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Abstract

In the area of physical activity recognition, there is a great demand for better understanding
data and building useful models for data analysis. Many studies have focused on using
machine learning algorithms, which provide high accuracy but are computationally
expensive. However, few studies have tried to approach this problem with statistical
methods.

The purpose of this study is to investigate the performance of statistical signal processing
methods when applied to smartphone accelerometer data. Specifically it focuses on the
distinction between walking and non-walking users, with the aim of extracting characteristics
that can be useful for traffic and city planning.
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Popular Science Summary

Att kunna mäta och först̊a människors trafikbeteende är värdefullt eftersom det har ett
direkt inflytande p̊a stads- och mobilitetsplanering. Framväxten av smartphones med
inbyggda accelerometrar de senaste åren har gjort det möjligt att samla in mobilitetsdata
med lägre batteri̊atg̊ang än via GPS.

Igenkänning av fysisk aktivitet genom studier och analys av accelerometerdata har varit
ett fokusomr̊ade inom bl.a. hälso- och sjukv̊ard samt fitness. Samtidigt som sensorerna
förbättrats har flera tekniker utvecklats för att identifiera fysiska aktiviteter med allt
högre precision, men dessa kräver mycket beräkningskraft. Denna uppsats undersöker tv̊a
statistiska signalbehandlingsmetoder för att åstadkomma aktivitetsigenkänning med hög
precision mot en lägre beräkningskostnad.
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Chapter 1

Introduction

1.1 Motivation

To build a sustainable and environmentally friendly transport system requires the
understanding of travelling behaviours such as how people walk, cycle and drive. A better
understanding of walking and cycling is required in order to better design transportation
system. Today there is a lack of detailed data about how people walk and cycle for
transportation[1]. Every individual moves and walks differently at his or her own pace.
The purpose of this project is to investigate signal processing and statistical methods on
accelerometer for walking movement detection. Many studies have concentrated on using
machine learning algorithm on physical activity detection, which provide high accuracy but
are computationally costly. This problem will be approached with statistical methods in
this project. The overall goal was to build a general model for activity recognition. The
findings may be useful in travel survey and transportation system design.

”The traditional travel survey methods have gone through some stages.” The first travel
survey was an face-to-face interview in the 1950s and later on replacing with mailing
survey and telephone interviews. There are some disadvantages in the traditional surveys:
misreporting, non-response[2] and time-consuming. On the other hand a large-scale travel
survey data have been collected using global positioning system (GPS) technology over
the past decades. Still there are some constraints on GPS devices for recording travel
surveys: high costs, users forget to bring the device to collect travel data and deficiency
of GPS signal in certain areas[3]. With the emergence of smartphones, one can take
advantage of its portability and programmable features like embedded sensors including an
accelerometer, digital compass, gyroscope, GPS and camera etc. as state in a sensor survey[4].

Over the last decade a lot of studies have been done on human activity detection using
smartphone-based sensors: accelerometer and GPS where the sensors record measurements
of a 3-dimensional acceleration force as well as showing the location of the user. Ellis
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et al.[5] implemented an algorithm which combines GPS and accelerometer data using
machine learning on a 150-hour dataset collecting two research assistants following specific
trips to detect 5 activities using 49 features with high recognition accuracy of 91.9%[5].
However GPS navigation is a heavy drain on the battery. This is a great limitation for GPS
regarding activity recognition. Even though the users can manually switch off and activate
GPS whenever it is needed. It is often that the users forget to switch it on for recording
so the data is incomplete like the beginning or stopping point are missing. Identification
of the starting and end points of a trip is a key in movement detection[6]. With regards
to battery-drain problem and missing data, acceleration sensor is a good alternative to be
used for activity detection. Because the accelerometers are inexpensive, require relatively
low power and are embedded in smartphones.

Accelerometer data has been widely used for medical, health, military and engineering fields
for the monitoring of fall detection, heart rate and sounds, blood pressure and detection
of human activities etc. In this project the data is recorded using smartphone-based
accelerometer in Android and the datasets are processed in MATLAB software tool.

1.2 Objectives

The main objectives of this project are to understand accelerometer data collected by
smartphones and to show that accelerometer data is beneficial for physical activity detection.
As well as applying spectral analysis including autoregressive (AR) process and modified
periodogram with Hanning window to extract useful features and then use statistical
techniques to distinct walking and non-walking activities.

TRavelVU[7] is a travel survey project that Trivector Group is carrying out for collecting
travel data using smartphone GPS. The software is capable of detecting up to 7 modes with
10 extra different modes for editing[7]. The user can modify the travelling data and the app
remembers the locations where the users have been to. To be able to detect the start and
stop point of a trip, the user keeps the app on all of the time. It leads to that the user
has to manually turn off the app in case of battery drainage matter on the smartphone. In
the near future, it will be promising that travelling projects like TRavelVU can provide an
app uses accelerometer data with a wireless connection which record, analyse and detect
the travelling modes with low computation. As well as recording an individual’s travel
behaviours.
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Chapter 2

Background

2.1 Activity Recognition Approaches

A lot of work has been done regarding activity recognition using accelerometer data. With
the purpose of understanding and extracting useful information that can be useful for traffic
and urban planning. The sample data can be recorded in two ways: wearable sensors and
smartphone-based sensors. Furthermore wearable sensors can be divided into two categories:
multi-accelerometer sensors and single accelerometer sensor. The data were collected using
the wearable sensors then sent to server for activity recognition.

2.1.1 Related Literature

Bao and Intille[8] carried out an activity recognition system by using 5 biaxial accelerometers
worn on the 4 limb positions and right hip simultaneously to collect user’s activity data. The
data were collected with a sampling frequency of 76.25 Hz and data-window of 6.7 seconds.
Then the recorded data were sent to a mobile computing device to perform classification
using Machine Learning Algorithms: decision table, nearest neighbour and naive Bayes[8].
Despite the fact that employing more sensors benefit the accuracy rate, it requires heavy
computation and power consumption.

Khan et al.[9] implemented the physical activity recognition using one single tri-axial
accelerometer with sampling frequency of 20 Hz and a data-window of 3.2 seconds without
overlap. They also proposed a novel hierarchical recognition scheme which is capable of
recognizing 15 physical activities of daily life. However the single accelerometer sensor is a
special tailored design mainly for laboratory test. The wearable sensors are not practical
for real-world application.

The fact that smartphones are ubiquitous and embedded with build-in accelerometers make
it an ideal device for monitoring Kwapisz et al.[10] used smartphone-based accelerometers
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to detect 6 activities using 43 features with high accuracy. The data were collected in a
custom-build Android application WISDM (Wireless Sensor Data Mining) with sampling
frequency of 20 Hz and data-window at 10 seconds with phone in pocket. It is proposed that
either minimize the intelligence needed on the phone or completing the activity recognition
model directly on the phones to save computational work and power consumption[10].
However the features are computed over the long data-window which reduce the chance of
capturing the transition movements[10].

Many excellent activity recognition approaches have been used in the literature but some
of them are too computationally expensive and heavy battery drain for smartphones. For
efficient and accurate computation in movement detection better feature extractions are
needed. The aim of this study is to use statistical methods and spectral analysis for the
distinction between walking and non-walking.

2.1.2 Overview of procedures

There are many different methods for feature extraction from accelerometer data in the
literature apart from the above mentioned studies. The main procedures are: pre-processing,
feature extraction and classifying.

Pre-processing: The raw data were recorded from smartphone-based accelerometer where
the sample data correspond to the gravitational and acceleration force. We applied a 5th

order Moving Average (MA) filter for smoothing the acceleration force[6] in the following
work.

Feature Extraction: Features are the distinct characteristics and repetitive patterns of the
sample signal. These are the main components for movement detection. In this thesis the
focus are on the time- and frequency domain.

Classification: The purpose of this is to identifying important information from the feature
components employing statistical methods.

A lot of studies have used sampling frequency of 20 Hz and as Maurer et al. pointed out in
his work that the accuracy rate stabalized between 15 to 20 Hz for lower level activities like
walking, running, ascending and descending stairs[11]. Here the sampling rate of 20 Hz is
applied for the study of this project.
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Chapter 3

Methods

3.1 Data Collection and Preprocessing

For this project, the accelerometer data were collected using the Physics Toolbox
Accelerometer software which is available for both Android and iOS. The activity samples
were gathered from 7 individuals with an Android based smartphone doing different
activities such as walking normally, quickly or slowly; taking the train and running. For
the purpose of this study, quick and slow walking trips are included for building the model.
Because the intention is to discriminate walking and non-walking activities. Therefore
walking slowly and quickly are considered walking in our case. There are in total 27 samples
collected which are listed in Table 3.1. The individuals were asked to start the app and go
out for a walk unsupervised. The phone can be placed at various places according to the
individuals’ habit such as in pocket, in backpack or in hand.

Table 3.1: Accelerometer sensor data sample

Index Activity Num. of Samples
I Normal walking 15
II Slow walking 3
III Quick walking 3
IV Run 3
V Train trip 3

The software’s sampling rate is around 220 Hz with standard deviation 7 Hz. The sample
readings were saved by the individuals in a CSV file and then use MATLAB tool for activity
analysis. The readings consist of 4 columns: one column vector ttt representing the relative
time and the rest with each column stores acceleration in X, Y and Z direction. The readouts
vxt , v

y
t , v

z
t can be written as,



6 CHAPTER 3. METHODS

vvvt = vvv∗t + εεεt, (3.1)

where t = 1, 2,..., vvvt = [vxt v
y
t v

z
t ]
T and εεεt ∈ R3 is a noise vector of independent, zero-mean

Gaussian random variables and variance σ2 such that εεεt ∼ N(0, σ2
ε I3)[12].

First the data noise of column vectors {vxt , v
y
t , v

z
t } were checked by analysing the readings

when the phone sitting still on table. Observing that both X and Y-axis are close to zero
because the phone is static while Z-axis measured as 1 with unit g because the acceleration
and gravitational force acting on it. It is reasonable to smooth the acceleration component
by applying a 5th order moving average (MA) filter on the data. An example showing X, Y
and Z-axis for a dog walk for 4 seconds is presented in Figure 3.1 with raw data on the top
and smoothed data at the bottom.

Figure 3.1: Accelerometer readouts along X, Y and Z-axis for a dog walk for 4 seconds with
original data on top and smoothed data at the bottom.

In order to reduce complexity for the sensor orientation the magnitude vector of the signal
sequence[8,9,10,12] is computed,

mt =‖ vtvtvt ‖=
√
{(vxt )2 + (vyt )

2 + (vzt )
2} (3.2)
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where t = 1, 2,..., N. The collected sampling rate of the time-series accelerometer data is
inconsistent so the sampling rate is resampled to 20 Hz as 20 Hz is high enough to capture
the repetitive moving peaks including walking, running, ascending and descending stairs.
After several trials, a data-window length of 5 seconds i.e. n = 100, is the most appropriate
choice in our data. This window and time interval were selected with consideration of
a trade-off between the resolution and data information. It’s long enough to display
meaningful information from the collected data. However different sampling rates and
data-window lengths can be tested out for distinction for more physical activities in the
future project. After resampling the mean of the magnitude sequence was subtracted from
the magnitude sequence to ensure zero mean. This step is important for the stationary
process. Then the de-meaned sequence was passed through a 5th order MA filter. A sample
of the sequence mt for a dog walk for a few seconds can be seen in Figure 3.2 with raw data
on the top and smoothed data at the bottom. It can be seen that the filtered data is less
noisy than the original data.

Figure 3.2: Magnitude vector mt of acceleration data for a dog walk resampled at sampling
rate of 20 Hz for a few seconds with raw signal on top and smoothed signal at the bottom.
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3.2 Feature extractions

The choice of features is a significant step in classifying movement recognition. The
magnitude vector is processed by statistical techniques in both time and frequency domain
to explore meaningful information. Khan et al. proposed in [9] that the state recognition and
activity recognition can be differentiated separately by applying a hierarchical recognition
scheme. At the lower level such as static or dynamic activities they applied statistical
features for recognition[9]. They implemented machine learning algorithm for detection[9] for
the upper level activities such as walking, running, ascending and descending stairs. The
concept of hierarchical recognition scheme is interesting and it can be applied to pursue
activity distinction. In this study, the statistical techniques on the time-domain measures
is applied for state recognition while the statistical techniques on the frequency-domain
features is implemented for walking movement distinction. Figure 3.3 illustrates the scheme
flowchart for our project.

Feature
extraction

Time
Domain

Static/
Dynamic
States

Standing,
Not

Moving

Frequency
Domain

Walking
Movement

Walking Not
Walking

Figure 3.3: Scheme flowchart for this project

In the frequency-domain features, spectral analysis methods including AR process and
modified periodogram with Hanning window method are applied for physical distinction.
These two methods are widely used and known in signal processing little research has been
found with respect to human activity recognition. Most of the works concentrates on other
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methods such as entropy, energy, Fourier Transformations, Wavelet Transformations and
others. Apart from the traditional techniques, exploring different methods for extracting
features may display new information of the data.

3.2.1 Time-domain Features

The time-domain features are based on the magnitude sequence mt. A typical accelerometer
signal is shown in Figure 3.4 below. It displays a dog walk in the forest for 337 seconds.
Time in seconds is plotted in the x-axis and the magnitude of acceleration is in the y-axis.
Apart from the amplitude of the acceleration magnitude can be seen from the plot, it is
difficult to discriminate whether the individual is walking, running or taking a bus ride
without any prior information.

Figure 3.4: Smoothed accelerometer magnitude data for an individual’s dog walk in the
forest.

There are many different time-domain measures one can compute due to its efficient
and direct computation. And it is straightforward to distinguish the static and dynamic
activities from the descriptive time-domain features. In this study two variables have been
calculated with focus for the state recognition: variance (Var) and inter-quartile range (Iqr).
Variance measures the variability of the data sequence and inter-quartile range evaluates
the statistical dispersion (i.e., difference between the 75th and the 25th percentiles). Instead
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of calculating the variance and inter-quartile range of the whole data sequence, the two
variables are computed over a window size of 100 (i.e., a data-window of 5 seconds) with
50% overlap aiming to recognize the states: static and dynamic activities. Then taking
the mean value of the sequence of the variances and inter-quartile range values give more
precis measurements. The mean, minimum, maximum of the sequence as well as the
correlation coefficients are also computed to get more descriptive information about the
data. The correlation coefficients measures the linear relationship between two different axes.

The sequence of variances and inter-quartile ranges for a dog walk is plotted in Figure 3.5
against the original data. It differs the static and dynamic activities. The values close to
zeros represent the static states while the higher values represent the dynamic activities.
And the values in between are the transition activities: walk-stop and stop-walk mode. In [9]

Khan et al. used the time-domain measures to identify also a transition mode besides static
and dynamic. In this study the focus is on distinction between walking and non-walking so
the transition status is regarded as static activity.

Figure 3.5: The sequence of variances and inter-quartile range values of a typical dog walk
over window size of 100 with 50% overlap. The values close to zeros are marked as static
while values at higher values as dynamic activities.

3.2.2 Frequency-domain Features

Transforming the data into the frequency domain can gain new information about the
signal which the time-domain features fail to display. This transformation estimates the
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power spectral density which unveils the power density versus frequency. This insight can
help identify whether the user is walking. For walking data the features of the repetitive
patterns and the frequency components are important for recognition. Two main methods
for spectral analysis are applied in this project: the periodogram (non-parametric) method
and the AR (parametric) model for analysing the accelerometer data. The reason why the
periodogram method and the AR model appropriate are: the periodogram method can be
used to calculate the dominant frequencies in a time-series data to identify periodicity while
AR model is a process where the future depends on the past.

3.2.2.1 Windowed Periodogram analysis

Frequency-domain analysis is based on transforming the signal into the frequency domain
using the Fourier Transform. Theoretically Fourier transformation requires infinite number
of samples and that the signal is stationary[13]. In reality it is rare that an infinite dataset
can be obtained. The discrete Fourier transform (DFT)[13], transform a finite discrete-time
magnitude sequence mt is used here and then using Fast Fourier Transform (FFT)[13] of the
DFT for efficient computation of M(f),

M(f) =
n−1∑
t=0

mte
−i2πft, (3.3)

where t = 0, 1, .. n-1. With the periodogram[13] defined as,

Sm(f) =
1

n
|M(f)|2. (3.4)

Since the usual periodogram has sidelobes which causes power leakage and severe bias for
the spectral density estimation, a Hanning window[13] is applied on mt,

SPDw (f) =
1

n
|
n−1∑
t=0

mtwte
−i2πft|2, (3.5)

where t = 0, 1, .. n-1 and wt is the the normalized window function and it is defined as
wt = ht

1
n

∑n−1
t=0 h

2
t

with ht = 1
2
− 1

2
cos( 2πt

n−1
).

It can be seen from the data that the frequency is not constant over time so the data
sequence is unstationary. It does not reveal how the power spectrum varies over time if FFT
is taken on the whole sequence. It makes more sense to use a data-window of 5 seconds (i.e.,
n = 100) with 50% overlap periodogram with Hanning window on the data sequence. Then
the maximum amplitude of power and dominant frequency components of each window can
be extracted for analysis over time.
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3.2.2.2 Short-time Autoregressive analysis

The modified periodogram estimation will be accurate if there is a large amount of data
and signals are stationary. The AR(p)-process of order p is created by white noise passing
through an infinite impulse response (IIR) filter[13]. The AR model uses the time history of a
signal to extract useful information hidden in the signal and the model parameters are passed
to analyse the signal. The output of the AR(p)-process is generated as a linear combination
of p past values of the output and the present input data[13],

mt = −
p∑

k=1

akmt−k + et, (3.6)

where a1, a2, ..., ap are the model coefficients. With p indicates the order of the model
implying the number of past values can be used to predict the current value and et
is independent Gaussian noise with mean zero and variance σ2[13]. Furthermore the
corresponding spectral density[13] is defined as,

SARm (f) =
σ2

|
∑p

k=0 ake
−i2πfk|2

. (3.7)

To identify the model order, the most popular time series methods: auto-correlation function
(ACF) and partial auto-correlation function (PACF) are used. ACF for mt is defined as[14],

ρm(k) =
γm(k)

γm(0)
=
E[(mt − µm)(mt−k − µm)]

E(mt − µm)2
, (3.8)

where γm(k) is the auto-covariance function, γm(0) the variance and µm is the expected
value of mt.

The PACF measures the relationship between mt and mt−k of a time series and defines the
dependence of the auto-correlation ρm(k) of the process[14]. The kth partial auto-correlation
coefficient, φk,k, is the last (negative) AR coefficient of a kth order AR model[13]. If mt is
an AR(p)-process, φk,k will be zero if k > p and φk,k 6= 0 if k ≤ p[15]. Using MATLAB
commands autocorr and parcorr the ACF and PACF for the time series mt can be easily
computed. The ACF plots show damped exponential or sine functions while PACF plots
goes to zero after lag p[15]. After checking all the samples and model order of 2 is a good
enough model for walking pattern. Figure 3.6 displays an example of ACF and PACF.
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Figure 3.6: Accelerometer magnitude signal with its ACF and PACF for the data sequence.

For AR model a data-window of 5 seconds (i.e., n = 100) with 50% overlap is applied on
the data sequence. This time interval is long enough for extracting useful AR-coefficients.
There are different methods to compute the coefficients for example: covariance method,
the Yule-Walker method and the Burg method. The linear model coefficients ap is estimated
using the covariance method. They all based on Yule-Walker and produce relatively similar
results. Covariance method is chosen because there is not many orders in the model. In the
next step the maximum power and frequency components are computed and extracted over
each window over time. With these vector sequences it is possible that useful information
can be revealed concerning the distinction between walking and non-walking.

Figure 3.7 demonstrates the plots for both the periodogram with Hanning window and the
segmented AR(2)-process for a dog walk data sequence. The frequency for this walk for the
periodogram and the AR(2) are similar ranging from 0.03 to 2.37 Hz. Note the increasing
power variability after the user stops and begins to walk at 53 seconds, 100 seconds, 150
seconds, 200 seconds. It can be seen that AR(2)-process provide better resolution for power
spectral density estimate without power leakage while the modified periodogram shows poor
frequency resolution due to power leakage. However there is one drawback in AR process:
it is very sensitive to noise or outliers. It cannot distinguish between spectral signal and
noise ’peaks’ so it will continue to find more ’peaks’ as pre-specified number of ’poles’[16].
To resolve this the MATLAB command medfilt1, which applies a third-order median filter
to take care of the outliers, is used.



14 CHAPTER 3. METHODS

Figure 3.7: Modified periodogram and windowed AR(2) process showing the max. powers
and frequency components of each window changing over time for a dog walk with
smartphone in pocket.

The advantages and disadvantages of the periodogram method and the AR model are
summarized in Table 3.2 below.

Table 3.2: Accelerometer sensor data sample

Category Method Advantage Disadvantage

Non-parametric Periodogram Easy to apply Poor resolution; power leakage

Parametric AR-process Better resolution; no leakage Sensitive to outliers
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Chapter 4

Results

4.1 Statistical analysis results

In this chapter the statistical analysis for 12 selected samples is concluded to build a suitable
model based on the activity categories: normal, slow and quick walking. For this project slow
and quick walking are considered as walking data. In the next step the model is tested on
the remaining 15 datasets including 9 walking trips, 3 running trips and 3 train trips. Note
that the data was resampled to the frequency of 20 Hz and the magnitude vector was used in
the data. So the concern for the phone orientation and models can be omitted in this study.
Because the goal of this thesis is to find out whether the two signal processing techniques:
the periodogram method and the AR model can produce useful features for statistical testing.

4.1.1 Time-domain statistical analysis

The time-domain measurement results for the mean of the sequence of variances and
inter-quartile range values together with the minimum, maximum and correlation
coefficients are displayed in Table 4.1. The 12 selected data sample are listed in categories
including normal, slow and quick walking.
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Table 4.1: Statistical performance comparison among different time-domain measurements
for 12 sample datasets: normal, slow and quick walking

Category Data Min Max Iqr Var Corxy Corxz Coryz

Normal
walking

1 -0.40 0.43 0.31 0.03 -0.25 -0.44 0.72
2 -0.68 0.64 0.35 0.04 0.30 -0.21 -0.49
3 -0.51 0.90 0.33 0.04 -0.43 -0.25 -0.004
4 -0.63 0.86 0.41 0.06 -0.08 -0.20 0.28
5 -0.55 0.73 0.48 0.07 0.20 -0.17 0.15
6 -0.48 0.59 0.38 0.05 -0.37 0.17 -0.33

Slow
walking

1 -0.33 0.56 0.22 0.02 -0.06 0.01 0.46
2 -0.40 0.54 0.21 0.02 0.21 -0.02 0.01
3 -0.73 0.78 0.40 0.06 -0.34 -0.07 0.51

Quick
walking

1 -0.52 0.97 0.34 0.05 0.26 0.11 0.25
2 -0.80 1.22 0.41 0.07 0.06 -0.22 -0.06
3 -0.56 0.65 0.42 0.06 0.34 -0.51 -0.58

Average -0.55 0.74 0.36 0.05 -0.01 -0.15 0.08

The inter-quartile range and variance indicate the variability within a dataset. The study
shows that the inter-quartile range are between 0.21 to 0.48 with an average of 0.36 while
the variances are much smaller between 0.02 and 0.07 with an average of 0.05. The results
are reasonable since the inter-quartile measures the dispersion based on the 75th and 15th

percentile from the datasets removing the outliers while the variance considers every value
in the datasets.

The minimum and maximum values display a descriptive picture for the walking datasets
ranging from average of -0.55 to 0.74. The correlation coefficient differs depending on the
phone location. For example they are negatively correlated while holding in hand, positively
correlated while in pocket and the correlation varies while putting in backpack. However
the coefficients are rather small. According to Waltenegus Dargie the correlation coefficient
shows bigger range for car driving comparing to human movements[17]. It is believed that it
can show influence if more physical activities like driving, running and jogging and others
are added in the future study.

The sequence of variances and inter-quartile range values are displayed plotting against
the original dog walk data. With the mean of the sequence of Iqr is 0.36 and the mean of
the sequence of Var is 0.05 as treshold respectively plotted in Figure 4.1. The values close
to zeros represent static movement and the values below the threshold (i.e., the transition
values are also considered as static). And the values above the threshold are dynamic
activities. It can be seen that if the user stopped shortly and started moving it is very
difficult to identify as it can be seen in intervals like [90 100], [250 260] and [280 290] seconds
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in the dog walk figure below.

Figure 4.1: Variance and inter-quartile range with thresholds 0.05 and 0.36 respectively
displaying static and dynamic activities. In the plot the variance is scaled so it is easier for
comparison with the the rest plots. The values below the thresholds but above zeros values
are the transition points such as stop-walk or walk-stop, and it is considered them as static
in the study.

With the average of the sequence of variances and inter-quartile range values it can detect
the state recognitions that identifying whether the user is static or dynamic in the same time
interval against the recorded data. It seems both algorithm can detect the beginning and
stop points. Our results are produced through identifying all the stopping intervals (i.e., a
stop lasting more than 5 seconds). For stops less than 5 seconds it’s regard it as being in
motion. If the algorithm fails to identify the stops it fails to detect the state recognition for
the data sequence. The same principle for detecting dynamic activities is carried out. The
recognition result for state recognition is in Table 4.2.

Table 4.2: Recognition result for our remaining data sample

Method Static Dynamic Start point End point

Iqr 12 11 14 13

Var 12 12 14 14
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As the results suggest that both methods are good at finding the starting, end point and
static activities. Both methods fail to detect the static and dynamic activities for the train
data. Variance has slightly better accuracy rate of 80% than the inter-quartile range of
73%. It is possible that variance is more robust considering all the values in the datasets
while the inter-quartile range measures excludes the extreme values. Even though there
are many other measurements can be computed in the time domain, they cannot reveal
more information apart from the state of being static or dynamic. It is time to look into
what more features can be revealed for discriminating walking with the frequency-domain
measures.

4.1.2 Frequency-domain statistical analysis

AR-process and the modified periodogram provide a comprehensive map of how the
frequencies and power varies over time (i.e., it can be sees the range for strong and weak
frequency and power components). The minimum, maximum, mean and variance of the
dominating frequencies for the selected datasets is presented in Table 4.3 below. Then
the average of each measure for the frequencies of the periodgram and the AR model are
calculated.

Table 4.3: Statistical performance comparison among different frequency-domain features
showing the dominating frequency components over time for AR-process and periodogram
for the selected 12 sample data

AR-process frequency Periodogram frequency
Category Data Min Max Mu Var Min Max Mu Var

Normal
walking

1 0.08 1.95 1.83 0.06 0.16 1.95 1.85 0.09
2 1.56 1.95 1.90 0.01 1.72 1.95 1.89 0.002
3 0.08 1.95 1.71 0.10 0.16 2.03 1.75 0.25
4 1.25 2.11 2.03 0.02 0.16 2.11 1.98 0.10
5 1.80 2.34 2.14 0.10 1.88 2.19 2.11 0.004
6 0.08 2.27 1.90 0.40 0.16 2.27 1.84 0.40

Slow
walking

1 1.25 2.11 1.93 0.03 0.16 1.95 1.80 0.05
2 0.08 2.34 1.92 0.13 0.16 2.50 1.89 0.10
3 0.08 2.19 1.82 0.27 0.16 2.19 1.77 0.29

Quick
walking

1 1.88 2.42 2.23 0.02 1.80 2.34 2.18 0.01
2 0.63 2.34 2.04 0.03 0.16 2.34 1.96 0.16
3 0.08 2.58 2.21 0.06 0.94 2.66 2.18 0.03

Average 0.74 2.21 1.97 0.10 0.64 2.21 1.93 0.12
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For the AR-process the average minimum and maximum dominant frequencies ranging from
0.74 to 2.21 Hz and for periodogram between 0.64 to 2.21 Hz respectively for walking
pattern. The average values of the variance for AR-process is smaller than the periodogram’s
variance with a small margin of 0.02. It can be that AR-process has good resolution and no
power-leakage or the sample size is small. These frequency components are in the reasonable
range for walking pattern. The statistics for the dominant powers of the magnitude signal
is displayed in Table 4.4.

Table 4.4: Statistical performance comparison among different frequency-domain features
representing the dominating power components over time for the selected 12 sample data

AR-process power Periodogram power
Category Data Min Max Mu Var Min Max Mu Var

Normal
walking

1 0.01 3.93 1.44 0.64 0.01 0.41 0.28 0.01
2 0.24 7.94 2.00 1.17 0.08 0.65 0.36 0.01
3 0.10 3.07 1.22 0.66 0.08 0.81 0.36 0.03
4 0.18 0.69 0.36 0.01 0.20 0.71 0.56 0.01
5 0.45 3.35 1.83 0.30 0.22 1.01 0.71 0.02
6 0.003 4.94 1.77 1.82 0.002 1.02 0.50 0.10

Slow
walking

1 0.03 0.37 0.13 0.005 0.01 0.29 0.15 0.004
2 0.01 0.93 0.28 0.04 0.01 0.35 0.16 0.01
3 0.01 5.97 1.90 1.26 0.01 1.22 0.55 0.08

Quick
walking

1 0.10 0.73 0.35 0.02 0.14 0.58 0.40 0.01
2 0.006 1.06 0.51 0.03 0.08 0.97 0.60 0.03
3 0.05 3.39 1.51 0.44 0.03 0.82 0.54 0.03

Average 0.10 3.03 1.11 0.53 0.07 0.74 0.43 0.03

For the AR-process the average minimum and maximum dominant powers ranging from
0.10 to 3.03 while for periodogram between 0.07 to 0.74 Hz respectively for walking pattern.
The AR method has better peak resolution without power-leakage while periodogram
has the power-leakage problem. It is reasonable that the average values of the mean and
variance for AR-process are much higher than the modified periodogram. To be able to
detect whether the user is walking the 95% confidence interval for the average values of
mean and variance for both the dominant frequency and power components are computed
in Table 4.5.
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Table 4.5: 95% Confidence Interval for the average values of of the AR-process and
periodogram’s frequency and power components

Type Average value S.D. 95% CI for mean
AR freq. 1.97 0.316 [1.791 2.149]

Periodogram freq. 1.93 0.346 [1.734 2.126]
AR power 1.11 0.728 [0.698 1.522]

Periodogram power 0.43 0.173 [0.332 0.528]

The 95% confidence interval for the measures is then used to check the remaining datasets
to evaluate whether the AR model and the periodgram method produce good performance
result. The confidence bounds shows the range for walking frequencies and powers in the
data sequence. The intention is to distinct walking and non-walking activities.

The activity recognition result is given in Table 4.6. In the table the number of successfully
detected from the 15 remaining datasets is displayed. The performance for starting and
ending point detection is not as accurate as the time-domain measures. It could be that
some users turned on the App while still moving. For walking distinction AR(2)-process
produces a little better result than the periodogram with Hanning window. The results
from this project is considered reasonable.

Table 4.6: Result for successfully detecting walking and non-walking movements together
with recognition for start and end points for the remaining 15 datasets

Method Walking Non-walking Start point End point
Periodogram 13 13 12 13

AR(2) 14 14 12 12

With the spectral analysis methods the accuracy rate can be reached to 93.33% for walking
distinction. For the periodogram method it displays often more zeros or close-to zero
frequencies values while the user is in motion. Through this project it indeed shows that
the AR model and periodogram can extract useful features and then the extracted sequence
data can be then used statistical techniques to classify the physical activities. It is certain
that more physical activities added will increase the complexity hugely. The result of this
small shed light on a useful link between the signal processing and statistical methods on
accelerometer data for human activity recognition.
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4.2 Discussion

The experiment results show that using smartphone-based accelerometer data can be
adequate for identifying physical activity recognition. Static activities such as standing
still and not moving are easier for recognition than the periodic activity: walking. Using
hierarchical recognition scheme we first classify the state recognition and then identify if
the user is walking.

Two sequences are displayed in Figure 4.2: dog walk and Figure 4.3: start-wait-run-stop
trip below. The dominant frequency components for the AR model and the peridogram are
showed in both plots for comparison.

Figure 4.2: Visually analyse whether the user is walking or not with AR-process and
periodogram frequency components for a dog walk. Both methods detect all the walking
intervals but periodogram method show more zeros even though the user is in motion.
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Figure 4.3: Visually analyse whether the user is walking or not with AR-process and
periodogram frequency components for a running trip. Both methods are able to identifying
the user is not in walking mode in this case. Our goal is to detect whether the user is walking
or not.

The 95% CI for AR-process frequency components mark the walking frequency range
between 1.791 and 2.149. The values outside the bounds are non-walking activities, in this
case running. With the values lower the the bounds are considered as static activities.
From the plot it can be seen that AR-process is better in recognition of walking while the
peridogram shows more zero frequencies when the user is moving. For a short-time interval
stop AR include them as moving activities. The reason for this maybe that AR-process is a
model that the future steps rely on the past which leads to better precision for predicting
the movement step. However the periodogram is good at identifying the peak frequencies
for periodicity so for frequencies which are not dominant for example the transition state
the method might not be able detect and show more zero frequencies. The achieved findings
may be useful in traffic mode and physical activity detection.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The hierarchical recognition scheme is applied for first discriminating the state recognition
using time-domain measures and walking distinction using spectral analysis techniques.
For human activity recognition the time-domain measurements: variance and inter-quartile
range are direct to compute but difficult for interpretation apart from state recognition:
static or dynamic activities. They are good measures for beginning and end point detection.
The frequency-domain features: the peridogoram and AR(2) model concluded a general
walking frequency pattern.

It is worthwhile to test on more feature extraction methods such as AR-process and
periodogram and other signal processing methods in activity detection. The overall
approach was to build a general model for walking distinction. With AR-model it gave
better recognition result. The results of this analysis can be used to detect whether the
user is static, walking and non-walking. The main contribution of this study is the proposal
of using AR-process and periodogram method for activity recognition feature extractions
using only smartphone-based accelerometer data. The findings may be useful in traffic
survey and human activity detection.

5.2 Future Work

This thesis is just a start of researching signal processing and statistical methods in human
activity recognition. There are still a lot of things need to be further considered in the
future work for better performance. For example the following points:

• Better annotated data.
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• Optimizing parameters through automatic evaluation..

• More feature: wavelet transform.

The demand for understanding the accelerometer data and building efficient and accurate
model for human activity recognition can be one of the greatest challenges in the near
future. The combination of signal processing methods and statistical techniques may be a
promising approach in this field with respect to the power requirement.
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