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Abstract

Horseback riding is a sport enjoyed by people around the world. Many riders are in-
terested in knowing exactly how much they have exercised their horse and how much
time that have been spent in different gaits. The goal of this master’s thesis was to
develop an equine gait recognition algorithm. Triaxial accelerometer and gyroscope
signals were collected during different riding sessions by using smartphones. Fea-
tures, used in previous activity recognition works, were implemented and calculated
for all sensor signals. Different methods to select important features were used and
the feature sets were then evaluated. In the work four classifiers were implemented
and evaluated.

The work resulted in an equine gait recognition algorithm based on signals collected
at the saddle-girth. The developed algorithm used a window length of 128 samples
and windows with 50 % overlap. A feature set was chosen by the use of sequential
forward feature selection. Five features were included in the final algorithm and two
classifiers using two respectively three of the features. The first classifier separated
stand from the gaits by using the features root mean square for the magnitude of the
gyroscope signal and energy of the x-axis accelerometer signal. The second classifier
classified gaits as either walk, trot or canter using the wavelet based feature energy
distribution ratio of the z-axis accelerometer signal, dominant frequency of z-axis of
the gyroscope signal and skewness of the accelerometer z-axis. The classifiers used
in both classification steps were KNN with K = 3.

The algorithm performed well on a collected test set including two riding sessions. It
should be noted that the same phone was used to collect both training and testing
data. The performance of the developed algorithm was benchmarked against the
smartphone application Equilab. The performance of both algorithms was similar.
The developed equine gait recognition algorithm had a 94.1 % and 97.4 % accuracy
on the two different test sessions.

Further development of the algorithm will be needed to include other terrains and
a larger variety of horses and riders.

Keywords: Activity Recognition - Gait Analysis - Horse Back Riding - Accelerom-
eter - Gyroscope





Preface

This work is a thesis for the degree Master of Science in Biomedical Engineering at
the Faculty of Engineering, Lund University (LTH). The project was carried out at
Sony Mobile Communications AB in Lund. Huge thanks to our supervisors Frida
Sandberg at LTH and Andrej Petef at Sony Mobile Communications for all your
support. We also would like to thank Aminda Ingulfson and Hanna Sassner and all
riders and horses at Flyinge, without your help with data collection this work would
not have been possible. Finally, we would like to thank all other people at Sony
Mobile Communications who have helped us in different ways.





Contents
1 Introduction 1

1.1 Introduction to the Master’s Thesis . . . . . . . . . . . . . . . . . . . 1
1.2 Survey of the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1.1 Human Activity Recognition . . . . . . . . . . . . . 2
1.2.1.2 Equine Activity Recognition . . . . . . . . . . . . . 4

1.2.2 Products used for Activity Recognition . . . . . . . . . . . . 5

2 Background 7
2.1 Sensors used in Activity Recognition . . . . . . . . . . . . . . . . . . 7

2.1.1 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Gyroscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Feature Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Frequency Domain . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Wavelet Analysis (Discrete Wavelet Transform) . . . . . . . . 14

2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 K-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 18

2.3.4.1 One-versus-One . . . . . . . . . . . . . . . . . . . . 20
2.3.4.2 One-versus-Rest . . . . . . . . . . . . . . . . . . . . 20

2.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Sequential Forward Feature Selection . . . . . . . . . . . . . . 20

2.5 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Principal Component Analysis . . . . . . . . . . . . . . . . . 21

3 Data Collection 23
3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Description of Sensors . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Sensor Placement . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Collection of Training Data . . . . . . . . . . . . . . . . . . . . . . . 25

4 Preprocessing 27
4.1 Matlab Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1.1 Importing Data into Matlab . . . . . . . . . . . . . 27
4.1.1.2 Resampling . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1.3 Magnitude . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.1.4 Segmentation . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1.5 Labeling . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1.6 Outlier Rejection . . . . . . . . . . . . . . . . . . . . 29

4.1.2 Decision of Sensor Position . . . . . . . . . . . . . . . . . . . 29
4.1.3 Training Data Set . . . . . . . . . . . . . . . . . . . . . . . . 30



CONTENTS CONTENTS

5 Algorithm Development 31
5.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Decision of Window Length . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Classify Stand vs. the Gaits . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Classify Walk vs. Trot vs. Canter . . . . . . . . . . . . . . . . . . . . 34

5.4.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.1.1 Sequential Forward Feature Selection using KNN . . 35
5.4.1.2 Sequential Forward Feature Selection using SVM One-

vs-One . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.1.3 Sequential Forward Feature Selection using SVM One-

vs-Rest . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.1.4 Random Forest Variable Importance . . . . . . . . . 36

5.4.2 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.2.1 PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.5 Final Gait Recognition Algorithm . . . . . . . . . . . . . . . . . . . 37

6 Result 41
6.1 Collection of Testing Data . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Preprocessing of Testing Data . . . . . . . . . . . . . . . . . . . . . . 41
6.3 Classification Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Result Test Session 1 . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Result Test Session 2 . . . . . . . . . . . . . . . . . . . . . . . 44

6.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 46

7 Discussion 47
7.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Algorithm Development . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8 Conclusion 51



1. Introduction
1.1 Introduction to the Master’s Thesis

In a world of Internet of Things (IoT) devices, with sensors embedded in almost any
electronic device, sensors are also attached to humans and animals. By monitor-
ing motion patterns, means for understanding movement and behaviour in different
situations will be provided. Many IoT related applications can be foreseen, such
as monitoring human and animal activities, guiding athletes to improved motion
patterns, or possibly indicating health problems early on. One of the possible areas
for applications is horseback riding.

Horseback riding is a sport enjoyed by people around the world. The horse is an
active animal by nature and when horses still lived as wild horses they moved many
hours every day to find food. Horses kept in stables thereby needs a lot of exercise
every day [1]. Exercise is important for the functioning of the blood circulation and
the lymphatic fluid circulation of the horse. Horses do not move without a reason
and need to be exercised or put out to pasture [2].

The horse moves in many different gaits, the common natural gaits are walk, trot
and canter. The walk is a 4-beat movement that happens in eight steps where the
horse alternates between three respective two legs on the ground. The trot is a
2-beat movement and the movement happens in four steps. The diagonal leg pairs
work together, and should touch the ground on the same time. The canter is a
3-beat movement that happens in six steps, it alternates between one leg, three legs,
two legs, three legs and one leg on the ground followed by suspension [1].

Many riders are interested in knowing exactly how much they have exercised their
horse and how much time that have been spent in different gaits. Riders’ experience
of the riding session does not always match what has been achieved during riding
session. An objective analysis of gaits could help the riders customize the train-
ing to reach their desired goals. It could also make it easier to keep track of the
training of a horse if many riders are involved. A smartphone application used for
gait recognition, Equilab, was selected the product of the year 2016 by the readers
of the horse magazine Hippson [3]. However, riders we talked to complained that
the application had gait recognition problems and many misclassifications were done.

The goal of this master’s thesis was thereby to develop an algorithm for equine
gait recognition, collect a unique data set for the development of the algorithm and
benchmark the developed algorithm against the existing product Equilab. The algo-
rithm should be able to classify the gaits, walk, trot and canter, as well as stand. An
additional goal was to create a useful Matlab script for analysis of different kinds of
motion patterns. The script should contain a systematic method to identify valuable
features for classification and evaluate different classifiers.

Since there are a lot more research done in human activity recognition, the starting
point of this project was inspired by human activity recognition methods combined
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with knowledge of horse gaits.

This thesis work starts with a survey of the field. It continues with chapter 2
where the sensors used are described followed by time domain, frequency domain
and wavelet based feature characterization and a description of the different classi-
fiers used. The chapter ends with different feature selection and feature reduction
methods. Chapter 3 describes different choices made for the data collection and how
the data was collected. Chapter 4 explains the process of preparing the collected
training data for further analysis. In chapter 5 the algorithm development process
is described and the final equine gait recognition algorithm is presented. In chap-
ter 6 the collection of testing data and the results of the developed algorithm are
presented. The results are also benchmarked against the smartphone application
Equilab. In chapter 7 the results of this thesis work and future work are discussed.
The thesis work ends with chapter 8 where the most important conclusions are
presented.

1.2 Survey of the Field

1.2.1 Related Work

1.2.1.1 Human Activity Recognition

There are several studies done on different motion patterns. Two common ways to
study motion patterns are image analysis and use of accelerometer data. In this
master’s thesis the focus will be on activity recognition using accelerometer and gy-
roscope data. One of the most studied group of activities, using this kind of sensor
data, is basic human everyday movements, such as walking, stair climbing, stair
descending, running, sitting and laying down. Recognition of different hand ges-
tures is also a well-studied area using sensor data, and used in commercial products
such as the Wii-controller [4]. An increasing number of studies are done on animal
movement, for example activity recognition of cattle [5][6]. The methods used for
analyzing motion patterns with sensor data differ and below some different studies
are presented.

Bao and Intille [7] has made a work on human activity recognition. Their work
is one of the most cited works in this field since they proved that accelerometer sig-
nals are very useful for human activity recognition. Algorithms were developed and
evaluated using data from five biaxial accelerometers worn simultaneously on differ-
ent parts of the body. The subjects performed 20 different everyday activities (for
example walking, watching TV, brushing teeth, climbing stairs, vacuuming) without
being told specifically how and where to do them. The features extracted from the
data were mean, energy, frequency-domain entropy, and correlation of acceleration
data. Using theses features, the classifiers decision table, instance-based learning,
C4.5 decision tree, and naive Bayes classifiers were trained and tested. The decision
tree generated the highest recognition accuracy, over 80 %. It was also noticed that
high accuracy was obtained using only two accelerometers placed on thigh and wrist.

2



1.2. SURVEY OF THE FIELD 1. INTRODUCTION

The dataset collected by Bao and Intille [7] was also used by Mannini and Sabatini
[8] but reduced to only contain data from seven activities. They give a review on how
human physical activity can be classified using on-body accelerometers. Especially,
hidden Markov models are discussed but also classifiers such as K-nearest neighbor
(KNN), artificial neural networks (ANN) and support vector machine (SVM).

Many different works use the classifier hidden Markov models since it has been shown
to be a good classifier for human activity recognition (see for example [4][8][9]). A
recent published article by Ronao och Cho [9] propose a classifier architecture of
continuous hidden Markov models. A two-stage continuous hidden Markov model
framework is used to analyze accelerometer and gyroscope data. The feature se-
lection is done by using random forest variable importance measures (RF VI), a
technique combining bagging and random feature selection by creating a collection
of simple decision trees.

To be able to recognize many different types of activities, the combination of a
wrist-worn sensor and pocket worn sensor has been evaluated by Shoaib et al. [10].
The study included recognition of thirteen activities, divided into two groups, simple
and complex. The simple group contained repetitive activities such as walking and
jogging. The complex group contained motions such as smoking, eating, drinking
coffee and giving a talk. The work discusses activity classification techniques, sen-
sor combinations and different window sizes. Accelerometer, gyroscope and linear
accelerator were used. A feature set including mean, standard deviation, minimum
and maximum value, median, semi-quartile and the sum of the first ten Fast Fourier
Transform (FFT) coefficients was used to be able to classify both simple and com-
plex patterns. For classification three different methods were used, naive Bayes,
KNN and decision tree. It was concluded that the recognition performance of com-
plex patterns was improved when data from both the wrist-worn sensor and pocket
sensor were used for analysis. Combining both accelerometer and gyroscope data
generated better recognition performance than only accelerometer data. The effect
of different window sizes was also analyzed. Small window sizes worked good for
recognizing simple tasks but larger window sizes were better for classifying more
complex tasks.

Another approach for human activity recognition is template matching. Margarito
et al. [11] have done activity recognition for eight common sport activities (cycling,
cross training, rowing, squatting, stepping running walking, and weightlifting) by
using a single triaxial accelerometer placed at the wrist. Template-based activity
recognition was done by creating templates based on a training set and then compare
example signals and the templates for classification. The comparison was made by
using five different similarity measures (Euclidean distance, dynamic time warping
(DTW), derivative DTW, cross-correlation, and combining distance and correlation
metrics (Rce)). It was concluded that Rce generated highest classification accuracy,
approximately 80 %. The template-matching-based activity recognition was com-
pared to the more common statistical-learning classifiers naive Bayes (NB), logistic
regression (LR), decision tree and artificial neural network (ANN) using 11 time and
frequency features (mean, variance, root mean square of the derivative signal, min-
max range, total energy, skewness, main frequency, entropy, quantile 0.25, quantile
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0.50 and quantile 0.75). ANN and LR generated the highest recognition accuracy,
approximately 85 % which is a bit higher than for the best template-based recogni-
tion method.

There are also studies where only gyroscope data have been used to classify mo-
tion patterns, an example of this is a work done by Barshan and Ayrulu-Erdem [12].
Two single-axis gyroscopes placed on the right leg, above and under the knee, were
used to collect data. To classify eight different leg motions an ANN with features
extracted using the discrete wavelet transform (DWT) were used. Different wavelet
types were tested. The advantage of using wavelet transform compared to Fourier
methods is that wavelet transform can perform local analysis and thereby analyze
signals that are highly non-stationary, noisy, and aperiodic whereas Fourier retrieves
the global frequency content.

As can be seen there are many different approaches when analyzing human mo-
tion patterns. Many different techniques for feature extraction and classification
have been tested. The sensor placements seem to depend on what kind of activities
that are analyzed.

1.2.1.2 Equine Activity Recognition

Analysis of horses using accelerometers has successfully been done by different re-
search groups [13][14][15][16]. They have analyzed, for example, different gaits,
jumping techniques, horse-rider coordination and lameness.

Gait determination using accelerometers has been done by for example Burla et
al. [13] and Robilliard et al. [14]. Burla et al. used 20 horses of different breeds
and heights. An accelerometer was placed on left foreleg and the vertical accelera-
tion was measured with the sampling frequency 10 Hz. The mean of the absolute
acceleration value for each of the different gaits stand, walk, trot and gallop was
calculated. By taking breed classes into account, the acceleration values of the dif-
ferent gaits did not overlap. The use of accelerometer was therefore considered a
good way to measure locomotor activity and resting behavior in horses. Robilliard
et al. did characterize different gaits of horses by using the foot-fall (foot-on and
foot-off) pattern. Eight Icelandic horses were used in the study and were analyzed
by using accelerometers attached to the dorsal hoof of all four limbs. To find an
optimal criteria to differentiate gaits the method linear discriminant analysis (LDA)
was used. The LDA made it possible to distinguish between symmetric and asym-
metric gaits.

Barrey and Galloux [15] did a work analyzing equine jumping technique with ac-
celerometer where the vertical acceleration at the sternum was measured. The mea-
surements were made on eight horses running a course with 14 obstacles. The four
best horses during the race were considered “good jumpers” and the other four were
considered “poor jumpers”. Both time domain analysis and Morlet’s wavelet analy-
sis were used to analyze jumping technique. From the recorded accelerometer data
the peak acceleration was extracted from the forelimbs and hindlimbs just before the
take off. It was found that the “poor jumpers” had a lower stride frequency and a
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higher forelimb/hindlimb acceleration ratio. The results from Morlet’s wavelet anal-
ysis showed that a faulty jump (knocked over pole) had a decreasing stride frequency
at take-off, had absence or a low energy content in the middle frequency range and
the relative energy of the acceleration impulse at take-off was considerably smaller
than the landing energy of the forelimbs.

Accelerometers have also been used to analyze the coupling between the horse and
the rider. One example is the work by Viry et al. [16] who studied the patterns
of horse-rider coordination during endurance race using two triaxial accelerometers
placed on the horses and the riders. Gait patterns of the horses were identified
by the stride frequency. Identification of riding techniques per horse gait was done
by quantifying the amplitude of the craniocaudal displacement of the rider. Iden-
tification of horse-rider coordination was done by representing the spatio-temporal
relationship between the rider and the horse on Lissajous plots.

1.2.2 Products used for Activity Recognition

Many different products have been used for human activity recognition. Examples
are different activity bands used on the wrist or apps. But there are also some prod-
ucts for easily measuring activities and wellness of horses that have been launched
on the market. The products often use accelerometers, gyroscopes, magnetometers
and GPS.

Equilab [17] is a product used for gait activity recognition and to give feedback
on training of the horse. The product is an app that uses the sensors in the phone
to measure the movements of the horse while riding. The phone is placed in a
pocket where it lies steady. Gait, stride, beat, pace, distance, energy consumption,
performance and trends are analyzed. Equilab was, as mentioned earlier, selected
the product of the year 2016 by the readers of the horse magazine Hippson. The
developed algorithm in this thesis is benchmarked against Equilab [18].

Equisense [19] is a French startup company that has developed two different prod-
ucts for horses, Equisense Motion and Equisense Care. Equisense Motion is a sensor
used to provide feedback of the rider’s training session and the fitness of the horse.
The sensor is placed on the saddle-girth and is a 9-axis inertia motion sensor (3-axis
gyroscope, 3-axis accelerometer, 3-axis magnetometer) connected to an app. In the
app symmetry, time spent at each lead and each gait, elevation, cadence, number
of jumps and work intensity can be studied. Equisense Care will be delivered in
September 2017. It is a product for measuring the horse well-being and health. The
product offers continuous information of for example heart rate, respiratory rate and
perspiration, possibility to evaluate the horse’s stress level and to follow the daily
activity. This is done by using an app connected to a sensor placed on the breast in
a bodysuit. The sensor consists of a 6-axis motion sensor (3-axis accelerometer and
3-axis gyroscope), ultra-wideband radar, infrared thermometer and humidity sensor.

Another product very similar to Equisense Care is Nightwatch [20]. Nightwatch
is a product used for monitoring equine distress and wellness. The product offers
real-time monitoring and alert notifications 24 hours a day. The product monitors
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heart rate and respiratory rate by using ultra-wideband impulse radar and monitors
activity, motion and posture by using accelerometers, gyroscopes, compasses and
altimeters. The sensors are embedded in either a halter or a collar.

Swedish University of Agricultural Sciences (SLU) is performing research on lame-
ness for equines by using a wireless inertial sensor system called Lameness Locator.
The sensor system consists of two accelerometers and a gyroscope and is used for
data collection and analysis. In an article by McCracken et al. [21] the Lameness
Locator was tested in a lameness study. The results showed that the system was
able to identify the limb with induced lameness before three equine veterinarians
agreed on the affected limb. In the study three sensors were used to measure ver-
tical movement. The sensors were placed on the head, pelvic and right front limb.
However, it should be noted that some of the authors have personal interest in the
Lameness Locator (co-inventor, seller and stakeholder).

6



2. Background
In this chapter, sensors, features, classifiers, feature selection and feature reduction
methods used in this work are descried.

2.1 Sensors used in Activity Recognition

The most common sensor used in activity recognition analysis is the accelerometer
but the gyroscope has also been used. Studies have shown that the two sensors can be
used in combination for improved activity recognition [22]. Triaxial accelerometers
and gyroscopes can be found in almost all smartphones today.

2.1.1 Accelerometer

An accelerometer measures the acceleration forces in the unit m/s2. An accelerome-
ter consists of two fundamental parts, a housing and a mass. The housing is attached
to the object whose acceleration is measured. The mass is tethered to the housing
but can still move. In smartphones the accelerometer is very small and microelec-
tromechanical system (MEMS) technology is used. The accelerometer is made of
silicon. In smartphones the housing is attached to the phone and the mass has
a comb-like structure. The comb-section can move back and fourth in the silicon
tethering to the housing. Fingers surround the comb-section and make up a differ-
ential capacitor. Current will flow when the comb-section moves and the amount
of flowing current can be correlated to the acceleration. The accelerometer with its
fundamental parts is illustrated in Figure 2.1. The acceleration is often measured in
three dimensions (x, y and z) in smartphones, see Figure 2.2 [23].

Figure 2.1: Illustration of an accelerometer. The gray box illustrates the housing.
The red section is the mass which can move. The green sections illustrates the
fingers.
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Figure 2.2: Coordinate system of the smartphone.

2.1.2 Gyroscope

The gyroscope is a type of inertial sensor. The gyroscope measures the rate of
rotations and the unit is radians per second (rad/s). Gyroscopes in smartphones
often uses MEMS technology which contains a vibrating mass. It utilizes the Coriolis
effect. The mass is loosely coupled to a housing. When the housing starts to rotate
the vibrating mass does not want to change its direction, causing a displacement
compared to the housing. This displacement to the housing can be measured in the
same way as the accelerometer, using a comb-like structure surrounded by fingers,
but the current flow is correlated to a rotational change. The gyroscope also often
measure along three dimensions (x, y and z) in smartphones [24].

2.2 Feature Characterization

Features used in successful activity recognition have been calculated in the time do-
main, the frequency domain and by using wavelet analysis. A mathematical back-
ground for better understanding of different features is presented in the following
sections. In these sections, x(n) is a time series signal (accelerometer or gyroscope
signal) where n refers to the sample. N is the number of samples in a window of
the signal.

2.2.1 Time Domain

Mean
The mean value is defined as

µx =
1

N

N∑
n=1

x(n) (2.1)

8
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Median
The median is the center value when values are sorted in increasing order. If the
signal contains an even number of values, the median is the mean of the two center
values.

Quartile
Quartile is a statistical term used when a data set is divided into four equal parts.
A data set is sorted with the lowest number first and the highest number last. The
first quartile (Q1) is the value that splits off the lowest 25% of the data from the
highest 75%. The second quartile (Q2) is the value that splits the data in half (the
median). The third quartile is the value that splits of the highest 25% of the data
from the lowest 75%. The interquartile range (IQR) is the difference between Q3
and Q1. The different quartiles are illustrated in Figure 2.3.

Figure 2.3: Illustration of the quartiles (Q1, Q2 and Q3) and the interquartile range
(IQR) of signal x.

Variance
The variance is defined by

σ2
x =

1

N − 1

N∑
n=1

(x(n)− µx)2 (2.2)

Standard Deviation
The standard deviation is defined by

σx =

√√√√ 1

N − 1

N∑
n=1

(x(n)− µx)2 (2.3)

Skewness
Skewness is a measure related to the shape of the probability distribution, it de-
scribes the degree of asymmetry in the data. The skewness is negative if most of the
mass of the distribution is to the right and the left tail is longer than the right tail.
The skewness is positive if most of the mass is to the left and the right tail is longer.
If the distribution is symmetric the skewness is 0. Negative and positive skew are
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illustrate in Figure 2.4.

skew =
1

Nσ3
x

N∑
n=1

(x(n)− µx)3 (2.4)

Figure 2.4: Illustration of negative and postive skew.

Kurtosis
Kurtosis is also a measure related to the shape of the probability distribution, it
describes if the data is light-tailed or heavy-tailed. Low kurtosis indicates light tails
and no outliers and high kurtosis indicates heavy tails or outliers. Normal distribu-
tion of data equals kurtosis 3. Low and high kurtosis are described in Figure 2.5.

kurt =
1

Nσ4
x

N∑
n=1

(x(n)− µx)4 (2.5)

Figure 2.5: Illustration of low and high kurtosis.
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Root Mean Square
Root mean square is the square root of the mean squared.

xrms =

√√√√ 1

N

N∑
n=1

x(n)2 (2.6)

Crest Factor
The crest factor describes the peaks in a waveform and is a measurement of how
extreme the peaks are. If there are no peaks in the signal the crest factor is equal
to 1. For a sine wave the crest factor is

√
2.

C =
|x|peak
xrms

(2.7)

where |x|peak is defined as half the maximum to minimum range (see below).

Energy
The energy of a discrete time signal, x(n), is defined as

E =

N∑
n=1

|x(n)|2 (2.8)

Range (Maximum - Minimum)
The range is the difference between the maximum value and the minimum value of
a signal. The range is described in Figure 2.6.

Figure 2.6: Illustration of the maximum - minimum range.
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Mean-Crossings
Mean-crossings is a measure of the number of times a signal crosses the mean value,
or actually the mean value plus a certain threshold. The threshold in this work was
set to ±20 % of the mean value. The measure is illustrated in Figure 2.7.

Figure 2.7: Illustration of the feature mean-crossings.

Maximum of Sample Differences
The maximum of sample differences is the maximum sample difference between
corresponding samples for two signals, x(n) and y(n).

max diff = max(x(n)− y(n)), n = 1, ..., N (2.9)

Cross-Correlation
Cross-correlation is a measure of the similarity between two time series. The co-
efficients are calculated by shifting one of the signals in time with respect to the
other signal. If the first signal x is N points and the second signal y is M points,
cross-correlation is calculated in the following way

R̂yx(τ) =
1

N − 1

N−1∑
n=0

y(n+ τ)x(n) τ = 0, ...,M − 1 (2.10)

Correlation Coefficient
The most commonly used correlation coefficient is the Pearson’s product moment
coefficient. It is calculated in the following way

ρx,y =
cov(x, y)

σxσy
, |ρx,y| ≤ 1 (2.11)

where the covariance, cov(x, y), is calculated as

cov(x, y) =
1

N − 1

N∑
n=1

(x(n)− µx)(y(n)− µy) (2.12)

12
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2.2.2 Frequency Domain

The discrete Fourier transform is calculated using the fast Fourier transform. The
discrete Fourier transform is defined as

Y (k) =

N−1∑
n=0

x(n)e
−2πi
N nk k = 0, 1, 2, ..., N − 1 (2.13)

Sum Largest Fourier Coefficients
The coefficients in the discrete Fourier transform is defined by

c(k) =
|Y (k)|
N

k = 0, 1, 2, ..., N − 1 (2.14)

One feature is the sum of the m largest Fourier coefficients, where m in this work
varies from 1 to 10.

Dominant Frequency
The dominant frequency is the frequency corresponding to the highest peak of the fre-
quency spectrum, i.e. the largest Fourier coefficient (excluding the DC-component).
The dominant frequency is illustrated in Figure 2.8.
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Figure 2.8: The dominant frequency in the spectrum.

Frequency Domain Entropy
The equation for Shannon entropy is given by

H(x) = −
∑
x

p(x)log2p(x) (2.15)

where p(x) is the probability distribution. In the frequency domain p(x) is given by

p(x) =
c(k)∑n
j=1 c(j)

k = 0, 1, 2, ..., N − 1 (2.16)

Frequency Domain Quartile
The same method as used for calculating the time domain quartiles is used when
calculating the frequency domain quartiles. The Fourier coefficients are sorted with
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the smallest coefficient first and the largest last. The first quartile (Q1) is the value
that splits off the lowest 25% of the Fourier coefficients from the highest 75%. The
second quartile (Q2) is the median value and the third quartile is the value that
splits off the highest 25% of the Fourier coefficients from the lowest 75%.

2.2.3 Wavelet Analysis (Discrete Wavelet Transform)

In wavelet transform certain wavelets such as Haar and Daubechies are used for
analysis. The transform is a time-frequency transformation i.e. both information
about frequency and location in time are obtained. In the Discrete Wavelet Trans-
form (DWT) a wavelet function and a scaling function are used. The DWT uses the
wavelet and its scaling function to construct filter pairs. The filter constructed from
a wavelet function works like a high-pass filter and from the complementary scaling
function a low-pass filter is constructed.

By convolving the signal x(n) with the low-pass filter, g(n), and a high-pass fil-
ter, h(n), two new vectors are acquired, by decimating by two the approximation
coefficients cAi(n) (low-pass), and detail coefficients cDi(n) (high-pass) are acquired.
Where i denotes the level, i.e., cAi(n) = approximation coefficients for level i, cDi(n)
= Detail coefficients for level i and cA0(n) = x(n), see Equation 2.17 and 2.18 [25].
In Figure 2.9 the procedure is illustrated.

cAi(n) =

∞∑
k=−∞

cAi−1(k)g(2n− k) (2.17)

cDi(n) =

∞∑
k=−∞

cAi−1(k)h(2n− k) (2.18)

Figure 2.9: An illustration of how the discrete wavelet transform calculates the
different coefficients.

Total Energy DWT decomposition
The total energy (ET ) at level i of the DWT decomposition is given by

ET = cAicA
T
i +

i∑
j=1

cDjcD
T
j (2.19)
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where
cAi = [cAi(1)...cAi(N)]

and
cDj = [cDj(1)...cDj(N)]

N varies between levels.

Wavelet Energy Distribution Ratio
The energy distribution ratio (EDR) for the approximation coefficients at level i is
given by

EDRA =
cAicA

T
i

ET
(2.20)

and EDR for detail coefficient j at level i is given by

EDRDj =
cDjcD

T
j

ET
j = 1, ..., i (2.21)

Wavelet Magnitude Coefficients
The magnitude coefficient for the approximation coefficient at level i is calculated
by

||cAi|| =
√
cAicATi (2.22)

and the magnitude coefficient for the detail coefficient j at level i is calculated by

||cDj || =
√
cDjcDT

j j = 1, ..., i (2.23)

Wavelet Variance
The variance of the approximation coefficient at level i is calculated by

σ2
cAi =

1

N − 1

N∑
n=1

(cAi(n)− µcAi)2 (2.24)

and for the detail coefficients by

σ2
cDj =

1

N − 1

N∑
n=1

(cDj(n)− µcDj )2 j = 1, ..., i (2.25)

where

µcAi =
1

N

N∑
n=1

cAi(n) (2.26)

and

µcDj =
1

N

N∑
n=1

cDj(n) (2.27)
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2.3 Classification

In this work the classifiers K-nearest neighbors, decision tree, random forest and
support vector machine have been implemented. The selection of classifiers was
based on the literature presented in section 1.2.1 and considering the relatively small
amount of data collected for this work.

2.3.1 K-Nearest Neighbor

K-nearest neighbor (KNN) is a commonly used classifier, it is widely used because
of ease of implementation and that it is easy to understand. The classifier saves all
the supplied training data and uses it when new entries are classified. The letter
K in KNN refers to the number of neighbors used in the classification. When K=1
the training point nearest the testing point will be the only deciding factor when
determining the predicted class. If K=3 the three closest points will be deciding the
classification, if no distance weight is used the majority vote of the closest points de-
cides the classification. If there are draws the resulting classification can be decided
randomly [26, p. 124–126]. In this thesis work a feature set is used as a multidi-
mensional input for each point, neighbors are found by calculating the Euclidean
distance. The number of neighbours (K) was set to 3.

2.3.2 Decision Tree

A decision tree is a classifier that uses a tree-like structure. A decision tree starts
with one node (the root) which splits the data set into two new nodes based on a
split criterion. A split criterion splits the data set depending on whether a feature
value is above or below a split value (θ). This process is repeated for every node
until a leaf is reached. A leaf is an output for the classification [26, p. 663–666]. An
example of a decision tree is shown in Figure 2.10.
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Figure 2.10: A small decision tree with three classes A,B and C as output. The
nodes evaluate whether a feature is below or above a threshold value θi. The same
feature can be used many times with different thresholds, as an example the right
branch from the root evaluates feature one (F1) two times but with different θ.

There are many ways to construct a decision tree, one way is to use the Gini diver-
sity index to evaluate nodes. The Gini index is a measurement of impurity and is
calculated as follows

it = 1−
∑
j

p2j (2.28)

where j is the different classes at node t, and pj is the fraction of class j observed at
node t. If only one class is present at a node, the node is pure and the Gini index is
zero. When creating node splits they can be evaluated by calculating the weighted
impurity gain (∆I)

∆I =
nt
n
it −

nL
n
itL −

nR
n
itR (2.29)

where n is the total number of samples, nt samples in node t, it is the Gini index
for node t, nL, nR number of samples in the left and right child node, itL and itR is
the Gini index for the left and right child node. The feature and split value of the
feature at each node is decided by calculating the impurity gain for every feature
and testing all the values for each feature. By maximizing the impurity gain a new
node split can be found. The process of splitting nodes continues until either the
maximum allowed number of splits is reached, a proposed split causes the number
of observations in a branch node or leaf to be below a pre-determined threshold, no
improvement in impurity gain can be found or the node is pure. This approach is
a greedy algorithm for construction of the tree [27]. In this work the parameter for
maximum number of splits was set to the number of observations minus one. The
minimum parent size was set to 10 and the minimum leaf size was set to 1.

Decision trees do often overfit and have high variance. To reduce the effect of
overfitting and lower the variance, random forest can be used.
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2.3.3 Random Forest

Random forest is the result of a combination of many decision trees. The combina-
tion of decision trees often makes the predictions more accurate. The construction
of the decision trees starts by creating k new training sets Di from the original
training set D. Each new training set Di is created by sampling the observations
from D randomly with replacement. This means that one observation from D can
be selected multiple times in each Di. From each training set Di one decision tree
is created. The same splitting algorithms used for single decision trees are used in
this case as well but instead of using all M features in Di at each split a random
subset of features is used. The subset usually contains

√
M features. This method is

called the random forest algorithm. The class is finally decided by voting. The class
with majority outputs from the different trees is the final classification [28][29]. In
this work the same parameters used for the decision tree were used for the random
forest i.e. the parameter for maximum number of splits was set to the number of
observations minus one. The minimum parent size was set to 10 and the minimum
leaf size was set to 1. The number of decision trees was set to 100.

Importance of features can be estimated by the help of random forest, this is referred
to as random forest variable importance (RF VI). The importance calculation con-
sists of a few steps. Firstly the remaining samples in D, called out-of-bag samples,
are classified with the tree constructed from subset Di and the classification results
are saved. Secondly one of the features used in the tree (constructed from Di) is
chosen. The values are then permuted for all out-of-bag samples of that feature.
The set including the permuted feature is then classified with the same tree again
and the difference in classification result is saved. This process is repeated for all
trees. The difference in classification results for the feature are then averaged over
all trees and divided by the standard deviation of the score to get a variable impor-
tance estimate. This process is repeated for every feature. The acquired variable
importance can be useful to find features that are good for separating the data, but
it does not give good information about which combinations of features that are
useful. Features that are heavily correlated can appear in separate trees and result
in high importance scores but when used in combination there is no new information
gained [30].

2.3.4 Support Vector Machine

The classifier support vector machine (SVM) was initially constructed for binary
classification problems. The original idea of SVM is to separate two classes by
finding the hyperplane that separates the classes in the most optimal way. The
separation is done using the maximized margin criterion. The goal is to minimize
the following equation

min
1

2
wTw + C

m∑
i=1

ξi with respect to w, b and ξi (2.30)

subject to yi(w
Tφ(Fi) + b) ≥ 1− ξi, (2.31)
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ξi ≥ 0, i = 1, ...,m

where Fi (i = 1, ...,m) are the feature vectors in the training set of the two classes,
yi is the label of the feature vector (yi = −1 or yi = 1), w is the weight vector,
C is the regularization constant, ξi is a slack variable, φ is a function that makes a
nonlinear mapping of the training data by projecting it into a suitable feature space,
see Figure 2.11, and b is a bias term. ξi is used for inseparable classes to penalize
observations that crosses the margin boundary for their class. If an observation do
not cross the boundary ξi equals 0. C is a parameter used to prevent overfitting
and controls the maximum penalty added to observations violating the margin [31].
A small value of C results in a large margin and a large value of C results in a
narrow margin. The optimal margin for separable classes equals 2

||w|| . To get a

better understanding of SVM see Figure 2.12.

Figure 2.11: Illustration of the function φ.

Figure 2.12: Description of SVM.
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Lagrange multipliers method is a common way to solve the optimization problem.
The following equation is minimized

min
1

2

m∑
i=1

m∑
j=1

αiαjyiyjF
′
iFj −

m∑
i=1

αi with respect to αi’s (2.32)

subject to

m∑
i=1

αiyi = 0 (2.33)

0 ≤ αi ≤ C, i = 1, ...,m

where αi’s are the Lagrange multipliers [32].

Commonly used methods to solve multi-class problems with SVM are the one-versus-
one technique and the one-versus-rest technique. Both methods use the standard
binary SVM multiple times in a systematic way to solve the classification problem.

2.3.4.1 One-versus-One

The one-versus-one approach evaluates all possible combinations of binary classifiers

which results in k(k−1)
2 classifiers for a k class problem. The winning class for every

combination for a test observation gets one vote and the class with most votes is the
final label of the test observation [31].

2.3.4.2 One-versus-Rest

The one-versus-rest technique constructs k binary classifiers to label a test observa-
tion in a k class problem. The l-th classifier is trained by using the training data for
the l-th class as the positive class (y = 1) and the other k− 1 classes as the negative
class (y = −1). The class of a test observation is decided by the classifier with the
highest output value. The binary SVM classifier is sensitive to highly unbalanced
data and the one-versus-rest approach can thereby be problematic [31].

2.4 Feature Selection

The goal of feature selection is to find a limited number of features, from the set of
extracted features, which yield the smallest classification error possible. The number
of features included can be chosen beforehand or by some criterion.

2.4.1 Sequential Forward Feature Selection

Sequential forward feature selection (SFFS) is a simple and relatively fast method for
feature selection. SFFS starts with an empty feature set. Features are then added
to the feature set one by one by using some evaluation method of the classification
error. In this work, the classification error is calculated as the number of misclassified
windows relative to total number of windows. During the first iteration, the single
feature that yields the smallest classification error is added to the empty feature
set. In the second iteration a new feature from the remaining feature set is added
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to the feature set. The chosen feature is the feature that together with the first
feature yields the smallest classification error. New features are then added to the
feature set using the same method. The feature set is complete when there is no
improvement of the classification error when a new feature is added to the set, when
the improvement is below a selected threshold or when a pre-selected number of
features have been added to the feature set [33]. In this work the classifiers KNN
and SVM were used. The classification error was the average misclassification rate
when leave-one-out cross validation was performed. In leave-one-out cross validation
one observation (riding session) is used as validation set and the other sets are used
as training set and the classification error is calculated. This is repeated until all
sets have been used as validation set. The average error can then be calculated.

2.5 Feature Reduction

2.5.1 Principal Component Analysis

Principal component analysis (PCA) is a method used for dimensionality reduction.
PCA is an orthogonal projection of data onto a lower dimensional linear space such
that the variance of the projected points is maximized and the data becomes uncor-
related. The principal component is the component with the largest variance and
the last component has the smallest variance. In activity recognition PCA can be
used to reduce the number of features used for classification of the data. The first
step in PCA is that the mean of each feature vector in the feature set is calculated
and subtracted from the feature values. The feature vectors are columns in the
feature matrix F (containing N features).

FµF
= F− µF (2.34)

The covariance matrix of the new vectors is calculated. Eigenvalues and eigenvectors
of the covariance matrix are calculated in the following way

cov(FµF
)V = λV (2.35)

where cov(FµF
) is the covariance matrix of the feature set, V are the eigenvectors

(v1, v2, ..., vN ) and λ the eigenvalues in a diagonal matrix. The eigenvalues are sorted
in descending order and a matrix is received by the corresponding eigenvectors. The
eigenvector corresponding to the largest eigenvalue is the principal component (the
first column) and the eigenvector corresponding to the smallest eigenvalue is the last
component (the last column). A transformation matrix is obtained by keeping the p
first eigenvectors. Usually the p chosen eigenvectors represent 95 % of the variance
of the original feature set. The dimensionality of the original feature set can now be
reduced by the use of the transformation matrix Vp.

Reduced feature set = FµF
Vp, where Vp = v1, v2, ..., vp (2.36)

The new feature set has now p dimensions. Observe that the new feature set obtained
from PCA is not the initial feature set but a linear combination of the initial features
[34][35].
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3. Data Collection
This chapter describes different choices made for the data collection and how the
data was collected.

3.1 Sensors

3.1.1 Description of Sensors

In this work equine activity recognition data were collected using accelerometer and
gyroscope. Examples of the different sensor signals for the x, y, z-axis and the mag-
nitude are seen in Figure 3.1. The choice of sensor types was based on the survey of
the field, the available resources provided by Sony and the desire to be able to use
cheap consumer products for data collection and analysis. The accelerometer and
gyroscope used are therefore units in Sony smartphones. For the collections of data
two different phones were used, both containing the accelerometer unit BMA2X2
and the gyroscope unit BMG160. The sensor range for the accelerometer was ±39.2
m/s2 and for the gyroscope ±34.9 rad/s. An internal prototype device containing
an accelerometer component was also considered but was discarded due to not hav-
ing easy access to the data collected by the unit.

To access the data from the accelerometer and gyroscope different options were
examined. Different applications available at Google Play were briefly tested if they
could suit the needs for the data collection. For example Sensor Kinetics [36] was
tested but limitations due to not allowing data extraction in the free version it was
discarded. The possibility to use in-house developed applications for data was dis-
cussed but no such application with easy access to data was found. The final choice
of application to use resulted in AndroSensor available at Google Play [37]. This
application had some interesting features such as remote start and stop, and could
be configured to write the collected data into a comma-separated value (CSV) file
format.
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Figure 3.1: An example of collected accelerometer and gyroscope signals for all axes,
including the calculated magnitude, from one riding session. The sample frequency
is 50 Hz, the gait is canter and the data is collected by a phone placed around the
saddle-girth.

3.1.2 Sensor Placement

The sensor placement when analyzing motion patterns plays an important role. A
final decision was made to place a sensor at the saddle-girth and one sensor on the
back of the rider. The sensor placements were based on the literature discussed in
section 1.2.1.2 and section 1.2.2, consumer products and interviews. It was impor-
tant that the smartphones were easy to access and attach, would stay at the same
position during the whole session, and would not affect the riding pattern of the
horse.

Initially there were many ideas for sensor positions. The positions were, on the
head of the horse, at the back of the horse, in the saddle, on the legs, on the rider, at
the saddle-girth and at the sternum of the horse. The head of the horse was quickly
discarded as a location due to problems with attaching the phone and the weight
of the phone would probably be an annoyance for the horse. Similarly, the sternum
and back of the horse were discarded as locations due to needing extra equipment
that was not always used during riding. The option to place the sensors at the legs
of the horses would probably require sensors with a wider accelerometer range than
available in the phones, and also the weight of the phones could be a disturbance.
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The best placement on the horse thus resulted in using the saddle-girth. The girth
keeps the saddle in place and everyone that uses a saddle has one. This location had
also been used in some of the research and products studied (see section 1.2.2). In
an interview with Lisette Hedman, who titles herself as ’horse and riding mechanic’,
these locations were further verified as a good location for gait analysis. To fixate
the sensor (smartphone) a sports activity armband was fastened around the saddle-
girth, on the part of the girth that is under the belly of the horse. The screen of
the phone was facing downwards and the top of the phone was pointing to the right
side of the horse.

A pilot data collection with the suggested sensor location at the girth was done,
an example of annotated data from this study can be seen in Figure 3.2.

Figure 3.2: The full pilot data signal collected. The signal is the z-axis of the ac-
celerometer. The sensor was placed on the saddle-girth. Regions where annotations
were made are colored for the respective activity.

A sensor was decided to be placed on the rider as well. This was done because the
rider moves differently depending on the gait and some other consumer products,
for example Equilab, uses a pocket on the rider as position for the sensor in activity
recognition analysis. To make the data collection reproducible for different riders
and for minimal sensor movement a sport waist pouch was used to place the phone
on the lower back. The back of the phone was against the back of the rider and the
top of the phone was pointing to the right side of the back.

3.2 Collection of Training Data

The pilot data collection was successful and a training data set was collected with the
chosen sensor positions, see Table 3.1. The data set was collected in collaboration
with staff and students at Flyinge Kungsg̊ard and with an employee at Sony. The
horses used for collection did vary in size and gender.
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Table 3.1: Pilot and training data collected

Rider Horse Location Duration Date Notes

RA HA Large Riding House, Flyinge 30 min 20/2 indoor, pilot data
RB HB Racecourse, Flyinge 1 h 10/3 outdoor
RC HC Crafoord, Flyinge 40 min 14/3 indoor
RD HC Crafoord, Flyinge 50 min 14/3 indoor
RC HD Crafoord, Flyinge 55 min 14/3 indoor

RE HE Riding Stable, Genarp 55 min 9/3 indoor

A protocol for recording the data was constructed and followed. The protocol de-
fined positions for the two different phones, settings in AndroSensor, procedure at
start of the recording, how annotation of data was made and what other parameters
to be noted e.g. location, horse and rider.

The phones were always placed in the same position with the same orientation. The
sampling rate was set to 50 Hz in AndroSensor. Before fastening the two phones at
their corresponding positions, recordings were started on both devices. Addition-
ally, a stopwatch was started on a third device. All three devices were started at the
same time manually. The third device with a stopwatch was used to get timestamps
when new activities were started, a new lap meant that a new activity was started.
Manual annotation of all activities and the lap number were made. When the session
ended the stopwatch was stopped and all the timestamps were saved. The phones
used for recording data were stopped manually. In some recordings, a forth device, a
camera, was used to videotape the session. The video was used in the labeling when
something was unclear. The time of the camera was synchronized by videotaping
the stopwatch.

As mentioned earlier AndroSensor had the option for remote start by sending a
SMS to the phone. This option was not used in the end due to problems with mes-
sages not arriving at the same time for the phones and no confirmation of recording
start was received.

The final training data set included 4 different horses and 4 different riders from
five different sessions. The pilot data set only contained one of the sensor positions
and was, because of this, excluded from the training set.
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4. Preprocessing
This chapter describes the process of preparing the collected training data for the
analysis made in the following chapters.

4.1 Matlab Implementation

A work flow in Matlab was developed for analyzing the collected data. The work flow
was divided into several smaller segments, with three major sections preprocessing,
feature extraction and classification, see Figure 4.1. Important parts of these sections
are described in this chapter and the two following chapters.

Figure 4.1: Simplified overview of the implemented Matlab work flow.

4.1.1 Preprocessing

4.1.1.1 Importing Data into Matlab

The output from the application AndroSensor generated CSV-files with columns for
the x, y, z-axes for the accelerometer and the gyroscope, respectively.

The data from both sensor positions for all subjects were imported into Matlab with
a set of implemented functions. The functions loaded the data from the recorded
CSV-files (specific to the collected CSV-files) into a flexible Matlab format. The code
and format supported the possibility to import data from several ’time-synchronized’
sensor positions from a single subject. Each sensor position could contain several
sensors (accelerometer, gyroscope et cetera) under the assumption that the sensors
had the same number of samples and the same timestamps.

4.1.1.2 Resampling

There were some fluctuations in the sampling of the data and the collected data was
not perfectly evenly sampled. All collected data was therefore resampled to have
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the same time distance between samples. With the sampling rate set to 50 Hz, the
time difference between samples were 20 ms. The resampling was done because the
time difference would otherwise create problems in the feature extraction and in the
segmentation of the data.

Two different methods for resampling were tested, both methods used Matlab’s
built-in function resample. The different methods were linear interpolation and cu-
bic spline interpolation. The result of both methods were visually examined, both
methods seemed to perform well, but the cubic spline would sometimes create a very
large deviation from the signal, an example of this can be seen in Figure 4.2. It was
thereby decided to use the linear interpolation method as it looked good when it was
visually examined and seemed to have less problems than cubic spline interpolation
method.
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Figure 4.2: Example of the interpolation methods. The plots illustrates a large
deviation from the signal for the cubic spline interpolation method. The top plot is
a zoom in of the signal where the deviation appears. The bottom plot is a zoom out
of the signal.

4.1.1.3 Magnitude

A commonly used method in activity recognition is to construct a magnitude vec-
tor from the collected data. The magnitude vector was calculated for both the
accelerometer and gyroscope signals as follows

am(n) =
√
ax(n)2 + ay(n)2 + az(n)2 (4.1)

gm(n) =
√
gx(n)2 + gy(n)2 + gz(n)2 (4.2)

The vectors am(n) and gm(n) was used as additional dimensions for the features.
The total number of dimensions used for feature extraction were thereby 8 (ax(n),
ay(n), az(n), am(n), gx(n), gy(n), gz(n) and gm(n)).
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4.1.1.4 Segmentation

A function for automatic segmentation of the data collected was implemented. The
method is able to create windows of the collected data with specific number of sam-
ples and overlap between windows. For each window the timestamps of the samples
were also kept. When approaching the end of the signal the number of samples left
might be too few for a full window, if that was the case the window was discarded.

Since the sensors were manually started and stopped, the synchronization between
them was not perfect. One sensor signal would sometimes fit more windows than
the other sensor signal. If any sensor signal had more windows than the other, the
sensor with the fewest windows decided the maximum number of windows extracted.
The segmentation was used in conjunction with labeling to extract the interesting
parts of the signal.

4.1.1.5 Labeling

During the data collection manual annotation of activities and time stamps were
recorded. For every activity recorded a start time and an end time were obtained.
Usually the end time would be the same as the next activity start time, but due to
human errors this was not always the case. The annotated data was paired with the
collected sensor data to label the extracted windows. Every window that fit between
the start time and end time of an activity was labeled as the recorded activity. Win-
dows not fitting between any start times and end times was labeled as ’Unknown’.

For all sensor placements, the assumption was made that the recording sensors
are synchronized, or close enough to have the same timestamps for the extracted
windows. This means that window n from a sensor position gets the same label as
window n from another sensor position.

4.1.1.6 Outlier Rejection

Data with unknown label and data sections that deviated a lot from the signal in
general were rejected. Moreover, two different methods to handle possible outlier
values were briefly tested but in the end not used. The methods constructed thresh-
olds based on the measurements standard deviation and median absolute deviation
and values above the thresholds were flagged. Both methods flagged for outliers
in many of the windows where no clear outliers could be seen by the eye. It was
concluded that no outlier rejection was needed.

4.1.2 Decision of Sensor Position

Before the training data set was created the decision was made to only use the
sensor position on the saddle-girth of the horse. This decision was made after visual
examination of the different signals. The accelerometer signal for the phone placed
on the riders back did saturate, in contrary to the phone placed on the saddle-girth.
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4.1.3 Training Data Set

By performing all the steps above and removing all windows with unknown label,
two data sets for the girth sensor were constructed from the data. The difference
between the data sets results from the selected window length when applying the
segmentation function and the labeling. One of the data sets uses a window length
of 128 samples (2.56 seconds) and the other set uses a window length of 256 samples
(5.12 seconds). Both the sets used a 50 % overlap between windows. The decisions
of window lengths and overlap were based on the articles described in section 1.2.1.
The total number of windows for each activity for both sets is presented in Table 4.1,
for an example see Figure 4.3.

Table 4.1: The table shows the number of windows for each class in the constructed
training set for window lengths with 128 and 256 samples using 50 % overlap.

Window length 128 256
Stand 251 (2.99%) 102 (2.51%)
Walk 3825 (45.61%) 1857 (45.65%)
Trot 2653 (31.63%) 1299 (31.93%)

Canter 1658 (19.77%) 810 (19.91%)
Total 8387 (100.00%) 4068 (100.00%)
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Figure 4.3: Example of windows extracted from the data set, one window of each
labeled activity from HE-RE (left) and HC-RD (right). The windows are constructed
with a window length of 128 (left) and 256 (right) samples. The data is from the
z-axis of the accelerometer signal.
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5. Algorithm Development
This section describes the development of the equine gait recognition algorithm. Sev-
eral different algorithms were developed and evaluated using different feature sets
and classifiers before a final algorithm was decided. An overview of the algorithm
development process is visualized in Figure 5.1.

Figure 5.1: An overview of the development of the equine gait recognition algorithm.
The development is described in this chapter.

5.1 Feature Extraction

Feature extraction was done using Matlab. All implemented features have earlier
been used in human and equine activity recognition, see section 1.2.1.

The time domain, frequency domain and wavelet based features listed in Table 5.1
were implemented and calculated for all windows. The total number of features
implemented was 405. All features were calculated for the window lengths 128 and
256 samples, respectively.
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Table 5.1: List of Features

(a) Time Domain Features

Mean (Eq. 2.1)
Median
Quartile 1 (Fig. 2.3)
Quartile 2 (Fig. 2.3)
Quartile 3 (Fig. 2.3)
Interquartile range (Fig. 2.3)
Standard Deviation (Eq. 2.3)
Skewness (Eq. 2.4)
Kurtosis (Eq. 2.5)
Root Mean Square (Eq. 2.6)
Crest Factor (Eq. 2.7)
Energy (Eq. 2.8)
Range (Max-Min) (Fig. 2.6)
Mean-Crossings (Fig. 2.7)
Maximum of Differences (Eq. 2.9)
Max Cross-Correlation (Eq. 2.10)
Correlation Coefficient (Eq. 2.11)

(b) Frequency Domain Features

Sum Largest Fourier Coefficients (Eq. 2.14)
Dominant Frequency (Fig. 2.8)
Entropy (Eq. 2.15)
Quartile 1
Quartile 2
Quartile 3
Interquartile range

(c) Wavelet Based Features

EDR A Coefficients (Eq. 2.20)
EDR D Coefficients (Eq. 2.21)
Magnitude A Coefficients (Eq. 2.22)
Magnitude D Coefficients (Eq. 2.23)
Variance A Coefficients (Eq. 2.24)
Variance D Coefficients (Eq. 2.25)

All features in Table 5.1, except the features maximum of differences, max cross-
correlation and correlation coefficients were calculated for all eight different axes (ax,
ay, az, am, gx, gy, gz and gm). The features maximum of differences, max cross-
correlation and correlation coefficients were instead calculated for pairs of axes. The
different combinations of pairs were az and ax, az and ay, ax and ay, gz and gx, gz
and gy, gx and gy and am and gm.

For the wavelet based features Daubechies 4 was chosen as mother wavelet since
it is a commonly used wavelet for motion data (see e.g. [12]). The level was cho-
sen to 5 after evaluating the different levels based on classification accuracy of the
training data using only the wavelet feature set. For details on calculation of the
implemented time, frequency and wavelet features, see section 2.2.

5.1.1 Normalization

All calculated features were then normalized by the following equation

FNi =
Fi − µi
σi

(5.1)

where Fi is the feature number i, µi is the mean for the i-th feature in the data set
and σi is the standard deviation for the feature i in the data set.

5.2 Decision of Window Length

The decision was made to use the window length 128 samples (2.56 seconds). This
decision was made after studying feature values and after evaluating some classifi-
cation results, using the training data, for the different window lengths (128 and

32



5.3. CLASSIFY STAND VS. THE GAITS 5. ALGORITHM DEVELOPMENT

256 samples). The decision to use the shorter window length was also based on the
riding lessons studied. It is not unusual that the rider does rapid changes between
the gaits and a longer window would not capture some of these changes. In the pro-
ceeding development of the algorithm only data from the saddle-girth and windows
with 128 samples is used.

5.3 Classify Stand vs. the Gaits

During the algorithm development process it was noticed that the data labeled
”Stand” often got misclassified even though these signals differs a lot from the dif-
ferent gait signals (see Figure 4.3). The reason for this problem was probably because
the data set was very unbalanced, less than 3 % of the total data set was labeled as
”Stand”. The feature selection methods did thereby not focus on finding features
for correct classification of “Stand”. To avoid this problem features that can be used
to distinguish between stand and all the gaits as one joint class were selected as a
first step.

5.3.1 Feature Selection

Sequential forward feature selection (SFFS) using KNN as classifier was used as se-
lection method. As described above, whenever KNN are used in this project K=3.
This method was chosen since it is simple and relatively fast and good results were
obtained when it was tested. The selection was made using leave-one-out cross val-
idation. One riding session of the training data was used as test set and the other
four riding sessions of the training data were used as training set. This was repeated
five times, i.e. all sessions were left out once, and the average classification result
was calculated. The classification error improvement threshold was set to 0.01 %,
i.e. if the improvement was lower then 0.01 % the feature was not added to the
set and the set was complete. The low threshold was selected since the data set
was very unbalanced. The selected features are listed in Table 5.2 and visualized in
Figure 5.2. In Figure 5.2 it can be seen that the feature on the x-axis (RMS) could
be good alone. It seems like the feature on the y-axis (energy) has a very small
contribution to the separation. Regardless, both features were used since they were
chosen by the selection method.

In the following tables and figures, the first letter stands for time, mixed axes time,
frequency or wavelet feature (T, M, F or W), the following letters stands for ac-
celerometer or gyroscope (a or g) and whether it is x, y, z-axis or the magnitude (x,
y, z or m).

Table 5.2: The selected features to distinguish stand from the gaits for window
length 128 and sensor position girth.

T gm: Root Mean Square
T ax: Energy
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Figure 5.2: Scatter plot of the two selected features to distinguish stand from the
gaits. In the scatter plot feature one (x-axis) is plotted against feature two (y-axis).

To distinguish between stand and the gaits, as a joint class, only the KNN classifier
was used and trained using the feature set listed in Table 5.2. The classification
result was estimated by using leave-one-out cross validation. The estimated result
of the feature set using the training data was 99.9 %.

5.4 Classify Walk vs. Trot vs. Canter

The next step was to find features to distinguish between the different gaits, i.e.
walk, trot and canter. Different feature selection and feature reduction methods
were tested to find the best feature set for the final algorithm. These methods were
sequential forward feature selection using KNN, SVM one-vs-one and SVM one-vs-
rest, feature selection based on RF VI and feature reduction using PCA.

Five different classifiers were used to evaluated the selected feature sets, by the
above mentioned methods, and to find the best classifier for the final algorithm.
The classifiers were KNN, decision tree, random forest, SVM one-vs-one and SVM
one-vs-rest. Leave-one-out cross validation was used to get an estimation of the
classification performance of the feature sets.

In the previous section only one selection method (SFFS KNN) and one classifier
(KNN) were used to distinguish between stand and all the gaits as one joint class. In
this section five different selection methods and five classifiers have been evaluated
to distinguish between the gaits walk, trot and canter. The reason is that the gait
classification problem is more complex and the main focus in this project has been
to classify different gaits.
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5.4.1 Feature Selection

5.4.1.1 Sequential Forward Feature Selection using KNN

Sequential forward feature selection using KNN was used as selection method in this
step as well. The selection was made using leave-one-out cross validation where the
different riding sessions were left out one by one. The classification error improve-
ment threshold was set to 0.5 %. The selected features are listed in Table 5.3 (a)
and the estimated classification result of that feature set using leave-one-out cross
validation of the training data is presented in Table 5.3 (b). The classification result
of the random forest changes slightly from time to time since random features are
chosen when creating the decision trees and thereby the result is rounded to include
less significant figures.

Table 5.3: SFFS KNN

(a) Selected Features

W az: EDR cD4

F gz: Dominant Frequency
T az: Skewness

(b) Estimation of Classification

KNN 99.1 %
Decision Tree 98.8 %
Random Forest ∼99 %
SVM one-vs-one 97.1 %
SVM one-vs-rest 96.7 %

5.4.1.2 Sequential Forward Feature Selection using SVM One-vs-One

Sequential forward feature selection using SVM one-vs-one as classifier was also
done using 0.5 % as classification error improvement threshold and leave-one-out
cross validation. The selected features are listed in Table 5.4 (a) and the estimation
of the classification result is listed in Table 5.4 (b).

Table 5.4: SFFS SVM one-vs-one

(a) Selected Features

F gz: Dominant Frequency
T az: Interquartile range

(b) Estimation of Classification

KNN 97.4 %
Decision Tree 98.5 %
Random Forest ∼97 %
SVM one-vs-one 99.2 %
SVM one-vs-rest 96.6 %

5.4.1.3 Sequential Forward Feature Selection using SVM One-vs-Rest

Sequential forward feature selection using SVM one-vs-rest was done in the same
way as the above sequential forward feature selection methods and the results are
seen in Table 5.5.
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Table 5.5: SFFS SVM one-vs-rest

(a) Selected Features

W az: EDR cD4

T az: Skewness
F az: Largest Fourier Coefficient
F gy: Sum 2 Largest Fourier Coefficients

(b) Estimation of Classification

KNN 99.4 %
Decision Tree 98.4 %
Random Forest ∼99 %
SVM one-vs-one 99.6 %
SVM one-vs-rest 99.4 %

5.4.1.4 Random Forest Variable Importance

The 20 features with the highest importance in the random forest were selected. The
whole training set was used as input when the trees were created and the importance
was decided. The importance was calculated as described in section 2.3.3. All 20
selected features are listed in Table 5.6 (a). It should be noted that the features
in the table may change slightly due to the random construction of the trees. The
estimated classification result of the set is seen in Table 5.6 (b).

Table 5.6: Random Forest Variable Importance

(a) Selected Features

F gy: Dominant Frequency
F am: Dominant Frequency
F az: Dominant Frequency
W gy: Magnitude Coefficient cD5

W ax: Magnitude Coefficient cD4

T az: Skewness
M gz gy: Max Cross-Correlation
W gy: Variance cD5

F gz: Dominant Frequency
F gy: Largest Fourier Coefficient
W ax: EDR cD4

W ax: Variance cD4

M az ax: Correlation Coefficient
W az: EDR cD4

M gz gy: Correlation Coefficient
T am: Mean-Crossings
M gz gx: Correlation Coefficient
W az: Variance cD4

T az: Median
W az: Magnitude Coefficient cD5

(b) Estimation of Classification

KNN 98.4 %
Decision Tree 90.7 %
Random Forest ∼97 %
SVM one-vs-one 98.6 %
SVM one-vs-rest 99.0 %

5.4.2 Feature Reduction

5.4.2.1 PCA

The principal components which describe 95 % of the variance were used as trans-
formation matrix to reduce the feature set. The feature set was reduced from 405
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dimensions to 63 dimensions. The estimated classification result for training data of
the new feature set is presented in Table 5.7.

Table 5.7: Estimation of classification result for training data using the reduced
feature set.

KNN 94.4 %
Decision Tree 84.9 %
Random Forest ∼95 %
SVM one-vs-one 98.2 %
SVM one-vs-rest 97.8%

5.5 Final Gait Recognition Algorithm

The choice of the final model to use for classification of walk, trot and canter was
KNN using the feature set acquired by SFFS using KNN. This model in combination
with the model separating stand and the gaits (based on features from SFFS KNN
and classifier KNN) resulted in the final algorithm, see Figure 5.3 for an overview.

Figure 5.3: Illustration of the classification process for segmented data with no label.
The selected features for each segment are sent to the first classifier which classify
stand and gaits, the windows classified as gaits are sent to the next classifier which
classify the type of gait using the feature set selected for gait classification. The
results are then merged together and a classification for each window is achieved.

The selection of feature set and classifier for the final algorithm was done by analyz-
ing the results of the different selection methods and the classifiers, see Table 5.3–5.7.
The reason PCA was not used is because it is mainly used to reduce the size of fea-
ture sets. However, none of the extracted feature sets were large enough to justify
the use of PCA on them. PCA was used on the full feature set and reduced the set
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to 63 new features. The amount of computation needed to calculate the full feature
set, which is needed when calculating the new feature set, is one drawback of using
PCA. To be able to get a good feature set more evaluation of the new features are
needed and since good results were obtained with the other feature sets, this was
not further evaluated in this work.

The feature set based on RF VI was not used since the importance score does not
consider the correlation between features. This means that for example the best two
features could be very good on their own and in combination with other features,
but when used together no new or very little new information is gained. Further
evaluation of feature combinations will be needed.

All the feature sets selected by the SFFS methods were small (2-4 features) and
the classification results when using leave-one-out cross validation were high. These
feature sets and classifiers would probably all have performed well on unseen data.
The reason the feature set from SFFS using KNN was used for the final algorithm
was because these features were found in the other SFFS feature sets, one feature
is found in the feature set constructed by SFFS using SVM one-vs-one and two fea-
tures in the set constructed by SFFS using SVM one-vs-rest. All the three selected
features also appear in the list of the features with highest importance in the ran-
dom forest. In Figure 5.4 a visual representation of the selected feature values of the
training data is shown. The classifier with the best result for this SFFS KNN set
was KNN and thereby it was decided to use KNN as classifier in the final algorithm.

Another thing to note is that all selected feature sets contains features from both
the accelerometer and the gyroscope. All different domains (time, frequency and
wavelet) are also represented in the feature sets were at least three features are
selected.

38



5.5. FINAL GAIT RECOGNITION ALGORITHM 5. ALGORITHM DEVELOPMENT

-2
-8

-1-2

-6

-4

00

-2

W.az.EDR.D4

T
.a

z
.S

k
e
w

n
e
s
s

0

2

F.gz.DominantFreq

1

2

4

4

2

6

6
38

Walk

Trot

Canter

Figure 5.4: Three dimensional scatter plot of the features selected to distinguish
between the gaits in the final algorithm.
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6. Result
In this chapter the process of collecting and preprocessing data for testing the al-
gorithm is described. The algorithm is evaluated and compared to the smartphone
application Equilab.

6.1 Collection of Testing Data

The data used for evaluation was collected in the same way as the training data and
the same phone was used. The phone was placed on the saddle-girth. Accelerometer
and gyroscope data were collected using the application AndroSensor. The data was
collected during two different dressage lessons outdoor at Flyinge Kungsg̊ard. Two
different riders were used for evaluation and both riders were riding for approximately
50 minutes. To get a better evaluation of the performance of this work the result is
benchmarked against the existing smartphone application Equilab. Another phone,
with Equilab downloaded, was thereby placed on the rider. Equilab was started
the same time as the riding lesson started and stopped when it ended. The phone
had the accelerometer MPU6500 Acceleration Sensor Invensense with maximum
range ±39.2 m/s2 and the gyroscope MPU6500 Gyroscope Sensor Invensense with
maximum range ±34.9 rad/s. One rider wore the phone with Equilab in a tight
jacket pocket and the other rider wore the phone in the pocket of her trousers, see
Table 6.1 for information about the riding sessions.

Table 6.1: Testing data collected at Flyinge

Session Rider Horse Location Duration Date Notes Equilab

Test 1 RF HF Kastanjeg̊arden, Flyinge 48 min 15/5 outdoor jacket
Test 2 RG HG Kastanjeg̊arden, Flyinge 49 min 15/5 outdoor trousers

6.2 Preprocessing of Testing Data

The processing of the testing data was a bit different compared to the training data.
The first steps were the same with resampling the signal and calculating magni-
tude vectors. The next step was to extract the labeled part of the signal from the
recorded signal, i.e. the data from the dressage lesson. The extracted signal was
then segmented with the implemented segmentation function. The windows created
then had their features calculated. The calculated features were then sent to the
chosen classifier to get a label for the windows.

The ground truth for the signal was defined for each sample of the analyzed sig-
nals. This meant that the predicted labels for the windows had to be converted
to labels corresponding the samples covered by the window. The overlap between
windows meant that a sample could possibly receive two different labels, the final
classification of a sample was chosen to be the latest window classifying the point,
see Figure 6.1.
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Figure 6.1: An illustration of how the final output classification is constructed. Each
window has its own classification and the number of samples covered by the window
get the same label. When windows are overlapping with different labels, the latest
windows decide the labels for the samples covered by the windows.

6.3 Classification Result

6.3.1 Result Test Session 1

The classification accuracy of test session 1 with the developed algorithm is 94.1 %
and can be found in Figure 6.2. In Figure 6.3 a detailed view of where the errors
appear can be seen. The middle line marks the errors between the predicted label
and the expected label. Many of these errors are from the projection of the window
label to sample based labeling (see Figure 6.1) when activity change occurs, each
single sample classified wrong creates an error marker. The result of the developed
algorithm is benchmarked against the smartphone application Equilab. The classifi-
cation result of the developed algorithm is translated to times and compared to the
true times and the times presented by Equilab in Table 6.2.
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Figure 6.2: Confusion matrix of the result from test session 1. The overall classifica-
tion accuracy is presented in the bottom right square. The output class is the result
from the developed algorithm and the target class is the expected result. The per-
centage seen in the green and the red squares are the amount of samples classified in
that square. The right column in grey describes the precision, i.e. how many of the
predicted samples for the label were correctly classified. The bottom row describes
the recall, i.e. for all samples that should have been the label, how many of these
were found.
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Figure 6.3: The plot visualizes the comparison of the expected (the line at -1) and
the predicted (the line at 1) result from test session 1. The black marks (line at
0) visualize the errors. Note that the error marks are approximately 6 % of the
expected and predicted lines even though this can not be seen by the eye.

Table 6.2: Comparison of the time spent on each activity and the result from the
developed algorithm in this work and the smartphone application Equilab for test
session 1.

True Developed Algorithm Equilab

Stand 2 min 6 sec 2 min 21 sec 2 min 42 sec
Walk 22 min 32 sec 22 min 6 sec 21 min 30 sec
Trot 14 min 12 sec 14 min 55 sec 14 min 20 sec
Canter 9 min 28 sec 8 min 56 sec 9 min 46 sec

6.3.2 Result Test Session 2

The classification accuracy for test session 2 is 97.4 % and is presented in Figure 6.4.
The errors are marked in Figure 6.5 and the true times spent on activity can be
compared to the times of the developed algorithm and the times obtained from
Equilab in Table 6.3.
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Figure 6.4: Confusion matrix of the result from test session 2. The overall classifi-
cation accuracy is presented in the bottom right square.
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Figure 6.5: The plot visualizes the comparison of the expected (the line at -1) and
the predicted (the line at 1) result from test session 2. The black marks (line at
0) visualize the errors. Note that the error marks are approximately 3 % of the
expected and predicted lines.

Table 6.3: Comparison of the time spent on each activity and the result from the
developed algorithm in this work and the smartphone application Equilab for test
session 2.

True Developed Algorithm Equilab

Stand 1 min 55 sec 1 min 51 sec 2 min 24 sec
Walk 23 min 17 sec 23 min 24 sec 22 min 48 sec
Trot 18 min 13 sec 18 min 32 sec 18 min 16 sec
Canter 5 min 28 sec 5 min 6 sec 5 min 25 sec

6.4 Computational Complexity

The developed algorithm in this work is fast when the classifiers have been trained.
It should be feasible to run the developed algorithm in real time. A rough estimate of
the computational complexity of the algorithm was done. The process of calculating
the five needed features for a single window and classifying the window was tested
on a i5-4200U CPU. With other applications running and the computer being in
energy saving mode, i.e. capped clock speed (∼800 MHz), the feature calculation
for all 5 features used and classification took approximately 0.03 seconds.
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7. Discussion
In this chapter the data collection, the algorithm development and the final result of
this master’s thesis are discussed. Ethical aspects and future work are also described.

7.1 Data Collection

The data collection generally worked well and all collected data could be used in
the development and the evaluation of the algorithm. The written protocol used
during the collection was a good way to ensure that all the recorded riding sessions
were performed in the same manner with sensor positions and labeling. The cho-
sen sensor positions were easy to access. The phones could without difficulties be
fasten and did not move during the riding sessions. However, the accelerometer of
the phone fastened on the back of the rider did saturate. An accelerometer with
a larger range would have been needed. One of the biggest issues was the labeling
of data since it was done manually by writing down the labels with the help of a
stopwatch. It was hard to capture all changes during a session especially when many
rapid alternations between gaits happened during a short time period. Some riding
sessions lasted a long time and it was hard to stay concentrated during the whole
session. In the collection of the training data this was not a big problem since data
that was potentially mislabeled or had irregular movement could be discarded. The
collection of testing data was more critical since the developed algorithm was com-
pared to the existing product Equilab. More controlled test session would probably
have been helpful to ensure good labeling for the benchmark. The collected training
set contains recordings from the same horse in two different sessions. This could
possibly introduce some bias towards this horse, but since two different riders are
used it captures the differences between them.

Overall the collected data set contained relatively good variance, but more data
would strengthen the algorithm. Using the same methodology on a larger data set
containing more variance would most likely change the final algorithm by adding
other or more features or by changing classifier. The same phones were used in the
same sensor position for all recordings. To reduce possible bias towards the phone
sensors a larger variety of phones could be used. To capture more variance a larger
variety of horses and riders would have been needed.

7.2 Algorithm Development

Many different features were implemented and used in the development of the algo-
rithm. All of them were previously used in other works, but not all of them were
used in combination. The final gait recognition algorithm contained three features
from the time domain, one feature from the frequency domain and one wavelet based
feature. Both the accelerometer and the gyroscope signals were represented in the
final algorithm. When all feature sets selected by the different methods were stud-
ied it was noted that at least one feature from the accelerometer and one from the
gyroscope were present. It was never examined if only one of the sensors would work
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well on their own. From the result it seems like they work very well together, just as
suggested in section 1.2.1. All sets did contain features from more than one domain.

The choice to use the smaller window length with 128 samples was due to the rapid
changes observed during the recording sessions. One drawback with the smaller
window size, compared to the larger window size with 256 samples, was that it had
a harder time classifying stand.

The method sequential forward feature selection was used in the final algorithm.
Regardless of the classifier used in the SFFS the different feature sets performed
well for all the classifiers. The feature sets had some differences between them but
they also contained shared features. One of the drawbacks with the method is that
it does not necessarily find the best paired features due to the greedy nature of the
algorithm. The first feature is the one that on its own gives the best classification.
The first feature is then paired with a second feature that adds the most combined
with the first selected feature. There is no guarantee that two other features does
not provide a better combined classification. But the method is relatively fast and
did, in this case, result in a feature set that seems to perform well. The best option
would have been to test all combinations of features but since there were 405 imple-
mented features in this work it would not have been feasible.

The time limit of this project and the size of the collected data set, limited the
possibility to examine and study more classifiers. For example artificial neural net-
works and hidden Markov models were brought up in section 1.2.1 but was not
studied deeper or examined during the thesis work. The possibility to have an addi-
tional class with unknown activity was discussed, but this was not further pursued,
as the assumption was that the algorithm would only be used on gait data.

7.3 Classification

The results for the classification of the collected testing data indicate that the algo-
rithm works well for equine gait recognition but further development and evaluation
is needed. Most of the errors are found when the gait changes, as mentioned earlier,
which probably is connected with the overlapping windows and the projection of the
window label to a sample based label. If these errors could be reduced by the use of
shorter windows or increased overlaps would be interesting to evaluate. The combi-
nation of a window length of 128 samples and 50 % overlap for 50 Hz sample rate
indicates that the time resolution is good enough for the gait recognition purpose and
thus no further evaluation of window lengths and overlaps were considered necessary.

Comparing the time spent on each activity with the times outputted by Equilab
and by the developed algorithm, see Table 6.2 and 6.3, it can be seen that the times
match well. It should be noted that Equilab was updated during the work of this
master’s thesis and the version released 24 April was used in the comparison. If
problems with misclassified gaits (as mentioned in section 1.1) remains in the up-
dated version of Equilab needs to be further evaluated since it could not be seen
in this project. Some difference can be seen between Equilab and the developed
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algorithm. For the developed algorithm, the total time for ’Stand’ in Table 6.3
is closer to the true time than Equilab. Equilab does not present any time spent
standing still in their application interface but when pressing the bottom ”Details”
in the app it can be seen that the riding is classified as either walk, trot, canter or
stand. The application displays a total time for the recording session and the times
spent walking, trotting and cantering. The value presented for the activity ’Stand’
was thereby calculated by taking the total recording time minus the suggested time
for the other activities. (In an updated version of the app in June 2017 they have
replaced ’Stand’ to ’Mix’ instead, which would include standing still and activities
not recognized. However, this was not taken into account since the results were com-
piled before the update was made and were based on the information in the previous
version.) It seems like the developed algorithm in this work is better at classifying
’Stand’ and ’Walk’ while Equilab performs better for ’Trot’ and ’Canter’. It should
be noted that the labeling has been done manually and may contain human errors.
The small deviations in time could thereby be due to the labeling. This results in the
opinion that the developed algorithm in this project, as well as Equilab’s unknown
algorithm, performed very well on the test subjects.

A big advantage for Equilab is that the application is orientation independent and
the phone running the algorithm could be placed in an optional pocket on the rider.
Equilab also has an algorithm that runs in real time.

7.4 Ethics

This work is of interest since it is important for the rider to know if the horse has
got enough exercise and if the exercise has been varying. The horse is not harmed
during the collection of data since the horse is used to wear a lot of equipment and
a smartphone with the chosen placement does not affect the horse. The riders were
asked before the data was collected and none was forced to participate.

7.5 Future Work

To improve the algorithm further several things, additional to collection of more data
with even larger variance, can be done. One improvement would be to include more
breeds, e.g. ponies and Icelandic horses, since their motion pattern may be different
compared to the horses that have been used in this project. Since Icelandic horses
have additional gaits, e.g. tölt, additional gaits would have to be implemented to
the algorithm.

Collecting data from more diverse grounds would also improve the algorithm since
all the collected data was from medium soft ground. It would have been desirable
to get data from harder grounds, for example riding in the woods and on asphalt.

Data was recorded from two different sensor positions. The idea was that a com-
bination of the two sensor positions would strengthen the algorithm and also make
it possible to construct a measurement of quality of the riding pattern. The com-
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bination of both sensor positions was never evaluated due to time limitations but
would be interesting to evaluate in future work. The quality measurement would
need more research of horseback riding and help from experts to create a data set
containing the necessary information.

Additional improvement would be to use another sensor which would be easy to
start and stop with an external device. The external device could also make it pos-
sible to create flags for different events in the collected signal. This would make the
labeling easier.
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8. Conclusion
This chapter describes the main conclusions of this master’s thesis.

In this master’s thesis a training data set and a testing data set were collected.
The training set contained five riding sessions including four horses and four riders.
The testing set contained two riding session including two horses and two riders.
The collections were made by following a proprietary protocol. An equine gait
recognition algorithm based on accelerometer and gyroscope signals was developed.
Conclusions were made to use data collected at the saddle-girth and a window length
of 128 samples (2.56 seconds) with 50 % overlap in the final algorithm. Five features
were included in the algorithm and two classifiers using two respectively three of
the features. The first classifier separated stand and gaits. The second classifier
classified gaits as either walk, trot or canter. The classifiers used in both cases was
KNN with K = 3.

It was concluded that the algorithm performed well on the collected testing data
set with an accuracy of 94 % and 97 %, respectively. It should be noted that the
same phone used for developing the algorithm was used when collecting the testing
data. The performance of the developed algorithm on the test set was benchmarked
against the product Equilab and it was concluded that the performance of both
algorithms were similar.

Further development of the algorithm will be needed to include other types of ter-
rains and a larger variety of horses and riders.
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