Colexification and semantic change in colour terms in Sino-Tibetan and Indo-European languages

Kajsa Söderqvist

Bachelor Thesis in General Linguistics
Supervisor: Gerd Carling
Autumn semester 2016/2017
University of Lund, Centre for Languages and Literature
Abstract

Colour terms is a highly interesting field when investigating linguistic universals and how language vary cross-linguistically. Colour semantics, the investigation of the meaning of colour, consists in largely of two opposing sides: the universalists, proposing that colour terms are universal (Berlin & Kay 1969) and the relativists claiming a variation in meaning cross-linguistically (Wierzbicka 2008).

The highly changeable field lexical semantic change is defined as the change in meaning in concepts connected to a lexical item and a typical pattern of change is words becoming polysemmous (Durkin 2009). To gain an expanded picture and understanding of a term, a historical investigation and etymological research of its derived concepts is a useful resource. Biggam (2012) points out that specifically colour terms are less stable and that historical colour terms tend to have broader coverage than the modern terms, which makes them an interesting object of investigation.

The focus of this thesis is consequently to investigate and contrast the synchronic colexifications and diachronic derivations of ten colour terms in ten Sino-Tibetan and ten Indo-European languages. A dataset in DiACL (Carling 2017) has been constructed to gather the collected lexemes, followed by a manual extraction to semantic networks for a visual representation (Felbaum 2012). The lexical meanings have then been grouped into semantic classifications (Haspelmath & Tadmor 2009) for further analyze.

The results showed very small overlap of colexified lexical meanings for each colour term in the diachronic perspective, but showed a conformity of semantic categories between the families. The type of change that occurred most frequently was narrowing and the direction of the semantic change went most frequently from more abstract to more concrete. When changes in the opposite direction occurred, it was almost exclusively in the Indo-European languages, not consistent with previous studies (Campbell 2004, Warth-Szczyglowska 2014).
Preface and acknowledgements

A big thank you to Gerd Carling for the guidance and support this winter (and spring), for providing me with the DiACL database and steering me in the right direction when I was out and about. Thank you Chundra Cathcart for giving me the great advice to use the STEDT database and giving me instructions and tips on how to use it. And last, but not least, a big thank you to my rock, my everything Damian Luna for being there night and day, supporting me through good and bad. Couldn't have done it without you.
Table of contents

1. Introduction ... 4
2. Theoretical background .. 5
 2.1 Colour semantics .. 5
 2.2 Lexical semantic change ... 7
 2.3 Polysemy and colexification ... 9
 2.4 Etymology .. 11
3. Aim and research question ... 11
4. Method & Data ... 12
 4.1 Colour terms and languages ... 12
 4.2 Etymologies ... 13
 4.3 Semantic classification of lexical meaning .. 14
 4.4 Semantic networks ... 15
 4.5 Data .. 16
 4.6 Method discussion .. 18
5. Results and analysis .. 19
 5.1 Colour by colour .. 19
 5.2 Semantic networks ... 31
6. Conclusions ... 34
7. References and resources .. 39
 7.1 References .. 39
 7.2 Resources .. 42
Appendix A ... 45
Appendix B ... 50
1. Introduction

Colours are a curious thing, on the one hand we are all biologically constructed in the same way with the same biological features (except those with some sort of vision deficiency), hence we should all be able to see the same thing. On the other hand, we are all a world of our own, with our own specific experiences and personalities, raised in different cultures with its specific colour spectra and with our own specific mindset that could most certainly affect the way we see and label the world. Colours are and have always been a natural part of the world we live in, as a mean of successfully communicating the dazzling sunset, the ripe juicy apple or the deepest of ocean.

In many contemporary cultures, colours convey not only a descriptive function but also important vital messages in everything from warning signs and traffic lights to national boundaries and political ideologies. These concepts and the way in which we use them are today taken for granted and something that everyone is expected to master in order to successfully convey a picture or an idea to members of the same speech community. Not only are we to correctly identify and label all colours around us but we are also supposed to grasp associations and the meanings of each colour term that we are being exposed to daily. A green car really has nothing to do with the actual colour of the vehicle, a blue person doesn’t likely refer to a smurf and a black soul hasn’t got anything to do with the visual colour of it.

Colours are also an interesting phenomenon since they rarely are being experienced in isolation, detached from something else. They are naturally almost always an attribute or a part of another object that we, in the Western world, have differentiated and thus created the concept of colour, but that doesn’t mean that one can assume that all societies around the world has done the same. Societies develop, language changes and so does words and colour terms. When looking at the history of a linguistic element, it is obvious that more and less drastic changes occur and has occurred and those can be explained by lexical semantic change. Biggam (2012) points out that colour terms are less stable which makes them an interesting object of investigation. A stage of polysemy, where a word takes on an additional meaning, is a common indicator of a lexical semantic change in the making (Durkin 2009). With colour being such a special field in linguistics, do they follow the typical patterns of semantic change?
Since colour is a field that contains both biological and linguistic features, it is a well addressed and studied field when discussing the link between thought and language. Colour semantics is thus a field that gives an opportunity to further investigate the constant question of whether or not our language shapes or constrains our thought or if they are shaped by universals of human cognition (Berlin & Kay 1969).

Etymology is a field that deals with the history of a linguistic element, one could say that etymology provides a more or less detailed picture of the history of a word. In order to get a deeper understanding of each colour term, it is hence crucial to look at its history. There are plenty of etymological data available concerning colour terms and my idea was to gather them for the sake of investigating the differences, connections and changes. I will investigate ten colour terms since it is troublesome to consider a word’s semantic development in isolation from other words in the same field, and then I aim to contrast two language families against each other (Durkin 2009).

2. Theoretical background

2.1 Colour semantics

Colour semantics concerns the part of semantics (the study of meaning) that deals with investigation of the meaning of colour (Biggam 2012). The list of research conducted in the field is long and one of the central, still unanswered, questions is whether we humans, independently of the language that we speak, categorize colours in the same way. If our concept of colour is shaped by universals of human cognition, or whether our language shapes and determines the way we express it.

Several studies has been made on this topic, some pointing towards a universalist view as for example Berlin & Kay and their famous book from 1969: Basic colour terms: their universality and evolution. There, Berlin & Kay present a theory based on basic colour terms (BCT) and their existence or non-existence in a language being directly linked to the development of its culture. They claim that there are universal basic colour terms,
more precisely eleven of them and that they are not randomly chosen. Although languages differ in the number of BCT's they lexicalize, the theory suggests that the order in which they do so, is fixed and universal. So, even though different languages might differ in the form of a colour term: green (English), grön (Swedish), verde (Spanish), they still denote the same category green1.

\[
\text{white} < \text{red} < \text{green} < \text{blue} < \text{brown} < \begin{array}{c}
\text{purple} \\
\text{pink} \\
\text{orange} \\
\text{grey}
\end{array}
\]

\textit{Figure 1: Proposed universal evolutionary sequence by Berlin & Kay (1969).}

Although Berlin & Kay’s theory very much formed the landscape of colour semantics and it indeed is an appealing theory in its neatness and simplicity, it has been criticized and challenged (Wierzbicka 2008). The linguistic relativity theory on the other side, has had a huge influence on the colour debate during the whole second half of the century and even more after the 1990s, claiming in opposition to the universalists that each language encodes their specific parts of the colour spectra in a completely arbitrary manner (Regier et al. 2010). If this turn out to be true, colour terms would instead be influenced or formed by the language and the way we speak about them. Studies that conclude that the categorization of colour terms might not be as simple as Berlin & Kay suggests, has been made by amongst other Vejdemo et al. (2014) discovering two colour categories of pink in a few of the Germanic languages in the study.

One could interpret the fact that not all languages has a word for colour, as an evidence for the phenomena being a culture-specific artefact, hence being of a complicated internal structure (Wierzbicka 2008). One suggestion would be to apply a wider perspective when investigating this matter and hence focusing on the universal concept of \textit{seeing} instead of the questionable non-universal concept of colour. Biggam (2012) suggests that there exist prehistoric colour category prototypes deriving from our need of conceptualize opposing pairs. That the earliest human beings had concepts for \textit{see}

1 I will from here on use \textsc{small caps} when referring to colour categories and concepts and \textit{italics} for lexical meanings.
and not see is very probable, which could be translated into light and dark, colour category prototypes for white and black. Further, Wierzbicka (2008) suggest that fire is the colour category prototype for red since that was a crucial part of human survival after the obvious contrast of day and night. Accordingly, only these two (black and white), or possibly three (red), categories can be considered universal according to Biggam (2012).

2.2 Lexical semantic change
Lexical semantic change concerns the change of meaning in concepts associated with a lexical item in a language through time (Urban 2015). Lexical semantics is defined as “the study of meaning as conveyed by words and phrases” by Biggam (2012 p. 9). In opposition to other fields in linguistics as for example grammar, semantic change is a field that shows less resistance to change which makes it an especially interesting field (Biggam 2012).

The theory of semantic change goes back to Aristotle's analyses of metaphors where he explains how one can displace or relocate the meaning of a word. The field was then more seen as an art form and not until the mid-eighteenth/early nineteenth century did linguistic meaning become a field of study by researchers such as Bréal and Reisig (Sjöström 2001) and from there on, the interest in semantic change became a widespread field of research. It is a field that developed as a fascination for the correct description of the historical development of meanings and words. Diachronic semantics is concerned with the classification of mechanisms of semantic change, an activity that links lexicography with historical linguistics (Geeraerts 2010). When a concept associated with a word or a meaning of an individual word changes, what we have is then a lexical semantic change (Campbell 2004).

Lexical semantics investigates the hidden mechanism and flexibility of polysemy. When looking at diachronic development of a word it is likely that one will observe that the peripheral meaning of the word may develop to become the prototypical meaning (Durkin 2009). There is a great unpredictability in semantic change which can result in much greater challenges for etymological research (Durkin 2009). Sociocultural historical facts are often relevant - therefore some say it is useless to seek
generalizations to explain semantic change, but most admit that there are some general statements about how and why meanings change, even though they aren't regular nor predictable (Campbell 2004).

Although some claim that since we can't exactly explain semantic change, we can't either predict it. Others claim that we, one day, will be able to understand how the many complicated factors interact with each other. However, many seems to agree upon the explanation that language generally, is going towards the direction of protecting its functional needs (Campbell 2004). Another typical trend in semantic change is that the direction is going from a more concrete to a more abstract sense (Campbell 2004).

The four most common changes when it comes to semantic change are the following:

- Broadening, the restrictions associated with the word are lost, the meaning hence goes from a more concrete to a more abstract sense and the meaning of the word increases, becoming less specific (Campbell 2004).

- Narrowing, the meaning goes from a more abstract to a more concrete sense hence becoming more restricted and specific in its use (Campbell 2004).

- Metaphor, when a word extends its meaning and keep a semantic similarity or connection with both the original sense and the new sense. The new sense of the word gets put in a new sphere but there is still a connection to the original sense of the word (Campbell 2004).

- Metonym, the meaning increases its senses by including closely associated senses very near to its original meaning (Campbell 2004).

Semantic loans are another type of semantic change and refers to when a word broadens its meanings as a consequence of association with a meaning of a similar word in a different language. The two terms might be historically related or similar to each other, it is therefore difficult to establish whether it is a coincidental semantic development or a semantic borrowing.

Extensive studies investigating the semantic change, synchronically and diachronically, concerning one colour term in two languages has been done concluding that the most usual semantic shift is from more concrete to more abstract (Warth-Szczyglowska
2014) and metaphor and metonymy to be important in semantic change concerning

Biggam (2012) claims that colour terms are less stable, which makes an investigation of
the semantic change particularly interesting. A semantic shift can occur when a meaning
changes from one cognitive category to another, it can cumulate to more drastic shifts
and take place over a few generations or even only happen in the languages of a few
native speakers (Biggam 2012).

2.3 Polysemy and colexification

When researching semantic change and etymology, another important and crucial factor
to mention and explain is the field of polysemy. Polysemy is defined as one single word
form associated with two or more related senses (Urban 2015). A clear example of that
is the highly polysemous English word *line* that means both to read a *line*, to wait in *line*
and to draw a *line* (Falkum, Vicente 2015). A typical pattern for semantic change hence,
is that words become polysemous (Durkin 2009).

We can trace back the beginning of polysemy and that the French semantician Michel
Bréal coined the term as far back as 1887 (Campbell 2004). The theory proposes that a
word doesn’t suddenly change meaning completely overnight, but change gradually
through polysemy (Urban 2015). A word thus, starts out with one meaning, then
acquires additional, multiple meanings and over time the original meaning is lost
(Campbell 2004). Another way of defining polysemy is the thought that a word has a
core meaning and possibly various peripheral senses and that one of those peripheral
meanings becomes more central. The core then moves away from the central sense or
altogether disappears (Campbell 2004).

From a synchronic point of view, polysemy is thus a rather difficult concept: very close
meanings may simply show different conventional contextual uses of a single core
meaning, while it is difficult to be sure that distant meanings are perceived by speakers
as having more in common than the meanings of unrelated homonyms (Durkin 2009).
Since the recognition of polysemy in natural languages is very constant it suggests that
hearers and speakers might find it easier to extend already existing words to new
functions rather than to invent new words for each sense (Falkum & Vicente 2015). The interaction between the senses of a word demands the same model for variation in linguistic change that we encounter at various points in our examination of change in word form: \(A \rightarrow A \sim B \rightarrow B \). The word first has one meaning, then it goes through an intermediate period in which it has both or more meanings 'A' and 'B', to later lose the original meaning and completely adapt the new meaning (Durkin 2009). One could then look upon polysemy as the synchronic side of lexical semantic change. As a still photograph taken in the exact moment when the first runner hands over the baton to the following runner in a relay race.

\[
A \rightarrow \left\{ \frac{A}{B} \right\} (\rightarrow B)
\]

Figure 2: Linguistic change going through a stage of polysemy (Urban 2015).

An excellent example of that is the Spanish word *alcalde* which originally was borrowed from Arabic *qāḍī*, meaning ‘judge (in Islamic law)’ (stage A), a word that later was broadened to mean ‘an official who is magistrate and mayor’ (stage A ~ B) to eventually lose its original meaning and today only meaning ‘mayor’ (stage B). It is important to understand that even though our etymological record only gives us information about a phase A and a phase B of a word, it is still highly likely to have been a phase A ~ B in between (Durkin 2009).

Colexification can be described as “the capacity, for two senses, to be lexified by the same lexeme in synchrony” and “a given language is said to colexify two functionally distinct senses if, and only if, it can associate them with the same lexical form” (François 2008 p. 170-171). I chose to use the term colexification in this thesis, since it corresponds to both polysemy (form is associated with two or more related meanings), homonymy (form is associated with two or several unrelated meanings) and semantic vagueness (List, Mayer, Terhalle & Urban 2014). As François further mentions: while focusing on the most exotic exceptions when looking at semantic universals, one tend to
disregard the many similarities of lexical polysemy’s that can be found worldwide (François 2008).

2.4 Etymology
We can roughly say that a word’s etymology is a report of its detailed story (Durkin 2009). Typically, historical investigation starts with an analysis of a single lexeme, followed by a reconstruction of a proto-form, to construct an etymology. Prehistoric unattested languages that has been reconstructed with methods of principles established through analysis and comparison of languages are in this thesis, as commonly, marked with an asterix (*) (Biggam 2012). It is hence a field that connects one chronological stage to a later one, and deals with the origin and development of a linguistic elements (Mailhammer 2015). Etymology is a field of research conducted in order to get a clear understanding and a coherent picture of the history of a single individual word. That is done through application of different methods and insights from various fields of historical linguistics (Durkin 2009). Historical colour terms are more likely to have broader coverage in comparison to modern colour terms according to Biggam (2012). A possible explanation to that could be the ‘taxonomic -abstracting type’ of reconstructing semantics, a method that reconstructs the semantics of a word by assigning the meanings from its cognates, creating a (in many cases) broad proto meaning. Semantic reconstructions are thus problematic and the possibility that a reconstructed word actually meant the reconstructed proto meaning is hard to tell (Urban 2015). The etymology of a specific word can hence provide valuable and useful information and a broader understanding of the history of a language. By tracing the history of a word’s form and sound and by looking for regularities, the meaning of the word broadens (Durkin 2009).

3. Aim & Research questions
In the light of the previous chapter, the aim of this thesis is to combine these fields and look closer at the colexification and semantic change of ten colour terms in the Sino-Tibetan and Indo-European languages. My aim is to through colexification and
diachronic change, map each colour term's semantic derivations and more specifically answer the following questions:

- Which meanings colexify with colour terms?
- Which classifications of lexical meanings colexify with colour terms?
- What type of semantic change occurs?
- In what respect do the lexical meanings and classifications differ when looking at the colexification and semantic change?
- In which respect do the results differ between the families?

4. Method & Data

4.1 Colour terms and languages
The colour terms that I investigated are the following: red, green, blue, yellow, grey, brown, purple, orange, black and white. I chose not to include the colour term pink since it is a term that, at least in Europe, didn’t exist until the 17th or 18th century, and is not relevant since I am interested in doing a historical, etymological study (Vejdemo et al. 2015). Thus, the colour terms that I have chosen correspond to the eleven BCT’s (Berlin & Kay 1969), minus pink. As Durkin (2009) mentions, it is dangerous to try to consider a word’s semantic development in isolation from other words in the same field, which is why I investigated as many colour terms as ten in many various languages and families.

The colour naming of western societies tends to be based upon hues such as red, blue and yellow. I therefore chose to exclude the accompanying words that refer to saturation, tone or brightness, for example has the meaning pale in pale red and bright in bright yellow been excluded in the networks, since it is merely a term for saturation and not hue (Biggam 2012).

The language families that I chose were the Indo-European and the Sino-Tibetan, since they are two of the largest and most important families with many speakers. With 2.6 billion speakers, the Indo-European language family is the largest language family in the word, the family has the widest distribution around the world and includes most of the
languages spoken in Europe (Thompson 2016). The Sino-Tibetan language family is also one of the largest language families in the world and consists of two main branches, the Sinitic part with the Chinese languages (or dialects) and the Tibeto-Burman branch with the remaining languages. Chinese is one of the world's largest speech communities with more than 1.1 billion speakers and is considered to be one of the most important languages in the world with regards to its cultural significance, numbers of speakers and influence on other languages. The Tibeto-Burman branch consists of hundreds of greatly differential languages from a large area amongst other in India, Vietnam, Himalayan region and China. These two branches together form a language family of tremendous range in terms of complexity and time-depth (Matisoff ed. 2016). From the two families, I selected ten languages from a range of different branches within the families, leaving me twenty languages to investigate, including its ancestor languages. Those languages were: Spanish, English, Swedish, Irish, Greek, Albanian, Russian, Latin, German, Polish, Classic Tibetan, Burmese, Bodo, Pa’o, Jingpho, Southern Qiang (Mianchi), Apatani, Newari, Mandarin Chinese and Lepcha.

Since the available information on colour terms was rather constricted for the Sino-Tibetan languages, the intention was to include languages from as many different branches as possible while still take into consideration the amount of accessible data. Unfortunately, the chosen languages were to a certain degree controlled and regulated by the two major sources available, which is why the study included both Latin and Spanish and not all branches in neither of the families. Concerning the chosen languages from the Indo-European family, the objective was still to cover as many branches as possible, but was again restricted by the limitations of the etymological resources.

4.2 Etymologies
Since I choose to do a descriptive research on colour terms in various languages, my material was already existing data from different etymological databases and lexicons. For the Sino-Tibetan colour terms, STEDTS (Sino-Tibetan Etymological Database and Thesaurus) was my main and only source since it contained a vast range of synchronic and diachronic entries that would be difficult for me to find elsewhere looking at specific languages (Matisoff ed. 2016). Many branches and languages stays rather
unexplored in the Sino-Tibetan family, and less so when it comes to colour terms, which is why my choice of languages was restricted by the etymological data available (Matisoff ed. 2016).

My main source for the Indo-European colour terms was Brill Dictionary Online and additional etymological dictionaries for the specific languages. There was a lot more available etymological information on these well-studied languages, which is why concerning some colour terms, this dataset is bigger than the Sino-Tibetan.

In the cases where I found etyma on, for instance, a colour term’s Proto-Indo-European root, its form in its old variety, but lacked the obvious connection to its synchronic term, (since in many cases that is not the interest of etymological dictionaries that focuses on the very old reconstructions), I filled that link in by myself but only if the connection itself couldn’t possibly be questioned.

I did not select a specific time range, instead I chose to investigate as far back as I could find data available for when doing my etymological research. The furthest back I found data, was from the Proto-Indo-European era around 3500 BC and the Proto-Tibeto-Burman and Proto-Chinese era around 4000 BC (Matisoff ed. 2016).

4.3 Semantic classifications of lexical meaning
Once my dataset was completed, I needed a way to group my lexical meanings in order to make my data more manageable and my analysis of the results simpler. The classifications are merely a way of simplifying the comparison by providing abstract groups, and is not to be seen as a way of diminishing the actual lexical meanings.

I therefor used The Loanword Typology (LWT) meaning list (Haspelmath & Tadmor 2009) which is based on the Intercontinental Dictionary Series List (Kay & Bernard eds. 2015) which in turn is an adaptation of Buck’s list from Dictionary of Selected Synonyms in the Principal Indo-European Languages from 1949. The list consists of 24 semantic fields of which I, based on the selection of lexical meanings in my data, used the following eight classifications: The Physical World, The Body, Sense Perception, Food and Drink, Animals, Basic Actions and Technology, Agriculture and Vegetation and
Colour. The eighth classification Colour, I added myself to differentiate between colour terms and other sense perceptions.

These categories are fairly wide and the classification of the lexical meanings are not always obvious and clear. A word could for example possibly go under both Food and Drink and Agriculture and Vegetation. Nevertheless, these classifications are useful for a first orientation and should be seen as a rough way of collecting the lexical meanings to be able to get a comprehensive overview. From here on, I will use the term ‘semantic fields’ or ‘semantic classifications’ when referring to these groupings, in order to differentiate them from the colour categories.

4.4 Semantic networks

The fascination for the human semantic memory and how it is able to store and retrieve facts about thousands of concepts, is the thought behind the dictionary Wordnet. It is a huge dictionary that organizes words into semantic networks in order to represent the lexicalization patterns of languages and show the conceptual density of the vocabulary. The dictionary maps the lexicon to concepts to disambiguate word sense by representing the various relations such as synonymy, meronymy etc. It enables discovery of alternative expressions in a language and expansion of words to extract semantically close or related words (Fellbaum 2012).

When investigating colour terms one can’t help but be fascinated by the vast amount of associations and connections of concepts that they have, which is why I chose to represent these complicated lexicalization patterns visually. Semantic networks can more clearly show the semantic relations and expand the word into further understanding of it.

To get a more comprehensive, visual representation of my data, I created four semantic networks that I completed with Google Fusion Tables. The idea came from CLICS (Database of Cross-Linguistic Colexifications) that uses visual networks in order to show areal patterns of colexification. A list with the number of semantic links to a certain concept is available together with the word expressing the specific concept (List, Mayer, Terhalle & Urban 2014).
4.5 Data

My tool for compiling my data was the DiACL (Diachronic Database of Comparative Linguistics) (Carling ed. 2017) and its subsection ‘Lexicology’ that is a tool for creating comparative lexical cognacy databases, joining information drawn from comparative methods with meeting the requirements of phylogenetic & lexicostatistical analysis. The aim of the 'Lexicology' section is to create datasets that combine lexicography and comparative linguistics, hence adding both dictionary information about the lexical meaning and etymological information. The subsection is first organized in languages that are arranged geographically with a focused macro-area, the next level is ‘Word Lists’ that can be defined as structures to organize lexical meanings in functional hierarchies. Under that level is ‘Word List Item’, where all the lexical meanings are presented together with a map of all lexemes in the macro-area for the chosen lexical meaning. The final step is the level ‘Lexeme’ that both attested and reconstructed languages can be given. The ‘Lexeme’ is the focus of the section ‘Lexicology’ and include information about the lexical meaning such as: transcription, transliteration, IPA, grammatical data, meaning field (synchronic polysemy accounted for here), note and source (literary/informants). ‘The Etymology Controller Tool’ enables any lexeme in the database to be linked to any other lexeme either as ‘Descendant Lexeme’ or ‘Ancestor Lexeme’. From there, the internal relations of an etymology are represented as boxes (lexemes) and arrows (relations) as shown in figures 2 and 3 below (Carling ed. 2017).
The first step of my collection of data was to consult etymological dictionaries, in order to choose which of the Indo-European languages that I could find data on my chosen colour terms. Most of the Sino-Tibetan languages were not in the database which meant that I had to, first of all, add them into the database using Glottolog (Hammarström, Forkel, Haspelmath, Bank (ed.) 2017) as reference. Once I found my dictionaries, I started adding the terms with all the information available and first when I had entered all my terms in the database, I linked the ancestral terms with the descendant terms and left the synchronic and diachronic terms without etyma as they were. My focus in this research was how the colour term has developed semantically and hence I wanted to look at the generic meaning and trace it back, or the contrary. My main concern was to get as much data on each colour term as possible and less about getting languages with the highest possible geographical range. In the colexification section of my investigation, I excluded the reconstructed proto-forms.

My dataset is created under Lexicology → ‘Word List Colour terms – Eurasia’ where the ten colour terms has its own ‘Word List Item’ section named ‘colour term black’, ‘colour term blue’ etc. The languages represented are the 20 mentioned in section 4.1 plus its ancestral languages, including the reconstructed. Not all the lexemes had any etymological information, but they are still kept in the dataset, which is why the number is so high. An overview of the dataset is represented in the following table (table 1) and for access to the entire set, visit: https://diacl.ht.lu.se/WordListCategory/Details/11025

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Families</td>
<td>2</td>
</tr>
<tr>
<td>Languages represented from the Sino-Tibetan family</td>
<td>22</td>
</tr>
<tr>
<td>Languages represented from the Indo-European family</td>
<td>34</td>
</tr>
<tr>
<td>Colour terms</td>
<td>10</td>
</tr>
<tr>
<td>Lexemes in total</td>
<td>874</td>
</tr>
</tbody>
</table>
4.6 Method Discussion

By investigating languages from two families, a cross-linguistic perspective was added and made an analysis including the debate universalism vs. relativism possible. The thought behind including the Sino-Tibetan language family was mostly due to the fact that there was an easy manageable and reliable database available that included most of my colour terms. These otherwise quite unexplored languages could hence be a part of my time-limited research.

Concerning the colour term orange, I had some issues in both obtaining information and find out if the term I collected was a reference to the noun (fruit) or in fact the colour term. In the cases where it specifically was announced that it was exclusively a noun, I choose to exclude it from my dataset and in the case where the meaning included colour, I choose to make it a part of my research. My second issue was the colour term purple, that in many languages didn’t have any etymological information, I also included the entries lilac and violet, here I applied the same model of consistently excluding the terms stating the meaning as a flower or noun and including the ones mentioning colour in the meaning. Still, I chose to include both terms in my research even though I realized quite quickly that the information available was restricted and in many cases unreliable.

Concerning all my colour terms, I stumbled on the issue of how to interpret the various lexical meanings, since grammatical and semantic information not always was available. While the lexical meaning bark of tree is not open for interpretation, bay or ass are more ambiguous and open for comprehension. In these cases, I simple proceed with the most likely interpretation, given context.

When analyzing the etymological dictionaries, I tried to be as consistent as possible and exclude any terms that expressed any doubtfulness regarding the etymological history. The same policy of consistency was practiced when extracting the etymological data, but the resources that I used were overall reliable references which simplified my research greatly.
5. Results and analysis

5.1 Results: colour by colour

RED

RED was colexified fifteen times (see Appendix A) with twelve lexical meanings. Three of the times with fiery and the rest with lexical meanings from various semantic fields as Sense Perception: glowing, murderous, deadly; Colour: purple, ruddle, pink, tawny; The Body: blood, red-haired; The Physical Word: vermilion and Animals: monkey.

When looking at the diachronic derivations, RED had most connections to the semantic fields Sense Perception and lexical entries as for example: dark, hot, glowing, Colour and lexical meanings such as: brown, yellow, black and purple and The Body and lexical entries as for example: blood, wound and ashamed. Added semantic fields in the diachronic change were Agriculture and Vegetation, Basic actions and Vegetation and Food and Drink. Lexical meanings that the two families had in common when looking at both the synchronic and the diachronic perspective were: purple, vermilion (cinnabar), dark and blood.

The type of semantic change that mostly occurred was narrowing (90%), as shown in the example below:

*s-kyaŋ red, blushing (Proto-Tibeto-Burman) → cheng red (Jingpho)
*dherg- dark (Proto-Indo-European) → *dergo- red, blood-red (Proto-Celtic) → derg red (Old Irish)

The most common change in the Sino-Tibetan languages, was from abstract to concrete (65%), as shown in the example below:

*lɯŋ red (Proto-Tani) → ma-laŋ rust (Apatani)

In the Indo-European languages, there was almost as much change from concrete to abstract (46%) as abstract to concrete (54%), as shown in the examples below:

*črm’n red (Proto-Slavic) → čeremnój red-haired, ginger (Russian)
*kwr-m-i- worm, maggot (Proto-Indo-European) → czerwony red (Polish)
Table 2: RED. Table of the diachronic connections (light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes, meanings that occur in both families)

<table>
<thead>
<tr>
<th>Animals</th>
<th>Sense</th>
<th>Colour</th>
<th>Body</th>
<th>Agriculture</th>
<th>Basic Actions</th>
<th>Food and Drink</th>
<th>Physical World</th>
</tr>
</thead>
<tbody>
<tr>
<td>worm</td>
<td>murderous</td>
<td>tawny</td>
<td>red-haired</td>
<td>earth</td>
<td>hit</td>
<td>ginger</td>
<td>vermilion (cinnabar)</td>
</tr>
<tr>
<td>maggot</td>
<td>deadly</td>
<td>brown</td>
<td>colour of bruises</td>
<td>soil</td>
<td>lead</td>
<td>berry</td>
<td>gold</td>
</tr>
<tr>
<td>rat</td>
<td>dark</td>
<td>yellow</td>
<td>wound</td>
<td></td>
<td></td>
<td></td>
<td>rust</td>
</tr>
<tr>
<td>monkey</td>
<td>glowing</td>
<td>pink</td>
<td>blood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fiery</td>
<td>purple</td>
<td>ashamed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>black</td>
<td>blush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GREEN

GREEN was colexified fourteen times (see Appendix A) with eight different lexical meanings. Six of them occurred with blue, which wasn’t a surprise since GRUE is a well-known macro-category referring to both GREEN and BLUE (Biggam 2012). The rest colexified with meanings in the semantic fields Agriculture and Vegetation: unripe, growing well and leafy, Sense Perception: dark, light, Colour: yellow, blue and Food and Drink: vegetable.

In the diachronic derivations, GREEN had most connections to the semantic fields Sense Perception and lexical meanings as: bright, to glow, fair, Agriculture and Vegetation and lexical meanings such as grass, grow, blossoming, Colour and meanings like: blue, grey, white, yellow and The Body and lexical meanings such as breath, born and bile. Added semantic fields in the diachronic derivations were The Body, The Physical World, Basic Actions and Technology and Animals. Words that the two families had in common when looking at the synchronic and the diachronic perspective were: yellow, blue and grow.

The semantic change that mostly occurred was narrowing (88%), as in the example below:

*s-ɾiŋ ≠ *s-t(y)aŋ green, live, alive, raw, give birth (Proto-Tibeto-Burman) → *Hriŋ, hriŋ-ll green, alive, fresh (Proto-Kuki-Chin)
glas green, blue (Old Irish) → glas green (Irish)
The semantic change went from abstract to more concrete (91%) in the Sino-Tibetan languages, as the following example:

\[*s*-\text{riŋ} \neq *s*-\text{r(y)aŋ} \text{green, live, alive, raw, give birth} (\text{Proto-Tibeto-Burman}) \rightarrow *\text{hriŋ} \text{alive} (\text{Proto-Tangkhulic}) \rightarrow \text{haŋ-sur breath, life (Bodo)}

In the Indo-European languages, there was exactly as much change from abstract to concrete as the reverse, as shown in the example below:

\[*\text{ghroh1-ni-} (\text{Proto-Indo-European}) \rightarrow *\text{gröni- green} (\text{Proto-Germanic}) \rightarrow *\text{grōan to grow} (\text{Proto-Germanic})

\[*\text{bhloh1/3-ro-, *bhleh3-ro- blossoming} (\text{Proto-Indo-European}) \rightarrow \text{blertë 'green'} (\text{Albanian})

Table 3: \text{GREEN. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes, meanings that occurs in both families)}

<table>
<thead>
<tr>
<th>Animals</th>
<th>Sense Perception</th>
<th>Colour</th>
<th>The Body</th>
<th>Agriculture and Veg.</th>
<th>Basic Actions</th>
<th>Food and Drink</th>
<th>The Physical World</th>
</tr>
</thead>
<tbody>
<tr>
<td>bear</td>
<td>to gleam</td>
<td>blue-green</td>
<td>bile</td>
<td>blossoming</td>
<td>shoot</td>
<td>leek</td>
<td>lock</td>
</tr>
<tr>
<td></td>
<td>to glimmer</td>
<td>grey</td>
<td>born</td>
<td>grow</td>
<td>give birth</td>
<td>uncooked</td>
<td>gold</td>
</tr>
<tr>
<td></td>
<td>to glow</td>
<td>blue</td>
<td>live</td>
<td>sprout</td>
<td>raw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leek-colour</td>
<td>yellow</td>
<td>breath</td>
<td>new twigs</td>
<td>raw meat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shining</td>
<td>white</td>
<td>life</td>
<td>grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bright</td>
<td></td>
<td>white</td>
<td>life</td>
<td>unripe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fresh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>alive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\text{BLUE}

BLUE \text{was colexified twenty-three times (see Appendix A) with ten different lexical meanings. Six of the times with the colour term green, again not such a surprise given the well-known close connection between the two categories and the macro-category GRUE (Biggam 2012). Three of the times BLUE colexified with dark and the rest of the}
colexifications occurred with the semantic fields Colour: green, grey, black, lilac, Sense Perception: dark, pale, livid, Agriculture and Vegetation: violet and The Body: bloodshot.

When looking at the diachronic derivations, blue had connections to the semantic fields Colour and lexical meanings such as: yellow, purple, white, Sense Perception and lexical meanings like: envious, fair, whole, Agriculture and Vegetation and meanings as: heaven, wind, sky, The Body and lexical meanings as for example: grey-haired, bloodshot, Food and Drink and lexical meanings like: leek, mouldy, The Physical World and the meaning lapis lazuli and Animals and the lexical meaning pigeon. Added semantic fields represented in the diachronic change were: The Physical World, The Body, Animals and Food and Drink. Words that the two families had in common when looking at both the synchronic and the diachronic perspective were: green, grey, dark, yellow and black.

The only semantic change that occurred in the Sino-Tibetan languages was narrowing, as in the example below:

*s-ŋow blue, white, green yellow (Proto-Tibeto-Burman) → *sŋon po blue (Tibetan)

The semantic change that occurred were equally divided between narrowing and broadening in the Indo-European family, as the examples below:

blāo blue, dark, grey (Old High German) → blau blue (German)
*blēwa- blue (Proto-Germanic) → blár blue, livid, black (Old Norse)

The changes were going mostly from concrete to abstract (73%), as shown in the example below:

*golǫbь pigeon (Old Church Slavonic) → goluboj (light) blue (Russian)
caelum sky, heaven, vault of heaven (Latin) → caerulus blue (Latin)

<table>
<thead>
<tr>
<th>Animals</th>
<th>Sense Perception</th>
<th>Colour</th>
<th>The Body</th>
<th>Agriculture and Veg.</th>
<th>Food and Drink</th>
<th>The Physical World</th>
</tr>
</thead>
<tbody>
<tr>
<td>pigeon</td>
<td>discoloured</td>
<td>dun</td>
<td>grey-haired</td>
<td>violet</td>
<td>leek</td>
<td>lapis lazuli</td>
</tr>
<tr>
<td></td>
<td>whole</td>
<td>purple</td>
<td>bloodshot</td>
<td>heaven</td>
<td>mouldy</td>
<td></td>
</tr>
</tbody>
</table>
of a dull colour | turquoise | earthenware
---|---|---
envious | lilac | wind
colour | grey | calendula oficinalis (flower)
livid | green | Sky
dark | yellow |
fair | black |
white | | |

YELLOW

YELLOW was colexified ten times (see Appendix A) with nine different lexical meanings. Two of them occurred with gold and the rest with lexical meanings from the semantic fields The Physical World: white spotted, Sense Perception: faded, pale, bright colour of health, Agriculture and Vegetation: dry as leaf, fallow and the Body: colour of bruises and blonde.

When looking at the diachronic derivations, YELLOW was connected to Sense Perception and lexical meanings like shine, pale, grateful, Colour and meanings like blue, green, red, The Physical World and lexical meanings as: dirty, lamp, gold, Food and Drink and lexical entries like honey, spice, turmeric, Agriculture and Vegetation and meanings like: amber, citrus tree and Basic actions and Technology and the meaning a float. There were three semantic fields added in the diachronic perspective: Basic actions and Technology, Colour and Food and Drink. Words that the two families had in common when looking at both the synchronic and the diachronic perspective were: pale, white and green.

The only semantic change that occurred in the Sino-Tibetan languages was narrowing, as in the example below:

*b/s-wa white, bright, yellow (Proto-Tibeto-Burman) → ə-wâŋ yellow (Burmese)
The semantic change that mostly occurred in the Indo-European languages was broadening (70%), as in the example below:

*flāwo- yellow (Proto-Italic) → flāvus yellow, blonde (Latin)

The changes were going mostly from abstract to more concrete (80%) in the Sino-Tibetan languages as in the example below:

*s-mar yellow, gold, butter, oil (Proto-Tibeto-Burman) → bzu mar oil light/lamp (Tibetan)

There was almost as many changes from concrete to abstract (46%) as abstract to concrete (54%) in the Indo-European languages, as shown in the example below:

*falwa- pale (Proto-Germanic) → falo faded, fallow, yellow (Old High German)
Žēlč’ bile (Russian) → žēltj yellow (Russian)

Table 5: YELLOW. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes meanings that occurs in both families)
GREY

GREY was colexified sixteen times (see Appendix A) with thirteen different lexical meanings. Those were spread over the semantic fields Sense Perception: dull, dark, pale, envious, faded, exhausted, Colour: green, black, tawny; The Body: grey-haired, grey-eyed, The Physical World: poor and Food and Drink: mouldy.

Of the diachronic derivations, GREY was connected to mostly Sense Perception and lexical meanings like pale, dull and envious, Colour and lexical meanings as blue, white, black, The Body and lexical meanings like hoary, ass, Food and Drink and the meaning mouldy, Agriculture and Vegetation and the lexical meaning fallow and The Physical World and the meaning poor. The added semantic field in the diachronic derivations was only Agriculture and Vegetation. Words that the two families had in common when looking at both the synchronic and the diachronic perspective were: black, pale and faded.

The most occurring change was narrowing (75%), as shown in the examples below:

liath grey (Old Irish) → liath grey, grey-haired, mouldy (Irish)
*haswa- grey (Proto-Germanic) → heswe pale, dull (Middle High German)

The changes were mostly going from abstract to concrete (75%), as shown in the example below:

gris grey (Old High German) → greis aged (German)

Table 6: GREY. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes meanings that occurs in both families)
BROWN

BROWN was colexified eleven times (see Appendix A) with eight different lexical meanings and three of them was with dark. Only one colexification and no diachronic derivations was gathered from my study from the Sino-Tibetan languages, and that was with red. The rest was with meanings from the semantic fields Sense Perception: dusky, swarthy, sandy, dark, Agriculture and Vegetation: chestnut, Colour: red-yellow and The Physical World: golden.

When looking at the diachronic derivations, BROWN was connected to the semantic fields Sense Perception and lexical meanings as: pale, sandy, dark, Agriculture and Vegetation and meanings like: amber, chestnut, The Physical World and lexical meanings as: dirty, soot, Food and Drink and the lexical meanings: cinnamon, honey, Animals and the meanings: beaver, elk, Colour and the meanings red, red-yellow and Basic actions and Technology and the lexical meaning cut. Three semantic fields were added in the diachronic change: Basic actions and Technology, Food and Drink and Animals. A word that the two families had in common when looking at the diachronic perspective was: red.

The semantic change that occurred most was broadening (72%), as seen in the examples below:
korjca cinnamon (Russian) → koričnevýj brown (Russian)
*dusno- dark, brown (Proto-Celtic) → donn brown (Old Irish)

The changes were mostly going from abstract to more concrete (73%) as in the example below:

*bhe-bhr-ú-,*bhe-bhr-o- (or *bhi-bhr-o-) brown; brown animal, beaver (Proto-Indo-European) → *fifro- / fefro- beaver (Proto-Italic)

Table 7: BROWN. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes meanings that occurs in both families)

<table>
<thead>
<tr>
<th>Animals</th>
<th>Sense Perception</th>
<th>Colour</th>
<th>Agriculture and Veg.</th>
<th>Food and Drink</th>
<th>The Physical World</th>
<th>Basic Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>beaver</td>
<td>smoky</td>
<td>red-yellow</td>
<td>chestnut</td>
<td>honey</td>
<td>dirty</td>
<td>cut</td>
</tr>
<tr>
<td>elk</td>
<td>pale</td>
<td>red</td>
<td>amber</td>
<td>cinnamon</td>
<td>soot</td>
<td></td>
</tr>
<tr>
<td>dusky</td>
<td></td>
<td>bark of tree</td>
<td></td>
<td></td>
<td>golden</td>
<td></td>
</tr>
<tr>
<td>swarthy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sandy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPLE

PURPLE was colexified six times (see Appendix A) with four different lexical meanings, two of them with blue and two with red. Only two colexifications with red was gathered from the Sino-Tibetan languages and no diachronic derivations. The rest of the colexifications occurred with lexical meanings in the semantic fields The Physical World: purple dye and The Body: blood.

When looking at the diachronic derivations, PURPLE was connected to the semantic fields The Physical World and the lexical meanings: indigo, purple dye, Agriculture and Vegetation and the meanings: lilac, violet, Colour and the lexical meanings: blue, grey, The Body and the meanings: grey-haired, blood and Food and Drink and the lexical meaning mouldy. Extended semantic fields represented in the diachronic derivations
were: Agriculture and Vegetation and Food and Drink. The two language families did not have any lexical meanings that co-occurred.

It occurred as much broadening as narrowing, as shown in the examples below:

- lila *lilac* (colour and flower) (Spanish) → lila *purple* (Swedish)
- ιόν *violet* (flower) (Classical Greek) → ιός *violet-colored, deep blue* (Classical Greek)

Table 8: PURPLE. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes meanings that occurs in both families)

<table>
<thead>
<tr>
<th>Colour</th>
<th>The Body</th>
<th>Food and Drink</th>
<th>Agriculture and Veg</th>
<th>The Physical World</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>grey-haired</td>
<td>mouldy</td>
<td>lilac (flower)</td>
<td>indigo</td>
</tr>
<tr>
<td>grey</td>
<td>blood</td>
<td></td>
<td>violet</td>
<td>purple dye</td>
</tr>
<tr>
<td>red</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORANGE

ORANGE only had one diachronic derivation in the Indo-European languages, to the lexical meaning *gold* in the semantic classification The Physical World.

BLACK

BLACK was colexified thirteen times (see Appendix A) with fourteen different lexical meanings. Four of them was with *dark* and the rest were with lexical meanings in the semantic fields: Sense Perception: *gloomy, livid, lamentable*, Colour: *grey, white, blue, dun*, The Physical World: *ink, dirty, unclean* and Animals: *monkey, crow and raven*.

Diachronically, BLACK had most connections to the semantic fields Sense Perceptions and lexical meanings as: *shine, blind, deep*, Colour and meanings like: *blue, brown, white*, The Physical World and lexical meanings such as: *fireplace, gold, ink*, Animals and meanings like: *raven, monkey, cattle* and Basic actions and Technology and the lexical meaning *burn*. There was only one added field in the diachronic derivations, and that is Basic actions and Technology. Words that the two families had in common when looking at
both the synchronic and the diachronic perspective was: dirty, grey, dark, white, raven and ink.

The semantic change that occurred mostly was narrowing (84%), as in the example below:

*tsya(k/ŋ) red, dark-coloured, black (Proto-Tibeto-Burman) → chang black (Jingpho)
 niger black, dark (Latin) → negro black (Spanish)

The changes were mostly going from abstract to concrete (89%) in the Sino-Tibetan languages, as in the example below:

*s-nak black (Proto-Tibeto-Burman) → nà-ŋá crow (Southern Qiang)

There was exactly as much abstract to concrete as the reverse in the Indo-European languages, as shown in the example below:

*blanka- colourless (Proto-Germanic) → blakkr black, dun-coloured (Old Norse)
 *h2eh1-t(-)r- fireplace (Proto-Indo-European) → ātro- black (Proto-Italic)

Table 9: BLACK. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes meanings that occurs in both families)

<table>
<thead>
<tr>
<th>Animals</th>
<th>Sense Perception</th>
<th>Colour</th>
<th>Basic Actions</th>
<th>The Physical World</th>
</tr>
</thead>
<tbody>
<tr>
<td>raven</td>
<td>blind</td>
<td>dun</td>
<td>burn</td>
<td>fireplace</td>
</tr>
<tr>
<td>cattle</td>
<td>shine</td>
<td>blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>monkey</td>
<td>lamentable</td>
<td>brown</td>
<td></td>
<td>unclean</td>
</tr>
<tr>
<td>crow</td>
<td>livid</td>
<td>white</td>
<td></td>
<td>Ink</td>
</tr>
<tr>
<td></td>
<td>dusky</td>
<td>grey</td>
<td></td>
<td>gold</td>
</tr>
<tr>
<td></td>
<td>colourless</td>
<td>red</td>
<td></td>
<td>dirty</td>
</tr>
<tr>
<td>dark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deep</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gloomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WHITE

WHITE was colexified twenty-three times (see Appendix A) with eleven different lexical meanings. Four of the times with *bright* and the rest with lexical meanings in the semantic fields Sense Perception: *clear, airy, pale, brilliant, gleaming, shining, fair*, Basic Actions and Technology: *become, quick, agile*, The Physical World: *money, silver*, Colour: *black* and The Body: *fair-haired*.

When looking at the diachronic derivations, **WHITE** was connected to the semantic fields Sense Perception and lexical meanings like *fair, shine, light*; Colour and lexical meanings like *blue, green* and *yellow*, Basic actions and Technology and meanings as: *flay, quick, burn*, The Body and lexical meanings like: *skin, health*, The Physical World and the meanings: *silver, money* and Animals and the meanings *goat and swan*. Only one semantic field was added in the diachronic perspective and that was Animals. Words that the two families had in common when looking at both the synchronic and the diachronic perspective were: *clear, pale, shine, brilliant, fair, bright, silver, yellow* and *green*.

The semantic change that mostly occurred was narrowing (90%), as in the example below:

*plu³ white, silver, money (Proto-Lolo-Burmese) → phlu white (Burmese)
bhereg to shine, white (Proto-Indo-European) → i bardhë white (Albanian)

The changes mostly went from abstract to more concrete (71%) in the Sino-Tibetan languages, as in the example below:

b/s-wa white, bright, yellow (Proto-Tibeto-Burman) → hu-to light (Apatani)

The changes were mostly going from more concrete to abstract (69%) in the Indo-European languages, as in the example below:

blank- to shine (Proto-Germanic) → blancus white (Vulgar Latin)
Table 10: WHITE. Table of the diachronic connections (the light blue boxes represents the Indo-European languages, the dark blue boxes the Sino-Tibetan languages and the medium blue boxes meanings that occurs in both families)

<table>
<thead>
<tr>
<th>Animals</th>
<th>Sense Perception</th>
<th>Colour</th>
<th>The Body</th>
<th>Basic Actions</th>
<th>The Physical World</th>
</tr>
</thead>
<tbody>
<tr>
<td>goat</td>
<td>colourless</td>
<td>lilac</td>
<td>skin</td>
<td>show</td>
<td>silver</td>
</tr>
<tr>
<td>swan</td>
<td>gleaming</td>
<td>yellow</td>
<td>faired-haired</td>
<td>quick</td>
<td>money</td>
</tr>
<tr>
<td></td>
<td>appear</td>
<td>green</td>
<td>health</td>
<td>agile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clear</td>
<td>black</td>
<td>flay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wan</td>
<td>blue</td>
<td></td>
<td>burn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>airy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>degree of cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bright</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>brilliant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pale</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 Semantic networks

The following networks were based on my dataset (see section 2.5) and was manually extracted into an Excel-file and then gathered in Google Fusion Tables. The networks are meant to visualize the same information as described in previous section 5.1. The first two represent the colexifications in the respective families and the last two represent the diachronic derivations (including the colexifications) in the respective families. The largest dots are the ones with the most connections and the most central terms in the networks are the ones with the most connections to the lexical meanings represented in the network.
Figure 5: Synchronic colexifications in the Sino-Tibetan languages

Figure 6: Synchronic colexifications in the Indo-European languages.
Figure 7: Diachronic connections in the Sino-Tibetan languages.

Figure 8: Diachronic connection in the Indo-European languages.
6. Conclusions
I will here present a summary of my results by going back to my initial research questions and end this chapter with some suggestions for further research in the field.

Which lexical meanings colexify with colour terms?
The colour terms that I investigated showed a huge range of colexified meanings. There was an overrepresentation of other colour terms, adjectives and nouns. Descriptive meanings such as *leafy, dirty* and *glowing* were recurrent, as well as words connected with the body and its physical appearance as for example *blood, blonde* and *grey-haired*. Less occurring colexifications, but still present, were words of physical objects as for example *ink, gold* and *chestnut* and words of animals such as *raven* and *monkey*. *RED* had words connected with danger such as *murderous, deadly* and *blood*. *GREEN* colexified with words connected to nature as *unripe, leafy* and *vegetable*. *BLUE* colexified with different colour terms as *green*, which was to be expected since *GRUE* is, as already mentioned, a well-known macro-category in colour semantics (Biggam 2012). *YELLOW* colexified with lexical meanings like *dry, pale, faded* and words with more positive connotations like *bright colour of health* and *gold*. *GREY* was colexified with meanings of the more negative sense such as *dull, poor* and *exhausted* and interestingly also with both *dark* and *pale*. *BLACK* colexified with lexical meanings such as *unclean, dark* and *dirty*. *WHITE* colexified with lexical meanings connected to light as: *bright, brilliant, gleaming* and *shining* and objects as *money* and *silver*. *BROWN* mostly colexified with descriptive lexical meanings as *golden, swarthy, dark* and *PURPLE* colexified with physical objects such as *blood* and *purple dye*.

Which classifications of lexical meanings colexify with colour terms?
There was an extremely wide spread of derived concepts in most of the colour terms investigated with the exceptions of *brown, purple* and *orange*. These colour terms all have in common being in the last (and second last) stage in the evolutionary sequence created by Berlin & Kay (1969) (see figure 1). One of the overall trends was that all the colour terms colexified with the semantic field Sense perception. The semantic field Colour was also frequent, perhaps because they are both fairly vague groupings.
RED, GREY, PURPLE, BLACK colexified overall with lexical meanings in the semantic field The Body, The Physical World, Colours, Sense Perception and Animals. GREEN had, not so surprisingly, an overrepresentation of colexifications with lexical meanings in the Agriculture and vegetation field and BLUE, YELLOW, BROWN showed similar patterns with colexifications with lexical meanings in the classification Agriculture and vegetation, Sense perception, Colours and Food and Drink. WHITE colexified with lexical meanings in the field Sense perception, The Physical World, Basic Actions and Technology and The Body. The majority of the colour terms had a range of colexified meanings from four different semantic fields. RED, WHITE and GREY had the widest range of colexified meanings with lexical meanings from five different semantic field, while PURPLE had the least range with only three semantic fields represented.

What type of semantic change occurs?
Without doubt the most common type of semantic change was narrowing that occurred in 76% of the cases, with exception from BROWN that had more broadening and PURPLE that had half broadening and half narrowing. The colour BLUE also had half broadening and half narrowing in the Indo-European languages and the colour YELLOW had more broadening than narrowing in the Indo-European languages. Many of the reconstructed colour terms were, as Biggam (2012) stated, broader than the modern terms, which could be an explanation to narrowing being the most common change occurring.

The most common way of semantic change was the direction from more abstract to more concrete meanings which occurred in 61% of the cases, except for the colour BLUE in both language families, GREEN in the Sino-Tibetan languages and WHITE in the Indo-European languages that had more changes from more concrete to abstract. There was a few colours in the Indo-European languages that had as many changes from abstract to concrete as the reverse, those were: RED, GREEN, YELLOW and BLACK. This was not entirely in line with previous studies that stated the most common pattern in semantic change in colour terms (and generally) to be from concrete to abstract (Campbell 2004, Warth-Szczyglowska 2014). This could perhaps be due to the fact that my investigation wasn’t as profound as the previous studies already mentioned and that my investigation included many more colour terms. Perhaps if my dataset would contain more data, from particular the Sino-Tibetan family, the results would be different.
In what respect do the lexical meanings and classifications differ when looking at the colexification and semantic change?

Clearly the list of lexical meanings expanded when including the derived senses as well as the colexified. A clear pattern showed that all colour terms had derived lexical meanings within the semantic field already represented in the colexification. Additional lexical meanings from other semantic fields were added in the diachronic perspective concerning all colour terms. GREY and BLACK added the least with only one new additional category while GREEN added the most with four new fields.

In which respect do the results differ between the families?

The semantic networks presented in section 5.2 showed the first obvious observation: that all the colour terms were connected when looking at the diachronic perspective. Most connections, as we can see from the diachronic semantic networks, was to BLACK, WHITE and GREY in both language families since they shared the most diachronic and synchronic co-occurrences of lexical meanings. BLACK and WHITE is the first step in the suggested sequence of lexified colour terms by Berlin & Key (1969) (see figure 1). This supports the theory that at least BLACK and WHITE might be universal or at least very central in most languages as also suggested by Wierzbicka (Biggam 2012).

Reoccurring semantic fields represented in the both families were Sense perception and Colour. The Indo-European languages had a lot of words connected to danger in the category RED such as: wound, hit and deadly, while the Sino-Tibetan languages instead had words like ashamed and blush. GREEN had more meanings connected with light as for example bright and glow in the Indo-European languages, than the Sino-Tibetan that had more meanings derived connected to life such as breath, life and born. I found much more data for the Indo-European languages concerning both the categories BROWN and BLUE, though the Indo-European had more abstract lexical meanings as livid, whole and meanings connected to nature like heaven, wind and sky. I found a lot more concepts connected with food and objects in the colour YELLOW in the Sino-Tibetan languages. GREY had more meanings with derogative denotations such as dull, pale and poor in the Sino-Tibetan languages than in the Indo-European, that had more words connected to the body such as ass, grey-haired and grey-eyed. Some of these artefacts might be a
consequence of the small amount of data that I had and might only occur in the chosen languages. Nonetheless, the differences and variations are many and extensive.

Of the total 89 lexical meanings colexified with the colour terms in the study, only 28 of them co-occurred in both language families. WHITE had eight co-occurring lexical meanings, BLACK and BLUE five, while PURPLE did not have any. The fact that both BLACK and WHITE are amongst the colour terms that had the most co-occurring colexifications, is another argument for them being of a more universal nature. An interesting fact was that WHITE was colexified with BLACK in the Sino-Tibetan language family and not in the Indo-European, one possible explanation could be that they are both achromatic, namely colours without hue.

There was some difference between the families regarding the type of semantic change that occurred. Narrowing was clearly the most common, while there was a tendency for the Indo-European languages to have more broadening than the Sino-Tibetan languages. There was only a small difference concerning the tendency of the direction of the change, most of the times it was going from more abstract to more concrete. Concerning some colours, the Indo-European languages had a tendency to have more changes going from concrete to abstract. The fact that the results was more varied in the Indo-European languages, could be due to the fact that I had more data.

When looking at the results at a macro level, there seemed to be a clear pattern between the families when it comes to the semantic fields colexified and derived from the colour terms. The similar expansion of semantic fields in these genetically unrelated language families, in particular concerning the colour terms BLACK and WHITE, showed universal tendencies.

However, upon closer examination, there was clear cross-cultural differences in the lexical meanings, opening up for a more relativistic view. BLACK, for example had the semantic field Animals represented in both language families, but the lexical meaning in the Indo-European was raven and in the Sino-Tibetan monkey. There was very little co-occurrence and overlapping when it comes to lexical meanings colexified and diachronic connections even though it, at a categorical level, seemed to be a lot of conformity. There
was, nonetheless, too many exceptions and variation for this study to be supporting a universal theory in my view. The study is far too narrow and limited in data to make any clear conclusions in the debate between relativism and universalism, even though the results in my opinion points towards a relativistic theory. To sum up, the results showed that the colour terms of the two families have employed somewhat similar structures for semantic change along with the semantic domain that it extends to, but when looking closer at the exact lexical meaning, they differ greatly.

For further studies, one could, extract more information from the dataset, outside of the semantic field, such as analyzing for example the derivational morphology and iconicity. Adding more languages, preferable families without any historical or geographic contact, such as for example a South American language, would also be a great next step in the research. To widen the study by adding more colour terms including other non BCT’s and more data, would be a further step in the study as well.
7. References and resources

7.1 References

Berlin, Brent & Kay, Paul (1969) *Basic Colour Terms - Their Universality and Evolution*. Berkeley: California University Press

Hamilton, Rachael Louise (2016) *Colour in English - from metonymy to metaphor* Glasgow: University of Glasgow Retrieved 2017-02-08 from:
http://theses.gla.ac.uk/7353/1/2016HamiltonPhD.pdf

Thompson, Irene (2013) *Sino-Tibetan Language Family.* Retrieved 2016-11-08 from:
http://aboutworldlanguages.com/sino-tibetan-language-family

7.2 Resources (mainly for my dataset)

Gòmez de Silva, Guido (1985) *Elsevier's concise Spanish etymological dictionary : containing 10000 entries, 1300 word families*. Amsterdam: Elsevier

Klein, Ernest (1967) *A comprehensive etymological dictionary of the English language : dealing with the origin of words and their sense development thus illustrating the history of civilization and culture*. Amsterdam: Elsevier

Color
Red
Orange
Yellow
Green

The Physical World	Environment (complex)
Food and Drink	Food and Drink
Shelter and Clothing	Shelter and Clothing
Tools and Equipment	Tools and Equipment
Energy	Energy
Communication and Information Technology	Communication and Information Technology
Entertainment and Travel	Entertainment and Travel
Health and Fitness	Health and Fitness
Finance and Economy	Finance and Economy
Society and Culture	Society and Culture

| Red
| Orange
| Yellow
| Green
Appendix B

Dataset direct link: https://diacl.ht.lu.se/WordListCategory/Details/11025