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Abstract

Nucleosynthesis is the mechanism which produces new elements in nuclear reactions. Nu-
clear reaction rates are highly temperature dependant, and nuclear reactions take place in
very hot environments. Current theories predict that the light elements such as hydrogen and
helium were produced during the Big Bang. On the other hand, the core of stars produce
heavier elements through nuclear fusion. These new elements are then released to the inter-
stellar medium through stellar winds, enriching the gas which will form later generations of
stars. Black hole accretion disks also can contain material of high temperatures generated by
high accretion rates, allowing nuclear fusion to take place. Nucleosynthesis products can be
expelled in winds driven by a super-Eddington accretion, and enrich the interstellar medium.

I wrote a computer program 1 integrating a nuclear burning network in a black hole
accretion disk for various ranges of black hole mass and accretion rates. I found that the
accretion rate needed for nucleosynthesis to take place increases with the black hole mass. The
highest temperatures are located in the inner disk, and the black hole event horizon increases
linearly with its mass, preventing the disk from attaining high temperatures. For a stellar
mass black hole, highly super-Eddington accretion rates allow nuclear burning and powerful
winds. Such accretion rates can be supplied by unstable mass transfer during the disruption
of a white dwarf. The alpha chain reactions, involving captures of helium nuclei, structure the
disk composition radially, with isotope abundances dominating at specific radii. Assuming
a given fraction of the disk material is expelled in winds due to Super-Eddington accretion,
and knowing the rate at which such events happen in the Galaxy allowed me to compute
upper limits of the contribution of accretion disks to the interstellar medium enrichment.
Comparing this production to combined stellar yields from stars, I find that black hole–
white dwarf accretion disks produce at most 10−4 times the amount of the same elements
that stars produce. This result shows that such a small contribution can be neglected to the
overall content of the Galaxy. But the nucleosynthesis involved in general may perhaps play
a role in observing these systems, for example a light curve emitted by radioactive elements
produced in these short-lived black hole accretion disks.

1available online from Monday 15 May 2017: https://github.com/NeigeF/MSc_Project

https://github.com/NeigeF/MSc_Project
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Populärvetenskaplig sammanfattning: Nukleosyntes i ackretionsskivor kring
svarta h̊al

Hur bildas atomerna som bygger upp oss människor - till exempel atomer av kol, syre eller
kalcium? Den idag gällande teorin är att lättare atomer s̊asom väte, helium och litium ska-
pades vid ”Big Bang”, medan en supernova fr̊an en döende stjärna producerade och frigjorde
bland annat kol, syre, kalcium och järn. Det som stjärnor och Big Bang har gemensamt
i sin förm̊aga att fungera som kärnreaktorer är att de utmärks av väldigt hög värme och
en hög densitet. Ett svart h̊al som mycket snabbt f̊angar gaser fr̊an en omgivande ansam-
lingsskiva, som vi kallar ackretionsskiva, skapar ocks̊a mycket hög värme och hög densitet.
Detta tillst̊and har ocks̊a alla förutsättningar att fungera som en kärnreaktor och att skapa
nya tyngre grundämnen.

I mitt examensarbete har jag undersökt kärnreaktioner i s̊adana ackretionsskivor kring
svarta h̊al. Temperaturen och densiteten blir tillräckligt hög endast om inf̊angningen av gaser
sker mycket hastigt. Detta kan inträffa om ansamlingsskivan kommer fr̊an en vit dvärg, vilken
ökar i storlek när den kastat ut massa. Jag har skrivit ett program som beräknar hur mycket
av nya tyngre atomer som skapas och frigörs. Jämfört med stjärnor är produktionen av nya
grundämnen betydligt mindre förekommande. Eftersom en vit dvärg utgör slutprodukten
fr̊an en död stjärna, kan vi alltid säga att vi människor har erh̊allit v̊ara byggstenar fr̊an
stjärnstoft.





Résumé: La nucléosynthèse dans les disques d’accrétion autour de trous noirs

“Nous sommes faits de poussières d’étoiles”, comme le décrit Huber Reeves, reprenant, dans
son magninifique ouvrage sur la synthèse des éléments dans l’Univers, l’idée de Carl Sagan.
Cela signifie que les éléments qui nous composent aujourd’hui, carbone, oxygène, calcium,
etc., ont été fabriqués à partir de l’hydrogène et de l’hélium hérités du Big Bang, dans les
denses coeurs brûlants des étoiles. Mais est-ce là la fin de l’histoire ? La synthèse des
éléments nécessite des conditions extrêmes de températures et densités. Ces conditions sont
atteignables dans les disques formés par le gas qui se fait avaler par les trous noirs, objets si
denses que même la lumière ne peut s’en échapper. Du gas orbitant un trou noir chauffe par
friction, permettant à des réactions nucléaires d’avoir lieu. Si une partie des éléments produits
peut s’échapper, à l’aide de vents par exemple, alors peut-être que les disques d’accrétions
autour des trous noirs jouent un rôle dans la synthèse des éléments nous composant. Seule-
ment, les températures ne sont suffisantes que dans de rares conditions qui mettent en jeu
la destruction d’objets compacts, tels que les naines blanches et les étoiles à neutrons, qui
sont respectivement les restes de vies d’étoiles légères, et massives. Le travail décrit dans ce
mémoire se concentre sur les réactions nucléaires dans les disques d’accrétion provenant de
la destruction d’une naine blanche par un trou noir. Comme ces événements sont très rares,
leur contribution à la synthèse des éléments qui nous composent aujourd’hui est négligeable
comparée à tout ce que les nombreuses étoiles de notre galaxie produisent. En revanche, le
cas des étoiles à neutrons n’a pas dit son dernier mot et est toujours un sujet de recherche
actuel. Quoi qu’il en soit, les cas les plus prometteurs de synthèse des éléments dans les
disques d’accrétions autour de trous noirs mettent en jeu des étoiles, donc il est bien vrai,
nous sommes des poussières d’étoiles.
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Concepts

Accretion is the growth of an object due to accumulation of material. In the context of this
thesis, the material falls into the gravitational potential of a black hole, and gives up
gravitational energy. As gas often has angular momentum, the material does not fall
straight into the black hole but forms an accretion disk around it. 3

Accretion rate is the rate at which an object of mass M grows by accretion, Ṁ = dM
dt . 3

Circularisation radius is, during mass transfer between two bodies, the radius where most
of the material from the doner tends to concentrate due to angular momentum conser-
vation. The circularisation radius determines the size of the accretion disk around the
accreting object.. 3

Eddington accretion rate is the limiting accretion rate at which the released gravitational
energy in the form of radiation reaches the Eddington limit. 3

Eddington luminosity is the luminosity at which the radiation pressure forces, coming
from heated gas due to accretion, exerted onto a proton-electron pair balances gravita-
tional forces acting on them. 3

Roche lobe is the volume within which a point mass is uniquely bound to one of the two
members of a binary system where two gravitationally bound bodies move on a circular
orbit around their common centre of mass. 3
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Chapter 1

Introduction

The isotopic content of different structures in the Universe (gas clouds, stars, galaxies) plays a
major role in our understanding of their evolution. Nuclear isotopes are produced by nuclear
reactions of which the rates change exponentially with temperature. Due to this dependency,
nucleosythesis occurs in a limited number of events described below. The general content
of the Universe is dominated by hydrogen (about 75%) and helium (about 25%) which were
synthesized during the Big Bang (Schneider, 2015). Nuclear reactions in stellar cores produce
heavier elements, for example carbon, oxygen, neon and iron. A fraction of the products is
expelled in the interstellar medium through stellar winds. Explosive events such as supernovae
are very good nucleosynthesis nests and their feedback has a significant effect on star formation
in galaxies. But nucleosynthesis may also happen in other highly energetic events.

Observations of X-ray sources suggest the existence of accretion disks around compact
objects. Accretion disks are disks of material orbiting around a central object, and being
accreted because of angular momentum loss through viscous dissipation. The temperature in
such disks can be very high, possibly high enough to make nuclear burning effective. These
high temperatures can be provided in disks around compact objects either by low viscosity,
radiatively inefficient accretion disks, or by geometrically thin viscous disks with very high
accretion rates. The former scenario has been investigated intensively by Arai & Hashimoto
(1992), Mukhopadhyay & Chakrabarti (2000) and Chakrabarti et al. (1987) for example with
a viscosity parameter α ≈ 10−4. Hu & Peng (2008) investigated nucleosynthesis with sub-
Eddington accretion around a 10M� black hole and find a very low contamination of new
elements, with for instance a production of aluminium 26 of 0.05M� per Myr from all the black
holes in the Milky-Way. For thin disks, numerical constraints on the nature of the viscosity
suggest magneto-rotational instablility to set the viscosity parameter α ≈ 0.01 (Balbus &
Hawley, 1998). Metzger (2012) and Margalit & Metzger (2016) studied nucleosynthesis in
these accretion disks around neutron stars, with a stage of unstable mass transfer during a
tidal disruption of a white dwarf by a neutron star.

In this work, I argue on the possibility of nucleosynthesis in black hole accretion disks and
investigate the limits of their effects on the interstellar medium enrichment. In particular, I
discuss how they compete with stars and stellar winds. The present master thesis is organised
as follows:

Chapter 2: I use existing literature (Clayton, 1968; Arnett, 1996) on nucleosynthesis to
understand the conditions in which nucleosynthesis happens, and recall the production of

5



CHAPTER 1. INTRODUCTION

isotopes during the Big Bang and in stellar cores for further comparison. I identify the
thermodynamical variables determining which nuclear reactions dominate and how fast they
occur. In particular, the rate r of a nuclear reaction goes as

r ∝ ραT β (1.1)

where ρ is the material density (mass per unit volume) and T the temperature. Different
nuclear reactions have a different dependency on these quantities, and the rates change ex-
tremely fast with the temperature, indicating β � 1 and α of the order of unity in most
cases.

Chapter 3: The background theory of accretion disks and the major disk models used in
the community are presented. I focus on the properties of the accretion disks which have the
greater effects on nucleosynthesis, namely the mass density ρ and the temperature T . The
density and temperature at a certain radius r in the disk are functions of the accretion rate
Ṁ and the central black hole mass MBH. I provide details for a simple disk, the thin accretion
disk model (Shakura & Sunyaev, 1973), for which the temperature and the density at a given
radius scale as

T ∝ Ṁ3/10

(
MBH

M�

)1/4

,

ρ ∝ Ṁ11/20

(
MBH

M�

)5/8

.

(1.2)

Both temperature and density increase with accretion rate. But accretion rates cannot be
indefinitely large. The important concept of Eddington accretion rate, ṀEdd is introduced:
it is the limit above which accretion does not occur without outflows. If gas flows towards
a black hole at a faster rate than ṀEdd, we should expect disk winds. These outflows may
transport the nucleosynthesis products to the interstellar medium (ISM).

Chapter 4: I model nucleosynthesis in a thin accretion disk, and investigate its effective-
ness for various ranges of black hole masses and accretion rates. In particular, I focus on the
systems with temperatures allowing the production of elements heavier than helium, because
production of light elements is not expected to be competitive against stellar feedback (ele-
ments released through stellar winds). I find restrictive thermodynamical conditions which
can be reached in particular systems only. Super-Eddington accretion rates, of the order
of > 106ṀEdd for stellar black holes, are needed to provide the temperatures favourable to
nucleosynthesis. The accretion rate is roughly determined by the density of the material from
which the black hole accretes. In the case of an accretion disk provided by a companion star
in a binary system, such high rates are reached in unstable mass transfers. They can be
provided by a close binary system with a short period (P < 1h), composed of a stellar mass
black hole and a white dwarf, defining an ultra compact X-ray binary (UCXB). This chapter
focuses on the physical processes involved in nucleosynthesis in accretion disks. Technical
details about the program I wrote are available in appendices.
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CHAPTER 1. INTRODUCTION

Chapter 5: The system black hole–white dwarf is studied in detail. I simulate an alpha
chain reaction network, which consists of successive captures of helium nuclei, in a simple
code I wrote. I compute the composition of the disk and the mass of new elements produced
and expelled in winds. I investigate the effect of the black hole mass, the accretion rate, and
the initial composition of the accretion disk on the production of heavier elements.

Chapter 6: I use literature to understand how black hole–white dwarf systems which trans-
fer material form, and at which rate they form. A black hole colliding with a red giant star
can become bound to the core of the red giant, and the newly formed binary system can lose
energy to the envelope. This scenario might result in a tight black hole–white dwarf binary
system, and such collisions are more likely to happen in globular clusters than in the Galactic
field. In the field, the most likely formation channel is the evolution of a system which was
already born as a binary.

Chapter 7: Other systems of interests are discussed in this chapter, such as Bondi accretion
onto primordial black holes, and neutron capture reactions in systems created by the merger
of two neutron stars, leading to a black hole surrounded by a neutron-rich disk. The first
scenario is interesting because if, in the early universe, accretion disks around primordial
black holes do host nucleosynthesis and do enrich the ISM, this could induce the first stars,
or the stars of the next generation to contain more metals, influencing their evolution. The
later scenario is under current research (Wu et al., 2016) and is a proposed scenario for short
gamma ray bursts and the enrichment of metal poor stars in r-process elements.

Chapter 8: I find in the literature stellar production of elements. Carbon comes mainly
from the third dredge up, after the asymptotic giant branch phase of stellar evolution of low
mass stars. In this phase, convection brings to the surface helium, carbon and elements from
slow neutron capture processes. Heavier elements are released by massive stars as they die in
a supernova explosion. Assuming an initial mass function and a star formation rate, I worked
out the relative production rate of black hole – white dwarf systems and stars releasing the
same elements as these systems. Finally, I inferred the relative contribution of black hole –
white dwarf systems and stars to the enrichment of the ISM.

7



Chapter 2

Nucleosynthesis physics

Nucleosynthesis is the production of chemical elements through nuclear reactions. These
reactions are very dependant on the temperature and on the density, because they consist in
getting positively charged nuclei, undergoing Couloumb repulsion, close enough to react. In
this chapter, I describe the conditions to meet for nucleosynthesis to happen and the physical
principles involved. I explain why it occurs during the Big Bang and in stars and describe
their role in producing the isotopic content of the Universe today. If high densities and high
temperatures can be met in others systems, such as accretion disks, viscously heated, then
they must have an additional effect of the content of the ISM.

2.1 Nuclear reactions

Nuclear reactions involve interactions between the nucleons which compose the nucleus: pro-
tons and neutrons. Protons are positively charged. The charge of a nucleus X is written Z
in units of elementary charge. The number of nucleons is written A. Writing A

ZX gives all the
information of the isotope X. Isotopes of the same element can exist with different numbers of
neutrons, but not all combinations are stable: the number of protons and neutrons generally
tend to be the same in stable nuclei. The question of stability of nuclei brings the concept
of binding energy from the strong interaction. This is the amount of energy one has to pro-
vide to completely unbind the system (i.e. separate completely all protons and neutrons in
a nucleus). The binding energy corresponds to a mass difference between the sum of masses
of all components of the nucleus and the mass of the bound nucleus. In nuclear reactions, if
the measured mass of the products is different from the measured mass of the reactants, the
system must have exchanged energy with its environment as:

∆E = ∆mc2, (2.1)

which is the formula established by Einstein in his theory of special relativity in 1905. If the
products of a nuclear reaction are less bound than the reactants, the reaction is qualified of
exothermic: the equivalent amount of energy to ∆E is emitted in radiation. If the difference
of energy is positive, the reactions takes ∆E from its environment.

Unstable nuclei decay in different processes: β+ with emission of a positron when the
number of protons dominates neutrons, β− with emission of an electron when the number
of neutron dominates protons, α with emission of a helium nucleus, typical for heavy nuclei.
These reactions are described respectively as follows:

8



2.1. NUCLEAR REACTIONS CHAPTER 2. NUCLEOSYNTHESIS

Figure 2.1: Schematic view of the reaction described by Equation 2.5. A flux of projectiles
A towards targets of a different species B where NA and NB are the number density of each
species A and B. The total number of pairs is NANB.

A
ZX −→A

Z−1 Y + e+ + ν (2.2)

A
ZX −→A

Z+1 Y + e− + ν̄ (2.3)

A
ZX −→A−4

Z−2 Y +4
2 He (2.4)

These reactions are spontaneous when there exists a state of lower energy available to the
nucleus.

Nuclear fission is a nuclear reaction in which the produced elements are lighter than the
reactant. It can be a spontaneous decay of a heavy element or a reaction between several
nuclei. Spallation is the breaking of a nucleus when hit by an energetic particle, for example
a proton or a neutron.

Nuclear fusion consists in the merging of several nuclei to form a heavier nucleus and
possibly other smaller products. The nucleons forming a nucleus are bound through the short
range, attractive, strong nuclear interaction. To involve this type of interaction to build a new
heavy nucleus, the nuclei need to become very close due to the short range interactions. But
they are repelled from each other because of the repulsive Coulomb interaction decreasing as
the inverse square of the distance r between the two particles. A fusion of two reactants A
and B producing C and D (as in Figure 2.1),

A + B −→ C + D, (2.5)

has a given probability to happen at each instant (or happens at a certain rate).
The probability of reaction of a pair of different nuclei A and B is directly linked to

the collision probability at relative velocity v between the the particles A and B: NANBσv,
where Ni is the number density of particles i, σ is the cross section and has the dimensions
of a surface. The product NANB is the number of pairs A–B. The relative velocity has
a Maxwellian distribution, and the total reaction rate is the sum over all possible relative
velocities. It is equal to

9



2.1. NUCLEAR REACTIONS CHAPTER 2. NUCLEOSYNTHESIS

rAB = [number of particle pairs]× [reaction rate per pair], (2.6)

rAB = NANB〈σv〉AB, (2.7)

where the notation 〈x〉 stands for the mean value of x, here 〈σv〉AB is the reaction rate per
particle pair. The cross section σ characterises the interaction between the two nuclei. This is
a combination of the electrostatic repulsion, tunnelling effect, and intrinsic properties of the
nuclei. We can give arguments for different terms involved in the cross section. Approximating
the two nuclei as non interacting solid spheres, the probability of collision is proportional to
the cross section σ = π(RA +RB)2, where Ri is the geometrical radius of a particle i. But at
the scale of a nucleus size, the cross section is calculated in a quantum mechanic formalism
with the de Broglie wavelength: ∝ πλ2 ∝ 1/E. The electrostatic repulsion is characterised
by the potential

V =
1

4πε0

ZAZBe
2

r
. (2.8)

Gamow (1928) showed that two particles with a relative velocity v have a probability P to
penetrate each other’s Coulomb repulsion which goes as

P ∝ exp(−2π
ZAZBe

2

~v
) ∝ exp(−b/

√
E) (2.9)

due to tunnelling effect, with b =
√

2mpπe
2ZAZB/~. Nuclei need to get close and penetrate

this electrostatic repulsion in order to react. The probability of reaction may therefore be
proportional to this penetration factor P . Finally, intrinsic properties of the nuclei (such as
possible resonances) are determined by the astrphysical S factor S(E), which varies slowly in
function of energy in absence of resonances. From all the above reasoning, the cross section
is defined as

σ(E) =
S(E)

E
exp(−b/

√
E), (2.10)

with a 1/E dependence coming from the de Broglie wavelength component of the cross section,
and the exponential term from the tunnelling effect.

The reaction rate will then be integrated over the whole gas properties. We know the
probability of reaction for a given relative velocity between two particles, or equivalently for
a given energy. In a gas this needs to be integrated over all possible energies the gas can
have at a temperature T . Assuming a relative velocity with a Maxwellian distribution (no
direction privileged), the reaction rate is

rAB = NANB〈σv〉AB = NANB

∫ ∞
O

√
8

µπ

1

(kT )3/2
S(E) exp

(
− E

kT
− b√

E

)
dE. (2.11)

With S(E) varying slowly with the energy, S(E) ≈ S0, and using the method of steepest
descend (or Laplace method) to get an approximate of the integral gives

rAB = NANB

√
8

µπ

S0

(kT )3/2
exp(−E0

kT
− b√

E0
)

∫ ∞
0

exp

(
−3

4

1

E0kT

(E − E0)2

2

)
dE, (2.12)

where all we have done is approximating the exponential term as a Gaussian function in order

to be able to integrate it, with a common maximum to the exponential term at E0 =
(
bkT

2

)2/3
10



2.1. NUCLEAR REACTIONS CHAPTER 2. NUCLEOSYNTHESIS

and of width ∆ = 4√
3
(E0kT )1/2. This can be done because only the points around the

maximum participate significantly to the integral, and this method corresponds to perform
a second order Taylor expansion of the term in the exponential. To show how temperature-
dependent this integral is, we can evaluate it roughly (keeping in mind that I will use the
results of more accurate methods in the present work when it comes to actually use reaction
rates in accretion disks).

rAB ≈ NANB

√
8

µπ

S0

(kT )3/2
exp

(
−E0

kT
− b√

E0

)√
8πE0kT

3
, (2.13)

Rearranging,

rAB ≈ NANB

√
8

µπ

S0

(kT )3/2
exp

(
−3E0

kT

)√
8πE0kT

3
, (2.14)

We see from this that reaction rates are extremely temperature dependant. It is responsible for
the differences of reaction speeds at different temperatures. The temperature is therefore going
to play a major role in the present work. In practice, the cross sections and the astrophysical
S factor are either computed numerically or measured in experimental laboratories. The later
being very challenging in most cases (some rates provided for neutron reactions for example),
astrophysicists working with nuclear reaction often have no other choice than using the cross
sections predicted by theory and integrated numerically. The results give a certain number
of data points for 〈σv〉 for different temperatures. The cross sections are then interpolated
in different exponential and power laws for completeness. This gives a direct analytical
expression to use in order to find a reaction rate for a given reaction, which will be very
useful in Section 5.1.

The reaction rate of a given reaction tells how fast this reaction happens and is thus linked
to the production rate of new elements. In the reaction in Equation 2.5, one nucleus of species
A reacts with one nucleus of species B. We say, for terminology, that A and B are burning
(not to confuse with the chemical reactions in combustion).

A different reaction to consider than the one described by Equation 2.5 is the following
reaction, described in Figure 2.2.

A + A −→ C + D. (2.15)

In that case, the two particles reacting are of the same species. Another description of the
same reaction is

2A −→ C + D. (2.16)

The number of pairs of particles here is NA×(NA−1)
2 ≈ N2

A
2 as NA is large because nuclear

reactions occur in dense environments. And the factor two in the denominator appears be-
cause in this reaction, projectile and target are not differentiable, so we should avoid counting
the same pair twice. The corresponding reaction rate is

rAB =
N2

A

2
〈σv〉AA, (2.17)

More generally, if instead of two particles A reacting, there were three of them (triple reaction):
3A −→ C + D, again projectiles and targets would not be differentiable, so a factor 6 would
appear in the denominator (6 possible permutations of projectile/target): the same reaction
of the same triplet could occur in six different orders: (123),(132),(213),(231),(312),(321)).

11



2.1. NUCLEAR REACTIONS CHAPTER 2. NUCLEOSYNTHESIS

Figure 2.2: Schematic view of the reaction described by Equation 2.16 where the projectile
nuclei and the target nuclei are of the same species, and the number of pairs that can react
is approximately N2

A/2.

Some reactions may involve a different fraction of each species. More generally,

aA + bB −→ cC + dD (2.18)

where a, b, c and d are the number of each nucleus of each species involved in the reaction.
The rate at which this reaction occurs is denoted rAB. It is the probability per unit time that a
nuclei A react with b nuclei B. This probability is the ratio of ”number of outcomes which make
the event occur” and the ”total number of possible outcomes”. As two particles of the same
species are identical, they are not labelled, there exist a!b! different configurations of reaction
involving the same particles and giving the same outcome, where x! = x(x − 1)(x − 2)....
In a formalism of probability theory, this is the number of all possible permutations. If
nuclei were differentiable, rAB would correspond to the sum over all individual probabilities.
Independently from the reaction configuration, once a reaction has occurred, the particles
which were involved in the reaction have reacted once, not a!b! times. Therefore, the rates at
which the species A and B burn are respectively

ṄA = − a

a!b!
NANB〈σv〉AB, (2.19)

,

ṄB = − b

a!b!
NANB〈σv〉AB, (2.20)

while the new elements C and D are produced at a rate

ṄC =
c

a!b!
NANB〈σv〉AB, (2.21)

ṄD =
d

a!b!
NANB〈σv〉AB. (2.22)

Due to the dependence of rAB on NA and NB, the two first equations are differential equations.
Due to the exponential dependence on the temperature, they are called ”stiff” differential
equations. Repeating this reasoning on a complete ensemble of nuclear reactions leads to a
set of differential equations called a nuclear network. This is going to be described in the
following section.

12
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2.2 Nuclear networks

A nuclear network is a set of differential equations describing how fast abundances vary
through nuclear reactions. Until now, we have used for simplicity the number density of
species i, Ni. In a gas of mass density ρ, it is more convenient to work in units of molar
fraction than keeping track of the total number of particles or the partial densities ρi.

The mass fraction Xi and the molar fraction Yi for a nuclear species i are defined as.

Xi =
NiAi∑
j NjAj

=
ρi
ρ
, (2.23)

Yj =
Xi

Ai
=

Ni

ρNA
molg−1, (2.24)

where Ai is the number of nucleons in the nucleus, but also the molar weight in g/mol of a
species. NA is the Avogadro number. The differential equation 2.19 becomes

ẎA = −YAYBρ
a

a!b!
NA〈σv〉AB. (2.25)

It quantifies how fast the molar fraction of A varies if A only reacts with B, the reaction 2.18.
But A may be involved in more reactions with other elements. How many more reactions burn
A? Of these, is there any reaction that can be neglected? The reaction rates are actually so
temperature dependant that at a given temperature, they differ of many order of magnitude,
leaving a few dominating. Therefore, where a given set of reactions takes place, a lot more
reactions are negligible. I am going to use this argument in the rest of this thesis to model
nucleosynthesis and choose which reactions to include when it comes to building a simple
nuclear reaction network. Examples of two reactions in two different networks (pp chain
(proton proton chain) and CNO cycle (carbon nitrogen oxygen cycle)) burning the same
elements, hydrogen to helium are given in Figure 2.3. Depending on the temperature, several
orders of magnitude separate the two, which makes one completely dominating the other. It
seems then appropriate to neglect the slowest reaction.

I am now going to describe a few reaction networks important in an astrophysical context:
the pp-chain, CNO cycle and alpha chain. As explained, the high dependency on temperature
allows us to sort different types of nuclear networks, depending on the temperature range.
At temperatures lower than 107K, nuclear fusion does not occur significantly. There is no
way to vanquish Coulomb repulsion. But above approximately this temperature, the lightest
elements, such as hydrogen, (which contain less positive charges) can undergo fusion. The
reactions occurring at the lowest temperatures are involved in the pp-chain. The set of
reactions involved is: 

p+ p −→ d+ e+ + νe + γ

d+ p −→ 3He + γ
3He +3 He −→ 4He + 2p
4He +3 He −→ 7Be + γ
7Be + e− −→ 7Li + ν
7Li + p −→ 24He
7Be + p −→ 24He + e+ + ν + γ

(2.26)

The first of these reactions is extremely slow (about 1010yr, (Prialnik, 2010)) as it requires a
proton to transform into a neutron while colliding with another proton, which is unlikely.
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Figure 2.3: Reaction rates for two different reactions in function of temperature, with T9 =
T/109K. The first steps of the pp-chain (red line), and the CNO cycle (blue dashed line)
are plotted. Both networks burn hydrogen in helium. At low temperatures, the dominant
reactions are pp-chain reactions, whereas at higher temperatures they are negligible (many
order of magnitude lower) compared to the CNO cycle.

The CNO cycle involves a succession of proton captures (the nucleus catches a proton,
seeing its charge Z and atomic number A increase of 1) by carbon and nitrogen and β+

decays of unstable nitrogen and oxygen. Without changing the quantities of C, N and O, it
transforms hydrogen into helium. The difference with the pp-chain is that it is more effective
at higher temperatures.

The alpha chain is a repetition of capture of helium nuclei. This is an important reaction
network as it produces heavier elements, as described by the diagonal network in Figure 2.4
(the two right angle lines describe other reactions, carbon and oxygen burning). The ideal
temperature range for alpha reactions is approximately [5× 108, 1010]K.

The networks described above have a common point: isotopes are involved in multiple
reactions. The variation of the molar fraction of an isotope will therefore be a sum of the
rates over all the reactions in which it plays a role, either as a reactant or a product. More
generally, an element A reacting with the species i and being produced by other species j and
k satisfies the differential equation

ẎA = −
∑
i

ρYAYi〈σv〉Ai +
∑
j,k≥j

ρYiYj〈σv〉jk. (2.27)

Each of the terms corresponds to a specific reaction. All the reactions have a different temper-
ature dependency, but the rates still vary very fast with temperature. This point is extremely
important because it is responsible for a numerical challenge in the integration of these dif-
ferential equations, qualified of ”stiff”. The numerical treatment to solve such equations is
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Figure 2.4: Alpha chain network. Atomic number A in function of the atomic charge Z of
elements. Each element is produced by the reaction of the closest element of lower mass with
an alpha particle, except for the following cases: the first step from helium to carbon occurs
through the triple alpha reaction involving three helium nuclei fusing together. Carbon also
reacts with itself, producing magnesium. Oxygen, when reacting with itself, produces silicon.

described in detail in the Appendix A. There are as many different differential equations as
species involved in the nuclear network. For example, 13 isotopes are involved in the network
describing the alpha chain in Figure 2.4, so there is a set of 13 differential equations describing
the evolution of such systems.

2.3 Big Bang

Current cosmology theories agree on that the Universe used to be hotter and denser than it
is now. In 1929, Edwin Hubble measured the redshift of galaxies, giving their radial velocity
with respect to us and their distances (Hubble, 1929). Lundmark also did in 1925 (Lundmark,
1925). They found that the velocity increases with the distance which separate them from
us. These observations together with the cosmic microwave background give strong evidence
for a primordial explosion, named Big Bang. During this explosion, the universe was dense
and hot enough for nuclear reactions to occur.

The big bang is characterized by very large temperatures and densities, but they are
decreasing very fast with time t(s), as
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T9 = 13.8t−1/2K (2.28)

ρ = 3.3× 104ηT 3
9 g/cm3, (2.29)

where η is the baryon to photon ratio (e.g. MacDonald & Mullan, 2009).
Starting with protons and neutrons emerging from the primordial quark soup, the equilib-

rium between protons and neutrons is provided by protons forming neutrons through collisions
between electrons and neutrinos, while neutrons decay into protons. When the density de-
creases, the neutrinos decouple and the balance is not maintained: the neutrons decay faster.
But we still find neutrons today. Not all of them decayed. When they are bound in an atomic
nucleus, they are more stable. The first nucleus to be synthesised during the Big Bang is
the deuterium, composed of a proton and a neutron, saving the neutrons which will build
heavier elements. Later are synthesised isotopes of helium, lithium, beryllium and boron
(Vangioni-Flam et al., 2000). Then, density and temperature are too low to build more ele-
ments. Fortunately, gravitation will help supplying denser and hotter environments in objects
such as stars.

2.4 Stars

After the Big Bang, at a redshift of about z = 20 (Schneider, 2015), the first stars form.
Emerging from clouds of gas which underwent self gravitational collapse, they are subject to
their own gravity and supported by gas pressure. The temperature in their core is very high
and allows nuclear fusion. Through their evolution, stars undergo different burning stages:
main sequence, where they spend most of their life time with hydrogen burning slowly in the
core, then hydrogen burning in a shell, red giant branch, core helium burning, and finally
heavy elements burning, up to iron for the most massive stars. As star form from the self
gravitational collapse of a gas cloud, the first stars have the same composition as the material
they were formed of: the big bang elements, hydrogen and helium.

During the main sequence, hydrogen burns in helium through two processes: the pp
chain and CNO cycle, one dominating the other in function of the temperature of the stellar
core, i.e. depending on the mass of the star, see Figure 2.3. The life time of a star on the
main sequence is ∝ M−2. Low mass stars spend a very long time on the main sequence
whereas massive stars evolve faster because their cores are hotter, so nuclear fusion is more
rapid. Old stars have low mass, and their composition reflects the composition of the past
universe. They are metal poor. Helium burning starts when hydrogen in the stellar core is
exhausted. The core contracts and heats, allowing the next burning stage (helium burning)
to take place. Carbon is produced in the core from the triple alpha reaction, which is the
step from helium to carbon in Figure 2.4. Oxygen is produced as well. The mass of the
star determines the next processes: low mass stars, due to their limited core temperature,
cannot go on the next burning stages and become white dwarfs, containing mainly carbon
and oxygen. Massive stars burn carbon and oxygen and produce heavier elements. Stars
more massive than about 8M� end their lives in a core collapse supernova. They synthetised
heavy elements up to iron, the most stable element. During this energetic explosion, more
nucleosynthesis happens: most of the core elements are photodisintegrated and produce a lot
of neutrons, active in s- and r-processes which produce elements heavier than iron. Whether
s- and r- process elements observed today come from supernovae or other processes is not
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well known. The ejected material is released to the ISM. In particular, the outer layers of
the star, containing all the products of the stellar nucleosynthesis are expelled. The aim of
the current thesis is to see how accretion disks around black hole could compete against such
enrichment. A direct consequence of stellar evolution is that since the composition of the
atmosphere of a main sequence star keeps traces of the medium in which the star was born,
the first generation stars and the next generation stars do not have the same composition
(abundances in elements). While the first generations are metal poor, younger stars contain
more heavy elements released by the former stellar generations, and are metal rich.
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Chapter 3

Accretion disks physics

Does nucleosynthesis happen in accretion disks? To answer this question, we need to know
what determines the temperature and the density in accretion disks. What is the physics
involved in accretion disks and what heats them? In this chapter, I explain qualitatively and
quantitatively what makes an accretion disk hot and dense, based on Frank et al. (2002). A
key to high density and high temperature in accretion disks is the compactness of the central
object, because of the tidal forces it provides, leading to large differential velocities responsible
for viscous heating. I show the derivation of the equations of the disk model I used, namely
the Shakura & Sunyaev (1973) disk model. This knowledge on disks will help us to answer
the nucleosynthesis question in the next chapter.

3.1 Accretion physics

We saw in the previous sections that nuclear reactions take place in hot environment. We
described the origin of high temperatures during the Big Bang (initial explosion) and in stars
(virial temperature). Another mechanism increasing the temperature is the dissipation of
mechanical energy energy into heat. This process happens in accretion disks through viscous
dissipation. We observe this process in X-ray binaries, containing a star transferring mass to
its neutron star companion, to which it is gravitationally bound. Material from one star flows
onto the other. As it generally has angular momentum, the material first forms a disk and
then accretes onto the other star. The inner disk is heated such that the corresponding black
body peak (wavelength at which the thermal emission of radiation is maximum) is located in
the X-ray. This heating can be quantified: the gas orbiting an accreting object undergoes a
differential rotation: the gas closer to the central object rotates faster than the gas further,
exerting torques. A general description of accretion disks can be obtained from mass and
angular momentum conservation laws.

A first approximation of gas orbiting a central object of mass M , from a distance R, is to
assume it has a Keplerian angular velocity Ω = ΩK, which means no other forces than gravity
are exerted on the gas

Ω =

√
GM

R3
, (3.1)

where G the gravitational constant. Mass conservation in the disk is expressed with the
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surface density Σ = ρH where ρ is the mass density and H is the scale-height:

R
dΣ

dt
+

∂

∂R
(RΣvR) = 0, (3.2)

with vR the radial velocity of the gas, characterising the accretion. Angular momentum is ex-
changed between neighbouring disk rings because viscous torques T originate from turbulent
motion characterised by a random velocity ṽ on a length scale λ in the disk. Turbulent mo-
tion leads disk particles to move radially and transport their angular momenta J at another
radius. If we consider a ring of gas, there will be on average a flux of angular momentum,
from both the outer ring and the inner ring, with each ring characterised by its own an-
gular momentum. The flux of angular momentum J from the outer ring to the inner ring
will be dJ

dt = J̇ = 2πRρṽHR2Ω. The net flux from each side of this ring can be written

as J̇net = 2πRρṽHR2 dΩ
dRdR. And as this happens on the typical scale λ, we finally have an

expression for the torque:

T (R) = J̇ = 2πRρṽHR2λ
dΩ

dR
. (3.3)

The quantity ν = λṽ is the kinematic viscosity. The final expression for the viscous torques
is therefore given by

T (R) = 2πRνΣR2 dΩ

dR
. (3.4)

We can now write the angular momentum conservation equation. This is the same equation
as for mass conservation, but the presence of a torque induces a change in angular momentum:

R
∂

∂t
(ΣR2Ω) +

∂

∂R
(RΣvRR

2Ω) =
1

2π

∂

∂R
(2πR3Σν

dΩ

dr
) =

1

2π

∂T
∂R

. (3.5)

If one develops this expression, simplifies it using the mass conservation equation above,
assuming a Keplerian orbital velocity, and inserting the expression for the viscous torques
T (R), one finds

R
∂Σ

∂t
= − ∂

∂R
(RΣvR) = − ∂

∂R

(
1

2π(R2Ω)′
∂T
∂R

)
, (3.6)

where x′ = dx
dR . The radial derivative of the torque is

∂T
∂R

= −3π
∂

∂R
(νΣR2

√
GMR) (3.7)

So the mass continuity equation becomes

∂Σ

∂t
=

3

R

∂

∂R

(√
R
∂

∂R
(νΣ
√
R)

)
(3.8)

This equation is very general and represents the evolution of the disk surface density. It is
solvable analytically in a certain number of different conditions, explained in the next section.

The radial velocity due to viscous dissipation is

vR =
3

Σ
√
R

∂

∂R
(νΣ
√
R). (3.9)

In addition to the gas dynamics going on in the disk, interaction between electromagnetic
radiation and matter plays a major role. Through the viscous processes, the material in
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the disk drifts inwards. Gravitational energy is transformed into heat by dissipation. This
induces heating, responsible for a temperature rise. If all this energy is emitted as a black
body radiation, the disk becomes luminous, with a luminosity equal to the gravitational power
of material accretion. If the central object accretes at a rate Ṁ , the accretion power is

Lacc =
GMṀ

R
. (3.10)

How this energy is transported (radiation, advection) depends on disk models and will be
discussed in the next sections.

Imagining that all this energy is emitted in radiation, we can introduce the useful concept
of Eddington maximum accretion rate. Electrons are affected by electromagnetic radiation
and undergo Thomson scattering. They experience a force σTS/c where σT is the Thomson
cross section, S is the radiation flux and c the speed of light. This force is in the radial
direction and directed outwards, and is proportional to the radiation flux. Let us consider
a disk of which the material is dominated by ionized hydrogen. As electrons are negatively
charged, they drag protons in their motion outwards, through the Coulomb force. At a
given distance from the central object, there exists therefore an electromagnetic flux (or
a luminosity) for which this force will overcome the gravitational force, directed inwards.
There exists therefore a threshold luminosity above which material from the gas will not be
gravitationally bound, and thus not be accreted any more. This limit is called Eddington
Luminosity, and one finds it by equating the gravitational force inwards to the radiation

pressure force outwards: σTLEdd
R2 = GMṀ

R2 . The luminosity threshold is therefore equal to

LEdd =
4πGMmpc

σT
. Luminosities greater than this limit are qualified of ”super-Eddington”.

Although many assumptions were made to describe the Eddington Luminosity, this reasoning
is of particular importance to argue about outflows. If the systems considered in the next
chapters have super-Eddington accretion, then one should expect outflows from the disk.
These outflows depend on the opacity of the material when the disk is not made of protons
and electrons only.

Equating the accretion power Lacc to the Eddington luminosity LEdd, we find an accretion
rate threshold, the Eddington accretion rate:

˙MEdd =
4πR∗mpc

σT
, (3.11)

where R∗ is the central object radius, mp = 2×10−27kg, c = 3×108ms−1, σT = 7×10−29m2.
A higher accretion rate is thought to power winds. Material cannot be accreted faster onto
the central object. Observational evidence for outflows powered by super Eddington accretion
is provided for the black hole system SS433, discovered by Stephenson & Sanduleak (1977),
with supercritical accretion leading to powerful winds (Fabrika, 2004).

When the central object is a black hole, the surface is not well defined and we estimate
the gravitational potential energy loss from infinity to its event horizon radius (which is
the Schwarzschild radius in the Schwarzschild metric, for non rotating black holes) RSCH =
2GMBH
c2

. This radius defines the distance from the black hole centre where the escape speed is
the speed of light. Not all the gravitational energy will necessarily be radiated, some could be
retained by the black hole. Therefore, we introduce the factor η which quantifies the fraction
of energy radiated. It usually takes the value 0.1 (Frank et al., 2002).

L = η
GMṀ

RSCH
(3.12)
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The Eddington accretion rate is therefore

ṀEdd =
4πGMBHmp

ησTc
≈ 2× 10−8mBHM�yr−1 (3.13)

where mBH is the black hole mass in units of solar mass.

3.2 Steady accretion disk models

To describe an accretion disk analytically, the previous equations need to be simplified. Sim-
plifications consist in identifying which physical processes dominate in different regimes, and
assume other processes can be neglected. Several simplifications exist in the literature, leading
to different models. Three of them are introduced quickly below.

3.2.1 Thin, or Shakura-Sunyaev model

This disk model was developed by Shakura & Sunyaev (1973), and describes a geometrically
thin disk (small scale height H), neglecting pressure forces. In this model, gas loses angular
momentum according to a viscosity prescription such that λ, the typical scale for turbulent
eddies, is less than the scale height H of the disk, and the typical velocity of these turbulent
eddies ṽ is less than the sound speed cs of the disk material. As a result, it is written that the
viscosity is ν = αcsH where α is a constant less than 1. This prescription permits to solve
the equations above. Additionally, kinetic energy due to this turbulence becomes heat in the
disk, and this heat is re-emitted as a black body radiation.

3.2.2 Slim disk

These disk models are similar solutions to above, except from the energy equation. They
describe super-Eddington accretion better than the thin disks because they take advection of
energy into account whereas thin disks do not (Abramowicz et al., 1988). At high accretion
rates, the drift time-scale becomes shorter than the radiation time-scale. Not all the energy
coming from viscous heating is radiated away. A fraction of it is transported by the material
during its motion.

3.2.3 Advection Dominated Accretion Flows

ADAFS, or Advection Dominated Accretion flows, are completely dominated by advection.
These disk models take into account pressure forces, in particular radiation pressure. The
gas is sub-Keplerian and geometrically thick. The temperature is almost virial. They do not
apply for extremely high accretion rates (Narayan & Yi, 1994).

The three models described in these three sections present disks in different regimes. The
thin disk provides the simplest physics and is what the present thesis is based on. But other
models exist which could describe better other regimes, depending on the accretion rate for
example.

3.3 The Thin disk Model

In this section, I establish the equations used in the accretion disk model which my results will
be based on. The derivation is going to be detailed, following Frank et al. (2002) and Pringle
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(1981) leading to the solution of Shakura & Sunyaev (1973), to allow a deep discussion of the
results and assumptions made later-on. The thin, steady disk is the simplest existing model
and leads to an analytical solution thanks to the alpha prescription. I used in my program
this solution in order to reduce complexity and computational time.

Vertical component: The thin approximation, assuming a Keplerian disk velocity and
that the pressure gradient is vertical, permits the decoupling of vertical and radial structure
of the disk. Therefore, writing the hydrostatic equilibrium in the z direction of cylindrical
coordinates leads us to an expression for the mass density in the disk in function of the
isothermal sound speed cs = P/ρ and the orbital velocity vφ,

ρ(z) = ρc exp

(
− z2

2H2

)
, (3.14)

where the scale-height is such that H2 = c2
s
R3

GM∗
= R2c2

s/v
2
φ.

Mass and angular momentum conservation laws If the disk parameters change slower
than changes affect the disk structure (time-scale of radial inflow), then an assumption of
steady state (cancelling time derivatives) is a good approximation. The term RΣvR is then
constant in Equation 3.2 and defines a steady accretion rate characterizing mass conservation:

Ṁ = 2πRΣvR, (3.15)

where Ṁ is the accretion rate, the flow of mass through a surface of constant radius. The
angular momentum conservation Equation 3.5 can be integrated over the radius as

RΣvRR
2Ω =

T
2π

+
C

2π
= R3Σν

dΩ

dR
+
C

2π
, (3.16)

where T is the viscous torque exerted on the disk, and the constant C characterises the torque
exerted by the central object onto the inner edge of the accretion disk. In the example of a
possibly rotating star as a central object, the material at the surface of the star rotates slower
than its Keplerian angular velocity. If further from the star, the disk material is Keplerian,
then it will need to slow down before reaching the star surface (for continuous boundary
conditions). If this happens at radius rslow, then

dΩ

dR
(rslow) = 0. (3.17)

We can use this argument in Equation 3.16 to find

ΣvRΩ(rslow)r3
slow =

C

2π
, (3.18)

which gives us an expression for C. If this boundary layer between the star surface and rslow

is thin, then rslow ≈ R∗ and we may rewrite C as

C = 2πΣvRΩK(R∗)R
3
∗, (3.19)

where ΩK stands for the Keplerian rotation velocity. Using the continuity equation 3.15 for
the accretion rate, this can be rewritten as

C = −Ṁ
√
GMR∗. (3.20)
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The angular momentum conservation equation 3.16 is finally

− νΣ
dΩ

dr
= −ΣΩVR −

Ṁ

2πR3

√
GM∗R∗. (3.21)

If the gas rotates at a Keplerian velocity, then Ω = ΩK =
√

GM∗
R3 and we can rearrange this

equation as the viscous surface density equation:

νΣ =
Ṁ

3π

(
1−

√
R∗
R

)
. (3.22)

Energy equation: The thin disk model assumes that heating of the disk comes from viscous
dissipation, and that the cooling mechanism is emission of radiation, close to black body. The
energy production term is noted as Qvisc and the cooling term Qrad. The viscous dissipation
rate responsible for the heating process is provided by the work of the viscous torque given
by

Ω
∂T
∂R

dR =

(
∂

∂R
(T Ω)− T dΩ

dR

)
dR. (3.23)

The local rate of energy loss per unit surface D corresponds the second term in the parenthesis
T dΩ

dRdR = 2 × 2πRD(R)dR, where the factor 2 comes from the presence of two sides of the
disk. Therefore, the dissipation rate per unit surface is

D(R) =
T

4πR

dΩ

dR
=

9

8
νΣ

GM∗
R3

. (3.24)

where we assumed a Keplerian disk for the last equality. We can use 3.22 to replace νΣ and
completely determine the dissipation rate as a function of central body mass, accretion rate
and radius:

D(R) =
3GM∗Ṁ

4πR3

(
1−

√
R∗
R

)
. (3.25)

The energy loss per unit surface through one face of the disk is:

Qvisc = D(R) =
3GM∗Ṁ

8πR3

(
1−

√
R∗
R

)
. (3.26)

The cooling term by radiation is given by the flux of electromagnetic radiation through an
horizontal surface (z constant in cylindrical coordinates). Integrated from the mid plane
(z = 0) to one face of the disk, it is

F =
4σ

3τ
T 4

c = Qrad (3.27)

with σ is the Stefan-Boltzmann constant, τ is the optical depth of the gas in the mid-plane
and Tc is the mid-plane temperature. If these are the mechanisms of energy transfer, then we
can write Qvisc = Qrad and find

4σ

3τ
T 4

c =
3GM∗Ṁ

8πR3

(
1−

√
R∗
R

)
. (3.28)
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Equation of state (EOS): The equation of state relates the thermodynamical variables
P , ρ, T to each other. The force contributing to the pressure are normally the gas pressure
Pgas = ρkT

µmH
, where k is the Boltzmann constant, µ the molecular mass, mH the mass of

hydrogen and the radiation pressure. The radiation pressure term is neglected in the present
model (Shakura & Sunyaev, 1973): P = Pgas. This assumption is part of the thin disk
approximation: as we neglect pressure coming from radiation, we assume the gas is optically
thick, comforting the near black body assumption.

Opacity law and α prescrition: The optical depth τ is defined as τ = ΣκR where κR

is the mean Rosseland opacity. It is an average over the wavelength. We therefore neglect
variations of opacity with the wavelength and assume the disk material reacts identically to all
wavelengths. If the opacity is dominated by ionization of atoms (bound-free absorption) and
by free electron scattering (free-free absorption), then Kramer’s law for opacity is adopted:

κR = 5× 1024ρT−7/2cm2g−1 (3.29)

For the viscosity, the thin model uses the Shakura & Sunyaev (1973) prescription. As written
in Section 3.1, the kinematic viscosity is ν = λṽ where λ is a characteristic scale for the
turbulence (size of turbulent eddies), and ṽ is the velocity of random motions. The argument
of Shakura & Sunyaev (1973) is that the size of the turbulent eddies should not be greater than
the scale height of the disk: λ < H and that in the absence of shocks, the turbulent motion
velocity should not be greater than the sound speed: ṽ < cs. Therefore we can constrain the
product of these two quantities giving kinematic viscosity as

ν = λṽ < Hcs, (3.30)

so we can introduce the dimensionless paramter α < 1:

ν = αcsH. (3.31)

Another approach of this parametrisation is that locally, the problem is not dimensional:
looking at Equation 3.4, the torques per unit volume depend only on the orbital angular
velocity Ω: the torque density is equal to 3

2ρνΩ, (Brandenburg et al., 1995), hence the scaling
with α.

Disk radial structure: All the above equations permit to find an analytical solution for
the radial structure of the disk. Taking Equation 3.28 and doing some algebra using the
expression of the previous paragraph for the optical depth and the EOS, using Σ = ρH,
H/R = cs/vφ and cs =

√
kT/(µmp), we find a relation between the surface density and the

temperature.

T = D(R)1/8Σ1/4M
1/16
∗ R−3/16A−1/8 (3.32)

with A = 5σ
3×5×1020

√
k

Gµmp
. Injecting this expression in Equation 3.22 and using ν = αcsH

and the expression for H as above,

Σ5/4 =
Ṁ

3π
f7/2α−1CB−1/8A1/8M

1/16
∗ R−15/16G1/2, (3.33)
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where we named the constants B = 3H
8π , C =

µmp

k and f =

(
1−

√
R∗
R

)1/4

. The surface

density is now completely determined as a function of central object mass, accretion rate, α
and radial position. Replacing the constants A, B and C by their expression, one finally gets

Σ =

[
4× 8σ

3× 3× 3× 5× 1020

]1/10

G1/4
(µmp

k

)3/4
(3π)−7/10M

1/4
∗ Ṁ7/20α−4/5f14/15R−3/4.

(3.34)
Following Frank et al. (2002), we introduce the dimensionless quantities m1 = M∗/M� R10 =
R/1010cm and Ṁ16 = Ṁ/1016g/cm3

Σ =

[
32σ

27× 5.1020

] 1
10

G
1
4

(µmp

k

) 3
4

(3π)−
7
10m

1
4
1M

1
4
�Ṁ

7
20

16 (1013)
7
20α−

4
5 f

14
15R

− 3
4

10 (108)−
3
4 . (3.35)

Replacing all constants by their numerical values and taking the mean molecular weight
µ ≈ 0.615 (ionized solar-like composition) gives the expression for the surface density in
Equation 3.36. Injecting this expression into the temperature Equation 3.32 gives directly
the temperature. The scale height H follows directly. The midplane density ρ = Σ/H. The
radial drift velocity is deduced from the mass conservation Equation 3.15.

Σ = 5.29α−4/5Ṁ
7/10
16 m

1/4
1 R

−3/4
10 f14/5 g/cm2

H = 1.7× 108α−1/10Ṁ
3/20
16 m

−3/8
1 R

9/8
10 f

3/5 cm

ρ = 3.1× 10−8α−1/10Ṁ
11/20
16 m

5/8
1 R

−15/8
10 f11/15 g/cm3

Tc = 1.4× 104α−1/5Ṁ
3/10
16 m

1/4
1 R

−3/4
10 f6/5 K

τ = 190α−4/5Ṁ
1/5
16 f4/5

ν = 1.8× 1014α4/5Ṁ
3/10
16 m

−1/4
1 R

3/4
10 f

6/5 cm2/s

vR = 2.7× 104α4/5Ṁ
3/10
16 m

−1/4
1 R

−1/4
10 f−14/5 cm/s

f =

(
1−

√
R∗
R

)1/4

(3.36)

These are the equations governing the thin accretion disk solution. Using them and doing some
algebra, I worked-out useful homology relations. Noting first that the temperature decreases
as the radius increases, we can expect the limiting cases to host nuclear burning at the inner
edge of the disk. It is therefore convenient to write the radius in units of Schwarzschild radii
RSCH, natural limiting scale of the inner disk edge. RSCH ∝ m1. Similarly, as the limiting
case of mass accretion rate is the Eddington limit rate rate ṀEdd, Equation 3.13, it is also
convenient to work in units ofṀEdd. For a given disk viscosity α, the disk temperature scales
as

T ∝
(
MBH

M�

)−1/5
(

Ṁ

ṀEdd

)3/10(
R

RSCH

)−3/4

K, (3.37)

and the density scales as

ρ ∝
(
MBH

M�

)−7/10
(

Ṁ

ṀEdd

)11/20(
R

RSCH

)−15/8

g/cm3. (3.38)
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Figure 3.1: Temperature and density in an accretion disk around a 3M� black hole, with an
accretion rate of 106ṀEdd and a viscosity parameter α = 0.01.

At a given radius, say a few Schwarzschild radii, the temperature increases with increasing
accretion rate and decreasing black hole mass. Same goes for the density. To get a first
idea regarding nuclear reactions, a simple question to consider is: for a given black hole
mass, what order of magnitude of accretion rate is needed for nucleosynthesis to happen? I
worked-out a rough estimate with a black hole of 10M�, which is a common mass, measured
for black holes in X-ray binaries (Özel et al., 2010), and a radius of about 3RSCH. With a
viscosity of α = 10−2 and an arbitrary burning temperature of about 5 × 109K (with these
high temperatures, nucleosynthesis should, if fast enough compared to the accretion, happen
in the disk), then the accretion rate needed is 106ṀEdd. The temperature and density profiles
are plotted in Figure 3.1 in such conditions. This consideration tells us that the temperatures
in the accretion disk can reach ignition temperatures, but the accretion rate is overwhelmingly
large. Such an event is not impossible and is a sign of very powerful disk outflows. We can
already have the intuition that the events hosting nucleosynthesis will happen rarely, for
specific cases only. Favourable conditions are there in principle, but whether burning actually
happens or not will depend on the accretion time-scale as well: does the gas burn faster than
it accretes? This question is treated in details in the next chapter.
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Chapter 4

Which disks host nucleosynthesis?

In this chapter, two theoretical experiments are described. I carried them out in order to de-
termine which systems in general, and which accretion disks in particular, host nucleosynthesis
and should be simulated in detail. Firstly, I determined the two competing, characteristic
time-scales of black hole accretion and nucleosynthesis: the viscous time-scale (Equation 4.1)
and the nuclear burning time-scale (Equation 4.2). With this, I investigated the burning
conditions in the disk of one specific theoretical black hole accretion disk, with a given black
hole mass and a given accretion rate. I studied in detail the evolution of a blob of gas being
accreted and chose to compare the results obtained to the best nucleosynthesis factories we
know for heavy elements: stellar cores. From this simulation, I determined the important
variables necessary for nuclear reactions to happen: temperature and density. Then, I inves-
tigated the burning conditions in a large range of black hole masses and accretion rates; and
determined which pairs (M,Ṁ) are favourable to nucleosynthesis. Finally, I considered the
mechanisms producing these accretion rates, namely
(1) accretion of matter by a black hole from a companion star,
(2) spherical accretion by a black hole inside a gas cloud (Bondi accretion),
(3) accretion disk and black hole formed from the merger of compact objects.
Once these systems were determined, I studied them separately and concluded whether nu-
cleosynthesis could take place or not.

4.1 Time-scales: Nucleosynthesis versus accretion

The density and the temperature of a material determines nucleosynthesis (Chapter 2). In an
accretion disk, nuclear burning is significant only if it burns an important fraction of the disk
material before it gets accreted or leave the disk in winds. There is therefore a competition
between two time-scales: the nuclear burning time-scale, and the accretion time-scale. The
accretion, characterised by a radial velocity, is driven by viscosity. The characteristic viscous
time-scale at a specific radius R is given by R/vR. This is roughly the characteristic time
τvisc it takes the material at radius R to be accreted onto the central object.

τvisc =
R

vR
(4.1)
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The competing mechanism, which changes the composition of the disk Yi (molar fraction of
species i) comes from the nuclear burning.

τburn =
Yi

Ẏi
(4.2)

If the burning time-scale is shorter than the viscous time-scale, then burning occurs faster
than accretion. The material will then undergo nuclear fusion before leaving the disk. The
burning time-scale depends strongly on the temperature of the disk, and on the type of nuclear
reaction. To go further, we need to choose which nuclear reactions to consider.

To be interesting in terms of competition with the abundances in stellar winds, the material
in the disk needs to produce heavy elements such as carbon and oxygen. Heavier elements
production often involves alpha chain reactions. We can therefore investigate the densities and
temperatures needed for reactions such as the triple alpha reaction, carbon burning, oxygen
burning to happen. These temperatures lie around 5 × 108 − 109K. Attaining such high
temperatures by viscous heating will require, from Equation 3.36, super Eddington accretion
rates, probably around 105 − 107ṀEdd. And if these reactions occur, are they fast enough?
Considering that the highest temperatures are located at the inner edge of the disk, we expect
most of the nucleosynthesis to take place there. The inner edge of the disk is defined as the
closest distance to the black hole at which the gas can still have a circular orbit around the
black hole. This is the innermost stable circular orbit (innermost stable circular orbit (ISCO)),
closest distance to the black hole where the effective potential has a gradient equal to zero.
Around a black hole, the effective gravitational potential is relativistic and the innermost
stable orbit is located (for non spinning black holes) at (Schutz, 2009)

RISCO = 6
GMBH

c2 3
RSCH. (4.3)

There, at the super-Eddington accretion rates that we may consider, typical viscous time-
scales are of the order of τ ≈ 10−2s. Nuclear reactions become significant at equality between
burning and viscous time-scales (τvisc = τ). This equality is illustrated for helium, carbon and
oxygen burning by the blue, red and green lines in the temperature-density plane, Figure 4.1.
At temperatures and densities greater than those defined by these three lines, the respective
reactions take place. So where is located an accretion disk on the temperature–density plane?
Where are located the core of stars? To consider these questions, I carried-out a simple
numerical experiment which will be generalised later-on.

Let us consider a simple accretion disk described by Shakura-Sunyaev solution with, as
central object, a 3M� black hole and an accretion rate of Ṁ = 107ṀEdd. Let us follow the
evolution of a blob of gas while it is being accreted, from a radius of R = 150RSCH because
this is where temperatures starts being interesting, around 109K, where heavier elements
burn, see Figure 4.1. These values are arbitrary, I chose them here because they provide
an interesting comparison with stars. An investigation for a much broader range of systems
will be considered in the next section. The gas density and temperature are initially low,
which means the gas blob will starts its journey on the bottom left part of the temperature-
density plane, see Figure 4.1. When the material gets closer to the central black hole while
spiralling in, its temperature and density increase. Using Equations 3.36, I estimated the
slope determining the evolution of a blob of gas through the disk in the ρ− T plane:

log10(ρ) ∝ 2.5 log10(T ). (4.4)
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Figure 4.1: Temperature-density plane. The thick ’plus’ line represents the trajectory of a
blob of gas through an accretion disk in the temperature-density plane. The disk model here
is a 3M� black hole accreting at a highly super Eddington rate of 107ṀEdd. The dashed
line represents the trajectory of the centre of a star of 10M� during its life time. The addi-
tional blue, red and green curves represent the threshold for burning of helium (triple alpha),
carbon and oxygen, in competition with a time-scale of 10−2s, duration between two ’plus’,
corresponding to the viscous time-scale close to the inner edge of the disk. Nucleosynthesis
occurs above the blue line, and on the right of the red and green lines.

Such a line is drawn in Figure 4.1 as a thick line of ’plus’ signs. Regarding stellar interiors,
the nuclear reactions mainly happen in the core of the stars or a shell surrounding it. These
reactions are determined by the temperature and density of the stellar core. During the
evolution of the star, the density-temperature scaling relation follows (Prialnik, 2010):

log10(ρ) ∝ 3 log10(T ). (4.5)

Clearly, even with accretion rates as high as 107ṀEdd, the density of the disk is low compared
with the centre of a star. The triple alpha reaction depends more on the density than other
reactions because it is a three-body reaction. Therefore, it can hardly happen in an accretion
disk. Helium burns a lot more easily in stars. Producing heavy elements in a disk will be
much easier if the initial disk composition contains elements heavier than helium, such as
carbon or oxygen.

A second difference between a stellar core and an accretion disk is that a star has millions
of years to burn its material, whereas a blob of gas spends a limited amount of time in the
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burning region of the disk, of the order of the minute to hour, and the time spent in the inner
disk is even shorter. The burning rates need therefore to be higher in accretion disks than in
stars to change significantly the disk composition. For this reason, a higher temperature is
needed in an accretion disk compared to a star.

The heating process in an accretion disk originates from the differential velocity of mate-
rial. It undergoes viscous heating. At a given position R/RSCH, the Keplerian orbital motion
of a test particle has a stronger gradient for a low mass central black hole than for a massive
black hole, because low mass black holes are more compact. This is due to the fact that the
Schwarzschild radius is proportional to the black hole mass. We therefore expect, at a given
radius in Schwarzschild units, to see the maximum temperature increase when the black hole
mass decreases. Taking the temperature in Expression 3.36 and the Schwarzschild radius
RSCH ∝ m1,

T ∝ m−1/2
1 α−1/5Ṁ

3/10
16

(
R

RRSCH

)−3/4

. (4.6)

We can therefore already expect lower mass black holes to be more effective at providing
nuclear burning conditions.

4.2 The mass - accretion rate plane (MṀ)

As we now know the conditions necessary for nuclear burning in terms of temperature and
density, we can use our knowledge of accretion disks to translate these conditions in terms
of black hole mass and accretion rate. The temperature and density are highest in the inner
disk. I therefore perform an experiment at this location, and, for various ranges of black hole
masses, from asteroid mass to super-massive black hole (SMBH), and accretion rates, answer
the question: is nuclear fusion possible? I first investigate the possibility of a simple network
of two reactions:

α+ α+ α −→ γ + 12C (4.7)

12C + α −→16 O + γ (4.8)

To know if black hole accretion disks can compete with stars, we want to know if heavier
elements than helium can be produced. This is the reason behind the choice of these two
reactions.

In the inner disk, I compute the temperature, the density, and the burning and viscous
time-scales using Equations 4.1 and 4.2. Scaling relations follow roughly

τvisc ∝ α−4/5m
6/5
1

(
Ṁ

MEdd

)−3/10(
R

RSCH

)5/4

(4.9)

for the viscous time-scale. For the burning time-scale, I computed the exact expression in
equation 4.2, evaluating the variation of carbon due to the simple reaction network described
above. The triple alpha reaction is the slowest, so it limits the reaction rate of the above
network and determines the production of heavier elements such as oxygen. Following the
carbon production through the triple alpha reaction can be done with the following scaling
relation:
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Figure 4.2: Black hole mass - accretion rate plane. The black hole mass varies from asteroid
mass to SMBH (super-massive black hole), and the accretion rate from 10−10ṀEdd to 108ṀEdd

to consider a large range. System composed of a Black hole accretion disk composed of 20%
helium, 40% carbon and 40% oxygen, isotopes of which reactions are being investigated.
Isolines of highest disk temperature are plotted in dotted lines. An isoline characterising an
equality between viscous time-scale and nuclear burning time-scale is plotted in black. The
color indicates the highest disk density in g/cm3.

ẎC ∝ ρ2Y 3
α 〈σv〉3α (4.10)

with, writing T9 = T × 109K,
〈σv〉3α ∝ T β9 , (4.11)

with β ≈ 41 for T9 ≈ 0.1, β ≈ 11 for T9 ≈ 0.3 and β ≈ 1.4 for T9 ≈ 1 and β decreases slowly
at greater temperatures. As seen in the temperature-density plane (Figure 4.1), most of the
nuclear burning occurs at temperatures between 109K and 1010K, so taking β = 1 is a good
approximation here.

τ3α ∝
YC

Y 3
α

α1−β/5

(
Ṁ

ṀEdd

)− 11+3β
10

m
7+β
5

1

(
R

RSCH

) 15+3β
4

(4.12)

Nuclear burning is significant if the viscous time-scale is equal or greater than the burning
time-scale at a few Schwarzschild radii. Setting these two time-scales equal led me to find a
relation between the accretion rate and the black hole mass:(

Ṁ

ṀEdd

)
∝ m

1+β
5

1 ≈ m2/5
1 (4.13)
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On a logarithmic scale, 2/5 is a good approximation of the slope of the black line of the MṀ
plane in Figure 4.2.

I did these computations more rigorously numerically for a range of black hole mass
from asteroid-mass black hole (≈ 10−10M�) to approximately the most massive black holes
known in Active Galactic Nuclei at the centre of galaxies (≈ 1010M�). The accretion rate is
investigated on a very wide range between 10−10 to 108 Eddington limits. Nuclear burning
occurs significantly when the burning and inner disk viscous time-scales are comparable, i.e.
τvisc
τburn

= 1. This means a significant fraction of the inner disk composition has changed before
it was accreted into the black hole. This inequality corresponds to the plain black line plotted
in Figure 4.2. Any pair (MṀ) such that τvisc

τburn
> 1 is satisfied is favourable to nuclear

burning. This equality is satisfied above the plain black line in Figure 4.2. I assumed the
initial composition of the disk to be 20% helium, 40% carbon and 40% oxygen since they are
the elements involved in the above nuclear reactions.

The outcome is that highly super-Eddington accretion rates are needed to allow nuclear
burning. And the accretion rate needed for this reaction network increases with the black
hole mass. This result is visible in Figure 4.2 where the systems favourable to nuclear burning
sit above the black line. The high temperature is provided by viscous heating. It depends
on differential rotation, greater close to low mass black holes than to massive black holes
because of the proportionality relation between the Schwarzschild radius and the black hole
mass. Said differently, for super-massive black holes, the interesting temperatures are enclosed
in the Schwarzschild radius. At this point, we realise that the ”best way” to satisfy the nuclear
burning conditions is to be able to approach the centre of the black hole as much as possible.
This distance is limited by the innermost stable orbit, which is 3RSCH for non rotating black
holes. But rotating black holes, described by a Kerr metric, have a different potential and a
different innermost stable orbit, which can be closer to the event horizon of the black hole. If
the spin characterised by the parameter a = J

MBHc
where J is the angular momentum of the

black hole. J is constrained by the upper limit GMBH
c2

MBHc, so a must be less than GMBH
c2

.
The ISCO is given by (Frank et al., 2002):

GM

c2

(
3 +A2 −

√
(2−A1)(3 +A1 + 2A2)

)
(4.14)

with A1 = 1 +

(
1− a2

GMBH
c2

)1/3
[(

1 + a
GMBH
c2

)1/3

+

(
1− a

GMBH
c2

)1/3
]

, A2 =
√

3a2

(
GMBH
c2

)2+A2
1

and is plotted in Figure 4.3. As the black hole spin increases, the ISCO moves towards the
event horizon of the black hole. If getting closer to the black hole really allows the disk to
reach higher temperatures, the black hole spin should have an effect on the nucleosynthesis
and the plain black line of the MṀ plane should move down. This is visible in Figure 4.4.
This result might be interesting as lower accretion rates, such as 104ṀEdd in the limit for
stellar mass black holes, permit nuclear burning. Such a rate could, in principle, be provided
by stable mass transfer from a white dwarf to a 3M� black hole for example.

4.3 Possible systems leading to nucleosynthesis in black hole
accretion disks

The results of the numerical experiment in Section 4.2 and illustrated in Figure 4.2 show that
the number of possibilities for nucleosynthesis in black hole accretion disks is quite restricted.
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Figure 4.3: Inner most stable orbit as a function of normalised black hole spin. As the
spin approaches its maximum value the innermost stable circular orbit (ISCO) moves to the
Schwarzschild radius. For a spin zero, we find again the ISCO of 3 Schwarzschild radii,
solution for non rotating black holes.

For an accretion disk to burn helium and carbon significantly, the possible ranges are reduced
to highly Eddington accretion rates and low mass black holes, corresponding to the area
above the black line in Figure 4.2, so the top left corner. Low mass black holes are the best
candidates. I will review first the different black hole (BH) families, and then consider the
possible companion stars.

4.3.1 Black hole families

The black holes with a mass within [ 10−10, 10−5]M� belong to the primordial black holes
category. They are mainly candidates to dark matter. There is currently no observational
evidence for their existence. Many upper limits on their contribution to dark matter exist
(Carr et al., 2016). I will mention their possible role in nucleosynthesis in Chapter 7. From
Figure 4.2, they are our best candidates for nucleosynthesis as accretion at super-Eddington
rates is conceptually challenging and these black holes are the less demanding in terms of
feeding. We could imagine then accreting material spherically through Bondi accretion, and
see if the material is dense enough to give large accretion rates. See Chapter 7.

The black holes with masses within [∼ 3,∼ 30]M� which formed from stellar evolution
channels are called astrophysical black holes. Massive stars (20 − 150M�) evolve very fast
and are thought to end their lives in a core collapse. This formation channel has been
under debate since the LIGO gravitational waves detection in September 2016 (Abbott et al.,
2016). I will focus on these systems as these black holes are the only family which we have
confirmed observations from either X-ray sources or gravitational wave detections (Abbott
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Figure 4.4: Black hole mass - accretion rate plane. System composed of a black hole accretion
disk composed of 20% helium, 40% carbon and 40% oxygen. Isolines of temperature are plot-
ted in dotted lines. An isoline characterising an equality between viscous time-scale and nu-
clear burning time-scale is plotted, for a non-rotating black hole described by a Schwarzschild
metric, in thick dotted line, and a rotating black hole described by a Kerr metric. The color
indicates the highest disk density in g/cm3.

et al., 2016). One can read from Figure 4.2 that super-Eddington accretion is required to
allow nucleosynthesis. I discuss possible systems providing so high accretion rates in the next
section.

Black hole masses in the range [102, 105]M� characterize the intermediate mass black hole
(IMBH) family. They are thought to be found in stellar clusters as they make the bridge
between stellar mass BHs and SMBHs, though there is no direct evidence for their existence.
The arguments for their existence come from galactic evolution. From the MṀ plane (Fig
4.2), they seem to play a minor role in nucleosynthesis. However, if they do play a role
and produce new elements, nuclear reactions taking place in their hypothetical accretion disk
could, in principle, produce observable gamma rays. It would provide a way to detect these
IMBHs.

Black holes with masses above 105 are SMBHs. They are thought to lie a the centre of
most galaxies. Observational evidence we have consists in the stellar dynamics ongoing at
the centre of the Milky Way and observation of quasars at the centre of other galaxies. In the
Milky Way, stars have been observed orbiting very fast around a central compact object called
Sagittarius A, of which the mass was inferred to be about 4 × 106M� (Schödel et al., 2009;
Gillessen et al., 2009). This mass and compactness rules-out all known astrophysical objects,
except for black holes. In the MṀ plane, these black holes require the highest accretion
rates.
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4.3.2 Companion star

Stellar mass black holes are the black holes we have most observational evidence for. And not
only do we have evidence, but the nature of the observation confirms they accrete material:
what is actually seen is their accretion disk, shining in the X-ray wavelengths. The gas in their
accretion disk is provided by a companion star transferring mass. Under which conditions
is the mass transfer rate greater than 106ṀEdd? In binary systems on circular orbit, mass
transfer is governed by the gravitational field. In the co-rotating frame, we can write the
effective potential felt by a point mass. For a BH mass of MBH = M1, its companion M2 and
the mass ratio q = M2/M1, lines of equipotential are drawn in Figure 4.5. Each of these lines
define to which object a point mass is bound. Where the equipotentials cross, between the
two stars, is located the Lagrangian point L1 where a particle is bound to both stars. If a
particle initially bound to the secondary star reaches this points, it might be transferred to the
primary. The surface defined by these equipotential lines is the Roche lobe, and there is mass
transfer if one of the stars occupies the volume within its Roche lobe. A good approximation
is to assume this surface spherical and compare the radius of the star to the radius of the
sphere of equal volume as the volume of the Roche lobe (Roche radius). If the radius of
the star is larger, the outer material is not bound to it. There should then be mass transfer
through the inner Lagrangian point. How fast does this mass transfer occur? Can it reach
high accretion rates? The answer to this question depends on the reaction of (1) the size of
the Roche lobe of the transferring star and (2) the response of star to the mass loss. If the
star radius grows fast enough compared to the size of its Roche lobe during the mass transfer,
it will become unstable.

A good approximation of the Roche radius of the secondary star in function of the mass
ratio and the separation is given by Eggleton (1983)

RL

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
≈ 0.462

(
M2

M1 +M2

)1/3

(4.15)

In conservative mass transfer, all the mass lost by the secondary goes to the primary and the
total angular momentum of the system is conserved. The separation varies as

ȧ

a
= −2Ṁ

(
M2 −M1

M1M2

)
(4.16)

From this equation, we see that if M2 < M1, then the separation between the two stars
increases. And the Roche radius is proportional to the separation. This contributes to an
increase of the Roche radius, while the fact that the mass ration decreases contributes to
decrease the Roche Radius. The Roche lobe response can be quantified:

ζL =
∂ logRL
∂ logM2

, (4.17)

and the response of the star is

ζ2 =
∂ logR2

∂ logM2
. (4.18)

The question of unstable mass transfer is sorted by comparing these two quantities. Stars
for which ζ2 is negative are objects of which the size increases as their mass decreases. Such
objects exist, for example a white dwarf (WD) has a mass radius relation R ∝ M−1/3.
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Figure 4.5: Lines of equipotential in the orbital plane of a circular binary system of mass
ratio q = M1

M2
= 0.6, where the primary star is located at the origin, and the secondary is

located at a separation of a on the x axis.

WDs are interesting for further simulations: if they do not provide the needed accretion
rates, then main sequence stars, which become smaller as their mass decrease, will not either.
Additionally, most common white dwarfs contain carbon and oxygen. Recalling the difficulties
in igniting helium (this is not impossible as we will see), white dwarfs present additional
interesting properties: they provide already some heavier elements to the accretion disk,
and potentially high accretion rates. WDs seem to be an ideal starting point to investigate
nucleosynthesis in black hole accretion disks.
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Chapter 5

Black hole – white dwarf

I wrote independently a computer program in C++ simulating nucleosynthesis in a black hole
accretion disk, specifically designed for BH–WD binaries as WD disruptions provide the
super Eddington mass transfer rates needed for nucleosynthesis. In this chapter, I describe
the model I implemented, using the framework introduced in the first chapters. Nuclear
networks are a set of stiff differential equations, introducing reaction rates which may differ
of many orders of magnitudes. This stiffness is numerically challenging as forward integration
methods are then unstable (Press et al., 2007). I overcame this problem by using an implicit
differentiation scheme. It is less straightforward to implement because it consists in evaluating
the derivatives one step forward, but numerically stable. I then performed a set individual runs
to investigate how nucleosynthesis in black hole disks varies within the mass ranges, accretion
rates and white dwarf types leading to nucleosynthesis. I finally obtained and compared the
yields from my simulations to expected stellar yields from models in the literature (Nomoto
et al., 2013).

5.1 Thin disk model

I implemented the one dimensional thin (or Shakura-Sunyaev) disk model using the analytical
solutions described in Equation 3.36. This allows the code to execute computations fast,
as no integration of the gas dynamics equations need to be performed numerically. The
thermodynamic variables such as density and temperature are simple functions of radius,
mass and accretion rate. The drift velocity vR is also known. Practically, I simulate the path
followed by a blob of gas from the outer disk to the inner disk (Lagrangian approach). The
position of the gas blob at different times is numerically integrated.

Independently from the disk, I implemented the nuclear burning network of the alpha
chain described in Figure 2.4. I am going to describe the method briefly and refer the reader
to the appendix for more details about the integration of the network. Given the temperature
ranges and the composition rich in alpha elements (He, C, O, Ne) in a disk produced by the
disruption of a white dwarf described in the previous section, the 13 isotopes alpha chain
illustrates well the dominating nuclear reactions. Ideally, one should consider all possible
nuclear reactions. But this is extremely heavy computationally, so I chose a set of nuclear
reactions for which the rates are significantly greater than for other nuclear reactions. And
this is the alpha chain. In this network, 13 differential equations of the same type as described
in Chapter 2 are to be solved, one per isotope. Due to the high dependency in temperature,
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many different scales are introduced in the burning rates. These differential equations are
stiff and challenging for numerical integration (Press et al., 2007). To give an example, we
can consider in detail the neon isotope and see in which nuclear reactions it is involved, and
write fully the differential equation to solve, keeping in mind that this has to be done for each
of the 13 elements involved in the nuclear network. Neon is produced by an alpha reaction
with oxygen. It is also involved in an alpha reaction producing magnesium. In addition, the
reverse reactions might occur as well. This implies a total of four reactions to consider.

16O + α
 γ + 20Ne
20Ne + α
 γ + 24Mg.

(5.1)

The variation of the molar fraction of neon will therefore be

ẎNe = YOYHeρNA 〈σv〉Oα − YNe〈σv〉rev
Oα − YNeYHeρNA〈σv〉Neα + YMg〈σv〉rev

Neα. (5.2)

The quantities 〈σv〉 are measured in laboratories at different temperatures or integrated
numerically. The results are interpolated as functions of temperature. I use the interpolation
functions resulting from these studies. References for each reaction used are given in Table
D.1 in Appendix D. For instance, the reaction rate of the alpha reaction with oxygen (first
term of Equation 5.2) is given by

〈σv〉Oα(T9) = 2.68× 1010T
−2/3
9 exp

[
−39.76T

−1/3
9 − (T9/1.6)2

]
+ 51.1T

−3/2
9 exp(−10.32/T9)

+616.1T
−3/2
9 exp(−12.2/T9) + 0.41T 2.966

9 exp(−11.9/T9),

(5.3)

where T9 = T/109K. This reaction rate was taken from Angulo et al. (1999). The general
form of this expression (exponentials and powers) emphasise the stiff character of the differ-
ential equation 5.2. The reaction rates of the second reaction involving neon and the alpha
particle has a similar expression, but its own temperature dependency. In order to solve
these 13 differential equations and preserve numerical stability, I implemented an implicit
Euler scheme, which consists in evaluating the derivative at t+ h instead of t where h is the
time-step. This method is a general method used for solving stiff differential equations, and
has shown its efficiency (Press et al., 2007). If we were to solve them numerically with an
explicit Euler scheme, then we would simply write

YNe(t+ h) = YNe(t) + hẎNe(t). (5.4)

But this integration method is numerically unstable: for a given time-step, the integration
results may not be only have an error, but tend to infinity very quickly, which means that not
only the error (which goes at O(h)) sets a constrain on the time-step, but also the stability
of the solution. One might, at some point, need an infinitely small time-step. An example
of an explicit integration is shown in Figure 5.1 together with the same integration and with
the same parameters (initial conditions, time-step). This figure shows the mass fraction of
elements produced by nuclear reactions in the disks, as a function of radius. This integration
was performed for a carbon oxygen donor. We can note the explicit scheme is unstable and
diverges from a certain radius. To overcome this problem, the use of an implicit scheme allows
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me to get rid of the stability constrain on the time-step. This means that instead of using
the time derivative at time t, one evaluates the time derivative at t+ h:

YNe(t+ h) = YNe(t) + hẎNe(t+ h). (5.5)

But ẎNe(t+h) is not directly known. I use the equation 5.2 linearised at time t+h. The molar
fraction of each element Y (t+h) can be expanded as Y (t+h) ≈ Y (t)+hẎ (t). Neglecting the
terms in O(h2), this leads to a linear equation to solve, and allows one to estimate ẎNe(t+h).
This involves all nuclear species affected in the reactions with neon. The whole set of linear
equations can be written in the form of a matrix relating the derivatives of molar fraction of
each element at time t to their derivative at t + h. And the problem is reduced to inverting
the matrix in question. To do this in C++, I use the linear algebra package LAPACK++

recommended in Press et al. (2007). The whole nuclear network integration method and the
use of the LAPACK++ package are described in detail in the Apendices A and B.

Given initial conditions and boundaries, my programs solve the equations governing the
state of the accretion disk: we fully know the density, temperature and abundances at any
position and time. In the BH–WD scenario, the accretion disk is provided by mass transfer
through Roche lobe overflow of the white dwarf, where the binary has negligible eccentricity (I
leave arguments for circular orbit to the next chapter, where I discuss how these systems can
form). Assuming for now that by some mechanism, a binary BH–WD comes to contact (mass
transfer), then what are the dimensions of the accretion disk? The size of the Roche lobe
around the white dwarf when the binary separation is a and the mass ratio q = MWD/MBH

is given by Eggleton (1983)

RL

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
. (5.6)

At the onset of the mass transfer the separation aRLOF is such that the white dwarf fills its
Roche lobe, RL = RWD. Material from the WD is transferred to the BH. For the white dwarf
radius, I used the mass-radius relation of Verbunt & Rappaport (1988)

RWD

R�
= 0.0114

√(
MWD

Mch

)−2/3

−
(
MWD

Mch

)2/3

×
[

1 + 3.5

(
MWD

Mp

)−2/3

+

(
Mp

MWD

)]−2/3

,

(5.7)
where Mch = 1.44M� is the Chandrasekhar mass of the WD and Mp = 0.00057M� is a
numerical factor. If the mass transfer is unstable, then the white dwarf gets shredded on a
dynamical time-scale, only a few orbits and the white dwarf material piles up at a favoured
radius. As in Frank et al. (2002), we approximate this mass transfer by a quick change of
”binding body” conserving angular momentum. This allows us to define the circularisation
radius: the distance from the BH at which the material orbiting it has the same specific
angular momentum as the system at the onset of the mass transfer. At the onset of the mass
transfer, the angular momentum of the system is

J = MBHMWD

√
Ga

(MBH +MWD)
. (5.8)

At the circularisation radius, the angular momentum of the 1MWD of gas is

Jcirc = MWDvφRcirc (5.9)
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Figure 5.1: Demonstration of the difference in explicit and implicit integration of stiff
differential equations in the nuclear network of alpha chain. Mass fractions of the different
isotopes produced in the thin disk around a 3M� black hole accreting at 106ṀEdd from a
carbon oxygen donor. Upper panel: Explicit scheme. Bottom panel: implicit scheme.

If the gas settles at the circularisation radius on a circular orbit, then vφ =
√

GMBH
Rcirc

and its

angular momentum is
Jcirc =

√
GMBHRcircMWD (5.10)

40



5.2. A WINDY DISK CHAPTER 5. BH-WD

If angular momentum is conserved during this phase of mass transfer from the WD to the
BH, equating Equations 5.8 and 5.10 when the WD fills its Roche lobe, we find where the
gas settles, the circularisation radius

Rcirc =
aRLOF

1 + q
, (5.11)

where aRLOF is the separation of the binary at which mass transfer takes place. Rcirc is
roughly the size of the newly formed accretion disk.

The inner boundary of the disk is also constrained, by the BH potential. The disk goes as
close to the black hole as where it can be on a circular orbit. Due to the compactness of black
holes, relativistic effects are not negligible. The relativistic effective potential presents minima
and maxima, depending on the angular momentum of particles orbiting the BH and this sets
a minimum distance from which a particle can have a circular orbit. For a sufficiently large
angular momentum (which we assume the gas has, since we consider accretion disks), the
innermost stable orbit (ISCO) around a non rotating black hole lies at 3RSCH. This defines
the inner edge of the accretion disk. At lower radii, the motion of the gas is not circular and
it either falls into the BH rapidly or escapes in a powerful outflow. If the BH is rotating,
then the ISCO has a different form (e.g. Frank et al. (2002)) which I took into account when
I considered spinning BHs.

An additional boundary condition, which affects the nucleosynthesis in the accretion disk,
is the initial composition of the disk, determined by the composition of the object shredded
into the BH. Different cases have been considered in this work, namely carbon oxygen (CO)
WDs, carbon oxygen helium (COHe) WDs, pure helium (He) WD and more massive oxygen
neon (ONe) WDs. At the circularisation radius, I imposed the initial composition of the disk
to be the composition pf the donor object. I have not considered in the present work cases
where nuclear burning starts occurring before the formation of the disk (e.g. thermonuclear
disruptions of white dwarfs) or spatially outside from the accretion disk.

5.2 A windy disk

Accretion rates as high as 106ṀEdd, power outflows from the disk (King & Muldrew, 2016).
The inner edge of the disk has a luminosity of at least the Eddington luminosity, so radiation
pressure prevents most of the gas from in-falling. A more sensible question is on the outflow
profile: where is most of the mass ejected? Before considering qualitatively the complex
physics involved in winds, I will describe how I computed the mass of each element produced
in my accretion disk program. The total mass mi of element i produced is the integration
of its mass fraction Xi from the inner disk to the outer disk, weighted by the density as a
function of radius.

mi =

∫ Rd

ISCO
2πρi(R)Xi(R)RH(R)dR (5.12)

So it would correspond to the area under all the curves in Figure 5.3 for example, weighted
by the density in the disk. How much of it is expelled? A first approximation, ignoring any
physical interaction producing it, is to consider a uniform wind profile: the mass expelled
at each radius is the same. Additionally, we can reasonably assume that the central black

hole is accreting at its Eddington limit. So the fraction of material ejected is Ṁ−ṀEdd

Ṁ
. This

fraction is very close to 1 considering the highly Eddington accretion I considered. If a mass
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mi of element i were produced in the disk, then the mass of i released to the ISM would be
Ṁ−ṀEdd

Ṁ
mi = 106−1

106
mi ≈ mi.

There are several reasons for which the wind profile should be different from uniform.
Firstly, the inner edge of the disk is more luminous than the rest as it is more heated due to
greater differential rotation. So the source of radiation pressure should be at the inner edge of
the disk, and the outlfows should be greater at the inner edge of the disk (Watarai & Fukue,
1999). This consideration should not affect my results for heavy elements (and helium coming
from photodisintegration), synthetised at the disk inner edge. But less ”primitive elements”
coming from the white dwarf, which do not undergo nucleosynthesis, would be expelled.

Secondly, I have not considered any magnetic field in the disk. But this is very unrealistic:
the disk is highly ionized, so there should definitely be a magnetic field. Magnetic fields can
drive outflows under the form of disk winds and powerful jets (Blandford & Payne, 1982).

Thirdly, the model does not account for the nuclear energy generated by nucleosynthesis.
Does it have a dynamical effect on the disk? Could it power winds? This is discussed in
Section 5.3.4.

5.3 Explore the parameter space

5.3.1 Effect of the black hole mass

The mass of the black hole is of particular importance for nuclear burning efficiency. A black
hole too massive (of mass above approximately 105M�) swallows the white dwarf without
disrupting it. But more constrains come from the accretion disk. For boundary conditions,
the nuclear burning should happen within the disk size because this is where the simulation
starts. This issue is more of a technical than scientific nature, if a particular disk model
predicts that nuclear burning should happen from outside the disk, one should also simulate
in detail the mass transfer from the white dwarf to the black hole. The present work is focused
on nucleosynthesis within disks rather than mass transfer in binaries. For the calculations to
stay consistent, I determined where the boundaries of the systems I can consider lie.

Let us define the ”burning zone” as the range of radii where the temperature is more
than 109K. This is a rough approximation as the burning depends also a little on the density,
but it provides interesting constrains on the black hole mass limits. The radii at which the
temperature is 109K for a fixed accretion rate in Eddington units scales as

RT9

RSCH
∝ m−4/15

1 (5.13)

with the temperature. Scaling with the circularisation radius Rcirc ∝ m
1/3
1 for black hole

masses greater than the white dwarf mass,

RT9

Rcirc
∝ m11/5

1 . (5.14)

Equation 5.13 tells us that as the black hole mass increases, the event horizon grows faster
than the burning threshold radius. Therefore, there exist a black hole mass above which
the temperature in the inner disk is too low. This description corresponds exactly to the
temperature isolines in the MṀ plane. But a more accurate threshold for burning is provided
by the burning and accretion time-scales comparison line in the MṀ plane. On the other
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Figure 5.2: Radius at which the temperature is equal to 109K (approximate burning threshold
for carbon), in units of innermost stable orbit in black dots and in units of circularisation
radius in blue squares. The black line must be above the zero line for the inner disk to
be hot enough for nuclear burning and corresponds approximately to the burning threshold
of the MṀ plane. The blue line must be below the zero line for the outer disk to be cold
enough for boundary conditions. This is accretion rate dependant. These are conditions when
Ṁ = 107ṀEdd. Where the two lines cross, the system dimensions become unphysical: the
circularisation radius becomes less than the innermost stable orbit. This corresponds to the
configuration where the white dwarf is swallowed by the black hole.

hand, some new information is brought by Equation 5.14. This shows that as the black hole
mass increases, the burning region also increases. And for boundary conditions explained
above, we need this ratio to be less than unity, so that burning occurs well within the accretion
disk. See Figure 5.2, where a particular example at Ṁ = 107ṀEdd is taken, and where we
see the maximum BH mass is about 100M�, where the blue line crosses the zero line.

As a consequence of these two effects, increasing the black hole mass up the order of 100M�
(for the particular case of Ṁ = 107ṀEdd) moves the burning zone towards the BH, see Figure
5.3 and 5.4. These two figures show the radial structure of their respective accretion diks,
with a few elements dominating at specific radii. For a 3M� BH, the inner disk is dominated
by helium resulting from the photo-disintegration of heavier elements, and an outer disk
dominated by the WD composition (constrain I have imposed explicitly in the beginning of
this section), a more massive black hole produces a lot less helium than a lower mass black hole
as the inner disk is cut due to the growth of the event horizon proportional to the BH mass.
Other elements dominating in the inner disk might also be produced in lesser proportions.
This can be visualised by comparing the Figures 5.3 and 5.4, showing the mass of elements
produced in function of their atomic mass A. The difference in yields resulting from these
effects is presented in Figure 5.5.
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Figure 5.3: Mass fraction of elements in a disk from a carbon oxygen donor to a 3M� black
hole, at an accretion rate of 106ṀEdd.
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Figure 5.4: Mass fraction of elements in a disk from a carbon oxygen donor to a 300M�
black hole, at an accretion rate of 106ṀEdd.
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Figure 5.5: Mass ejected in winds in M� in function of element atomic mass A, for different
black hole masses, from 3M� in red to 300M�. The companion is a 0.6M� CO white dwarf
and accreting at 106ṀEdd. As the black hole mass increases, the produced mass of helium
(A=4) and heavy elements decreases because these elements are produced at the highest
temperatures, located in the inner disk radius, proportional to the black hole mass.

As seen in the previous section, since the highest temperature of an accretion disk decreases
with increasing black hole mass, and since this highest temperature is reached at the inner
edge of the disk, for a given accretion rate, the nucleosynthesis location moves towards the
inner edge as the black hole mass increases. For a given accretion rate, there exist a maximum
black hole mass permitting nuclear fusion. This is due to the large size of the event horizon
of massive black holes, letting the ”high temperature location” be within the Schwarzschild
radius.

A further consequence is that the elements which are most affected by a change of black
hole mass are the elements synthesised at the inner edge of the black hole disk, namely helium
and the heavier elements such as titanium, chromium, iron and nickel, as we can see very
clearly in Figure 5.5. This remark is extremely important if we consider the problem in a
slightly different angle than the direct topic of my thesis (ISM enrichment). A question under
ongoing research is: can we detect the presence of intermediate mass black holes from the
electromagnetic counter parts of a tidal disruption of a white dwarf? (e.g Law-Smith et al.
(2017)). If such a tidal disruption allows the production of the four elements listed above,
then the answer will tend towards a ”yes”, because these four elements are unstable so their
decay could produce a light curve, which would perhaps be observable. This statement would
need further investigations before drawing any conclusion. But if the disruption of a white
dwarf does not produce these radioactive elements, then probing the presence of an IMBH
through a tidal disruption could be more challenging, since it would reduce the observations
to electromagnetic emission from the gas heated during the disruption: the amount of time
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during which the event shines is more limited.

5.3.2 Effect of the accretion rate

Given a black hole mass, the accretion rate determines the temperature in the disk. For the
alpha chain, optimum burning occurs between 109 and 1010K. As the accretion rate increases,
the highest temperature attained in the disk increases too, and the burning location moves
towards the outer disk. While running simulations for different systems and increasing the
accretion rate, I realised that at some point, the ”burning sweet spot” had moved outside of
the disk. But if nuclear reactions start occurring already at the outer edge of the disk, I cannot
integrate rigorously the burning network in the disk, as nuclear reactions would start already
in the gas flow before forming the disk. This is not unphysical, but it would cause boundary
conditions problems which are not treated in the present work. To investigate where the
limits of the systems I can study stand, I calculated, as in the previous section, where exactly
the T = 109K location stands, for different black hole masses and different accretion rates.
As the outer edge of the disk, defined by the circularisation radius, depends on the size of the
companion star, I did this computation for three different white dwarf masses: (1) 1.4M�,
which represents the Chandrasekhar limit, maximum mass for degenerate electron pressure
supported bodies (e.g. white dwarfs), and massive white dwarfs often contain oxygen and
neon; (2) 0.6M�, typical CO white dwarf; and (3), 0.35M� for a white dwarf which most
likely contains helium. This consists in doing the same calculation as to produce Figure 5.2,
but where the accretion rate is also varied a number of times, and for each accretion rate,
the BH mass needs to be less than where the blue line of Figure 4.1 is under zero (i.e. the
outer disk is not too hot for nucleosynthesis to have started further than the disk edge). The
results are plotted in Figure 5.6 with red for a 1.4M� WD, blue for a 0.6M� WD and yellow
for a 0.35M� WD. Burning happens within the disk only for accretion rates located under
these lines.

It is visible here that massive white dwarfs pose a problem in most situations, as for stellar
mass black holes, the accretion rate is limited to 108ṀEdd. In unstable mass transfer, the
accretion rate goes in a runaway process where it might exceed this limit. Lower mass white
dwarfs are not concerned by this issue. The reason for which this maximum accretion rate
allowed for the simulation is dependant on the white dwarf mass comes from the following:
The disk size depends on the separation between the black hole and the white dwarf at the
moment of the disruption. And this separation depends on the separation at Roche lobe
overflow of the white dwarf, which is proportional to the white dwarf size. Now, remembering

the mass radius relation of white dwarfs, RWD ∝ M
−1/3
WD , massive white dwarfs are more

compact, smaller, than less massive white dwarfs. The size of the accretion disk is therefore
less than for white dwarfs of lower masses.

5.3.3 Effects of the companion composition

Different types of white dwarfs exist, with different compositions, namely He, CO, ONe,
ONeMg depending on the evolution of their progenitors. The nucleosynthesis in the accretion
disk is inevitably affected by this difference in initial composition. In addition, the mass
transfer might also be different as white dwarfs of different compositions may have different
masses, and mass-radius relations. (Panei et al., 2000). Helium white dwarf have lower
masses than CO white dwarfs, which have lower masses than ONe white dwarfs, as a result
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Figure 5.6: MṀ plane, where the black hole (BH) mass varies from asteroid mass to su-
permassive black hole, and the accretion rate from the Eddington limit to 108ṀEdd. Nuclear
burning is allowed in the disk for the pairs (M, Ṁ) located above the plain black line charac-
terising an equality between burning and viscous time-scales. The three colored lines represent
the limiting conditions for which the temperature of 109K is already attained at the outer
edge of the disk (circularisation radius), for different white dwarf masses, with 1.4M� in red,
0.6M� in blue and 0.35M� in yellow. The pairs (M, Ṁ) must be located on the left of these
lines for the nuclear burning to start inside the accretion disk.

of the growth of the burning core in stellar evolution. In Figure 5.7 we can note how different
the disks are. Mainly, ONe white dwarfs have four different dominant elements in function
of the position in the disk: ONe in the outer disk, then OMg as go inwards, Si and S, and
finally helium provided from photodisintegration at higher temperatures. A He WD leads to a
different outcome where Helium is always dominating, but a lot of nickel, iron, chromium and
titanium are also produced. The reason for which a ONe WD does not produce such heavy
elements is due to a lack of helium, needed for the alpha chain to take place. Therefore, any
advanced nucleosynthesis needs wait for the heavier elements to undergo phtodisintegration,
providing alpha particles and allowing nucleosynthesis to continue. But this happens when
the temperatures are already high, so only very little time is available to produce heavier
elmements. He white dwarfs do not have this problem as helium is very abundant. Another
issue is that a disk composed of only helium needs to go through the triple alpha reaction to
build heavier elements. And this reaction is very slow. We therefore need to wait to reach
densities high enough to trigger the rest of the nuclear burning chain. As soon as the triple
alpha reaction has started, then the rest of the burning goes very fast and many helium nuclei
are available to produce heavy elements up to nickel, see Figure 5.7. Then, as in the case of
the ONe WD, the disk undergoes photo disintegration when it reaches the high temperatures
at the inner disk edge. A comparaison of the yields id plotted in Figure 5.8, where one can
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Figure 5.7: Chemical composition (mass fraction) of a thin disk for two different donor
compositions: upper panel : oxygen neon and lower panel : helium, to a 3M� black hole
accreting at a rate of 107ṀEdd. The elements dominating the disk are very different in
function of the donor composition, so in function of the white dwarf type.

note that lack of helium in disks limits the production of heavier elements.
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Figure 5.8: Mass of elements (M�) ejected in winds from the disk around a 3M� black hole
accreting at 106ṀEdd in in function of element atomic mass A, for different white dwarf types.

5.3.4 Effect of nuclear energy

The Shakura-Sunyaev solution I implemented has the advantage be computationally light.
But it is an analytical solution which holds only under a large set of assumptions. By con-
sidering such high accretion rates, responsible for high temperatures and therefore nuclear
reactions, the assumption that the only source of heating was of a viscous origin, and that the
unique cooling mechanism was radiation, was broken because of energy coming from nuclear
reactions. To know if this energy has a significant effect on the accretion disk, I computed the
nuclear power in function of radius (position in the disk) and compared it to the viscous dis-
sipation rate, characteristic to the disk. I also compare it to the gravitational energy release
rate (which should be of same order of magnitude as the viscous dissipation rate since this
is exactly the assumption under the thin disk model) in order to see if the release of energy
could be enough to power winds.

One nuclear reaction produces (or uses) an amount of energy Q = ∆mc2 which correspond
to the mass difference between the reactant nuclei and products. Given a nuclear reaction
rate, the energy production rate by a two body reaction such as 2.5 will be:

Q̇ = YAYBρ < σv >AB NAQABMeV/g/s (5.15)

Where I took arbitrary units. To compare it with the viscous energy released in accretion disks
D(R) (Equation 3.25), I express it in Joules and per unit surface per unit time. Therefore,

Q̇ = YAYBρ < σv >AB NAQABΣJ/cm2/s (5.16)

In a ring (R,R + dR) in the disk, more than one reaction occur. Considering them all, the
total energy production rate is the sum of the production of all these reactions. We call the
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Figure 5.9: Blue: Ratio of nuclear energy generation to viscous dissipation as a function
of position in the disk. As I assumed the only heating source of the disk was of a viscous
origin, nuclear energy becomes significant when this ratio comes close to 1 in absolute value.
This happens at three locations where the ratio is about a third. Carbon burning generates
a significant amount of energy on the right hand side. In the middle, oxygen burning is
the source of nuclear energy. On the left, the energy generation is negative because this
corresponds to photodisintegration of heavier nuclei. Photodisintegration is endothermal,
taking internal energy from the disk. Red: Ratio of nuclear energy generation to gravitational
energy release as a function of position in the disk. A low ratio indicates that even if the
nuclear energy were entirely absorbed, this is not enough to escape the potential well of the
BH.

energy release rate q̇nucl.

q̇nucl(R) =
∑
A,B

YA(R)YB(R)ρ(R)NA < σv >AB (R)NAQABΣ(R)J/cm2/s (5.17)

The fraction of nuclear power to viscous heating is plotted in Figure 5.9 in blue. To compare
the nuclear energy release rate to the gravitational energy release rate, we can compare
Ėnucl = ∆mc2 to Ėgrav ≈ Ṁc2. This quantity is plotted in red in Figure 5.9.

In most of the disk, the ratio is zero and nuclear energy is negligible. However, carbon
and oxygen burning release a lot of energy, almost a third of the viscous heating, so almost
a forth of the total energy release should come from nuclear burning in these two hot spots
of the disk. Additionally, photodisintegration is endothermic and uses a lot of energy from
the inner disk. How these gamma rays actually interact with the material in the accretion
disk should be investigated. As these investigations require to shift to an hydrodynamical
code or implement one in order to account for nuclear burning in the energy equation, which
is (1) computationally expensive, (2) time demanding for learning it and running it, I will
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only speculate qualitatively how the results can be affected. In this optically thick disk, the
photons are in equilibrium with the gas through scattering. The disk temperature should
therefore rise. Two effects are noticeable from an increase in temperature. Firstly, different
nuclear reactions can occur, and at different rates. So the disk composition should change.
Secondly, this internal energy could help powering winds. This aspect is discussed in the last
chapter.

Now that the parameter space is explored, to infer any conclusions, one needs to know
what the parameter space looks like in Nature: how often does, for example, a system with
a 10M� BH with a CO WD form?
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Chapter 6

Production and event rates

In this chapter, I summarise the proposed formation channels of BH–WD binaries and find
the rate at which they are produced. We are particularly interested in the BH – WD binaries
wich are exchanging mass. Such systems are categorized as Ultra Compact X-ray Binaries
(UCXBs). About 16 of them are known, of which 10 are in the Galactic field (Nelemans &
Jonker, 2010) and 6 are in globular clusters (Chen & Podsiadlowski, 2016; Cartwright et al.,
2013; Bahramian et al., 2017). They are a subcategory of low mass X-ray binary (LMXB)s.
Most LMXBs in the Galactic field are thought to form through stellar binary evolution while
in globular clusters, the favourite scenario is dynamical interaction, due to high stellar density.
The proportions of observed LMXBs per unit mass in globular clusters relative to the Galactic
field are considerably higher. Verbunt & Hut (1987) find that there are of the order of
thousand times more LMXBs per unit mass in clusters than in the Galactic field. Known
LMXBs are thought to contain a neutron star accretor. To date, all detected LMXBs are
confirmed neutron stars. But recent observations of the system 47 Tuc X9 could suggest there
is a candidate which might host a black hole and a carbon oxygen donor (Bahramian et al.,
2017), but it is not confirmed. As a result of this lack of observational evidence, working-out
the production scenarios is done theoretically and with numerical simulations, together with
many assumptions, leading to large uncertainties.

6.1 Collision in globular cluster

Compact binaries (binary systems made of compact objects) can form in dense globular
clusters (Verbunt & Hut, 1987). The formation channels of neutron star (NS)-WD binaries
through dynamical interactions have been investigated in Ivanova et al. (2008). A NS entering
in direct collision with a red giant (RG) can form a compact binary with the RG’s degenerate
core, resulting in a NS-WD binary (Davies et al., 1992). The cross section is significant due
to the large radius of a RG. This scenario can also be envisaged for stellar mass black holes
instead of neutron stars (Ivanova et al., 2010).

The collision cross section between a black hole of mass MBH and a RG of mass MRG at
a relative velocity at infinity v∞ can be worked out as

σcol = πr2
max

(
1 +

2G(MBH +MRG)

rmaxv2
∞

)
, (6.1)

where the second term in the parenthesis is gravitational focussing. The quantity rmax is the
maximum separation that will lead to a collision. If stars were solid balls, rmax = RRG +RBH.
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But we are interested in the maximum separation that will allow the formation of a BH–WD
binary compact enough for mass transfer to start. The maximum separation rmax can be
determined with accuracy with SPH simulations as it was done in Lombardi et al. (2006)
for NSs. For a notation in units of RG radius we can introduce the dimensionless parameter
fp such that rmax = fpRRG. For NSs, the results of the simulations gave fp = 1.3. Other
SPH simulations for 15M� BHs apparently resulted with fp = 5 (unpublished). To know if
this value was reliable, I contacted N. Ivanova who confirmed the results from several SPH
simulations of her and collaborators. As the size of a RG star evolves during its life time, not
all RGs in the cluster have the same size, depending on their evolution stage (so depending
on their birth mass). So the total collision rate of BHs and RGs is the integral over the RG
radius. This is equivalent to using Equation 6.1 with a mean RG radius 〈RRG〉, which can
be calculated with a prescription for the size evolution of the RG or a stellar evolution codes
(Ivanova et al., 2005). The collision rate of black holes and RGs in a volume V is

rcol = NBHNRGσcolv∞
1

V
. (6.2)

The number of RGs NRG is approximately nfRGV where n is the number density of stars in
the volume V , and fRG is the fraction of RGs.

To find an upper limit on this collision rate, we can consider the number density of stars
n where it is maximum, in the core of a globular cluster. Ivanova et al. (2010) provides
typical values for the fraction of RG stars, the core star density, and the mean radius of RGs.
Strader et al. (2012) discovered two stellar mass black holes in the globular cluster M22 and
performed a statistical analysis to conclude there should be between 5 and 100 black holes in
this cluster. The upper limit on the collision rate is calculated with a maximum of 100 stellar
mass black holes in a globular cluster. See table Table 6.1 for the values.

n fp fRG RRG rmax v∞ NBH

105pc−3 5 0.008 ∼ 3.7R� 5RRG 10km/s 5− 100

Table 6.1: Values of the number density of stars in the core of a globular cluster,the maximum
distance for ,the fraction of RGs, the averaged radius of RGs over time, the maximum radius
for mass transfer to start, the velocity dispersion of stars in the cluster (Ivanova et al., 2010),
and the number of black holes (Strader et al., 2012).

The collision rate is

rcol = NBHfRGnπf
2
p〈RRG〉2

(
1 +

2G(MBH +MRG)

fpRRGv2
∞

)
v∞, (6.3)

With a typical black hole mass of about 10M� we find a rate of 10 collisions /Gyr per
cluster. When such interactions happen, mass transfer from the reg giant can, if rapid enough,
generate a common envelope phase. During this phase, the black hole and the RG core both
orbit around their common centre of mass within the envelope provided by the reg giant. The
binary heats the gas in the envelope through tidal draf forces and looses energy. This results
in a more tight binary system. This procedure continues until the envelope has evaporated. If
enough energy is transferred to the envelope, it will become unbound and the outcome system
might be a BH–WD binary. Depending on the separation between the two bodies at this
moment, two different outcomes can be envisaged. If the binary is very tight, with a period
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of the order of tens of minutes, the system looses angular momentum through gravitational
radiation, and this might result in mass transfer or tidal disruption of the white dwarf by
the black hole. If the separation is larger, then the merger would happen in more than
Hubble time if no external boost takes angular momentum from the system (e.g. interaction
with a third body). In the common envelope phase, if not enough energy is transferred to the
common envelope, the shrinking of the separation between the black hole and the white dwarf
does not stop, and this results in a merger. This mechanism of common envelope evolution
phase is not well understood, and still subject to research. Therefore, the production rate of
the BH–WD X-ray binaries has large errorbars. The amount of energy transferred from the
binary ∆EOrb to the envelope ∆Eenv can be written as

∆Eenv = αCE∆EOrb (6.4)

(e.g. Postnov & Yungelson (2014)), where αCE is called the common envelope efficiency, and
characterises the fraction of energy transferred from the shrinking binary to the envelope.
Empirical values for this parameter have been measured by Zorotovic et al. (2010), studying
post common envelope evolution systems. And a real question is that it is not known what
determines αCE (for example, it is unknown whether it depends on the mass of the system,
which makes its application to black holes uncertain). Thus all rates of events inferred from
common envelope evolution are questionable (e.g Toonen (2017) for the rate of supernovae
type Ia, coming from mass transfer onto white dwarfs). Therefore a rate of BH–WD UCXB
formation inferred from common envelope evolution will, at best, be an order of magnitude.
Sorting with common envelope evolution between systems which will lead to BH–WD mass
transfer and systems which will not lead to BH–WD mass transfer within a Hubble time
reduces the rate of about 10% (Ivanova et al., 2010), leading to finally about 1.5 UCXB per
Gyr per cluster. From this production mechanism, due to the energy loss to the gas, the orbit
of the stars is close to circular, so the assumptions of circular orbits made in the previous
chapters is correct.

6.2 Dynamical interaction in globular cluster

More mechanisms can lead to the formation of an UCXB in a globular cluster. Kuranov
et al. (2001) argue on the formation of low mass X-ray binaries from triple systems. Ivanova
et al. (2010) estimate the number of three-body encounters by black holes in a cluster, and
conclude three body encounters are not significant enough to account for the observed rates
of BH–WD X-ray binaries. A hierarchical three body system, made of a pre existing binary
BH–WD and an additional star, which undergo Kozai mechanism can result in binary mass
transfers. Kozai mechanism describes secular interaction when the two orbital planes of the
system are not aligned, where the eccentricity and relative inclination start oscillating. If the
system becomes eccentric enough, this could trigger mass transfer.

6.3 Binary stellar evolution channel

Ultra-compact X-ray binaries are observed in the Galcactif field (Nelemans & Jonker, 2010),
so there must be other mechanism than dynamical interactions to form them, such as binary
interaction. When two stars form close to each other and stay gravitationally bound, they
form a binary system where the stars orbit their common centre of mass and may exchange
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material, depending on their size, mass ratio (ratio of their masses) and separation. This
configuration is particularly frequent for massive stars (Sana et al., 2012) which are thought
to be progenitors of BHs. We can therefore question the possibility of evolution of these
binary systems towards a BH–WD compact binary.

To study how binary stars evolve, a first approximation (which may be inaccurate) is to
assume that our description of single stellar evolution is correct in the binary case, and include
mass transfer, responsible for changes in the mass ratio and separation. This is what many
population synthesis codes are based on and currently used in the community. In the current
project, I envisaged performing a population synthesis using realistic initial distributions of
binary stars (mass, mass ratio, separation, metallicity) and then investigating the production
rate of BH–WD systems with the stellar evolution code BSE (Hurley et al., 2002). This
would have allowed me to track the production rate for different BH masses and WD types,
since we have seen the production of different elements depends strongly on the white dwarf
composition. However, I learned that uncertainties in such models would be too large to
estimate these properly and the code might lead to mergers instead (S.E. de Mink, private
conversation). To have a general order of magnitude of the number of BH–WD systems
(without specifying possible types), I instead studied work in the literature. Belczynski &
Taam (2004) performed a population synthesis of UCXBs in a very similar way, proposed
different formation channels for these systems, and compared their relative contributions.

A first formation scenario for BH–WD binary systems can be provided by the evolution of
a massive star of about 8M� with a lower mass companion, of about 4− 7M�. The primary
evolves until the asymptotic giant branch, with an oxygen-neon-magnesium core, and loosing
its envelope due to expansion. More massive, it cedes some mass to the secondary, and the
separation between them shrinks. The mass transfer is unstable: the mass loss rate is too
large for the transfer to be conservative. Material piles-up around the two stars, leading to
a common envelope phase (CE). Losing angular momentum, the system cedes energy to the
envelope and, if a merging event is avoided, ends with an ONeMg WD in a binary with a
main sequence star (MS). When the secondary uses its nuclear fuil and expands, a second CE
phase occurs, and the system eventually becomes an ONeMg WD in binary with a He star
or a WD., of comparable mass. The secondary star comes to fill its Roche lobe once more,
due to orbit shrinkage from gravitational waves emission, and stable mass transfer occurs
into the primary WD. The primary degenerate companion comes to exceed its critial mass,
the Chandrasekhar limit, and collapses to a neutron star (NS) or BH . This event is named
accretion induced collapse (AIC). This is where the mass of the secondary becomes important:
if it is less than about 4M�, no mass transfer occurs and the systems remains as it is. If the
secondary is of the range described above, 4 − 7M�, mass transfer goes on and the neutron
star undergoes a second AIC event and collapses to a black hole. The secondary becomes a
low mass (about 3.5M�) HeCO WD. About 7.5% of BH–WD UCBs are formed through this
channel with a period of less than 80 min. A similar scenario consists again of two common
envelope phases, but each of them followed by stable mass transfer. 4.4% of UCBs form to
reach these systems with a period less than 80 min.

The most famous scenario to form a BH through stellar evolution is the implosion of a
massive star during a type II supernova. This direct formation does not form UCXB according
to Belczynski & Taam (2004), although massive stars in their systems can undergo type II
supernovae to form neutron stars, which then form black holes through AIC. This formation
process is the least efficient due to the potential supernova kick applied to the neutron star
during its formation. About 3.8% of BH UCXBs with period less than 80 min are thought
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to form according to this scenario. If the supernova occurs after a phase of mass transfer,
another 3.1% of BH UCXBs are produced with short periods.

The total number of short period BH UCXBs produced in the Galactic field in 10 Gyr
is estimated to 90, where 95% of the donors are HeCO white dwarfs and 5% are CO white
dwarfs (Belczynski & Taam, 2004).
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Chapter 7

Other systems

Other systems can provide nucleosynthesis conditions in accretion disks. Nuclear reactions
which need lower temperatures than nuclear fusion between two charged nuclei, such as neu-
tron capture, can happen in neutron-rich disks. Or perhaps, very low mass black holes, on
the left side of Figure 4.2, could allow nuclear burning if they can accrete at a rate of about
their Eddington limit.

7.1 Neutron star - neutron star and black hole - neutron star

Many mechanisms have been thought of to form black holes in the literature. One scenario
is the merger of two neutron stars. The total mass exceeding the Chandrasekhar mass limit,
it would produce either a very fast rotating neutron star or a central black hole and a dense
accretion disk rich in neutrons. The nucleosynthesis in such an event produces many neutron
capture elements (Wu et al., 2016; Fernández & Metzger, 2016). Neutron capture permits
to synthetise elements heavier than iron by successive increases the number of neutrons of
a nucleus and radioactive decays to a more stable atom. Two process exist, the s-process
(slow) when the decay occurs faster than the neutron capture, and the r-process (rapid)
when the neutron capture occurs faster than the radioactive decay. This last mechanism
is thought to happen in neutron star mergers. Two main observations could be explained
by this mechanism. Firstly, neutron star mergers consist in one of the many model which
could explain the observed short gamma ray bursts, which are very bright events seen in
gamma rays, with a duration of less than 2 seconds (Levan et al., 2016). These observations
help putting constraints on models, using event rates, light curves from radioactive elements,
spectra, produced elements and other signatures. Secondly, neutron capture elements are
observed in old metal poor stars (Sneden et al., 2008). It was proposed that the explosions of
early massive stars release r-process elements, which would now be contained in old low mass
stars (Sneden et al., 2008). Such scenario would provide an excellent framework to study
the first supernova: nature of produced elements, use of radioactive elements to date their
production and thus find at what time the earliest supernovae occurred, for example. But if
some of these r-process elements come from neutron star mergers, one needs to identify which
elements, and in which fractions.
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7.2 Primordial black holes

Black holes outside from the stellar mass range must form differently from stellar evolution.
Those which do not form from stars but are present in the early Universe are called primordial
black holes, and can be candidates for dark matter In this section, I study the effect of black
holes of masses from 10−10− 10−1M�. Considering nucleosynthesis in accretion disks around
such black holes can be extremely interesting. Firstly, they could enrich the ISM in the early
Universe, at very high redshift, and if they did, then the first stars could already contain
metals. Another interesting consequence of nucleosynthesis in their accretion disks is that
this could allow us to detect their presence. Asteroid mass black holes can heat gas, when
they travel through material, because they accrete material through spherical Bondi accretion.
The temperature of the accreted gas depends on the accretion rate into the black hole. The
Bondi accretion rate depends on the gas density. Densities as high as stellar core or big bang
conditions are needed to reach temperatures allowing nucleosynthesis.

For a black hole travelling through material (ISM for example) at a relative velocity vrel,
in the rest frame of the BH, the total energy per unit mass of the gas is

E = EK + EP + U, (7.1)

where U is its internal energy and involves a term of sound speed cs. The specific energy
(energy per unit mass) of the gas will be respectively

EK =
v2

rel

2
, (7.2)

U =
c2
s

γ − 1
, (7.3)

EP = −GMBH

r
. (7.4)

We define R0, the radius within which the material is bound to the black hole. It corresponds
to the iso-surface where E = 0. Then neglecting factors of the order of unity, the black hole
accretes the following amount of mass during a time ∆t:

∆MBH = πR2
0ρ
√
v2

rel + c2
s ∆t (7.5)

Replacing R0 by its expression and taking the limit ∆t → 0, this gives an approximation of
the accretion rate into the BH,

Ṁ =
4πρ(GMBH)2

(v2
rel + c2

s )3/2
. (7.6)

In terms of Eddington limit, this gives

Ṁ

ṀEdd

=
ρσTGMBH

2(v2
rel + c2

s )3/2mpc
(7.7)

where mp is the mass of the proton, and c is the speed of light. For a given relative velocity,
and if we demand the accretion rate to have a certain value (since we are interested in high
accretion rates providing conditions favourable to nucleosynthesis), this gives us constrains
on the density of the material. We get

58



7.2. PRIMORDIAL BLACK HOLES CHAPTER 7. OTHER SYSTEMS

ρ =
2mpc

σTGMBH
(v2

rel + c2
s )3/2 Ṁ

ṀEdd

, (7.8)

approximately

ρ ≈ 10−13(v2
rel + c2

s )3/2

(
M�
MBH

)(
Ṁ

ṀEdd

)
g/cm3. (7.9)

To maintain a given accretion rate, a low mass black hole will need a denser environment
than a more massive black hole. So very low mass black holes, of asteroid mass, will need
to accrete from inside something very dense. From what kinds of mediums can a black hole
accrete about its Eddington limit? Using the previous equation, and letting on the left-hand
side of the equation all the properties which are intrinsic to the material, for example the
sound speed (together with the relative velocity), we can write

ρ

(v2
rel + c2

s )3/2
≈ 10−13

(
M�
MBH

)(
Ṁ

ṀEdd

)
g/cm3. (7.10)

And let us go through different types of objects, compute the quantity ρ
(v2rel+c

2
s )3/2

in the most

optimistic condition (vrel = 0), and see what the corresponding black hole mass should be.
We can consider molecular clouds, main sequence stars, more compact objects such as white
dwarfs. If white dwarfs, which are the densest bodies of this list, do not provide the necessary
conditions, then considering molecular clouds and main sequence stars will not be relevant.
So let us start with white dwarfs:

The density ρ of a white dwarf is roughly 8 × 105g/cm3. And the sound speed is of the
order of cs = kT/mp. Then, ρ

c3s
= 3× 10−8gs3cm−3m−3. This corresponds to the case where

a primordial black hole of mass MBH sits, at rest, inside a white dwarf. But this case it not
very realistic: how do such systems form? There should be a relative velocity between the
black hole and the white dwarf medium. If, now, we say this velocity is of the order of the
orbital velocity at the surface of the white dwarf, then ρ

c3s
= 3 × 10−14gs3cm−3m−3. We can

now plot this in function of the black hole mass, see Figure 7.1. In this figure, the density
must be greater than the one illustrated by the red line for the corresponding black hole to
accrete at its Eddington limit. In the same plot, I show where white dwarfs stand, for the two
relative velocities just considered (zero and orbital). In the case a black hole at rest inside a
white dwarf, the black hole mass must be greater than about 3× 10−5M�. For a black hole
moving at the orbital velocity right at the surface of the white dwarf, then the mass must be
greater than a Solar mass. It is not surprising to find, for an orbital velocity, a similar result
as for the Roche mass transfer considered in previous chapters. But this mass is too large
and we have already considered stellar mass black holes. It now seems irrelevant to consider
less dense bodies which will lead us to find that only black holes of masses above stellar mass
can accrete at the interesting accretion rates.

A scenario could be imagined where a primordial black hole crosses a white dwarf at a large
velocity, close to its escape velocity (thus not accreting much), but loosing energy, and crossing
back the white dwarf a certain number of times, loosing energy each time. Subsequently, the
black hole would be trapped inside the white dwarf and see its velocity decreasing, up to a
point where it can accrete fast enough to ignite. Now, this is very speculative. And if there
were ignition, what would happen? Well inside the white dwarf, it would be difficult to release
the nucleosynthesis products to the ISM. Or, could the burning inside the white dwarf trigger
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Figure 7.1: Red : Condition on the density of matter surrounding a black hole such that
the black hole accretes the material at its Eddington limit. Green: corresponding value for
the matter inside a white dwarf, when the relative velocity between the black hole and the
medium inside the white dwarf is zero, vrel = 0. Blue: corresponding value for the matter
inside a white dwarf, when the relative velocity between the black hole and the medium inside
the white dwarf is the orbital velocity, vrel =

√
GMWD/RWD.

a carbon ignition and an event similar to a type Ia supernova? To answer this question, one
could consider the number of primordial black holes that can exist today (many constraints
are fixed, by microlensing for example, see Figure 3 in Carr et al. (2016)) and work-out the
rate at which these events happen. But conditions to see a thermonuclear explosion of a white
dwarf triggered by nuclear burning due to a primordial black hole inside it are rather difficult
to infer and not the purpose of the present work.
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Chapter 8

Interstellar medium enrichment

The nucleosynthesis products from the white dwarf disruption around a black hole are mainly
alpha elements. Stars release alpha elements in two different processes. Low mass stars
(3− 6M�) (Nomoto et al., 2013) release carbon during the 3rd dredge up stage, blowing off a
carbon-rich atmosphere in winds. Massive stars (13−50M�) which end their lives in supernova
explosion expell all the outer layers containing the burning products of stellar evolution, up
to iron, see Figure 8.1. How do these stars compare to the accretion disk products? I first
estimate how individual objects compare, compute roughly the relative contribution between
each system, and in a second section, I account for the distribution of each of these systems.

8.1 Nucleosynthesis yields

In this section, I compare my predictions of the individual nucleosynthesis yields of BH–
WD tidal disruptions to expected yields from stellar evolution models, which I take from
Nomoto et al. (2013). The main sources of alpha elements are stars low mass stars (3−6M�)
experiencing dredge up and releasing mainly carbon and s-process elements, and massive
stars (13 − 50M�), exploding in supernova. The 8 − 13M� stars mostly experience ”faint
supernovae” (Nomoto et al., 2013) and do not release many metals. One BH–WD system
releases approximately 100 times more carbon than one dredge up star, and the dredge up star
does not release other alpha elements. See Figure 8.2. A 13M� star releases, in comparison,
about 10 times more of carbon and oxygen, and a hundred to a thousand times more of the
other alpha elements as it can be read from Figure 8.1. I can comment already on the content
of this figure which shows the yields from a 13M� star. The elements that I chose to include
in the burning network are also the elements which dominate the production of these stars. In
other words, in this plot, for stars (black plus and red crosses), the elements which are not the
alpha elements (A = 4, 12, 16, 20 etc) are produced in smaller quantities than alpha elements.
This difference is of serveral orders of magnitudes. Looking at the temperature-density plane,
Figure 4.1, we see that the path of the stellar core and accretion disk follow a similar pattern
as soon as they pass carbon burning. We therefore expect similar nucleosynthesis yields for
heavier elements. This indicates that the burning network I implemented is a good ”first
approximation” for the burning network of the star in Figure 8.1. Or said differently, the
correct reactions were neglected for the nuclear burning in the accretion disk.

One single event produces, at best, a hundred times less heavy elements than a 13M� star,
except for carbon and oxygen which did not burn in the outer disk and are over produced
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Figure 8.1: Mass ejected in winds in M� in function of element atomic mass A, for a
3M� BH disrupting a 0.6M� CO WD and accreting at 106ṀEdd. The black pluses are the
elements produced and ejected during the evolution of a 13M� star, and the red crosses are
the elements produced and ejected during the evolution of a 25M� star.
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Figure 8.2: Mass ejected in winds in M� in function of element atomic mass A, for a 3M�
BH disrupting a 0.6M� CO WD and accreting at 106ṀEdd. The black pluses are the elements
from the evolution of a 3M� star.
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in the BH–WD disk of a factor 10. This difference increases for heavier elements (A > 40).
And the excess of carbon produced by BH disks may be compensated by dredge up stars. To
know whether it is compensated or not, one should consider the number of dredge up stars
per thight BH–WD system. I have done it and it is described in the next section.

8.2 Relative enrichment: black hole disks versus stars

The fraction of BHs which ends up in UCXBs is roughly known for both globular clusters and
the Galactic field, from Chapter 6. The contribution of one UCXB relative to one massive
star and to one low mass star is also known, from the previous section. To finally know the
total relative contribution to the Milky-Way content, the only missing piece the ratio black
holes to these stars. I compute them separately as follows.

Assuming that the mass of stars determine the outcome of their evolution, for example
main sequence stars below 8M� finish their lives as white dwarfs, stars between 8 − 25M�
become neutron stars after a supernova explosion, and stars between 25 − 50M� become
black holes, then a simple calculation can be made to estimate the fraction of UCXBs. Using
the distribution of masses at which stars are born, the Initial Mass Function (IMF), one can
derive the fraction of BH to stars. I used the IMF of Kroupa (2001) giving a distribution

ζ(m)dm = ζ0m
−αdm, (8.1)

where α = 2.3. The integral of ζ over a given mass range gives the number of stars forming
in this mass range, if ζ0 is known. The number of stars between M1 and M2 is

N(M1,M2) = ζ0

∫ M2

M1
m−αdm = ζ0

[
M21−α −M11−α

1− α

]
. (8.2)

This calculation is very simple and may not necessarily apply to massive stars because first,
not all stars in the mass range [25−50]M� become necessarily black holes (Janka, 2012), and
since many massive stars are born in binary systems or become bound in binary systems later
in their evolution, the unique outcome per stellar mass predicted by single stellar evolution
might not be the best estimate of the number of black holes. But this is somewhat useful to
compute a simple estimate.

Ratio UCXBs to massive stars in globular clusters And the fraction of black holes
to the massive stars responsible for alpha element enrichment is

fBH =
1501−α − 251−α

1501−α − 131−α , (8.3)

where 150M� has been an accepted upper mass limit for stars. This limit is currently under
debate as stars more massive are being discovered and there is no theoretical limit, but using
the Kroupa distribution, the estimate of the above fraction is not much depending on this
mass. One finds fBH = 0.4. In Chapter 6 is found that the number of UCXBs per black
hole is 0.15 in the densest clusters we know (47 Tuc, for example). The fraction of BH–WD
UCXBs to massive stars is therefore fBH−WD = 0.4 × 0.15 = 0.06. So BH accretion disks
produce about 10−2 × 0.4 × 0.15 = 6 × 10−4 less alpha elements heavier than oxygen than
massive stars, and 101× 0.4× 0.15 = 0.6 times less of carbon and oxygen than massive stars.
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Ratio UCXBs to low mass stars in globular clusters To know how BH–WD systems
compare to low mass stars in terms of carbon emission, the same calculation as above is done:

fBH =
1501−α − 251−α

6.51−α − 1.251−α = 0.02. (8.4)

The close BH–WD systems is fBH−WD = 0.02 × 0.15 = 0.003. So even if less massive stars
eject, per single event, less carbon, they will play a significant role when combined: the fraction
of carbon release from BH–WD accretion disk to these stars is 100× 0.02× 0.15 = 0.3.

Ratio UCXBs to massive stars in the field The number of 90 UCXBs with a short
period derived by Belczynski & Taam (2004), and described in Chapter 6 was done by using
a star formation rate in the Milky Way of about 3M�/yr (Misiriotis et al., 2006). Using
the same star formation rate (widely used) to be consistent with these numbers, I estimated
roughly the numer of black holes in the field to:

NBH = 6.3× 107, (8.5)

so the number of UCXBs per black hole is 90
76.2×107

= 1.4×10−6 UCXBs/BH. This shows that
the number of UCXBs per black holes is enormously higher in globular clusters, recall a value
of 0.15. The contributions of UCXBs in the fields is therefore expected to be very small. The
ratio of UCXBs to massive stars is therefore fBH−WD = 1.4× 10−6××0.4 = 5.6× 10−7. And
the relative mass of elements produced is about 6 × 10−9 for elements heavier than oxygen
and 6× 10−6 for carbon. Any contribution from BH–WD accretion disks is completely ruled
out by these numbers, in the Galactic field.

Ratio UCXBs to low mass stars in the field Using the number of UCXBs per black
hole in the field from above and the same scaling with the initial mass function, I found a
BH–WD short period binary fraction of aboutfBH−WD = 1.4×10−6×0.02 = 2.8×10−8, with
a carbon relative production of 3× 10−7. Carbon contribution from BH–WD binaries in the
field is also ruled out under these conditions.

BH–WD disruptions do not enrich the ISM in these conditions! Under the follow-
ing assumptions:
(a) The Shakura & Sunyaev (1973) model represents well BH disks from WD disruptions.
(b) The disruption is such that a constant accretion rate of ≈ 106ṀEdd is maintained through
the whole event, and the entire white dwarf is shredded into the disk.
(c) The black hole is accreting from its inner edge at its Eddington limit. The rest of the
material is ejected.
(d) The wind profile follows a uniform radial distribution.
(e) Such systems form according to Chapter 6 scenarios.
(f) All systems formed in Chapter 6 become these BH–WD systems described in (b).
(g) The IMF and star formation rate follow those used in the present chapter.
it can be concluded that the products of nucleosynthesis are completely negligible, except for
the unburned elements from the WD composition.

In addition to the above assumptions, if we assume that massive stars exploding in su-
pernova expel at least as much material as a 13M� star, and that low mass star expel at
least as much as a 3M� star, then a relative contribution can be estimated. I have done this
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Figure 8.3: Computed relative enrichment of BH–WD systems to dredge up stars and
massive stars. It was assumed all BH–WD systems were with a 0.6M� WD and a 3M� BH,
accreting at 106ṀEdd, where most of the disk is expelled in uniform winds. Low mass stars
were represented by a 3M� star and stars representatives of supernovae were 13M� stars.

for globular clusters where the yields from the burning are normalized to the distribution of
UCXBs and stars, see Figure 8.3.

From Figure 8.3, on can conclude that (1) heavier elements than oxygen are produced in
proportions less than 10−3 than stars, and in addition, this production seems to be uniform
in function of the atomic mass A within [20, 48]. This means that the abundance pattern
resulting from BH disks is identical to the abundance pattern of other stars. So even if
this very small production could be measured, there would be no way to infer whether these
elements were made in stars or black hole disks. (2) the production of carbon and oxygen is less
than stars, but in higher proportions than heavier elements. Observing them would however
not probe for any nucleosynthesis as these are unburned elements. Nucleosynthesis around
black holes would not contribute much more than a combination of white dwarf disruptions
without burning and usual stellar evolution.

65



Chapter 9

Conclusion

Studying nucleosynthesis in black hole accretion disks is important. Understand-
ing what are the different sources of new elements is of fundamental importance for studying
the history of our Universe. We need it to understand where the elements we are made of
come from. We need it to understand how galaxies evolve: we study their current dynamics
and chemistry to infer their passed evolution (Galactic archaeology), so we need to know the
different events which happened, enriching the gas forming stars of later generations. Because
they are hot and dense, leading nucleosynthesis factories are the Big Bang for light elements,
and stars, including the subsequent explosions of the most massive ones, for heavy elements.
More sources are under current investigation, such as neutron star mergers (Wu et al., 2016),
good candidates for enrichment of metal poor stars with r-process elements.
Black holes are extremely compact objects. Inside accretion disks, they are responsible for
very high differential rotation leading to viscous heating. In the most extremes conditions,
the temperatures and densities become sufficient to trigger nucleosynthesis, producing new
elements and ejecting them back to the ISM in the form of winds. The aim of the present
work has been to analyse this nucleosynthesis and quantify the production of new elements.
In addition, it was possible to constrain the enrichment to the ISM due to black hole accretion
disks and compare it to the enrichment from stars.

Accretion disk nucleosynthesis contributes very little to enriching the Milky-Way.
To investigate the nucleosynthesis products of accretion disks around black holes, I first iden-
tified which black hole masses and which accretion processes (mass transfer from a star,
spherical accretion from a gas cloud for example) provide the extreme conditions of temper-
ature and density necessary for nuclear burning. I found that stellar mass black holes tidally
disrupting white dwarf would build accretion disks hot and dense enough for nucleosynthesis
to happen within a specific location. I modelled the resulting disk using the simple Shakura &
Sunyaev (1973) model, and implemented the most representative nuclear burning network at
these temperatures. Alpha-elements are synthetised, and the disk has a very defined structure
with specific elements dominating the composition at different radii. Most of the nucleosyn-
thesis products are expelled in winds due to a super-Eddington accretion. Assuming a wind
profile and determining the rate of these events using literature, I could compute how much
these black hole - white dwarf systems could contribute to the chemical content of the Milky-
Way. Using literature to know the predicted stellar yields, and comparing them to my results
for black hole accretion disks, I found that black hole contributions were negligible.
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Current limitations

- Disk Model: The disk model (Shakura & Sunyaev, 1973) I used for the accretion disk
is too simple and doest not necessarily account for the dominant physics at such super-
Eddington accretion rates. At such high rates, not all photons have time to be emitted in
black body radiation, and some should be advected towards the black hole. In other terms,
the advection time-scale is not negligible compared to the radiation time-scale.

- Energy conservation: As the disk model implemented in the program is an analytical
solution on which I constructed a nuclear burning network, the calculations of energy con-
servation solved in the disk do not account for the energy generated by nuclear reactions.
And this energy is not completely negligible as it represents more than 10% of the viscous
energy during carbon burning, oxygen burning, and photodisintegration. The subsequent ef-
fects could either be a rise in temperature leading to a different burning products. Or it could
have a dynamical effect and perhaps help powering winds, which would then be stronger than
predicted at these specific places.

- Mass conservation: As winds are not accounted in the Shakura & Sunyaev (1973) disk
model, the mass conservation equation within the disk must be wrong, although it could be
argued that the two events disk formation and release in winds happen at different moments,
where first a very dense disk is made by the disruption of the white dwarf on a dynamical
time-scale, and subesequently winds arise from the disk. However, this type of argument rule-
out the possibility to used a Shakura & Sunyaev (1973) disk model as it assumes a steady
state disk.

- Wind: The wind profile used in the present work was an uniform wind in radius. But the
wind is generated by physical processes happening within the disk, for example powered by
super-Eddington accretion. In this case, the radiation responsible for winds is strongest in
the inner disk and so should be the winds. Other wind mechanisms which were not mentioned
in the present work are winds powered by magnetic fields, and jets. In the case of a jet, for a
given accretion rate, the black hole mass plays a crucial role: the jet will have the composition
of the inner disk. A low mass black hole, responsible for a very high inner disk temperature,
could release only helium produced in the photodisintegration. A black hole too massive
would not allow burning and release only the white dwarf composition. Between the two,
heavier elements produced in the disk can be released.

- Neutrino cooling: The disks considered in this work lie in the temperature-density
conditons for pair production of electrons and positrons. But the eventual electron capture
by other nuclei produces neutrinos. Depending on the interaction of the neutrinos with the
disk, the disk could cool by neutrinos. This arguments is on favour of the thin disk model
which was used.

- Photodisintegration of helium: In the inner edge of the disk, where heavy nuclei
are photodisintegrated back to helium nuclei, higher temperatures would photodisintegrate
helium nuclei in their turn, producing neutrons and protons. It would be interesting to see
how these particles of different charges behave in the disk, or in presence of a magnetic field.
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The presence of neutron in powerful winds could lead to neutron capture nucleosynthesis for
example.

Fortunately, there exist several ways to improve these limitations. But efficient
improvements require a ”big step” in method and techniques, which is why I have been
unable to make them on the time-scale of the few weeks left when the most important results
were produced. The problems of disk model, energy conservation, mass conservation and
wind can be solved at once by replacing analytical solutions for the disk by the use of a
magnetohydrodynamical (MHD) code. Implementing a small, simple skeleton of nuclear
network within it would take into account for most of the nuclear energy generated in the
disk. A more sophisticated network implemented in addition, on the top of the simulation,
would allow to compute the nuclear products computationally rapidly. However, the use of
such a computationally demanding code would require a different approach of the problem
than the one I had. Only a few simulations can be run. The present work then reveals useful
for getting an intuition and choosing the runs to do with the improved MHD simulation.
Additionally, the mass accretion rate, which was assumed constant thorough the whole event
actually varies with time. If more time allowed, I would include this variation in my program.
I have done a simple preliminary calculation of the variation of accretion rate during mass
transfer in black hole - white dwarf binaries. The binary system of masses M1 and M2, mass
ratio q = M2/M1 separated by a looses angular momentum by gravitational radiation (Peters,
1964) as

J̇GR = −32G7/2

5c5

M2
1M

2
2

√
M1 +M2

a7/2
, (9.1)

and the separation varies as
ȧ

a
=

2J̇

J
− 2Ṁ2

M2
(1− q). (9.2)

Then, if one knows the mass-radius relation for white dwarf (Equation 5.7), compare it to
the size of its Roche lobe (Equation 4.15), then one can infer an instantaneous mass transfer
rate according to (e.g Frank et al. (2002)):

Ṁ = Ṁ0 exp ((RWD −RL)/hWD) , (9.3)

where hWD is the scale height of the white dwarf atmosphere, which I took from Bobrick et al.
(2017). I did these calculations and the results are plotted in Figure 9.1.

Even if these computations are still pristine as the system should loose more angular
momentum due to exchange with a common envelope (Bobrick et al., 2017), they show that
the mass transfer rate changes as a function of time. I plotted them as a function of ∆M/M0,
the mass lost by the white dwarf divided by the original white dwarf mass, because it tells
us how much of the white dwarf burns at a constant rate in the accretion disk. Here we see
clearly that only 10% of the white dwarf is accreted at a constant rate in the stable mass
transfer case (left panel in the figure). It means that by neglecting it, I over-estimated the
production of new elements. So the estimates of burning products I have found in this thesis
need to be rescaled, and more accurate results would show that black hole accretion disks then
produce ten times less than my predictions. This is not a worrying result as it emphasises
how negligible this outcome is.
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Figure 9.1: Evolution of the accretion rate during the accretion from a 0.6M� (left) and
a 1.4M� white dwarf (right) into a 3M� black hole, where conservative mass transfer was
assumed.

Nucleosynthesis in black hole accretion disks can be useful. Even such a small
outcome may show interesting features in a different context than ISM enrichment. Many
of the produced elements, such as Ti, Cr, Fe, Ni are radioactive. When these elements
decay, they emit photons. This could produce a decay light curve. So such evens of black
hole - white dwarf binaries would leave several electromagnetic counterparts: the thermal
emission from the disk, and the light curve in the outflows. Additionally, such mergers could
produce detectable gravitational waves (e.g. eLISA, (Antoniadis, 2015, for neutron stars
– white darfs). There have been observed events called calcium-rich gap transients, and
neutron stars - white dwarf binaries could be a source (Metzger, 2012; Bobrick et al., 2017).
Black hole - white dwarf binaries could be a class of these events. In such circumstances,
nucleosynthesis in black hole accretion disks can be a very useful tool to recognise and classify
events. Similarly, tidal disruptions of white dwarfs have been proposed to be used to probe
the presence of intermediate mass black holes. Intermediate mass black holes can disrupt low
mass helium white dwarf but not more massive white dwarfs because they are too compact
and are swallowed before disruption. A recognisable electromagnetic counter part from helium
burning could be very useful to recognise tidal disruption events of white dwarfs in the future,
perhaps with the data coming from the future surveys such as LSST. If nuclear burning in
accretion disks is inefficient in enriching the ISM, its applications to recognise localised events
may still be of use.
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Appendix A

Integration of a nuclear network

Nuclear reactions are very temperature dependant, and nuclear networks lead to stiff differ-
ential equations. For numerical stability, they need to be integrated with an implicit scheme.
Given a function f , its derivative is defined as:

f ′(x) = lim
h−>0

f(x+ h)− f(x)

h
(A.1)

In a differential equation this is a function y of f itself:

f ′(x) = y(f) (A.2)

In numerical work, the quantity h cannot tend to zero indefinitely. The programmer needs
to find a compromise between the accuracy of an approximation to this equation and a value
which makes the numerical computation possible and fast. Hence the derivative is computed
with:

f ′ ≈ y =
f(x+ h)− f(x)

h
(A.3)

where the condition
h << f/f ′ (A.4)

must be satisfied. In these last two equations we dropped the argument x of the functions on
purpose. Now that h is a number and not a limit to zero, we need to set a convention and
choose if this formula is an evaluation of the derivative at the point x or a the point x + h.
Said differently, the two following equations can be equally correct:

f ′(x) ≈ y(x) =
f(x+ h)− f(x)

h
(A.5)

f ′(x+ h) ≈ y(x+ h) =
f(x+ h)− f(x)

h
(A.6)

To solve numerically a differential equation, using equation A.5 is straightforward since usu-
ally, f ′(x) = y(f(x), x) is known, f(x) is known, and we want to find f(x + h). This can
be integrated using any forward solver: Euler in the following example or, Runge kutta,
predictor-corrector and so on. This is called explicit differentiation.

f(x+ h) = f(x) + hf ′(x) (A.7)
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If n is the iteration index, we get:

fn+1 = fn + hyn (A.8)

Using equation A.6 (implicit differentiation) is more difficult and requires a more elaborated
method: this time, f ′(x+h) = y(f(x+h), x+h) is not known since it is a function of f(x+h)
which is what we want to find. The quantity to compute is

fn+1 = fn + hyn+1 (A.9)

It was found that for stiff differential equations, the implicit Euler method is numerically
much more stable than the explicit Euler method. Without proving it, we can give some
arguments with the typical differential equation (e.g. in Arnett & Truran (1969)):

y′ = −ay (A.10)

with a a positive real constant. An analytic solution is y(x) = y0e
−ax. This is a decreasing

exponential. With the Euler explicit scheme, we can integrate:

yn+1 = yn − ahyn (A.11)

so for any n we get yn = (1 − ah)ny0 if the time-step h remains constant. This solution is
completely divergent if |1 − ah| > 1 as it is to the power of n. When n is large, this should
tend towards zero for the solution to look like the decreasing exponential. This requires the
time-step h to be small: stability is satisfied if |1− ah| < 1, which requires h < 2/a. This is
a condition of the time-step: it cannot be arbitrarily large for the solution to be stable. On
the other hand, with the Euler implicit scheme, we can integrate:

yn+1 = yn − ahyn+1 (A.12)

tn+1 =
yn

1 + ah
(A.13)

So for any n we get yn = y0

(
1

1+ah

)n
, stable if | 1

1+ah | < 1, which requires only h > 0. There

is no condition on the time-step this time, and the only dependency on the time-step is that
the solution will be, for Euler, accurate to the first order O(h). In the physical context of
nuclear network, the form of the differential equations describing nuclear reactions is as in
Equation 2.27. To evaluate y′n+1 = f ′(x) = Ẏ (t+ h), we re-write Equation 2.27

ẎA(t+ h) = −
∑
i

ρYA(t+ h)Yi(t+ h) < σv >Ai +
∑
i,j≥i

ρYi(t+ h)Yj(t+ h) < σv >ij (A.14)

Writing ∆i = Yi(t+ h)− Yi(t):

ẎA(t+h) = −
∑
i

ρ(YA(t)+∆A)(Yi(t)+∆i) < σv >Ai +
∑
i,j≥i

ρ(Yi(t)+∆i)(Yj(t)+∆j) < σv >ij

(A.15)
We then linearise this equation. Each element (Yi(t) + ∆i)(Yj(t) + ∆j) is developed and the
second order terms ∆2 are neglected.

ẎA(t+ h) =−
∑
i

(ρ(YA(t)Yi(t) < σv >Ai +YA∆i < σv >Ai +Yi∆A < σv >Ai)

+
∑
i,j≥i

(ρ(Yi(t)Yj(t) < σv >ij +Yi∆j < σv >ij +Yj∆i < σv >ij)
(A.16)
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ẎA(t+h) = ẎA(t)−
∑
i

ρ(YA∆i < σv >Ai +Yi∆A < σv >Ai)+
∑
i,j≥i

ρ(Yi∆j < σv >ij +Yj∆i < σv >ij)

(A.17)
Replacing ẎA(t+ h) by ∆A/h, this equation can be factorised and put in a final form:

∆A(1+h
∑
i

ρYi < σv >Ai)+
∑
i

ρYA∆i < σv >Ai −
∑
i,j≥i

ρ(Yi∆j < σv >ij +Yj∆i < σv >ij) = ẎA(t)h

(A.18)
Doing this to the other isotopes involved in the network, the given set of linear equations like
Equation A.18 can be writen as a matrix product:

M∆ = B (A.19)

Where ∆ is the unknown for which we want to solve the equation:

∆ =


∆A

∆B

∆C

...

 (A.20)

B is the known vector containing the rate of change in composition of each element at time
t:

B = h


ẎA(t)

ẎB(t)

ẎC(t)
...

 (A.21)

And M is the matrix containing the information from the linearisation:

M =


1 + h

∑
i ρYi < σv >Ai ρYA(t) < σv >AB ρYA(t) < σv >AC ...

ρYB(t) < σv >BA 1 + h
∑

i ρYi < σv >Bi ρYB(t) < σv >BC ...

...

 (A.22)

This can be written in clearer way: M = Idn − Jn where Jn is the (n × n) identity matrix
and Jn is the Jacobian:

Jn =


∂Ȧ
∂A

∂Ȧ
∂B

∂Ȧ
∂C ...

∂Ḃ
∂A

∂Ḃ
∂B

∂Ḃ
∂C ...

∂Ċ
∂A

∂Ċ
∂B

∂Ċ
∂C ...

...

 (A.23)

Now, we only need to invert M and the nuclear network can finally be integrated: ∆ = M−1B
and if all the abundances of elements are also written in an array Y , we get with an Euler
step: Yn+1 = Yn + ∆

Looking back at the matrix M in Equation A.22, we see that this matrix is very very close
to the identity matrix: the diagonal terms contain a term in 1 + (...) where the second term
is close to zero as it represents mainly the cross section of the reaction. The non diagonal
terms are also expected to be small. If this matrix M was rigorously the identity matrix, then
the differential equation system would not be stiff. The difference from the Identity matrix
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qualifies the stiffness of the equations, and then we would have ∆ = B An example of this
matrix is showed below in Equation A.24, where only (9× 9) terms are shown (physical size
of the page), instead of 13, for the 13 isotopes network. This matrix is computed at every
time-step and the non diagonal terms become large in different temperature conditions (the
more different reactions with rates of different orders of magnitudes are involve, the stiffer).

1 10−17 10−53 10−32 10−66 10−72 10−52 10−52 10−56

10−09 1 10−53 0 0 0 0 0 0
10−07 0 1 10−32 0 0 0 0 0
10−07 10−17 −0 1 10−66 0 0 0 0

0 −0 −0 −0 1 10−72 0 0 0
0 0 −0 0 −0 1 10−52 0 0
0 0 0 0 0 −0 1 10−52 0
0 0 0 0 0 0 −0 1 10−56

0 0 0 0 0 0 0 −0 1


(A.24)
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Appendix B

Matrix inversion and LAPACK++
package

The integration of a nuclear burning network requires so solve a system of linear equations.
This is not a problem, but the numerical challenge is to do it fast. To solve the equation

∆ = M−1B (B.1)

We use the linear algebra package recommended by Press et al. (2007).

Package and installation The LAPACK++ package is a free of use linear algebra package
allowing simple manipulation of vectors and matrices to C++ users. The author of the first ver-
sions are J. J. Dongarra, E. Greaser, R. Pozo, D. Walker. The version I used, lapackpp-2.5.4
is an update from 2010 mainly by Christian Stimming. To install it, open the terminal and
type the command
sudo apt-get install build-essential liblapack-dev libblas-dev checkinstall 1

Download the version lapackpp-2.5.4.tar.gz from http://sourceforge.net/projects/

lapackpp/files/ and unpack it. Then, in the terminal, run the commands
./configure

make

sudo checkinstall

sudo cp/usr/local/lib/liblapackpp.so* /usr/lib

where the two first commands install the package, the third one is a check of the installed
package, and the last one consists in placing the package in the correct file to be found by
the compiler. (README.txt file).

Linear algebra data types The main data types I have used in the code are vectors and
matrices. The declaration of a vector which can be used with the linear algebra package is
done as follows:
LaVectorDouble compo(n);

where a vector compo of size n and containing double precision elements has been created. A
matrix is declared as
LaGenMatDouble deriv_linear(n,n);

where a matrix deriv_linear of size (n×n) was created, containing double precision elements.

1website askubuntu.com
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Inversion command To invert a matrix, the routine to call is defined as:

void LaLinearSolve ( const LaGenMatDouble & A,

LaGenMatDouble & X,

const LaGenMatDouble & B

)

and uses factorisation algorithm and partial pivots to solve linear equations. I then tested it,
inverted the identity matrix without mistakes, and went on using it for the purpose of this
work. The next paragraph shows how I used it in the code I wrote.

A piece of code An incomplete piece of code showing how the integration was performed
is pasted below, where a use of this package was done.

// declaration of the composition vector (molar fraction)

LaVectorDouble compo(n);

// declaration of the mass fraction vector

LaVectorDouble mass_fraction_initial(n);

for(i=0;i<n;++i){ input_file >> compo(i);}

mass_fraction_initial = compo;

(...)

// Mass of elements in the disk

LaVectorDouble mass(n);

LaVectorDouble mass_fraction(n);

// Integration initialisation

(...)

// initialise parameters of the system

parameters param;

param.alpha = alpha; param.dm = dm; param.m1 = m1;

param.spin = spin*(G*m1*Ms/(c*c)); param.wind = 0;

states state;

rates_alpha rate_a;

LaGenMatDouble deriv_linear(n,n); // matrix used for the linar equation solver

LaVectorDouble deriv_compo_expl(n); // time derivative of the molar fraction

LaVectorDouble deriv_compo_impl(n); // time derivative for implicit integration

(...)

// INTEGRATE R(t) (AND STATE(t))

(...)
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// STEP 1.

// Initialise state object

r = R_max; state.R = r; cout<< "r = "<< r << endl;

init_state(&state,&param);

(...)

// Calculate nuclear reaction rates

compute_alpha_rates(&state, &rate_a);

// compute variation elements

rate_of_change_alpha(&state, &rate_a, compo, deriv_compo_expl);

// Linearize (compute matrix to invert)

linearize_alpha(&state, compo, &rate_a, dt, deriv_linear);

// Solve Linear system

LaLinearSolve(deriv_linear, deriv_compo_impl, deriv_compo_expl*dt);

// New composition

compo = compo + deriv_compo_impl;

compute_mass_fraction(compo, mass_fraction);

while (state.R > R_min){

// Calculate nuclear reaction rates

compute_alpha_rates(&state, &rate_a);

// compute variation elements

rate_of_change_alpha(&state, &rate_a, compo, deriv_compo_expl);

// Linearize (compute matrix to invert)

linearize_alpha(&state, compo, &rate_a, dt, deriv_linear);

// Solve Linear system

LaLinearSolve(deriv_linear, deriv_compo_impl, deriv_compo_expl*dt);

// New abundances

compo = compo + deriv_compo_impl;

// Update disk state

r = state.R; f = compute_f(r,RSCH(&param));

RK4(&state,&param,f,dt);

init_state(&state,&param); vr = -compute_vr(r,&param,f);

// Increment stuff & save results

(...)

}
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Program

The program I wrote and used consists in a C++ code with three main parts: integration of
the nuclear network, disk model and main program. it will be available online on https:

//github.com/NeigeF/MSc_Project from Monday 15 May 2017. A detailed description is
given in the following readme.txt file and a flowchart is in Figure C.1.

This folder contains the main programs and routines of the project

valid on 15/12/2016

updated until 04/2017

Updated nuclear reaction rates are available in the folder

[Accretion_disk/nuclear_rates_updated]

which contains a program to plot the burning rates

in function of temperature

-----------------------------------------------------------------------------------

The user only needs to change parameters (initial composition of the disk,

accretion rate, black hole mass...) in the input file (see "use")

------------------------------------------------------------------------------------

List of "include" files

- includeall.h is the only one the user needs to care about.

It declares the functions of "functions.cpp" and includes "include_rates.h"

as well as mathematical functions and C++ print functions.

- include_rates.h contains the declaration of the nuclear burning rates.

------------------------------------------------------------------------------------

List of subroutines:

- functions_v3.cpp contains all the functions used in the main programs,

mainly regarding the accretion disk structure under Shakura-Sunavey regime

and a model of ADAF to compare to Shakura-Sunyaev

-> contains matrix A to be inverted for complete alpha network
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works on 14/11/2016 - updated until 04/2017

- functions_v4.cpp update of functions_v3.cpp for adding pp chain network.

did not finish.

do not know if it works.

- nuclear_rates.cpp contains the nuclear burning rates to use.

They are numbered "rateX()" X = 0, 1, ... with X increasing with the nuclei

sizes or X = C12C12, O16O15, C12O16 etc. contains the two nuclei interacting

------------------------------------------------------------------------------------

List of the programs:

- abundances_v3.cpp latest version, works on 15/12/2016, updated 04/2017

integrates the radial composition of the disk and the total yields

of NS during accretion onto the black hole.

to be fed with input file (e.g. input.txt)

- rhoTplane.cpp, works on 15/12/2016

computes:

path of a gas blob through the disk in the rho-T plane

path of the center of a star in the rho-T plane through its evolution

path of a blob of gas in the rho-T plane during the Big Bang

conditions necessary for nuclear burning in the rho-T plane

data exported in 4 separate output files.

- rhoTplane_v3.cpp, works on 15/12/2016

same as rhoTplane.cpp, updated with possiblity of BH spin

with parameter 0 < a < 1.

- mmdotplane.cpp, works on 15/12/2016

computes for various ranges of BH mass and accretion rates

the greatest disk temperatures and density (inner most)

the accretion time scale (viscous)

the burning time scale for triple alpha and C12+alpha

- mmdotplane_v3.cpp, works on 02/2017

same as mmdotplane.cpp, updated with possiblity of BH spin

with parameter 0 < a < 1.

------------------------------------------------------------------------------------

Download LAPACK++ PACKAGE

sudo apt-get install build-essential liblapack-dev libblas-dev checkinstall

Download the version lapackpp-2.5.4.tar.gz from

http://sourceforge.net/projects/lapackpp/files/

and unpack it
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./configure

make

make install

sudo checkinstall

------------------------------------------------------------------------------------

Compilation

1. compile the files and link to objects:

g++ -c abundancesx.cpp functionsx.cpp nuclear_rates.cpp -I /usr/local/include/lapackpp

2. compile objects to make program

g++ abundancesx.o functionsx.o nuclear_rates.o -o program_name.exe -llapackpp

3. give path to shared library

export LD_LIBRARY_PATH=/usr/local/lib

------------------------------------------------------------------------------------

Run:

./abundances_v3.exe input.txt

------------------------------------------------------------------------------------

description of input file: input.txt

--------------------------

M_BH M_WD

Mdot alpha spin

n_iso h

He

C

O

Ne

(...)

Ni

Output_name

-------------------------

where:

M_BH = black hole mass in solar mass

M_WD = white dwarf mass in solar mass

Mdot = accretion rate in Eddington units

alpha = viscosity parameter

spin = normalised BH spin (between 0 and 1)

n_iso = number of isotopes in the network (can only be 13 in current version!!!)

h = maximum time-step

He = mass fraction of helium

Output_name = name of output file (don’t write the extension)

===================================================================================

LIMITATIONS (explained in thesis text)

===================================================================================
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- WD mass must be < 1.4 Msun

- BH mass must be < 300 Msun

- Sum of mass fractions for initial disk composition must be 1
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Start

Input: MBH, Ṁ ,
α, a, MWD, Y

Compute boundaries
Rcirc, RISCO, R(T9 = 1)

R = min (Rcirc, R(T9 = 1))

Initialise/update
state: (ρ, T , vR)

R > RISCO

compute Ẏ, linearize,
compute new Y, R

Out: Save
updated state
and products:
R,ρ, T ,Y

Out: Total mass
of elements
produced

Stop

Yes

No

Figure C.1: Global flowchart of the program integrating the nuclear burning network of a
blob of gas through an accretion disk.
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Tables of reaction rates

Nuclear reaction Reference

α+ α+ α −→ γ + 12C Angulo et al. (1999)
12C + α −→ γ + 16O Angulo et al. (1999)

16O + α −→ γ + 20Ne Angulo et al. (1999)
20Ne + α −→ γ + 24Mg Angulo et al. (1999)
24Mg + α −→ γ + 28Si Harris et al. (1983)

28Si + α −→ γ + 32S Woosley et al. (1978)
32S + α −→ γ + 36Ar Woosley et al. (1978)

36Ar + α −→ γ + 40Ca Woosley et al. (1978)
40Ca + α −→ γ + 44Ti Woosley et al. (1978)
44Ti + α −→ γ + 48Cr Woosley et al. (1978)
48Cr + α −→ γ + 52Fe Woosley et al. (1978)
52Fe + α −→ γ + 56Ni Woosley et al. (1978)

12C +12 C −→ γ + 24Mg Caughlan & Fowler (1988)
12C +16 O −→ γ + 28Si Caughlan & Fowler (1988)
16O +16 O −→ γ + 32S Caughlan & Fowler (1988)

Table D.1: Alpha-chain reactions and the references used for their reaction rates
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