Vindkraftens påverkan på elpriset

Hur vindkraftsproduktionen pressat elpriserna på den svenska marknaden

Marc Johan Montelius
25/5 2016

Nationalekonomiska institutionen
Kandidatuppsats, 15 hp
Handledare – Jerker Holm
Innehållsförteckning

1. Introduktion .. 1
2. Bakgrund ... 3
 2.1 Den svenska elmarknaden .. 3
 2.2 Elproduktion ... 4
 2.3 Elproducenter ... 6
 Vattenkraft ... 6
 Kärnkraft .. 7
 Kraftvärmeverk ... 8
 Vindkraft .. 9
 2.4 Elkonsumtion ... 10
 2.5 Handeln med el ... 11
 2.6 Elcertifikat .. 11
 2.7 Framtida utvecklingen ... 13
3. Tidigare forskning ... 14
4. Teori .. 16
5. Data och metod ... 21
 5.1 Begränsningar ... 22
6. Resultat .. 23
 6.1 Faktorer som påverkar elpriset ... 23
 6.2 Vindkraftens påverkan på elpriset ... 24
 6.2.1 Påverkan vid olika perioder .. 29
 6.3 Varians hos elpriset och vindkraftsproduktionen ... 33
 6.4 Sammanfattning av resultatet ... 34
7. Avslutning ... 36
 7.1 Vidare forskning .. 37
8. Referenser ... 38
9. Appendix ... 41
1. Introduktion

De senaste åren har Sverige sett en kraftig ökning från utbyggnaden av vindkraft. År 2015 fick Sverige ca 16 TWh (Terawattimmar) el från vindkraftsproduktion, och regeringens mål om 30 TWh el från vindkraft per år från och med år 2020 ser mycket väl ut att kunna uppnås. Tack vare skattelättnader och subventioner till vindkraft, samt elecertifikatsystemets inverkan så har mängder av investeringar gjorts. Vindkraftens ojämna karaktär har dock kommit att spela en stor roll för stabiliseten på den svenska energimarknaden och de senaste åren har även en kraftig minskning av elpriset observerats. Frågan har länge varit hur energimarknaden kommer att reagera på de plötsliga energiöverskott som vindkraften drar med sig. Kan marknadens övriga aktörer reglera sin produktion? Kan Sverige exportera iväg tillräckliga mängder el? Eller leder överskottet till att elpriset pressas ned? Ett prisras på el gynnar konsumenterna, men glädjen kan vara kortvarig. Frågan idag är istället hur producenterna av el kan överleva ett lågt elpris, och vad händer med energimarknaden när många aktörer tvingas stänga ned sin produktion och landet enbart kan förlita sig på den ojämna vindkraften?

Denna uppsats avser beskriva den svenska energimarknaden genom att analysera hur olika faktorer påverkar spotpriset på el. Det som främst kommer analyseras är om vindkraftsproduktion har en prisminskande effekt på elpriset i Sverige, och detta är även uppsatsens frågeställning.

Syftet med uppsatsen är att ge bättre underlag för teorin att en ökad vindkraftsproduktion pressat ned elpriset på den svenska marknaden. Det läsaren bör ha i åtanke är att det kan anses naturligt att en ökad produktion av nästan vad som helst kommer att ge ett större utbud och således i teorin ett lägre pris. Det är dock inte helt säkerställt att prisminskningen på el i Sverige de senaste åren berott på ökad produktion av vindkraft. Fallet skulle kunna varit att priserna pressats ned av helt andra faktorer och att den ökade vindkraftsproduktionens påverkan varit
försumbar. Det är därför intressant att analysera elpriset och vindkraften för att se hur de påverkar varandra.

Uppsatsen kommer analysera data på elspotpriser från den nordiska elbörsen, Nord Pool Spot, samt data på vindkraftsproduktion från Svenska Kraftnät. Genom korrelationsanalyser samt enkel linjär regression mellan variablerna kan man se vilket samband och påverkan som råder mellan elpriset och vindkraftsproduktion.

Resultatet från analyserna ger stöd åt teorin om att vindkraftsproduktionen har en negativ påverkan på elpriset i Sverige. Dessutom så påvisar resultaten att priserna minskar desto mer vindkraft som produceras.

2. Bakgrund

2.1 Den svenska elmarknaden

Sverige är indelat i fyra elområden, uppdelade geografiskt, med SE1 längst upp i norr och SE4 i söder. Uppdelningen är ett resultat av Svenska Kraftnäts försök att hantera överföringsbegränsningar på elnätet. Det produceras mer el i norra Sverige än vad som konsumeras och tvärtom i södra Sverige. En viss prisskillnad kan uppstå mellan de olika områdena, men som diagrammet nedan visar, så är skillnaderna väldigt små. Vi kan från diagrammet även se hur snittpriset på el minskat under de senaste åren (Svensk Energi, 2016).

![Genomsnittliga spotpriser per månad och område (2011-2015)](image)

2.2 Elproduktion

Produktion av el skiljer sig något från produktion av andra varor i avseendet att el måste konsumeras i samma mängd som den produceras. Om elanvändningen inte är lika stor som produktionen kan systemet sluta fungera, vilket leder till strömavbrott. Det är en av delarna som gör elmarknaden så pass komplex. Svenska Kraftnät, ett statligt affärsverk, är den aktör som är ansvarig för att det svenska elsystemet är i balans. Vid överbelastning kan de välja att bryta viss produktion eller exportera el till andra länder i norden. Vid en motsatt situation, då efterfrågan på el ser ut att överstiga produktionen, kan effektreserver sättas in. Dessa reserver finns tillgängliga hos vissa elproducenter och genom avtal med dessa kan ytterligare produktion föras in (Svenska Kraftnät, 2015).
2.3 Elproducenter

Vattenkraft

Vattenkraften kan också hålla tillbaka produktionen om elpriserna är allt för låga. Genom att spara vatten i magasinen och generera el när priset är högre kan vattenkraften öka sina vinster. Risken finns dock att vattenkraften står med för mycket vatten kvar i magasinen i slutet av vintern. Som diagrammet nedan visar så fylls magasinen hos vattenkraften på under sommaren och hösten för att sedan förbrukas under vintern och våren.
Diagrammet visar vattenmagasinens reserver, mätt i GWh i Sverige mellan åren 2012 och 2016. Diagrammet är konstruerat med data från Svenska Kraftnät.

Hur pass väl vattenkraften kan reglera sig i praktiken råder det dock vissa tveksamheter kring. Enligt en rapport från Statens Energi myndighet så är vattenkraftens reglering redan fullt utnyttjad (Statens Energi myndighet, 2008), och Svenska Kraftnät har även de gått ut med samma konstaterande (Svenska Kraftnät, 2008). Vattenkraftens frånvaro som reglerkraft är något som kan ha stora konsekvenser vid utbyggnad av mer växlande kraftslag.

Kärnkraft

Kärnkraften står för nästan häften av elproduktionen i Sverige. Genom att använda den energi som alstras när atomer klyvs, kan vatten värmas upp och driva en turbin som kopplas till en generator och skapar el. Kärnkraften producerar mellan 50-70 TWh per år. Skillnaden beror oftast på mängden planerade underhåll eller plötsliga driftstopp (Svensk Energi, 2015). Kärnkraften har långsiktiga planerade stopp för kontroll varje år, oftast under sommarperioden då efterfrågan på el inte är så hög. Kärnkraften har en positiv egenskap i att den inte bidrar till några som helst koldioxidutsläpp. Vidare så är produktionskostnaderna och bränslekostnaderna väldigt låga, samtidigt som säkerheten är hög (Svensk Energi...
Kärnkraften kategoriseras ofta som baskraft, med det menas att den ger ungefär lika mycket energi hela året, oavsett väder, pris och efterfråga. Det är en stabil kraftkälla med enda nackdelen att den inte är särskilt reglerbar.

Kraftvärmeverk

Vindkraft

2.4 Elkonsumtion

Sverige är alltså ett energitörstande land som har en god tradition av klimatvänlig och säker elproduktion. I nästa avsnitt förklaras hur själva handeln mellan konsumenter och producenter fungerar.
2.5 Handeln med el

2.6 Elcertifikat

Priset på elcertifikat har sjunkit rejält sedan toppnoteringen år 2008 (se diagram 5). Vid systemets start var teorin att priset på elcertifikat skulle vara negativt korrelerat med priset på el. Om elpriset var lågt så skulle producenter av förnybar energi vilja ha ett högre pris på certifikaten för att täcka sina kostnader. I praktiken har det omvända skett och man kan påvisa en svag positiv korrelation (Energikommissionen, 2016). Det låga priset på certifikaten kan förklaras av det sjunkande priset på vindkraft samt ett överskott av certifikat på marknaden. Det minskade priset på certifikaten tillsammans med låga priser för el kan medföra att investerare inom förnybar energi går med förluster när de förväntade intäkterna blir lägre.

Diagram 5 – Diagrammet visar medelpriser för elcertifikat per månad. Diagrammet är konstruerat med data från Energimyndighetens kontoföringssystem för elcertifikat, CESAR (Energimyndigheten: CESAR, 2016).
Diagram 6 – Diagrammet visar de tidigare och nya kvotplikterna i %, per år (2003-2035). Diagrammet är konstruerat med data från Energimyndighetens kontoföringssystem för elcertifikat, CESAR.

2.7 Framtida utvecklingen

Sveriges energipolitik ser positivt på utvecklingen av vindkraft och förnybar energi. Regeringen strävar efter att uppnå målet om 30 TWh årlig produktion av vindel till år 2020 (Energimyndigheten, 2015).

slopade skattelättnader (som beräknas träda ikraft från den första juli i år (Regeringskansliet, 2015)) skulle innebära att lönsamheten för många vindkraftsparker försämras, och med ett lågt elpris och elcertifikatpris kan avkastningen försämras ytterligare.

3. Tidigare forskning

Vad gäller mer specifik forskning inom vindkraftsproduktionens påverkan på elpriset i Sverige så har en mindre mängd forskning ägt rum. Större myndigheter och företag har dock gett ut rapporter för hur de ser på den svenska energimarknadens utveckling. Gemensamt för rapporterna från senare år är att
man tror att en ökad vindkraftsproduktion har en negativ påverkan på priserna. Det råder dock stor variation i förklaringen till resultaten.

Några exempel kan tas från Energikommissionens promemoria om de ekonomiska förutsättningarna för befintlig svensk elproduktion. De nämner utbyggnaden av förnybar energi och vindkraft som en bidragande orsak till framtida prisminskningar. De nämner att en utbyggnad av förnybar elproduktion med 10 TWh utöver referensscenariot (där referensscenariot utgörs av ett trendscenario från Sweco som bygger på kända termspriser och gällande regelverk) kommer sänka elpriset med 4 öre per kWh (Energikommissionen, 2016).

4. Teori

Denna del i uppsatsen nämner vad teori, tidigare forskning och resultat från olika rapporter säger om vad som påverkar priset på el i Sverige, och då främst vindkraftens effekter. Intervjuer har även gjorts med aktörer på marknaden, så som de olika producenterna av el samt några av Sveriges större industrier.

Många faktorer påverkar prisbildningen samtidigt vilket gör spotmarknaden väldigt komplex. Elpriset påverkas dels av utbudet och dels av efterfrågan och vissa faktorer påverkar priserna positivt och andra negativt.

Efterfrågan påverkas av mängden el som hushåll och industrier vill konsumera. Detta varierar mycket beroende av tid på dygnet, veckodagar, samt av olika tider på året. Efterfrågan från hushållen är som störst under morgon, kväll och vinterdagar. Då många hushåll i Sverige har fasta elpriser i sina avtal påverkas dock konsumtionen nästan inte alls av elspotpriserna. Däremot kan längre perioder av låga priser ha en effekt på vilka nya avtal som tecknas. Övriga hushåll med rörliga kostnader för el påverkas negativt då elpriset skjuter i höjden men positivt om elpriserna sjunker.

Till vilken grad hushåll och industrier är priskänsliga mot el råder det delade meninger om. Mycket forskning har gjorts för att beräkna priselasticiteten för el

Vindkraften antas ha en prissänkande effekt vid en viss produktion. Detta beror på att när det blåser kraftigt över hela landet så bildas ett stort överskott av energi vilket pressar ner priserna. Elpriser antas inte ha någon motvänd effekt på vindkraftsproduktionen. Marginalkostnaderna för att producera el från ett vindkraftverk antas vara så små att ett väldigt lågt elpris eller lågt elcertifikatpris täcker kostnaderna (Kommunikatör Vattenfall, 2016). Eftersom
vindkraftsproducenter får betalt från elcertifikat per producerad kWh är det lönsamt att fortsätta producera el även under perioder då elpriset är noll. I Danmark har det till och med uppvisats att vindkraften producerar även under perioder av ett negativt pris (CEPOS - Center for politiske studier, 2009).

I diagram 7 nedan illustreras hur utbudet formas av de olika kraftslagen. Denna utbudskurva är tillämpad för den svenska marknaden men de flesta utbudskurvor från andra marknader är uppbyggda på samma sätt (Soft, 2002).

De kraftslagen med lägst marginalkostnad, vindkraft och vattenkraft, utgör den första delen av utbudskurvan. Sedan tillkommer produktioner med lite högre marginalkostnad, kärnkraften, och sedan fylls utbudet på med de kraftslagen med högre och högre marginalkostnad. Utbudskurvan förskjuts beroende på hur mycket de olika kraftslagen i början av kurvan producerar. Om t.ex. vindkraften, vattenkraften och kärnkraften inte kan producera tillräckligt så förskjuts utbudet till vänster. Detta gör att efterfrågekurvan skär utbudet i en punkt där det är lönsamt att producera från fossil kondenskraft. På motsvarande sätt, när t.ex. vindkraften producerar maximalt, så förskjuts utbudskurvan till höger. Nu möter efterfrågekurvan utbudskurvan i en punkt där det egentligen inte är lönsamt att producera från kärnkraften.

Utbudskurvan kan dock vara missvisande i det avseende att den inte visar i vilken ordning som kraftslagens produktion är i drift. Som uppsatsen tidigare beskriver är kärnkraften det kraftslag som nästan konstant producerar el, oavsett period och
pris. Således borde kärnkraften vara det produktionsslag som befinner sig längst till vänster på utbudskurvan. Kurvan visar även upp en bild där marknaden är i perfekt konkurrens och i verkligheten är inte marginalkostnaderna så lika inom varje kraftslag.

Diagram 7 - Diagrammet visar var utbudet möter efterfrågan på elmarknaden. Diagrammet har hämtats från Energimarknadsinspektionens hemsida (Energimarknadsinspektionen, 2016).

Teorin säger alltså att när vindkraften byggs ut och blir en tillräckligt stor del av den totala produktionen så kommer utbudskurvan att förflytta sig till höger och priset att minska. Detta antas eftersom de övriga kraftslagen, och då främst vattenkraft, fungerar som reglerkraft till vindkraften, men att de vid tillräckligt stora produktionsvolymer från vindkraft inte klarar av att reglera sin egen produktion tillräckligt. Det är alltså först när produktionen från vindkraft är tillräckligt hög som vi får en större förskjutning på utbudskurvan och kan se minskningar i elpriset. Vid mindre produktionsvolymer från vindkraft antas till exempel vattenkraften kunna reglera sin produktion och priset borde inte förändras så mycket. Priset kommer även att minska på grund av att efterfrågan,
vid en tillräckligt stor vindkraftsproduktion, skär utbudskurvan i en punkt där marginalkostnaden är låg.

Diagram 8 - Diagrammet visar hur priset förändras beroende på olika mängder konsumtion. Diagramet är konstruerat utifrån teorin.

Om efterfrågan antas vara konstant för varje period så förklarar den nya utbudskurvan varför elpriset har minskat under de senare åren. I praktiken är dock inte efterfrågan konstant, detta betyder att prisförändringen kommer se olika ut beroende på mängden som efterfrågas. Om efterfrågan är stor, till exempel under dagtid eller under vintern, så kommer en ökning av utbudet att ha en väldigt stor effekt på priset. Tvärtom så antas ett ökat utbud ha en mindre påverkan på priset då efterfrågan är mindre, till exempel under nätter och på sommaren. Denna effekt illustreras i diagrammet ovan.
5. Data och metod

Data har analyserats med hjälp av Excel samt Eviews. I uppsatsen har envariabelsanalys gjorts, där formler skattats med hjälp av en enkel linjär regression (OLS-estimator). Regressionen som skattas är i samtliga fall enligt följande formel:

\[Pris_t = \beta_1 + \beta_2 Vind_t + e_t \]

Där den beroende variabeln, Pris, är elspotpriset i SEK/MWh från område SE3. Den förklarande variabeln, Vind, är produktion från vindkraft mätt i MWh. Skillnaden mellan de olika regressionerna kommer bestå i hur data delats upp, inom olika perioder, produktionsvolymer, andelar vindkraft av total produktion, samt vid olika konsumtionsnivåer. Vid regressionsanalysen om olika produktionsvolymer så har dummyvariabler använts.
5.1 Begränsningar

Uppsatsen kommer endast analysera den svenska energimarknaden och endast data från Sverige har använts. Ett problem med detta är att Sverige ingår i en nordisk energimarknad. Det är rimligt att anta att Sveriges energimarknad kommer påverkas av externa faktorer från de andra nordiska länderna.

Tidigare forskning nämner även andra faktorer som påverkar elpriset. Dessa kan vara påfyllnadsgrad i vattenmagasin, samt priser på Brentolja, kol, gas, elcertifikat, koldioxidutsläpp etc. Med hjälp av data från dessa faktorer skulle en bättre helhetsanalys kunna göras av vad som förklarar elpriset. Dessa faktorer har dock inte tagits med i analysen eftersom data på elpriset anges per timme och övriga faktorer anges över andra intervall (dags- eller veckopriser).

Tidigare forskning använder mer avancerade modeller eller komplexa beräkningar vid sina analyser av faktorers påverkan på elpriset. Det är därmed inte säkert att en enkel linjär regression är det bästa sättet att använda för analysen. I brist på djupare ekonometrisk och statistisk kunskap så har inte mer avancerade metoder och modeller använts vid analyserna, men sådana skulle antagligen förbättra resultatet.
6. Resultat

6.1 Faktorer som påverkar elpriset

Den första analysen har för avsikt att studera hur de olika produktionsslagen, konsumtion av el, samt årets månader påverkade elpriset. Denna del ska ge läsaren en generell uppfattning om vilka faktorer som påverkar elpriset. I analysen upptäcktes dock multikolinjäritet i data vilket gjorde en enkelt linjär regression ogenomförbar.

Multikolinjäritet upptäcktes först genom att studera korrelationen mellan de förklarande variablerna. Enligt tabell 1 nedan så uppvisar till exempel variabeln konsumtion hög korrelation med nästan samtliga förklarande variabler.

<table>
<thead>
<tr>
<th></th>
<th>Pris</th>
<th>Värme</th>
<th>Vatten</th>
<th>Konsum</th>
<th>Kärnkraft</th>
<th>Vind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pris</td>
<td>1</td>
<td>0,47</td>
<td>0,11</td>
<td>0,45</td>
<td>0,21</td>
<td>-0,33</td>
</tr>
<tr>
<td>Värme</td>
<td>0,47</td>
<td>1</td>
<td>0,28</td>
<td>0,80</td>
<td>0,60</td>
<td>0,09</td>
</tr>
<tr>
<td>Vatten</td>
<td>0,11</td>
<td>0,28</td>
<td>1</td>
<td>0,66</td>
<td>-0,02</td>
<td>-0,09</td>
</tr>
<tr>
<td>Konsum</td>
<td>0,45</td>
<td>0,80</td>
<td>0,66</td>
<td>1</td>
<td>0,50</td>
<td>0,12</td>
</tr>
<tr>
<td>Kärnkraft</td>
<td>0,21</td>
<td>0,60</td>
<td>-0,02</td>
<td>0,50</td>
<td>1</td>
<td>0,10</td>
</tr>
<tr>
<td>Vind</td>
<td>-0,33</td>
<td>0,09</td>
<td>-0,09</td>
<td>0,12</td>
<td>0,10</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabell 1 - Korrelation mellan olika variabler

Tabellen ovan ger oss dock mycket intressant information. Vi kan här studera hur de olika kraftslagen samt konsumtionen korrelerar med priset.

Värmekraften är det kraftslag som ofta används under perioder då efterfrågan är som störst och priset som högst, detta ger tabellen stöd åt då värmekraft och konsumtion är väldigt starkt korrelerade.

Eftersom konsumtionen återspeglar efterfrågan så är det inte så konstigt att den är positivt korrelerad med elpriset. Att de två inte är helt korrelerade kan, som

Konsumtionen är även starkt korrelerad med vattenkraften. Detta kan bero på att vattenkraften är den kraftkälla som snabbast kan reglera sig för att möta efterfrågan. Konsumtionens positiva korrelation med kärnkraften borde bero på att kärnkraften minskar sin produktion under de längre perioderna då efterfrågan är låg, så som under sommaren.

6.2 Vindkraftens påverkan på elpriset

Denna del kommer att visa resultaten från analyser av elpriset och vindkraftsproduktionen mellan åren 2011 och 2015. Att endast försöka förklara elprisets förändringar med vindkraften antogs vara mycket svårt och låga värden på R^2 var förväntade. Det första som gjordes var att analysera all data för att se
vilken metod som skulle passa bäst. Ett vanligt problem som uppstår när man jobbar med tidseriedata är att feltermerna är autokorrelerade med varandra, och så var även fallet här.

När feltermerna är autokorrelerade med varandra så kommer data att uppvisa en kronologisk ordning över tiden. När detta inträffar så har OLS-estimaterna inte längre lägst varians bland alla linjära och väntevärdesriktiga estimatorer. Detta leder bland annat till att resultaten uppvisar felaktiga t-värden för regressionerna (Westerlund, 2005, s.185).

I regressionsanalyser mellan elpriset och vindkraftsproduktion när data jämfördes över tiden påvisade Durbin-Watson statistiken värden nära noll. Det finns därmed tydliga tecken på positiv autokorrelation i regressionen.

Ett sätt att korrigeras för autokorrelation är att använda den korrekt estimatorn av OLS-estimatorns varians-kovarians-matris. En sådan estimator är Newey-West's estimator och kan utföras på regressionen i Eviews. Samtliga regressioner i uppsatsen som uppvisar Durbin-Watson statistik under 1,5 är därför korrigerade med hjälp av Newey-West estimatorn (Westerlund, 2005, s.191).

Då en negativ korrelation uppmäts är nästa steg att se hur elpriset påverkas av vindkraften. Detta gjordes genom en regressionsanalys. I denna regression har data delats upp på de olika åren för att kunna se om det har skett någon förändring av vindkraftens påverkan på elpriset. Fullständiga resultat återges i appendix 8 och en sammanfattning visas nedan.

<table>
<thead>
<tr>
<th>År</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Korrelation</td>
<td>-0,22</td>
<td>-0,06</td>
<td>-0,27</td>
<td>-0,31</td>
<td>-0,08</td>
</tr>
</tbody>
</table>

Koefficienterna utläses som hur mycket elpriset minskar i SEK per ökad MWh vindkraftsproduktion. Varje år så visar sig vindkraftsproduktionen ha en signifikant negativ påverkan på elpriset. Vindkraftsproduktionen kan dock endast förklara en väldigt liten del av förändringen i elpriset. Som mest förklarar vindkraftsproduktionen 11,25% av elpriset. Vi kan inte heller här ge stöd för att någon trend har skett mellan åren.

Nu när vi vet hur vindkraften påverkar elpriset generellt sett under alla åren så kan vi gå vidare och analysera hur elpriset förändras när vindkraften faktiskt producerar som mest. Detta kan göras på två sätt. Först så har all data från 2015...
delats in i olika segment, där vindkraften står för en viss andel av den totala produktionen. Vi kan då se hur priset förändras när andelen vindkraft ökar.

Resultatet visas i diagram 9 nedan. Vi kan se att när vindkraften står för mellan noll till tjugo procent så ändras inte priset så mycket. Men vid större produktionsandelar vindkraft så börjar priset att minska. Från 25 % vindkraftsproduktion så ligger snittpriset under 15 öre/kWh.

![Snittpris på el indelat i segment som andel vindkraft av totalproduktion (2015)](image)

Diagram 9 – Visar snittpriset på el när vindkraften är indelat i olika segment om andelar av total produktion.

Förklaringen till denna prisminskning är antingen att utbudskurvan förskjuts utåt när det produceras mer vindkraft, eller att en större andel producerad el kommer ifrån den kraftkällan med lägst marginkostnad.

Vi har nu sett både att vindkraften har en prisminskande effekt på elpriset samt att elpriset blir lägre ju större andelar vindkraft som produceras. För att illustrierar detta tydligare har data på vindkraft delats upp inom olika produktionsvolymer. Vi kan då studera hur elpriset förändras vid olika mängder vindkraft. Hypotesen är
att vindkraften kommer påverka priset mer vid större produktionsvolymer eftersom vi då förskjuter utbudskurvan mer åt höger, vilket ger ett lägre jämviktspris. Vid större volymer antas dessutom vattenkraftens regleringsförmåga att minska.

Från tabellen nedan kan vi utläsa hur snittpriset på el minskar för varje segment där produktionsvolymer ökar. Korrelationsanalysen ger stöd för hypotesen, vid de lägre produktionssegmenten finns det knappt ett samband alls mellan vindkraftsproduktion och elpris men vid produktionsnivåer över 4000 MWh så finns en tydlig negativ korrelation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Snittpris SEK/MWh</td>
<td>214</td>
<td>207</td>
<td>205</td>
<td>203</td>
<td>165</td>
</tr>
<tr>
<td>Medelproduktion MWh</td>
<td>620</td>
<td>1484</td>
<td>2468</td>
<td>3398</td>
<td>4371</td>
</tr>
<tr>
<td>Korrelation</td>
<td>-0,06</td>
<td>-0,04</td>
<td>0,06</td>
<td>-0,02</td>
<td>-0,32</td>
</tr>
</tbody>
</table>

Tabell 3 – Korrelation mellan vindkraftsproduktion och elpriset inom olika segment av produktionsvolymer.

För att se hur elpriset förändras av de olika segmenten så gjordes en regressionsanalys med de olika segmenten som dummyvariabler. Resultatet (fullständiga resultat återges i appendix 9) visar att standardpriset vid låg produktion vindkraft är runt 340 SEK/MWh och att det minskar för varje segment ökad vindkraftsproduktion. När vindkraften producerar som mest, mellan 4000 och 5000 MWh, så antas priset minska med ca 170 SEK.
Detta resultat ger stöd åt teorin om att elpriset blir lägre ju mer vindkraft som produceras. Det vi ser effekten av är alltså hur utbudskurvan förskjuts åt höger eller att vindkraften ersätter annan produktion där marginalkostnaden är högre. Elpriset kan dock endast förklaras med ca 10 % vilket betyder att det är en mängd andra faktorer som spelar in.

6.2.1 Påverkan vid olika perioder

<table>
<thead>
<tr>
<th>Korrelationsanalys</th>
<th>Pris</th>
<th>Vind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vindproduktion MWh</td>
<td>-0,34</td>
<td>1,00</td>
</tr>
<tr>
<td>Morgon 06:00-10:00</td>
<td>0,11</td>
<td>-0,04</td>
</tr>
<tr>
<td>Dag 11:00-17:00</td>
<td>0,09</td>
<td>-0,01</td>
</tr>
<tr>
<td>Kväll 18:00-22:00</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>Natt 23:00-05:00</td>
<td>-0,22</td>
<td>0,03</td>
</tr>
<tr>
<td>Vår mar – maj</td>
<td>0,07</td>
<td>-0,01</td>
</tr>
<tr>
<td>Sommar jun – aug</td>
<td>-0,20</td>
<td>-0,26</td>
</tr>
<tr>
<td>Höst sep – nov</td>
<td>-0,06</td>
<td>0,07</td>
</tr>
<tr>
<td>Vinter dec – feb</td>
<td>0,18</td>
<td>0,20</td>
</tr>
<tr>
<td>Låg konsumtion <=13,5 GWh</td>
<td>-0,33</td>
<td>-0,17</td>
</tr>
<tr>
<td>Normal konsumtion 13,5-16,5 GWh</td>
<td>0,01</td>
<td>0,07</td>
</tr>
<tr>
<td>Hög konsumtion >=16,5 GWh</td>
<td>0,33</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Tabell 4 – Korrelationsanalys mellan olika variabler och perioder

Från tabell 4 kan vi se att vindkraften uppvisar ett positivt samband med perioden vinter och negativ korrelation med perioden sommar. I övrigt så finns det inga starka samband mellan vindkraft och de olika perioderna.
Elpriset är starkt negativt korrelerat under perioder då konsumtionen antas vara lägre, dessa perioder är under sommaren och natten. Tvärtom så påvisas en positiv korrelation då efterfrågan antas vara som högst, vilket är under morgonen och vintern.

Tid på året

Hypotesen är att vindkraften borde ha en större påverkan på elpriset under vinterperioden. Detta antas eftersom efterfrågan är större under denna period, således kommer förändringar på vindkraftsproduktion ha en stor påverkan på förändringar i elpriset. Dessutom så visar den tidigare analysen att det produceras mer vindkraft under vintern.

Fullständiga resultat från regressionsanalysen återges i appendix 10 och en sammanfattning visas nedan.

<table>
<thead>
<tr>
<th>Resultat av regressionsanalys. Beroende variabel: Spotpris el – Sommar</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vindproduktion</td>
<td>Koefficient</td>
<td>Antal observ.</td>
<td>p-värde</td>
<td>Justerat R²</td>
</tr>
<tr>
<td>Sommar</td>
<td>-0,071</td>
<td>11040</td>
<td>0,0000****</td>
<td>0,12</td>
</tr>
</tbody>
</table>

**** (0,1 % nivån), *** (1 % nivån), ** (5 % nivån), * (10 % nivån)
Resultat av regressionsanalys. Beroende variabel: Spotpris el - Vinter

<table>
<thead>
<tr>
<th>Vindproduktion</th>
<th>Koefficient</th>
<th>Antal observ.</th>
<th>p-värde</th>
<th>Justerat R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinter</td>
<td>-0,076</td>
<td>10821</td>
<td>0,000****</td>
<td>0,28</td>
</tr>
</tbody>
</table>

**** (0,1 % nivån), *** (1 % nivån), ** (5 % nivån), * (10 % nivån)

Båda koefficienterna uppvisar ett signifikant negativt samband med elpriset. Under perioden vinter så har vindkraftsproduktionen en större påverkan på elpriset även om skillnaden är liten. Däremot så förklarar vindkraften en betydligt större del av elpriset under vintern.

Tid på dygnet

Denna analys har likt den förra delat upp data ifrån de fem åren, men denna gång mellan olika tider på dygnet. Två perioder har jämförts, dag och natt. Perioden dag är data ifrån alla timmar mellan klockan 11:00 och 17:00. Perioden natt är data ifrån alla timmar mellan klockan 23:00 och 05:00. Likt den tidigare analysen är hypotesen att vindkraften kommer att ha som störst påverkan under de perioder när efterfrågan är som störst, vilket är under perioden dag.

Fullständigt resultatet från regressionsanalysen återges i appendix 11 och en sammanställning av resultatet kan ses nedan.

Resultat av regressionsanalys. Beroende variabel: Spotpris el - Dag

<table>
<thead>
<tr>
<th>Vindproduktion</th>
<th>Koefficient</th>
<th>Antal observ.</th>
<th>p-värde</th>
<th>Justerat R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dag</td>
<td>-0,051</td>
<td>12782</td>
<td>0,000****</td>
<td>0,12</td>
</tr>
</tbody>
</table>

**** (0,1 % nivån), *** (1 % nivån), ** (5 % nivån), * (10 % nivån)

Resultat av regressionsanalys. Beroende variabel: Spotpris el - Natt

<table>
<thead>
<tr>
<th>Vindproduktion</th>
<th>Koefficient</th>
<th>Antal observ.</th>
<th>p-värde</th>
<th>Justerat R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natt</td>
<td>-0,043</td>
<td>12781</td>
<td>0,000****</td>
<td>0,11</td>
</tr>
</tbody>
</table>

**** (0,1 % nivån), *** (1 % nivån), ** (5 % nivån), * (10 % nivån)

Vid olika konsumtionsnivåer

Likt de två tidigare analyserna så undersöks här om vindkraftsproduktionen har en större påverkan på priset när efterfrågan är stor. Enligt teorin så kommer vindkraftsproduktionen att påverka elpriset olika beroende hur efterfrågan ser ut vid en given tidpunkt. I denna analys så har data delats upp efter mängden konsumtion, som vi antar speglar efterfrågan vid varje tidpunkt. Hypotesen är att vindkraftsproduktionen har som störst påverkan på elpriset i de segment där konsumtionen är som störst.

Konsumtionen av energi i Sverige sträcker sig från 8200 MWh till 26000 MWh per timme. Data har delats in i tre segment med ungefär lika många observationer i varje. Segmenten är indelade då konsumtionen är låg, normal och hög.

I denna analys upptäcktes ingen autokorrelation och därför är inte regressionerna korrigerade med Newey-West. Fullständiga resultat återges i appendix 12 och en sammanställning av resultaten presenteras nedan.

<table>
<thead>
<tr>
<th>Konsumtion</th>
<th>Koefficient</th>
<th>Antal observ.</th>
<th>p-värde</th>
<th>Justerat R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Låg</td>
<td>-0,05</td>
<td>14606</td>
<td>0,0000****</td>
<td>0,11</td>
</tr>
<tr>
<td>Normal</td>
<td>-0,06</td>
<td>14607</td>
<td>0,0000****</td>
<td>0,23</td>
</tr>
<tr>
<td>Hög</td>
<td>-0,07</td>
<td>14608</td>
<td>0,0000****</td>
<td>0,21</td>
</tr>
</tbody>
</table>

**** (0,1 % nivån), *** (1 % nivån), ** (5 % nivån), * (10 % nivån)

6.3 Varians hos elpriset och vindkraftsproduktionen

![Diagram 9 – Diagrammet visar variansen av vindkraftsproduktionen (2011-2015).](image)

Vindkraftsproduktionens varians har ökat med tiden. Detta är förväntat eftersom en större mängd potentiell produktion borde leda till större ökningar när det väl blåser. Att elprisets varians har minskat är väldigt intressant. Enligt teorin så
borde en större mängd produktion från intermittenta kraftslag göra att priserna fluktuerar mer. Eftersom vindkraften plötsligt kan öka eller minska sin produktion borde variansen hos spotpriset ha ökat. Vi kan dock se en ökning under 2015 men uppdaterade observationer borde göras för att se hur variansen förändras när ännu mer vindkraft byggs ut.

![Varians av elpriset (2011-2015)](image)

6.4 Sammanfattning av resultatet

Resultaten ger i stora drag stöd åt teorin som presenterades i avsnitt 4. Vi kan se att priset förändras mer ju större efterfrågan är. När efterfrågekurvan skär utbudet i en punkt långt upp på kurvan blir förändringen större när utbudskurvan skiftar.

7. Avslutning

Vindkraften har under en längre tid bedömts som en säker och önskvärd investering. Investerare har länge lockats till vindkraftsmarknaden tack vare skattelåttnader, subventioner samt bistående inkomster från elcertifikatsystemet. Idag så står dock dessa investerare inför en större förändring. Med ett lägre pris på el, slopade skattelåttnader samt låga priser från elcertifikat så kan det bli allt svårare att få de finansiellaresultaten att gå ihop.

Redan nu så går även många av landets kärnkraftsreaktorer med förlust, och bristande ekonomisk lönsamhet är en av anledningarna till att många tvingas att stänga ned. Det är ytterst intressant att studera hur den svenska energimarknaden kommer klara sig utan kärnkraften. Utan en stabil baskraft så kommer produktionen på energimarknaden antagligen att bli ännu mer varierande. Tidigare har Sverige för det mesta varit en exportör av energi, och trenden lär fortsätta så
länge som kärnkraften kan producera. När den i sin tur tvingas att stänga ned kan det omvända ske, och Sverige kan bli beroende av importerad energi.

En dystopi kan vara att Sverige i framtiden aningen tvingas importera ”smutsig” energi eller behöva producera energi från fossildriven kondenskraft under perioder när vindkraften inte kan producera tillräckliga mängder.

7.1 Vidare forskning

En uppdaterad analys borde göras med nästkommande års siffror för att säkerställa att resultatet består. Ytterligare data och speciellt mer data på vindkraftsproduktion vid stora volymer borde ge tydligare resultat. Eftersom ännu mer vindkraft planerar att byggas ut kan resultaten förstärkas ytterligare.

Det vore även intressant att analysera hur olika vindkraftsproducenters kalkyler står sig mot det minskade elpriset. De rörliga kostnaderna för ett vindkraftverk är väldigt små, men de fasta kostnaderna; uppbyggnad samt reparation och underhåll är rätt så stora. Det vore intressant att se vilka de förväntade priserna var på de kalkyler som gjordes för fem till tio år sedan, och hur investeringarna klarar sig nu när priset är så pass lågt.
8. Referenser
CEPOS - Center for politiske studier (2009) *Wind Energy: The case of Denmark*

Energikommissionen (2016) *Promemoria om de ekonomiska förutsättningarna för befintlig svensk elproduktion*. S.16

Energimyndigheten: CESAR (2016) *CESAR*

Energy, Utilities and Mining, PWC (2015) *Vindkraftsmarknaden 2015: Motvind i turbulent marknad*

Hirth, L. och Neon Neue Energieökonomik GmbH (2016) *Reasons for the drop of Swedish electricity prices*

Regeringskansliet (2015) *Förändrat undantag från skatteplikt för el från förnybara källor*

Intervjuer:

9. Appendix

Appendix 1

Punkt diagram över konsumtion och elpris
Appendix 2

Punktdiagram över konsumtion och vindkraftsproduktion
Appendix 3

Histogram: Antal timmar vid given produktion
Appendix 4

Punktdiagram över vindkraftsproduktion och elpris
Appendix 5

Punktdiagram över intäkter vid given produktion
Appendix 6

Histogram över intäkter
Appendix 7

Histogram över vindkraftsproduktion
Appendix 8

Hur vindkraftsproduktionen påverkar elpriset per år (2011-2015) och totalt

Dependent Variable: PRICE2011
Method: Least Squares
Date: 05/05/16 Time: 12:24
Sample: 1 8760
Included observations: 8760
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 11.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>476.1109</td>
<td>7.551128</td>
<td>63.05163</td>
<td>0.0000</td>
</tr>
<tr>
<td>WIND2011</td>
<td>-0.063190</td>
<td>0.009525</td>
<td>-6.634096</td>
<td>0.0000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.046444</td>
<td>431.4374</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.046336</td>
<td>136.1846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>132.9921</td>
<td>12.61868</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>1.55E+08</td>
<td>12.62030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-55267.84</td>
<td>12.61923</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-statistic</td>
<td>426.5719</td>
<td>0.040653</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob(F-statistic)</td>
<td>0.000000</td>
<td>44.01123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob(Wald F-statistic)</td>
<td>0.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dependent Variable: PRICE2012
Method: Least Squares
Date: 05/05/16 Time: 12:24
Sample: 1 8760
Included observations: 8760
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 11.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>296.2918</td>
<td>8.230152</td>
<td>36.00077</td>
<td>0.0000</td>
</tr>
<tr>
<td>WIND2012</td>
<td>-0.015359</td>
<td>0.006331</td>
<td>-2.425845</td>
<td>0.0153</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.003656</td>
<td>283.5613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.003542</td>
<td>127.8671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.E. of regression</td>
<td>127.6405</td>
<td>12.53654</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum squared resid</td>
<td>1.43E+08</td>
<td>12.53816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-54908.05</td>
<td>12.53709</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-statistic</td>
<td>32.13419</td>
<td>0.163714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob(F-statistic)</td>
<td>0.000000</td>
<td>5.884726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prob(Wald F-statistic)</td>
<td>0.015293</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dependent Variable: PRICE2013
Method: Least Squares
Date: 05/05/16 Time: 12:24
Sample: 1 8760
Included observations: 8760
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 11.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>371.2091</td>
<td>3.936435</td>
<td>94.30083</td>
<td>0.0000</td>
</tr>
<tr>
<td>WIND2013</td>
<td>-0.026754</td>
<td>0.002484</td>
<td>-10.76960</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.071598 Mean dependent var 340.6686
Adjusted R-squared 0.071492 S.D. dependent var 72.53902
S.E. of regression 69.89797 Akaike info criterion 11.33218
Sum squared resid 42789185 Schwarz criterion 11.33379
Log likelihood -49632.94 Hannan-Quinn criter. 11.33273
F-statistic 675.4136 Durbin-Watson stat 0.136821
Prob(F-statistic) 0.000000 Wald F-statistic 115.9842
Prob(Wald F-statistic) 0.000000

Dependent Variable: PRICE2014
Method: Least Squares
Date: 05/05/16 Time: 12:24
Sample: 1 8760
Included observations: 8760
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 11.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>316.7781</td>
<td>3.284175</td>
<td>96.45590</td>
<td>0.0000</td>
</tr>
<tr>
<td>WIND2014</td>
<td>-0.022088</td>
<td>0.002090</td>
<td>-10.57007</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.093686 Mean dependent var 287.5497
Adjusted R-squared 0.093583 S.D. dependent var 59.86460
S.E. of regression 56.99466 Akaike info criterion 10.92402
Sum squared resid 28449411 Schwarz criterion 10.92564
Log likelihood -47845.21 Hannan-Quinn criter. 10.92457
F-statistic 905.3190 Durbin-Watson stat 0.122693
Prob(F-statistic) 0.000000 Wald F-statistic 111.7264
Prob(Wald F-statistic) 0.000000
Dependent Variable: PRICE2015
Method: Least Squares
Date: 05/05/16 Time: 12:25
Sample: 1 8760
Included observations: 8760
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 11.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>219.2868</td>
<td>6.565893</td>
<td>33.39786</td>
<td>0.0000</td>
</tr>
<tr>
<td>WIND2015</td>
<td>-0.006982</td>
<td>0.002523</td>
<td>-2.767665</td>
<td>0.0057</td>
</tr>
</tbody>
</table>

R-squared 0.006988 Mean dependent var 205.8934
Adjusted R-squared 0.006875 S.D. dependent var 91.3972
S.E. of regression 91.07703 Akaike info criterion 11.86152
Sum squared resid 72647836 Schwarz criterion 11.86313
Log likelihood -51951.44 Hannan-Quinn criter. 11.86207
F-statistic 61.63332 Durbin-Watson stat 0.116073
Prob(F-statistic) 0.000000 Wald F-statistic 7.659968
Prob(Wald F-statistic) 0.005658

Dependent Variable: PRICETOTAL
Method: Least Squares
Date: 05/03/16 Time: 16:53
Sample: 1 43821
Included observations: 43821
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 16.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>367.4001</td>
<td>3.673372</td>
<td>100.0171</td>
<td>0.0000</td>
</tr>
<tr>
<td>WINDTOTAL</td>
<td>-0.048640</td>
<td>0.001877</td>
<td>-25.91394</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.112497 Mean dependent var 309.8062
Adjusted R-squared 0.112477 S.D. dependent var 126.3201
S.E. of regression 119.0043 Akaike info criterion 12.39624
Sum squared resid 6.21E+08 Schwarz criterion 12.39664
Log likelihood -271605.8 Hannan-Quinn criter. 12.39637
F-statistic 5554.357 Durbin-Watson stat 0.076625
Prob(F-statistic) 0.000000 Wald F-statistic 671.5322
Prob(Wald F-statistic) 0.000000
Appendix 9

Regressionsanalys med elpriset som beroende variabel och vindkraftsproduktion som dummy-variable vid olika volymer.

Dependent Variable: PRIS
Method: Least Squares
Date: 05/17/16 Time: 09:54
Sample: 1 43821
Included observations: 43821
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 16.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>342.2918</td>
<td>3.173207</td>
<td>107.8694</td>
<td>0.0000</td>
</tr>
<tr>
<td>_1000_2000</td>
<td>-48.59877</td>
<td>3.965235</td>
<td>-12.25621</td>
<td>0.0000</td>
</tr>
<tr>
<td>_2000_3000</td>
<td>-93.81368</td>
<td>4.439536</td>
<td>-21.13142</td>
<td>0.0000</td>
</tr>
<tr>
<td>_3000_4000</td>
<td>-124.1543</td>
<td>5.507700</td>
<td>-22.54196</td>
<td>0.0000</td>
</tr>
<tr>
<td>_4000_5000</td>
<td>-171.8423</td>
<td>10.24579</td>
<td>-16.77199</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.098366 Mean dependent var 309.8062
Adjusted R-squared 0.098283 S.D. dependent var 126.3201
S.E. of regression 119.9521 Akaike info criterion 12.41218
Sum squared resid 6.30E+08 Schwarz criterion 12.41317
Log likelihood -271952.0 Hannan-Quinn criter. 12.41249
F-statistic 1195.048 Durbin-Watson stat 0.082272
Prob(F-statistic) 0.000000 Wald F-statistic 183.1788
Prob(Wald F-statistic) 0.000000
Appendix 10

Hur vindkraftsproduktionen påverkar elpriset, uppdelat mellan sommar och vinter

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>323.1492</td>
<td>5.618495</td>
<td>57.51526</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_SOMMAR</td>
<td>-0.070837</td>
<td>0.004821</td>
<td>-14.69342</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>462.2284</td>
<td>7.631965</td>
<td>60.56480</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_VINTER</td>
<td>-0.075566</td>
<td>0.003187</td>
<td>-23.70946</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Appendix 11

Hur vindkraftsproduktionen påverkar elpriset, uppdelat mellan dag och natt

Dependent Variable: PRIS_DAG
Method: Least Squares
Date: 05/17/16 Time: 11:31
Sample: 1 12782
Included observations: 12782
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 12.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>386.2265</td>
<td>5.809822</td>
<td>66.47820</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_DAG</td>
<td>-0.050478</td>
<td>0.002881</td>
<td>-17.51818</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.121413 Mean dependent var 327.4591
Adjusted R-squared 0.121344 S.D. dependent var 125.6955
S.E. of regression 117.8228 Akaike info criterion 12.37640
Sum squared resid 1.77E+08 Schwarz criterion 12.37756
Log likelihood -79095.55 Hannan-Quinn criter. 12.37679
F-statistic 1766.078 Durbin-Watson stat 0.136095
Prob(F-statistic) 0.000000 Wald F-statistic 306.8867
Prob(Wald F-statistic) 0.000000

Dependent Variable: PRIS_NATT
Method: Least Squares
Date: 05/17/16 Time: 11:31
Sample (adjusted): 1 12781
Included observations: 12781 after adjustments
HAC standard errors & covariance (Bartlett kernel, Newey-West fixed bandwidth = 12.0000)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>319.8954</td>
<td>5.643364</td>
<td>56.68523</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_NATT</td>
<td>-0.043626</td>
<td>0.002846</td>
<td>-15.32975</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.111677 Mean dependent var 266.5068
Adjusted R-squared 0.111607 S.D. dependent var 112.6251
S.E. of regression 106.1543 Akaike info criterion 12.16782
Sum squared resid 1.44E+08 Schwarz criterion 12.16899
Log likelihood -77756.46 Hannan-Quinn criter. 12.16821
F-statistic 1606.530 Durbin-Watson stat 0.060844
Prob(F-statistic) 0.000000 Wald F-statistic 235.0013
Prob(Wald F-statistic) 0.000000
Appendix 12

Hur vindkraftsproduktionen påverkar elpriset, uppdelt mellan olika konsumtionsnivåer

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>299.0940</td>
<td>1.406272</td>
<td>212.6856</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_LAG</td>
<td>-0.050014</td>
<td>0.001149</td>
<td>-43.52745</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.114836 Mean dependent var: 250.1932
Adjusted R-squared: 0.114775 S.D. dependent var: 108.6511
S.E. of regression: 102.2259 Akaike info criterion: 12.09238
Sum squared resid: 1.53E+08 Schwarz criterion: 12.09342
Log likelihood: -88308.68 Hannan-Quinn criter: 12.09273
F-statistic: 1894.639 Durbin-Watson stat: 1.641374
Prob(F-statistic): 0.000000

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>380.4529</td>
<td>1.286190</td>
<td>295.7983</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_NORMAL</td>
<td>-0.054723</td>
<td>0.000817</td>
<td>-66.95327</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.234849 Mean dependent var: 311.0405
Adjusted R-squared: 0.234797 S.D. dependent var: 105.1747
S.E. of regression: 92.00252 Akaike info criterion: 11.88165
Sum squared resid: 1.24E+08 Schwarz criterion: 11.88269
Log likelihood: -86775.60 Hannan-Quinn criter: 11.88199
F-statistic: 4482.741 Durbin-Watson stat: 1.738772
Prob(F-statistic): 0.000000
Dependent Variable: PRIS_HOG
Method: Least Squares
Date: 05/05/16 Time: 13:36
Sample: 1 14608
Included observations: 14608

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>458.8007</td>
<td>1.742075</td>
<td>263.3645</td>
<td>0.0000</td>
</tr>
<tr>
<td>VIND_HOG</td>
<td>-0.069386</td>
<td>0.001100</td>
<td>-63.07825</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared 0.214092 Mean dependent var 368.1769
Adjusted R-squared 0.214038 S.D. dependent var 134.3223
S.E. of regression 119.0828 Akaike info criterion 12.39765
Sum squared resid 2.07E+08 Schwarz criterion 12.39869
Log likelihood -90550.45 Hannan-Quinn criter. 12.39800
F-statistic 3978.866 Durbin-Watson stat 1.558497
Prob(F-statistic) 0.000000

Appendix 13
Tabell med statistik på elpriset och vindkraftsproduktion mellan åren 2011-2015

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>431,4374</td>
<td>283,5613</td>
<td>340,6686</td>
<td>287,5497</td>
<td>205,8934</td>
</tr>
<tr>
<td>Median</td>
<td>436,3750</td>
<td>280,0000</td>
<td>330,7200</td>
<td>284,9950</td>
<td>216,0000</td>
</tr>
<tr>
<td>Maximum</td>
<td>913,1700</td>
<td>2258,000</td>
<td>912,3300</td>
<td>954,7300</td>
<td>1393,000</td>
</tr>
<tr>
<td>Minimum</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>5,420000</td>
<td>3,000000</td>
</tr>
<tr>
<td>Std, Dev,</td>
<td>136,1846</td>
<td>127,8671</td>
<td>72,53902</td>
<td>59,8646</td>
<td>91,39172</td>
</tr>
<tr>
<td>Variance</td>
<td>18546,2453</td>
<td>16349,995</td>
<td>5261,9094</td>
<td>3583,7703</td>
<td>8352,44685</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0,43719</td>
<td>3,937939</td>
<td>0,886119</td>
<td>0,811200</td>
<td>1,574359</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3,642127</td>
<td>40,99342</td>
<td>6,539955</td>
<td>10,08482</td>
<td>15,42144</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>429,5572</td>
<td>549518,1</td>
<td>5720,320</td>
<td>19281,79</td>
<td>59935,37</td>
</tr>
<tr>
<td>Probability</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
</tr>
<tr>
<td>Sum</td>
<td>3779392,</td>
<td>2483997,</td>
<td>2984257,</td>
<td>2518936,</td>
<td>1803626,</td>
</tr>
<tr>
<td>Sum Sq, Dev,</td>
<td>1,62E+08</td>
<td>1,43E+08</td>
<td>46089071</td>
<td>31390242</td>
<td>73159086</td>
</tr>
<tr>
<td>Observations</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>706,9672</td>
<td>828,8877</td>
<td>1141,516</td>
<td>1323,243</td>
<td>1918,153</td>
</tr>
<tr>
<td>Median</td>
<td>595,0000</td>
<td>743,5000</td>
<td>967,6834</td>
<td>1162,470</td>
<td>1787,000</td>
</tr>
<tr>
<td>Maximum</td>
<td>2287,000</td>
<td>2454,000</td>
<td>3578,065</td>
<td>4663,052</td>
<td>4967,000</td>
</tr>
<tr>
<td>Minimum</td>
<td>15,00000</td>
<td>27,00000</td>
<td>14,98594</td>
<td>32,45259</td>
<td>74,00000</td>
</tr>
<tr>
<td>Std, Dev,</td>
<td>464,46</td>
<td>503,38</td>
<td>725,48</td>
<td>829,55</td>
<td>1094,16</td>
</tr>
<tr>
<td>Variance</td>
<td>215718,63</td>
<td>253389,11</td>
<td>526327,47</td>
<td>688154,03</td>
<td>1197192,67</td>
</tr>
<tr>
<td>Skewness</td>
<td>0,852225</td>
<td>0,685288</td>
<td>0,879064</td>
<td>0,865509</td>
<td>0,449609</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>3,139958</td>
<td>2,835275</td>
<td>3,189891</td>
<td>3,426911</td>
<td>2,392237</td>
</tr>
<tr>
<td>Jarque-Bera</td>
<td>1067,530</td>
<td>695,5488</td>
<td>1141,381</td>
<td>1160,218</td>
<td>429,9581</td>
</tr>
<tr>
<td>Probability</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
<td>0,000000</td>
</tr>
<tr>
<td>Sum</td>
<td>6193033,</td>
<td>7261056,</td>
<td>9999680,</td>
<td>11591611</td>
<td>16803020</td>
</tr>
<tr>
<td>Sum Sq, Dev,</td>
<td>1,89E+09</td>
<td>2,22E+09</td>
<td>4,61E+09</td>
<td>6,03E+09</td>
<td>1,05E+10</td>
</tr>
<tr>
<td>Observations</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
<td>8760</td>
</tr>
</tbody>
</table>