody>
</table>

För att kontrollera om variablerna är integrerade i första ordningen utförs ADF-testet på förstådifferensen av respektive variabel och resultatet presenteras i tabell 5.3.

Tabell 5.3. Enhetsrotstest på variablernas första differenser under nollhypotesen att enhetsrot existerar

<table>
<thead>
<tr>
<th>Enhetsrotstest</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nollhypotes: (D)INDEX har en enhetsrot</td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test statistik</td>
<td>< 0,001</td>
</tr>
<tr>
<td>*MacKinnon (1996) ensidiga p-värden</td>
<td></td>
</tr>
<tr>
<td>Nollhypotes: (D)OIL har en enhetsrot</td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test statistik</td>
<td>< 0,001</td>
</tr>
<tr>
<td>*MacKinnon (1996) ensidiga p-värden</td>
<td></td>
</tr>
<tr>
<td>Nollhypotes: (D)STX6 har en enhetsrot</td>
<td></td>
</tr>
<tr>
<td>Augmented Dickey-Fuller test statistik</td>
<td>< 0,001</td>
</tr>
<tr>
<td>*MacKinnon (1996) ensidiga p-värden</td>
<td></td>
</tr>
</tbody>
</table>

Enhetsrotstestet kan inte statistiskt påvisa förekomsten av enhetsrötter i någon av de inkluderade variablernas första differenser då nollhypotesen förkastas till förmån för mothypotesen. Vi kan således konstatera att variablerna är integrerade i första ordningen.

Utifrån ADF-testet kan VAR appliceras på första differensens data och således undersöka relationen mellan den absoluta förändringen i oljepriset, G-INDEX och STX6 på veckobasis förutsatt att variablerna inte är kointegrerade. Även om VAR appliceras på första differensens data medföljer en intuitiv tolkning av resultatet, då den absoluta förändringen i G-INDEX och STX6 utgör den absoluta avkastningen i respektive index om vi bortser från eventuella utdelningar som exkluderas från data.
5.2 Kointegrationstest

Innan VAR appliceras undersöks variablerna för kointegration. Johansen kointegrationstest utförs på alla variabler i deras icke-diffentierade form och resultatet presenteras i tabell 5.4.

Tabell 5.4. Johansen kointegrationstest på icke-differentierad data

<table>
<thead>
<tr>
<th>Hypotetiskt antal kointegrerade ekvationer</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingen</td>
<td>0,552</td>
</tr>
<tr>
<td>Som mest 1</td>
<td>0,448</td>
</tr>
<tr>
<td>Som mest 2</td>
<td>0,056</td>
</tr>
</tbody>
</table>

Testet indikerar **ingen** kointegration på 5 procents nivån

Johansen kointegrationstest visar ingen indikation på kointegration mellan variablerna. Detta resultat har en svag signifikans, då p-värdet för som mest 2 kointegrerade variabler är endast 5,6 procent. Trots detta kan relationen mellan utvalda variabler studeras genom att applicera VAR.

5.3 Vektor Autoregressiv Modell (VAR)

5.3.1 Val av antalet laggar

Innan relationen mellan oljepriset, G-INDEX och STX6 estimeras i VAR fastställs antalet laggar att inkludera i modellen genom informationskriterium-proceduren. Inledningsvis utförs proceduren med tolv laggar för första differensens data. Samtidiga priser på olja och aktiepriser är enligt oss antagligen inte är beroende av priser från mer än ett kvartal tillbaka, vilket motsvarar tolv veckor. Dessutom är vi inte medvetna om en vedertagen specifikation av ursprungligt antal laggar i denna procedur för veckobaserad data. Resultatet presenteras i nedanstående tabell 5.5.
Tabell 5.5. Resultat från Informationskriterium-proceduren på VAR där minimala Akaike Informationskriterium (AIC) och Schwarz Informationskriterium (SC) noteras med *

<table>
<thead>
<tr>
<th>Lag</th>
<th>AIC</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19,76</td>
<td>19,78</td>
</tr>
<tr>
<td>1</td>
<td>19,69*</td>
<td>19,77*</td>
</tr>
<tr>
<td>2</td>
<td>19,70</td>
<td>19,83</td>
</tr>
<tr>
<td>3</td>
<td>19,71</td>
<td>19,90</td>
</tr>
<tr>
<td>4</td>
<td>19,73</td>
<td>19,97</td>
</tr>
<tr>
<td>5</td>
<td>19,74</td>
<td>20,04</td>
</tr>
</tbody>
</table>

* indikerar val av antal laggar utifrån urvalskriteriet

AIC och SC uppvisar ett minimalt informationskriterium vid valet av en tidsperiods lagg.

Innan VAR kan estimeras och analyseras behöver den statistiska signifikansen för inkluderade variabler säkerställas genom att kontrollera och eventuellt justera VAR för autokorrelation, heteroskedasticitet och multikollinearitet.
5.3.2 Autokorrelation, heteroskedasticitet och multikollinearitet

Tabell 5.6. Resultat från Breusch-Godfrey LM test på VAR med en lagg under nollhypotesen att ingen autokorrelation existerar

<table>
<thead>
<tr>
<th>Antal lagg</th>
<th>LM-värde</th>
<th>p-värde*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20,51</td>
<td>0,015</td>
</tr>
<tr>
<td>2</td>
<td>17,27</td>
<td>0,045</td>
</tr>
<tr>
<td>3</td>
<td>5,955</td>
<td>0,745</td>
</tr>
<tr>
<td>4</td>
<td>6,158</td>
<td>0,724</td>
</tr>
<tr>
<td>5</td>
<td>8,926</td>
<td>0,444</td>
</tr>
</tbody>
</table>

*p-värde från Chi-två-test med 9 frihetsgrader

Som vi ser i ovanstående tabell förkastas nollhypotesen till förmån för mothypotesen vid en inkluderad lagg i VAR. På grund av detta kan vi inte fastställa att residualerna är fria från autokorrelation. Modell estimeras med en ytterligare lagg för att undersöka om detta korrigerar autokorrelation i modellen och resultatet presenteras i tabell 5.7.

Tabell 5.7. Resultat från Breusch-Godfrey LM test på VAR med två laggar under nollhypotesen att ingen autokorrelation existerar

<table>
<thead>
<tr>
<th>Antal lagg</th>
<th>LM-värde</th>
<th>p-värde*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,08</td>
<td>0,344</td>
</tr>
<tr>
<td>2</td>
<td>4,905</td>
<td>0,843</td>
</tr>
<tr>
<td>3</td>
<td>7,937</td>
<td>0,541</td>
</tr>
<tr>
<td>4</td>
<td>5,740</td>
<td>0,766</td>
</tr>
<tr>
<td>5</td>
<td>10,75</td>
<td>0,293</td>
</tr>
</tbody>
</table>

*p-värde från Chi-två-test med 9 frihetsgrader
Som vi ser i ovanstående tabell kan nollhypotesen inte förkastas vid ytterligare en inkluderad lagg i modellen. Denna modell är inte i linje med informations-kriterieprocedurens resultat, men som vi ser i tabell 5.5 är det en liten skillnad i AIC och SC vid val av en eller två laggar. Då en VAR med två laggar motverkar autokorrelation i residualerna är det enligt vår uppfattning en godtagbar lösning att inkludera två laggar i VAR trots att AIC och SC inte antar deras minsta, möjliga värden.

Vidare utförs Whites test för att undersöka förekomsten av heteroskedasticitet och resultat presenteras i tabell 5.8.

Tabell 5.8. Whites test under nollhypotesen att data är homoskedastisk

<table>
<thead>
<tr>
<th>Chi-två värde</th>
<th>fg</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>162</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

I aktuellt fall kan autokorrelation korrigeras med att inkludera två laggar i VAR men samtidigt kvarstår problemet med heteroskedasticitet. Detta utgör ett problem vid tolkning av uppsatsens resultat, då heteroskedasticitet gör estimeringarna ineffektiva och slutsatser kring signifikans kan vara felaktiga. Däremot behöver detta inte utgöra ett kritiskt problem då estimeringar fortfarande
är väntvärdesriktiga och som exempelvis Mankiw (1990) konstaterar ”Heteroskedasticity has never been a reason to throw out an otherwise good model” (Mankiw, 1990, s.1648). För att utvärdera om förekomsten av heteroskedasticitet är Problematisk illustreras residualerna för VAR:s system i figur 5.1.

Figur 5.1. Residualer illustreras för VAR:s alla system i ordningen G-INDEX, oljepris och STX6

Som vi kan se i figur 5.1 uppvisar alla residualer en skiftande varians över tidsperioden. Däremot existerar ingen tydlig tidseffekt i varianserna, det vill säga att feltermerna inte blir tydligt
trendmässigt större eller mindre över tiden. Vid typexempel av heteroskedasticitet illustreras residualerna vanligtvis som konformade, det vill säga med en tydlig trend i varianserna.

Enligt tidigare avsnitt 4.4 är förekomsten av heteroskedasticitet vanlig vid stor variation i observationers värden. Som vi kan se i figur 5.1 är spridningen i residualerna för G-INDEX som störst kring tidpunkten mellan åren 2006-2008, vilket är samma tidpunkt som variationen i priset för G-INDEX är som störst, se figur 3.1.

Då varianserna i residualerna inte uppvisar tydliga tidstrender är detta inte ett typexempel på heteroskedasticitet. Whites test resulterar i indikationer på heteroskedasticitet i data antagligen på grund av de stora spridningarna i variablernas pris under vissa tidsperioder. Utifrån detta gör vi bedömningen att VAR kan estimeras utan att korrigeras för heteroskedasticitet vilket gör att tolkning av modellens resultat utförs med försiktighet.

Slutligen utförs VIF-testet för att undersöka förekomsten av multikollinearitet. Testet presenteras för variablerna i ordningen G-INDEX, oljepris och slutligen STX6 i tabell 5.9.
Tabell 5.9. Varians inflations faktorer (VIF) i ordningen G-INDEX, oljepris och STX6

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Ocentrerad VIF</th>
<th>Centrerad VIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beroende variabel: INDEX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{11}</td>
<td>1,064</td>
<td>1,064</td>
</tr>
<tr>
<td>β_{12}</td>
<td>1,058</td>
<td>1,058</td>
</tr>
<tr>
<td>β_{13}</td>
<td>1,048</td>
<td>1,048</td>
</tr>
<tr>
<td>β_{14}</td>
<td>1,009</td>
<td>1,009</td>
</tr>
<tr>
<td>β_{15}</td>
<td>1,028</td>
<td>1,028</td>
</tr>
<tr>
<td>β_{16}</td>
<td>1,073</td>
<td>1,073</td>
</tr>
<tr>
<td>α_1</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>Beroende variabel: OIL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{21}</td>
<td>1,064</td>
<td>1,064</td>
</tr>
<tr>
<td>β_{22}</td>
<td>1,058</td>
<td>1,058</td>
</tr>
<tr>
<td>β_{23}</td>
<td>1,048</td>
<td>1,048</td>
</tr>
<tr>
<td>β_{24}</td>
<td>1,009</td>
<td>1,009</td>
</tr>
<tr>
<td>β_{25}</td>
<td>1,028</td>
<td>1,028</td>
</tr>
<tr>
<td>β_{26}</td>
<td>1,073</td>
<td>1,073</td>
</tr>
<tr>
<td>α_2</td>
<td>1,000</td>
<td>NA</td>
</tr>
<tr>
<td>Beroende variabel: STX6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_{31}</td>
<td>1,064</td>
<td>1,064</td>
</tr>
<tr>
<td>β_{32}</td>
<td>1,058</td>
<td>1,058</td>
</tr>
<tr>
<td>β_{33}</td>
<td>1,048</td>
<td>1,048</td>
</tr>
<tr>
<td>β_{34}</td>
<td>1,009</td>
<td>1,009</td>
</tr>
<tr>
<td>β_{35}</td>
<td>1,028</td>
<td>1,028</td>
</tr>
<tr>
<td>β_{36}</td>
<td>1,073</td>
<td>1,073</td>
</tr>
<tr>
<td>α_3</td>
<td>1,000</td>
<td>NA</td>
</tr>
</tbody>
</table>

Som vi kan se överstiger ingen av faktorerna det rekommenderade gränsvärdet 10. Vi kan således med god marginal utesluta risken för felaktiga slutsatser till följd av multikollinearitet.
5.3.3 VAR med två laggar

VAR med två laggar estimeras enligt ekvation (13).

\[
D(INDEX) = \beta_{11}D(INDEX(-1)) + \beta_{12}D(INDEX(-2)) + \beta_{13}D(OIL(-1))
+ \beta_{14}D(OIL(-2)) + \beta_{15}D(STX6(-1)) + \beta_{16}D(STX6(-2)) + \alpha_1
\]

\[
D(OIL) = \beta_{21}D(INDEX(-1)) + \beta_{22}D(INDEX(-2)) + \beta_{23}D(OIL(-1))
+ \beta_{24}D(OIL(-2)) + \beta_{25}D(STX6(-1)) + \beta_{26}D(STX6(-2)) + \alpha_2
\]

\[
D(STX6) = \beta_{31}D(INDEX(-1)) + \beta_{32}D(INDEX(-2)) + \beta_{33}D(OIL(-1))
+ \beta_{34}D(OIL(-2)) + \beta_{35}D(STX6(-1)) + \beta_{36}D(STX6(-2)) + \alpha_3
\]

Där \(D(INDEX)\) är första differensen av priset på G-INDEX, \(D(OIL)\) är första differensen av oljepriset, \(D(STX6)\) första differensen av priset på STX6 och \(\alpha_i\) är intercept där \(i \in \{1,3\}\). Beteckningen (-1) betyder en tidsperiods lagg, (-2) betyder två tidsperioders lagg.

Koefficienterna \(\beta_{13}, \beta_{14}, \beta_{21} \text{ och } \beta_{24}\) är av särskilt intresse för denna uppsats. Detta är på grund av att dessa koefficienter åskådliggör relationen mellan historiska förändringar i G-INDEX och oljepriset och de samtidiga förändringarna i dessa variabler. Modellens estimering presenteras i tabell 5.10.
Då denna studie undersöker relationen mellan oljepriset och aktiepriser för gröna energibolag är koefficienterna för de historiska förändringarna i D(OIL) och D(INDEX) betydelsefulla.

VAR kan även uttryckas i ett system av MK-estimeringar där p-värden framgår. Dessa presenteras i tabell 5.11, 5.12 och 5.13.
Tabell 5.11. VAR system uttrycks med G-INDEX som beroende variabel

Metod: Minsta kvadrat
Beroende variabel: D(INDEX)

\[
D(INDEX) = \beta_{11} \cdot D(INDEX(-1)) + \beta_{12} \cdot D(INDEX(-2)) + \beta_{13} \cdot D(OIL(-1)) + \\
\beta_{14} \cdot D(OIL(-2)) + \beta_{15} \cdot D(STX6(-1)) + \beta_{16} \cdot D(STX6(-2)) + \alpha_1
\]

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-statistik</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{11})</td>
<td>-0,059</td>
<td>0,037</td>
<td>-1,586</td>
</tr>
<tr>
<td>(\beta_{12})</td>
<td>-0,065</td>
<td>0,037</td>
<td>-1,739</td>
</tr>
<tr>
<td>(\beta_{13})</td>
<td>-0,190</td>
<td>0,239</td>
<td>-0,794</td>
</tr>
<tr>
<td>(\beta_{14})</td>
<td>0,044</td>
<td>0,235</td>
<td>0,188</td>
</tr>
<tr>
<td>(\beta_{15})</td>
<td>0,343</td>
<td>0,064</td>
<td>5,330</td>
</tr>
<tr>
<td>(\beta_{16})</td>
<td>0,142</td>
<td>0,066</td>
<td>2,162</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>-0,001</td>
<td>0,536</td>
<td>-0,002</td>
</tr>
<tr>
<td>Justerad (R^2)</td>
<td>0,042</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5.12. VAR system uttrycks med oljepris som beroende variabel

Metod: Minsta kvadrat
Beroende variabel: D(OIL)

\[
D(OIL) = \beta_{21} \cdot D(INDEX(-1)) + \beta_{22} \cdot D(INDEX(-2)) + \beta_{23} \cdot D(OIL(-1)) + \\
\beta_{24} \cdot D(OIL(-2)) + \beta_{25} \cdot D(STX6(-1)) + \beta_{26} \cdot D(STX6(-2)) + \alpha_2
\]

<table>
<thead>
<tr>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-statistik</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{21})</td>
<td>0,026</td>
<td>0,006</td>
<td>4,506</td>
</tr>
<tr>
<td>(\beta_{22})</td>
<td>0,012</td>
<td>0,006</td>
<td>2,087</td>
</tr>
<tr>
<td>(\beta_{23})</td>
<td>0,037</td>
<td>0,037</td>
<td>1,007</td>
</tr>
<tr>
<td>(\beta_{24})</td>
<td>-0,022</td>
<td>0,036</td>
<td>-0,599</td>
</tr>
<tr>
<td>(\beta_{25})</td>
<td>0,022</td>
<td>0,010</td>
<td>2,182</td>
</tr>
<tr>
<td>(\beta_{26})</td>
<td>0,009</td>
<td>0,010</td>
<td>0,900</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0,017</td>
<td>0,083</td>
<td>0,202</td>
</tr>
<tr>
<td>Justerad (R^2)</td>
<td>0,043</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabell 5.13. VAR system uttrycks med STX6 som beroende variabel

<table>
<thead>
<tr>
<th></th>
<th>Koefficienter</th>
<th>Standardfel</th>
<th>t-statistik</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{31})</td>
<td>-0,041</td>
<td>0,022</td>
<td>-1,908</td>
<td>0,057</td>
</tr>
<tr>
<td>(\beta_{32})</td>
<td>-0,005</td>
<td>0,022</td>
<td>-0,240</td>
<td>0,810</td>
</tr>
<tr>
<td>(\beta_{33})</td>
<td>-0,184</td>
<td>0,139</td>
<td>-1,329</td>
<td>0,184</td>
</tr>
<tr>
<td>(\beta_{34})</td>
<td>0,204</td>
<td>0,136</td>
<td>1,500</td>
<td>0,134</td>
</tr>
<tr>
<td>(\beta_{35})</td>
<td>0,045</td>
<td>0,037</td>
<td>1,216</td>
<td>0,224</td>
</tr>
<tr>
<td>(\beta_{36})</td>
<td>0,038</td>
<td>0,038</td>
<td>1,000</td>
<td>0,318</td>
</tr>
<tr>
<td>(\alpha_{3})</td>
<td>-0,068</td>
<td>0,310</td>
<td>-0,219</td>
<td>0,827</td>
</tr>
<tr>
<td>Justerad (R^2)</td>
<td>0,004</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Som vi kan se i tabell 5.11 är endast koefficienterna \(\beta_{15} \) och \(\beta_{16} \) signifikanta. Dessa visar hur historiska förändringar i STX6 har positiva effekter på den samtidiga förändringen i G-INDEX.

Samtidigt visar Tabell 5.12 att koefficienterna \(\beta_{21} \) och \(\beta_{22} \) är signifikanta. Dessa uppvisar en positiv effekt på oljeprisets samtidiga värden från de historiska förändringarna i G-INDEX. Dessutom är koefficienten \(\beta_{25} \) för en tidsperiods laggt värde på STX6 statistiskt signifikant och uppvisar en positiv effekt i den samtidiga förändringen i oljepriset.

I tabell 5.13 är STX6 den beroende variabeln och ingen av de förklarande variablernas koefficienter är signifikanta.

I de ekvationer där förändringen i G-INDEX och förändringen i oljepriset är de beroende variablerna resulterar modellerna i justerade \(R^2 \) värden på 4,2 respektive 4,3 procent.

För att fördjupa analysen av relationen mellan oljepriset, G-INDEX och STX6 utförs Granger-kausalitetstest och IRF på ovanstående VAR-modell i nästkommande del av denna uppsats.

5.3.4 Granger-kausalitet

Tabell 5.14. Granger-kausalitetstest i ordningen G-INDEX, oljepriset och STX6

<table>
<thead>
<tr>
<th>Beroende variabel: D(INDEX)</th>
<th>Exkluderade</th>
<th>Chi-två</th>
<th>Frihetsgrader</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(OIL)</td>
<td>0,652</td>
<td>2</td>
<td>0,722</td>
<td></td>
</tr>
<tr>
<td>D(STX6)</td>
<td>33,52</td>
<td>2</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Alla</td>
<td>34,20</td>
<td>4</td>
<td><0,001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beroende variabel: D(OIL)</th>
<th>Exkluderade</th>
<th>Chi-två</th>
<th>Frihetsgrader</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(INDEX)</td>
<td>24,14</td>
<td>2</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>D(STX6)</td>
<td>5,647</td>
<td>2</td>
<td>0,059</td>
<td></td>
</tr>
<tr>
<td>Alla</td>
<td>36,28</td>
<td>4</td>
<td><0,001</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beroende variabel: D(STX6)</th>
<th>Exkluderade</th>
<th>Chi-två</th>
<th>Frihetsgrader</th>
<th>p-värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(INDEX)</td>
<td>3,674</td>
<td>2</td>
<td>0,159</td>
<td></td>
</tr>
<tr>
<td>D(OIL)</td>
<td>3,822</td>
<td>2</td>
<td>0,148</td>
<td></td>
</tr>
<tr>
<td>Alla</td>
<td>7,637</td>
<td>4</td>
<td>0,106</td>
<td></td>
</tr>
</tbody>
</table>

I aktuellt fall ser vi att förändringen i G-INDEX har en statistiskt signifikant Granger-påverkan på förändringen i oljepriset. Samtidigt ser vi att förändringen av oljepriset inte har någon Granger-påverkan på förändringen i G-INDEX men däremot uppvisar förändringen i STX6 en signifikant Granger-påverkan på förändringen i G-INDEX.

5.3.5 Impulsresponsfunktion

IRF visar hur en standardavvikelses chock i förändringen av en variabel påverkar förändringen i en annan. Funktionen visar även under hur många tidsperioder denna effekt signifikant påverkar den beroende variabeln genom att illustrera effektens standardfel i streckade grafer. Om graferna med standardfel är skilda från noll är detta synonymt med att effekterna är statistiskt signifikanta. Resultatet presenteras i figur 5.2.
Figur 5.2. Impulseresponsfunktion (IRF) med beroende variabel i radordningen G-INDEX, oljepris och STX6. Streckade linjer symboliserar standardfelen.

En impuls i förändringen av oljepriset har en negativ, men inte signifikant effekt på förändringen i G-INDEX. En impuls i förändringen av STX6 har däremot en signifikant, positiv effekt på förändringen i G-INDEX under två tidsperioder. Likväl ser vi att en impuls i förändringen i G-INDEX samt en impuls i förändringen i STX6 har positiva effekter på förändringen i oljepriset under två tidsperioder. Dock uppvisar IRF för förändringen i oljepriset till följd av en impuls i förändringen av G-INDEX en tydligare signifikant effekt än vid förändringen i oljepriset till följd av en impuls i förändringen i STX6.
5.4 Sammanfattnings av resultat

6 Diskussion

Enligt IRF (figur 5.2) har en standardavvikelses chock i feltermen för förstadifferensen av oljepriset ingen signifikant effekt på förstadifferensen av G-INDEX. På samma sätt ser vi att en förändring i förstadifferensen av oljepriset inte föranleder någon signifikant förändring i första differensen av G-INDEX enligt Granger-kausalitetstest (tabell 5.14).

Däremot påvisar IRF att en chock i feltermen för förändringen av STX6 orsakar en positiv effekt i förändringen av G-INDEX under två tidsperioder. STX6 har en signifikant Granger-påverkan på G-INDEX och dessutom är STX6:s historiska värden de enda som är signifikanta i VAR med G-INDEX som beroende variabel (tabell 5.11). Detta indikerar att europeiska gröna energibolags aktiepriser uppvisar en starkare relation till teknologimarknaden än till oljepriset. Att gröna energibolags aktiepriser uppvisar en högre känslighet mot förändringar på teknologimarknaden är i enlighet med de resultat som liknande studier i USA presenterar (Henriques och Sadorsky, 2008).

Detta resultat kan utgöra ett väsentligt underlag för investerare och beslutsfattare, särskilt i Europa där ambitionen är att utöka användningen av förnybar energi samtidigt som rådande förhållanden på oljemarknaden skapar ekonomisk oro. Då oljeprisfallet inte uppvisar en signifikant effekt på gröna energibolags aktiepriser är investeringar i gröna energibolag inte i riskzonen till följd av oljeprisfluktuationer. Det senaste oljeprisfallet kan även utgöra en strategisk möjlighet att omfördela statliga medel till att främja användningen av förnybar energi (Husain et al. 2015).

Det är möjligt att det kausala samband som presenteras mellan G-INDEX och oljepriset i de utförda testerna motsvarar en förändring i europeiska efterfrågeförhållanden, vilket har en signifikant effekt på oljepriset. Om gröna energibolag har en positiv relation till systematiska förhållanden på europeiska marknaden, exempelvis konjunkturläget, är det möjligt att uppgångar

6.1 Vidare forskning

Vi anser att internationella beslutsfattare ger tydliga indikationer på att utöka mängden förnybar energi baserat på de klimatmål som Europeiska Kommissionen fastställt. Förnybar energi kan således utgöra en större del av världens framtida energiproduktion om denna vision uppfylls. Detta kommer troligen medföra att gröna energibolag i Europa bli mer etablerade på marknaden, vilket kan föranleda högre marknadsvärden, vilket möjliggör att ett index över gröna energibolag kan konstrueras med hänsyn till bolagens storlek. Samtidigt kan etableringen av gröna energibolag på europeiska marknaden orsaka en bättre konkurrens mellan energibolagen, vilket

Vi har hittills inte funnit en studie där relationen mellan elpriset och gröna energibolag undersöks. En studie av denna form kan utgöra ett viktigt underlag för beslutsfattare och investerare, särskilt om studien jämför gröna energibolags känslighet mot elpriset kontra andra energiproducenters känslighet.

6.2 Avslutning

7 Referenser

Baum, C.F. (2006). An Introduction to Modern Econometrics Using Stata. College Station, Texas: StataCorp LP

http://www.nrel.gov/docs/fy14osti/62558.pdf [Hämtad: 11 maj 2016]

http://isites.harvard.edu/fs/docs/icb.topic741392.files/EnergyStockPrices.pdf [Hämtad: 4 april 2016]

