
Bluetooth Automation IO, and its place in a
Cable Replacement Solution

Jakob Krantz
ijakkra@gmail.com

Kasper Bratz
dat12kbr@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Mats Cedervall (EIT), Mats Andersson (u-blox)

Examiner: Thomas Johansson

June 20, 2017

c© 2017
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Bluetooth Automation IO, and its place in a Cable Replacement Solu-
tion

With the rise of the Internet of Things (IoT) and a desire for connectivity between
even the smallest devices, several low powered wireless technologies are fighting
for a place in the IoT market. The Automation IO profile for Bluetooth Low En-
ergy was designed to provide a low-level standardized way of exposing digital and
analog inputs/outputs on a Bluetooth enabled device, and to give Bluetooth LE
a chance in the IoT and automation market.

Automation IO is a relatively new profile, and there doesn’t exist a proper evalua-
tion of its uses or requirements. This thesis intends to bridge that gap by providing
a thorough assessment of the Automation IO profile, its practical use cases, how
to integrate it into an actual cable replacement module, as well as investigate its
place in IoT and automation.

To examine whether Automation IO has a spot in IoT and automation, we first
had to evaluate the underlying technologies. We did this by conducting a com-
parative investigation of Bluetooth LE compared to other low-powered wireless
technologies. We also evaluated the Automation IO profile by investigating how
to include it in an actual cable replacement module, how it interacts with an exist-
ing solution, as well as what practical use cases exist for the profile. By integrating
an Automation IO Service into an existing cable replacement module, we investi-
gate the requirements for such a module and provide hardware requirements and
recommendations for how this integration can be accomplished.

The result of this thesis shows that Bluetooth LE is a powerful tool for connectivity
in hardware restricted devices, and compares well with other low-powered wireless
technologies. Bluetooth LE does, however, lack some of the benefits of mesh net-
working necessary for an extensive home automation system. The Automation IO
profile is shown to provide a flexible, standardized protocol for exposing I/Os for
most generic I/O modules. Our investigation also shows several benefits of having
this as a standardized profile, rather than having vendor specific custom solutions.

i

ii

Acknowledgements

Our thesis work was performed at u-blox and we want to extend our sincerest grat-
itude and appreciation to the employees for providing help and feedback through-
out our thesis. In particular we want to extend our thanks to Mats Andersson,
our mentor at u-blox, for providing valuable insight and direction as our thesis
progressed.

We would also like to thank LTH and our supervisor at EIT, Mats Cedervall,
for aiding us in planing and structuring our work.

iii

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 1
1.3 Outline . 2

2 Theory 3
2.1 Bluetooth Low Energy . 3
2.2 Bluetooth Automation IO . 9
2.3 Thread . 10
2.4 ZigBee . 12
2.5 AT-Commands . 13

3 Methodology 15
3.1 Thesis goals . 15
3.2 Theoretical part . 17
3.3 Practical part . 17

4 Comparison of LE technologies 19
4.1 Battery consumption . 19
4.2 Memory requirements . 21
4.3 Security . 23

5 Automation IO, standardization or custom solution 27

6 Provisioning 29

7 Prototype solution on a u-blox module 31
7.1 System overview . 31
7.2 The process . 34
7.3 Implementation . 35
7.4 Evaluation . 40

8 Results 43
8.1 Comparison of LE technologies . 43

v

8.2 Automation IO use cases . 46
8.3 Resulting product . 50

9 Discussion and conclusions 57
9.1 LE Technologies . 57
9.2 Automation IO profile . 58
9.3 Prototype at u-blox . 59
9.4 Contributions . 60
9.5 Conclusion on the project . 60

10 Future work 61
10.1 Scripting language . 61
10.2 Styling elements . 61
10.3 Smarter clients . 62

References 63

vi

List of Figures

2.1 Bluetooth Low Energy protocol stack. 4
2.2 Illustration of a scatternet with three piconets. 6
2.3 GATT server/service/characteristic. 7
2.4 Illustration of an example usage of Automation IO. 9
2.5 The Thread stack. 12

4.1 A typical connection event for a LPWT. 20

7.1 A NINA-B1 evaluation kit. 32
7.2 An overview of a system using the connectivity software. 33
7.3 An overview of how the module should work with Automation IO

integrated. 34
7.4 An illustration of how the different components communicates in the

Automation IO Service. 36
7.5 Lab setup to measure power consumption and throughput on a NINA-

B1-EVK. 41

8.1 Screen showing all exposed GPIOs on the server. 56
8.2 Write to individual pins in a digital characteristic. 56
8.3 View for writing to a trigger descriptor. 56

vii

viii

List of Tables

2.1 Example of a BLE attribute. 6
2.2 Example of a declaration attribute for a service. 7
2.3 Example of a characteristic attribute. 7

4.1 Memory usage for TI’s ZigBee stack (Z-Stack) compiled for Texas
Instrument CC2530 module. 22

4.2 Memory usage for Nordic Semiconductor’s BLE stack. 23
4.3 Memory usage for OpenThread REED, developed by NEST, compiled

for ARM Cortex-M3 target. 23

7.1 Pin states in a digital characteristic. 37

8.1 Memory usage for end-devices summed from Tables 4.1, 4.2, 4.3. . . 45
8.2 A summary of the different low powered wireless technologies and their

differences. 47
8.3 Average power consumption of the NINA-B1 in different scenarios. . 52
8.4 Throughput running SPS data-pump together with AIO notifications. 53
8.5 The amount of discarded notifications when running only the AIO

Service. 53
8.6 Memory usage without the AIO Service enabled. 54
8.7 Memory costs for adding more characteristics to the AIO Service. . . 54

ix

x

List of Acronyms

ADC Analog-to-digital Converter
AIO Automation IO
AP Application profile
AT-Command Attention Command
ATT Attribute Protocol
BLE, Bluetooth LE Bluetooth Low Energy
BR Bluetooth Regular
ECDH Elliptic curve Diffie–Hellman
EVK Evaluation Kit
GAP Generic Access Profile
GATT Generic Attribute Profile
GPIO General Purpose I/O
I/O Input/Output
IOM I/O Module
IoT Internet of Things
MAC Media Access Control
MCU Micro Controller Unit
MITM Man-in-the-middle attack
MVP Minimal Viable Product
NFC Near Field Communication
OOB Out Of Band
PTS Profile Tuning Suite
REED Router Eligible end-device
SIG Special Interest Group
SPS Serial Port Service
SoC System-on-a-Chip
TC Trust Center
TI Texas Instruments
UART Universal Asynchronous Receiver/Transmitter
UUID Universally Unique Identifier
6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

xi

xii

Chapter1
Introduction

Bluetooth Low Energy (Bluetooth LE, BLE) is a wireless technology intended to
provide connectivity between devices where power consumption is restricted. With
the recent inclusion of the Automation IO profile, adopted in July 2015 [1][2], as
part of the Bluetooth core specification, it becomes interesting to investigate the
usefulness of Automation IO and its place in automation and the Internet of Things
(IoT).

1.1 Motivation

Bluetooth LE, adopted in the Bluetooth 4.0 core specification in 2010 [3], has
allowed for Bluetooth connectivity in even the smallest-, battery powered-devices
and gives Bluetooth a spot in the IoT [4].

The Bluetooth Special Interest Group (SIG) has defined several standardized
profiles and services [5], each intended to solve a particular use case. Most of these
profiles are, however, designed for a particular device, such as a thermometer
or a fitness machine, and there has previously not existed a profile for low-level
arbitrary communication. The purpose of the Automation IO profile is to attempt
to bridge this gap in functionality by providing a standardized way for exposing low
level digital and analog pins of a generic I/O module (IOM). In theory, the ability
to monitor and control the pins of a generic IOM comes with endless possibilities
and provides a low-level interface to almost any device. The only limit is what logic
the hardware exposes over its pins that the cable replacement module is connected
to. The primary purpose of this thesis is to evaluate what potential benefits can be
found by having a standardized low-level interface to a generic IOM over Bluetooth
LE and what benefits this might bring for IoT and automation purposes.

1.2 Scope

We performed this thesis at the short range division at u-blox, a company de-
veloping connectivity modules using Bluetooth, Wi-Fi, cellular, and positioning
technologies to provide connectivity for a wide variety of applications. We were
asked by u-blox to investigate how to integrate Automation IO into one of their
cable replacement modules and what uses there could be for such a service in their
modules. The primary concern stated by u-blox was that the solution had to be

1

2 Introduction

able to run in parallel with the other services offered in the cable replacement
module. Since the cable replacement modules have a tendency to be placed in
hard to reach areas, u-blox also wanted us to investigate the best way to provision
the Automation IO Service to a module. This work was also intended to produce
a proof-of-concept solution to demonstrate the findings of our investigations.

The work conducted at u-blox is aimed to give a practical insight of how Au-
tomation IO can be used and integrated into existing cable replacement modules.
In addition to this practical investigation, this thesis also includes a theoretical
evaluation of the Automation IO profile as a whole. A part of this evaluation
includes a comparative investigation of the competitive LE technologies, ZigBee
and Thread. This theoretical part is intended to evaluate what place Automation
IO has in the IoT and automation compared to other, more traditional, ways of
exposing the pins of an IOM over a low powered wireless medium.

The theoretical investigation combined with the work done at u-blox should
provide a good understanding of the Automation IO profile, how to use it in
practice, and what place it will have in IoT and automation solutions.

1.3 Outline

The remainder of this thesis will be structured as follows:

• Chapter 2: Theory - Explains concepts that might be previously unknown
to the reader and are required to understand the rest of this thesis.

• Chapter 3: Methodology - Details the scientific methodology of the work
performed during this thesis and the reasoning behind our actions.

• Chapter 4: Comparison of LE technologies - A comparison of Bluetooth LE
and other low energy wireless technologies.

• Chapter 5: Automation IO, standardization or custom solution - Evaluates
the Automation IO standard and when it is suitable to use.

• Chapter 6: Provisioning - Explores different ways of provisioning low energy
cable replacement modules.

• Chapter 7: Prototype solution on a u-blox module - Explains the practical
work with building a prototype solution for an Automation IO Service in
one of u-blox’ cable replacement solutions.

• Chapter 8: Results - Present the results acquired during this thesis.

• Chapter 9: Discussion and conclusions - Covers our general thoughts on the
outcome of this thesis, the work that was done at u-blox, and final thoughts
on the Automation IO profile. The thesis is concluded by presenting our
final thought on the result of the work on Automation IO, and whether
it has a place in IoT, automation, and as a part in one of u-blox’ cable
replacement solutions.

• Chapter 10: Future work - Present what future work can be done with
Automation IO, the prototype, and in general what future use cases there
are for the profile.

Chapter2
Theory

This chapter will present some useful theory and key concepts required to under-
stand this thesis.

2.1 Bluetooth Low Energy

The information found in this section is primarily based on “Getting started with
Bluetooth low energy: tools and techniques for low-power networking”[6].

The Bluetooth Low Energy wireless technology developed and maintained by
the Bluetooth Special Interest Group is a standard intended to provide connectiv-
ity for devices at a considerably reduced power consumption compared to classic
Bluetooth (BR, Bluetooth Regular). The Bluetooth LE technology is based on a
duty cycle pattern, which is what allows the technology to be classified as a low
powered technology. The idea behind the duty cycle pattern is to keep devices
with a limited power supply in a low powered sleeping state whenever possible,
only waking them up periodically to send or receive high intensity bursts of data.
The duty cycle pattern is a pattern common to low energy devices, it allows a
device to draw virtually zero power when idle, only spending power when there
is data to send/receive. This behavior is ideal for devices that don’t rely on a
constant stream of data and powered by a limited power supply, such as a battery.

2.1.1 Bluetooth LE protocol stack

The Bluetooth LE stack is composed by two distinct detached parts [Fig. 2.1]:
A controller and a host. The controller comprises the physical and Link Layer.
The host comprises the upper layer functionality of the stack, such as the Link
Controller and Adaptation Protocol (L2CAP), Attribute Protocol (ATT), Generic
Attribute Protocol (GATT), Security Manager (SMP) and the Generic Access
Profile (GAP). The host and the controller communicate through an interface
called the Host Controller Interface (HCI) that acts as a two-way communication
channel. User-defined applications and nonstandard profiles can be run on top of
the host as shown in [Fig. 2.1].

The layers of the host can be summarized as follows:

3

4 Theory

Figure 2.1: Bluetooth Low Energy protocol stack.

• L2CAP Transmits standard BLE packages to the controller. Also acts as
the protocol multiplexer, responsible for routing incoming packages to either
the ATT layer or SMP layer.

• SMP The security manager is responsible for the low level security oper-
ation needed in order to establish a secure connection, such as managing
integrity during the pairing procedure, authentication, and encryption be-
tween Bluetooth LE devices.

• ATT Data in the top layers of the Bluetooth LE stack is based on attributes.
An attribute is a data container coupled with identifiers and security pa-
rameters for the data. How these attributes are defined and how they can
be accessed and interacted with is defined in the ATT layer of the stack.
The ATT layer will be further discussed further in Section 2.1.2.

• GATT The top most data layer of the BLE stack. It encapsulates the
ATT layer and adds structure and hierarchy to the attributes. This is often
considered the backbone of BLE communication as it defines how data is
organized and sent between different applications.

• GAP The top most control layer of the BLE stack. It defines things like
BLE roles and how they interact with each other, security modes and levels,
and control sequences; such as device discovery and connections.

2.1.2 Bluetooth LE roles

Bluetooth LE defines a couple of different roles depending on the abstraction level
and scenario discussed [6, p.18, 36].

The Link Layer of the BLE stack defines four roles:

Theory 5

• Advertiser A device responsible for sending advertising packets, making it
discoverable for scanners.

• Scanner A device scanning for advertisement packets.

• Master The device responsible for initiating a connection to a slave and
maintaining it when connected.

• Slave The device that accepts connections from a master.

The GAP layer of the BLE stack also defines four roles. These roles always
correspond to one or more of the Link Layer roles:

• Broadcaster A device optimized for regular broadcasting of data and cor-
responds to the Link Layer advertiser. A broadcaster device transmits data
by sending advertisement packets, rather than requiring a connection.

• Observer A receive-only device responsible for scanning for packets sent
by a broadcaster. An observer corresponds to the Link Layer scanner.

• Central A BLE central device corresponds to the Link Layer scanner and
master. The Central is responsible for scanning for peripherals and initi-
ating connections. The central is also responsible for maintaining several
concurrent connected slaves.

• Peripheral A BLE peripheral corresponds to the Link Layer advertiser
and slave. When a peripheral is not connected to a central, it transmits
advertisement packets to help a central find and connect to it.

In BLE there is also the concept of Bluetooth servers and clients. These roles
can not be tied to the GAP roles but are rather an indication of the current flow
of information in the connection. In a BLE connection it is always the BLE client
that requests data from a BLE server, and a BLE peripheral can depending on
the use case act as either a client or server.

2.1.3 Network topology

A BLE slave can only be connected to one master while a master can manage up
to seven active slaves. This is called a piconet and follows a star topology [7]. The
size of a piconet is limited to eight active devices, but since a BLE slave want to
spend most of its time in a deep sleep mode, a piconet can theoretically be much
larger. In Bluetooth Regular a slave can be connected to several masters and in
that way form a scatternet with unlimited size [Fig. 2.2]. This connection topology
is currently not supported for BLE making it a so-called single hop technology [6].

2.1.4 Bluetooth ATT, GATT, and GAP

Bluetooth LE data is represented as attributes (ATT), each assigned a 16-bit
handle, a Universally Unique Identifier (UUID), a list of permissions and a value.
The handle acts as a unique identifier for each attribute and works as an internal
“addresses” for each attribute. The UUID acts as a type identifier for the attribute
and specifies what kind of data it contains.

6 Theory

Figure 2.2: Illustration of a scatternet with three piconets.

Handle UUID Permissions Value
Attribute 0x0201 UUID (16 or 128 bit) read/write/authentication 0x180A

Table 2.1: Example of a BLE attribute.

These attributes are grouped according to the GATT layer into services, char-
acteristics, and descriptors [Fig. 2.3] where a server can contain many services,
a service can contain one or more characteristics and a characteristic can contain
zero or more descriptors. GATT attributes are stored in a table called a GATT-
table, which is just a sequential table of the attributes contained in a GATT device.
Attributes can not exist outside of this structure if the device wants to be com-
patible with other GATT devices, as this is the core of how data is represented in
Bluetooth LE.

• Service A GATT Service is a group of related attributes, intended to repre-
sent the behavior of a part of a system. A Service is represented in GATT as
a Service Declaration Attribute, followed by a list of characteristics and/or
references to other services.

• Characteristic A characteristic acts as a data container for user data. A
Characteristic Declaration (Containing metadata) and a Value Declaration
(The actual user data) is used to represent a characteristic.

• Descriptor A descriptor is intended to provide additional metadata about
a characteristic or the value associated with it. A descriptor is always placed
within a characteristic and is comprised of a single attribute. For example,
a descriptor can define the unit of the characteristic value.

Theory 7

Figure 2.3: GATT server/service/characteristic.

Handle UUID Permissions Value
Service Declaration 0xAAAA UUIDservice read Service UUID

Table 2.2: Example of a declaration attribute for a service.

Handle UUID Permissions Value

Declaration 0xAAAA UUIDcharacteristic read
Properties,

Value Handle
Value UUID

Value 0xBBBB Value UUID Any Actual value

Table 2.3: Example of a characteristic attribute.

8 Theory

Data flow

The GAP defines the topmost control layer and provides a framework that all
Bluetooth LE devices must follow in order to discover each other, establish a
secure connection and discover attributes from each other. Once two devices (A
BLE client and BLE server) has connected and agreed on connection and security
parameters, such as sleep times and encryption, a client can discover and read
GATT attributes from the server. When a new connection is established, the client
has no information about what data the server holds. In order to get data from the
server, the client has to initiate a so-called discovery procedure to find what data
the server holds. This allows the server to save energy by only transmitting data
requested by the client. Communication between BLE devices is usually based on
the client sending read/write requests to the server, allowing the server to stay
in sleep mode as long as possible. Sometimes though, an asynchronous update
from the server can be required. To get these updates without the client having
to poll the server periodically (which cost both energy and bandwidth) there are
two ways for the server to push packages to the client.

• Characteristic Value Notification The server sends a packet containing
the value and handle of a characteristic without expecting any response. It
is then up to the client to decide if it wants to act on the notification.

• Characteristic Value Indication Sends the same package as a notifi-
cation, but requires an application level ACK message before it can send
further indications. This approach is going to be slower, as only one indica-
tion can be sent each connection event, but will indicate if the message has
been received or not.

2.1.5 Bluetooth Profile

Both Bluetooth Regular and Bluetooth LE defines something called a Bluetooth
profile. Bluetooth profiles are often grouped with the Bluetooth protocol, but
displays some key differences.

• Protocol A core part of all Bluetooth devices. It is the layers that include
packet formatting, routing, encoding and other parts needed to send data
between two devices.

• Profile Is either a part of the functionality that defines basic operations,
such as reading, writing or representing data (GATT, GAP) or a way to
achieve a specific use case. In essence, profiles define how protocols should
be utilized to achieve a certain goal.

Bluetooth profiles are defined in such a way that a strict hierarchical structure
can be implemented, and profiles can be built on top of each other. At the moment
all Bluetooth LE profiles must implement both GATT and GAP as these are the
top most data and control layers of Bluetooth LE communication, and no non-
GATT profiles currently exist.

Bluetooth SIG defines a couple of use-case-specific Bluetooth profiles intended
as a standardized way of accomplishing certain task [8]. Some examples include:

Theory 9

• Find Me Profile Allows the user to physically locate another device via
BLE.

• Blood Pressure Profile Allows a BLE blood pressure reader to transmit
readings wirelessly.

Users can also define their own profiles, keeping the standard for themselves or
sharing it, allowing other vendors to provide implementations able to communicate
with their products. An example of this is the Apple iBeacon where the profile
is developed by Apple, but third party vendors are allowed to develop iBeacon
compatible hardware transmitter based on the iBeacon profile.

2.2 Bluetooth Automation IO

Bluetooth Automation IO (AIO) is a Bluetooth SIG specified Bluetooth pro-
file/service [1][2], adopted 14-July-2015 and is one of the core concepts of this
thesis. The concept behind Bluetooth Automation IO is to expose digital and
analog I/Os of a generic IOM and allow devices to monitor and interact with
these I/Os. A GATT Server can be called an Automation IO server if it includes
an Automation IO Service. An AIO client can then connect to an AIO server in
order to interact with the service [Fig. 2.4].

Figure 2.4: Illustration of an example usage of Automation IO.

The AIO Service, in turn, communicates with the IOM through the pins of the
module and represents their values as characteristics. An IOM running the AIO
Service work as seen in [Fig. 2.4]. The AIO Service is comprised of a collection of
characteristics. An AIO characteristic can be one of the following types

1. Digital Characteristic A collection of one or more digital I/O signals can
be grouped in a digital characteristic. The digital characteristic represents

10 Theory

the value of the signals with 2-bits/signal in the characteristic value field.
A digital pin can only be high or low.

2. Analog Characteristic Is used to represent one analog I/O signal as a
16-bit value. The value is stored in the characteristic value field.

3. Aggregate Characteristic The aggregated characteristic is a character-
istic that always represents the entire state of an IOM. This means the
value of the aggregated characteristic is a collection of all digital and analog
characteristics with the read property set. The aggregated characteristic is
included as a way to read the entire state of an IOM with one read operation
and in that way save both power and bandwidth.

Each AIO characteristic can have a certain number of properties describing
how the characteristic can be interacted with, such as read/write permissions and
if the characteristic can be indicated or notified. An AIO characteristic will also
have a number of descriptors attached to it further describing the characteristic.
These descriptors will contain information such as user defined descriptions, the
number of pins in a characteristic and how the characteristic value should be
presented.

Finally, a characteristic can have triggers attached to it. A trigger is a way
for the AIO server to notify or indicate a characteristic when a certain trigger
condition is met. There are two types of triggers

1. Value Trigger A trigger that triggers depending on the value of the char-
acteristic. For instance, a value trigger can be set to trigger when an analog
signal passes a certain threshold, or a certain number of pins have changed
in a digital characteristic.

2. Time Trigger A trigger that triggers based on a time constraint, such as
a time interval.

A characteristic can have either no triggers, only a value trigger, or one of each
trigger.

The AIO specification is intended to provide a standardized profile for exposing
generic IO signals. As any BLE client that implements the AIO profile can connect
to any AIO server, AIO lets one device connect to many different devices, as long
as they expose their data with Automation IO. This can be used in both an
industry environment, to allow different industry robots to communicate when
certain events transpire, or in a home automation environment to have one client
read the state of all IoT devices in a household.

2.3 Thread

Thread is a low power, short range wireless device-to-device protocol, created by
market leading companies in IoT, such as Nest, ARM, Silicon Labs and others
[9]. Today Thread is managed by The Thread Group Alliance, which is a group
consisting of members from the leading companies in IoT. Thread is built for IoT
applications and the key selling points versus its competitors is the IPv6 based

Theory 11

communication, high security, robustness, mesh network capabilities and simplic-
ity. Many of the alternative IoT solutions rely on one device acting as a commu-
nication hub, which routes all communication to other devices on the network. If
this device goes down, the whole network stops working. Having a solution that
avoids this behaviour was one of the main philosophy’s when designing Thread [9].

The Thread stack can be seen in [Fig.2.5]. It is built on top of 6LoWPAN
(IPv6 over Low-Power Wireless Personal Area Networks). Thread adds UDP
and IP Routing on top of 6LoWPAN. Thread, 6LoWPAN and many other low
powered wireless technologies are built on top of IEEE 802.15.4. IEEE 802.15.4
is a standard for low power and low data rate networks (other examples are 802.3
(Ethernet) and 820.11 (Wi-Fi)) and defines the physical (PHY) and Medium
Access Control (MAC) layers of the OSI (Open Systems Interconnection) model.
This allows Thread to be run on most hardware that supports 802.15.4. In
6LoWPAN every device has it’s own IPv6 address, allowing it to communicate
with the Internet seamlessly. Most of the actual networking in Thread is defined
by 6LoWPAN, such as mesh networking [9].

The Thread Network defines a couple of different types of devices. A Border
Router is a router that act as a bridge from the Thread Network to adjacent
networks, such as Wi-Fi or Ethernet. At the transport layer, the Border Router is
transparent for devices outside of the network. A normal Thread Router provides
routing between devices on the internal Thread Network. End-devices are devices
running application code and act as the start/end points of the network. An end-
device can either be a Router Eligible End-Device (REED) or a sleepy-end-device.

A REED is an end-device that can, if necessary, be upgraded to a Router.
This can for instance be necessary if the REED is the only link connecting two
part of the Thread network. A sleepy-end-device is a device that acts exclusively
as a start/end point in the network and never as a router. A sleepy-end-device
is connected to one parent node and all communication to and from the device
is routed through that parent. A sleepy-end-device can sleep for long periods of
time in order to save power. When the sleepy-end-device is sleeping, all messages
intended for the device is stored in the parent router. When the device wakes up
it receives those messages by polling the parent [9].

Inside of the Thread Network, header compression is used to reduce the over-
head of IPv6. A normal IPv6 header is 40 bytes long. With header compression
those 40 bytes can be reduced, how much depends on the scenario. The IPv6
header can be compressed to two bytes for a package send between two devices
on the Thread Network. No matter the scenario, thread achieves at least a 50%
header compression compared to traditional IPv6 headers that are 40 bytes [10,
p.6-7].

12 Theory

Figure 2.5: The Thread stack.

2.4 ZigBee

ZigBee is a standard for wireless, low-power, low-bandwidth networking, main-
tained by the ZigBee Alliance. There are many use cases for ZigBee, thanks to
its mesh networking capabilities, the main ones are in IoT and home automation.
ZigBee is, just like Thread, built on top of 802.15.4, making it a good option for
battery powered devices. A ZigBee end-device should be able to run on a small
battery for an extended time.

The ZigBee Alliance is currently maintaining three official specifications of
ZigBee: ZigBee PRO, ZigBee RF4CE, and ZigBee IP. ZigBee PRO is the default
IoT networking standard for ZigBee devices and is used for device-to-device com-
munication in large ZigBee networks. ZigBee PRO was originally just a feature
set available for ZigBee 2007 with a collection of extra features, such as extended
power saving, but is now the default standard for IoT networks. ZigBee RF4CE
focuses on device-to-device communication without the fully featured mesh net-
working capabilities of ZigBee PRO. ZigBee IP uses IPv6 networking and adopts
6LoWPAN. When further talking about ZigBee and ZigBee networks, the ZigBee
PRO specification is the one referred to.

A ZigBee network consists of a few different types of devices. A Coordinator
is tasked with managing the network and there must exist one in every ZigBee
network. The Coordinator is responsible for creating the network, choosing what
channel to operate on and handing out addresses to new devices. It is also re-
sponsible for the security of the network, authenticating new devices and handing
out network keys. A Coordinator can also act as a bridge to other networks. If
the Coordinator would go offline, the entire network would also go offline and
can be considered a single point of failure. The ZigBee network also consists of
Routers, responsible for routing information through the network. Routers can
also run application code and act similarly like the REED routers of the Thread
network. The ZigBee network also has end-devices which are pretty much the same
as sleepy-end-devices from the Thread network and follows a duty cycle pattern.

To send data to a device on the ZigBee network, the sender must have an

Theory 13

address to the receiver. Inside of the network, a two-byte address is enough for
the Routers to know the destination, this address is handed out by the Coordinator
when joining the network. It is also possible to address a device with a custom
assigned Node Identifier e.g. a string; however, there is no guarantee of uniqueness.
The last option is to use the unique four-byte serial number of the ZigBee device.

ZigBee, much like Bluetooth, defines profiles for certain use cases. ZigBee calls
these profiles Application Profiles (AP) and act as a standard for interacting with
the ZigBee stack. There are public and manufacturer specific APs, where public
APs are specified by the ZigBee Alliance and manufacturer specific profiles are
specified by the manufacturer [11].

2.5 AT-Commands

AT-Commands is part of the old Hayes Command set. Hayes Command set has
been a long standing standard for issuing commands to modems (and other de-
vices) over a serial connection and is today a general standard for issuing com-
mands to embedded devices. The main reason AT-Commands is a common stan-
dard for smaller embedded devices is that it allows sending both arbitrary data as
well as out of band control information over the same byte-stream channel. Send-
ing data over a single line is accomplished by having devices listen for a special
sequence of commands to indicate that it should switch to a “Command-mode”
where it listens to further AT-Commands, rather than the arbitrary data sent
otherwise.

AT-Commands are characterized by always starting with the letter combina-
tion AT, to indicate that the system should pay attention, and always end with a
carriage return to indicate the end of the command. An AT-Command will return
a status code, as well as an optional set of response parameters. Line feed and
carriage return characters always enclose the status code and response parameters.

The remaining structure of an AT-Command would look something like:

[] = optional , <parameter_name > = parameter

AT+(command_name)
[= <parameter_name >,<parameter_name > ,...] <CR>

[<CR > <LF> Response ,Response <LF> <CR >]
<CR> <LF> OK/ERROR <LF> <CR >

// Real world example for setting Bluetooth
// discoverability mode of the NINA -B1 module
AT+UBTDM = <discoverability_mode > <CR>
<CR> <LF> OK <LF> <CR>

14 Theory

Chapter3
Methodology

This chapter will explain the work process of this thesis, as well as the reasoning
behind certain decisions. It will also discuss the problem description that laid the
foundation for the thesis and how we intend to solve it.

3.1 Thesis goals

This thesis began as a thesis proposal from u-blox with a clear purpose, to investi-
gate how to integrate Automation IO into one of their cable replacement modules.
After further discussing the thesis with our mentor at u-blox the intentions of the
thesis was further clarified, and we were able to state the following goals:

• Investigate how the new Bluetooth SIG specified Automation IO Service on
top BLE can be used in u-blox products.

• Investigate how an Automation IO Service can operate as part of a u-blox
cable replacement module. The investigation should examine how the Au-
tomation IO Service should interact with other services, how to enable and
configure mapping to the I/O pins of the module, and how to interface with
a module connected host MCU.

• Make a prototype implementation of the solution.

Our mentor at u-blox informed us that there had previously existed a custom
solution for exposing I/O signals over Bluetooth Regular. The solution was never
ported to their Bluetooth LE devices, but there still existed a need from customers
for this type of solution. With the standardization of Automation IO, u-blox felt
that it would be interesting to investigate if Automation IO could fill the role of
their previous BR solution. These goals are, however, primarily focused on running
Automation IO in u-blox products and to widen the scope of the thesis we decided
on a few additional goals.

• Investigate whether Automation IO over BLE is a suitable option for ex-
posing digital and analog I/Os of an IOM.

• Compare Automation IO to alternative implementations for other low en-
ergy wireless technologies.

15

16 Methodology

• Investigate how using a pre-defined standard, rather than a custom solution,
affect implementation complexity and usability of the final product.

We felt that these goals would provide a more thorough investigation of Au-
tomation IO and how to expose I/Os of an IOM over low power wireless technolo-
gies.

We started our thesis work at u-blox by studying the source code of the module
we were going to work with, talking with other developers, and further study how
evaluations of low powered technologies had been performed in the past. It quickly
became apparent that we would have to modify our initial goals as some of them
would not be feasible in practice.

Comparing how other technologies solved the same problem as Automation
IO turned out to be hard due to a couple of factors. There was no standard
for exposing I/Os for other technologies, and to fully evaluate Automation IO we
would have to develop a custom solution for the other technologies as well. We also
realized that the underlying logic would be the same for the other technologies and
the only difference between the implementations would be how to send data over-
air. Instead, we decided on a comparative investigation of different low powered
technologies, and their place in automation and IoT.

We finally, together with our mentor at u-blox, agreed on a set of final questions
that would be answered by the thesis, and a final set of goals that would have to
be met to solve them.

• Question 1. How does Bluetooth Automation IO compare to other meth-
ods of exposing digital and analog signals, and what are the practical uses
for it?

– Conclude a comparative investigation of how Bluetooth LE compares
to other low-powered wireless technologies and their place in automa-
tion and IoT.

– Investigate how using the pre-defined Bluetooth AIO profile, rather
than a custom solution, affects implementation complexity and usabil-
ity when exposing I/Os.

– Investigate how the new Bluetooth SIG specified Automation IO Ser-
vice on top BLE can be used in a cable replacement module.

• Question 2. How can Automation IO be integrated into an existing cable
replacement solution, and how can it interact with the rest of the system?

– Investigate how an Automation IO Service can operate as part of a
u-blox cable replacement module. Also, investigate how to interface
the module to a host to provision the device.

– Make a prototype implementation of the solution.

Answering these questions evaluates Automation IO from several different
viewpoints and should accurately assess whether Automation IO has a part in
automation/IoT applications.

We split the thesis in a practical part and a theoretical part, where Question
1 was primarily answered in the theoretical part, and Question 2 in the practical
part.

Methodology 17

3.2 Theoretical part

One of the issues we wanted to answer for this thesis was how Bluetooth Automa-
tion IO compared to similar solutions using other low powered wireless technolo-
gies. To answer this questions, we would use both theoretical knowledge of the
technologies, as well as measurements on our prototype solution. We did change
this goal into a general comparison between LE technologies instead. Due to time
constraints, we would not have the time to implement similar solutions for the
other technologies and the logic behind how to interact with pins and provision
the devices would also be mostly similar. Instead, we focused on where the differ-
ent solutions would differ the most, the functionality of the wireless technologies
themselves.

We decided on two technologies other than BLE that we felt would give a good
picture of how BLE compares to other low energy IoT and automation technolo-
gies.

• ZigBee A low powered wireless technology for mesh networking. We chose
ZigBee for its widespread adoption in home automation devices.

• Thread A newly developed technology for low-powered wireless mesh net-
working over IPv6. We included Thread in our comparison as it is both a
new technology, backed by several market leading companies, as well as its
use of a communication protocol not often seen in low-powered technologies.

We decided to compare the different technologies mainly based on power con-
sumption, memory requirement, and security. The reasoning behind these choices
can be found in their respective sections in 4.

Another way to evaluate Automation IO is to evaluate the profile itself. This
investigation will primarily focus on the general benefits and restrictions associated
with introducing a standardized protocol in BLE and whether or not this is always
suitable for Automation IO. We will also investigate how other technologies would
handle exposing I/Os over-air and what standards are used by them. We will verify
this goal with use cases, illustrating when the different approaches are suitable.

Originally one of the questions asked by u-blox was what uses Automation IO
could have in one of their products. We instead generalized this question to an
investigation of what use cases existed for Automation IO as a whole.

3.3 Practical part

For the practical part of the thesis, we created a prototype implementation of
an Automation IO Service. The prototype was developed on a cable replacement
module provided by u-blox. A detailed explanation of what the prototype will
include and how we approached the implementation will be further discussed in
Chapter 7. The prototype will be evaluated for correctness using the Bluetooth
Profile Tuning Suite (PTS), a tool provided by the Bluetooth SIG for verifying
profile implementations.

Integrating an Automation IO Service in an existing solution may sound like a
trivial task, but there are several factors to consider before including new services.

18 Methodology

• Automation IO can be run as the only service on a device, but in a real
world setting e.g. a u-blox cable replacement module, the service is going
to interact and be run in parallel with other services.

• The addition of Automation IO will place additional strain on power con-
sumption, memory requirement, and throughput of the device.

We used our prototype to evaluate how our implementation of the service affected
the module with regards to these concerns.

When building our prototype, we came across the question of how to properly
initialize and configuring a device running Automation IO. The device running
Automation IO is often a small embedded device that can be placed in a location
where access is limited. For that reason, accessing or connecting to the module will
be hard and a good provisioning routine is important. How to provision devices
will be based on different approaches investigated when working with the u-blox
module but could be generalized to the provisioning of other embedded wireless
devices.

The prototype will act as one of our most valuable evaluation tools for the
thesis and will help illustrate and verify other knowledge found during our work.
The prototype will serve as a proof-of-concept for u-blox and help them evalu-
ate whether to integrate an Automation IO Service in their cable replacement
solutions.

Chapter4
Comparison of LE technologies

To properly evaluate if Automation IO is a suitable candidate for cable replacement
solutions or other IoT purposes, we first have to evaluate the technology behind
it. In this chapter, we evaluate Bluetooth LE, as well as some of the other mar-
ket leading, up-and-coming, LE technologies based on their IoT and automation
capabilities.

4.1 Battery consumption

Bluetooth LE, ZigBee, and Thread can all be gathered under the common name:
Low Powered Wireless Technologies (LPWT). As the name implies, one of the most
important characteristics of these technologies is that they are energy efficient.
LPWTs are often used in portable devices, such as a mobile phone, or in IoT
applications, such as sensors or controllers. In both of these cases, it is common
that the device is run on battery, as a power connector is not a feasible solution.
It is also desirable that the device can be sustained an extensive amount of time
on one battery, as having to replace batteries too often can be both tedious and
expensive.

All of the technologies investigated in this thesis are classified as LPWTs,
but the question is how energy efficient they are compared to each other. The
difference between 1 or 4 years expected battery life might not sound like it would
matter, but it can be the difference between changing 5 batteries/month or 20
batteries/month. As previously mentioned, these devices can be in hard to reach
places and replacing a battery can be a difficult task.

When we investigated power consumption for BLE, ZigBee, and Thread, as
well as every other low powered technology we came across, it quickly became
apparent that all of them utilized a duty cycle pattern. A duty cycle pattern is
when a low powered device is kept in an ultra-low-power mode majority of the
time, only waking up to send/receive messages. How the duty cycle pattern, as
well as how the technology handles connecting/scanning for other devices, appears
to be the key factors when determining the energy consumption of a LWPT and
is what we investigated in this section.

To understand how battery consumption is handled, a few keywords have to
be defined:

19

20 Comparison of LE technologies

• Connection Event When a slave and master both wake up and exchange
data is called a connection event.

• Connection interval The time spent in sleep mode between the start of
two consecutive connection events.

• Slave latency The connection interval specifies the time between two con-
nection events and is agreed upon by both connected devices. Slave latency
allows the end-device/peripheral, which is often the weaker device, to skip
connection events if it has no data to send, but enables it to push data faster
if need be.

• Rx/Tx mode The state when a device is able to Receive (Rx) or Transmit
(Tx) data.

Figure 4.1: A typical connection event for a LPWT.

The way Bluetooth LE handles connectivity is to let a master device scan for
possible connectable slaves, while the slave periodically sends out what’s called
advertisement packets. This behavior allows the peripheral to keep its duty cycle
pattern even when advertising, only advertising its availability when suitable, leav-
ing the expensive scanning to the central device. When a connection is established
the two devices agree on connection parameters, such as connection interval and
slave latency, then settles into the duty cycle pattern. The connection interval
is decided between both devices, meaning the central will always attempt to es-
tablish a connection event every connection interval. If transmission speed is not
crucial, the peripheral can skip a certain number of consecutive connection events,
specified by the slave latency parameter, if there is no data to transmit [6].

A typical connection event [Fig. 4.1] for a device consists of a wake-up and
initialization phase, where the device starts back up and re-connects to a paired
device. The device then transitions into an Rx and Tx event, where the devices

Comparison of LE technologies 21

convey whether they have data to transmit or not. The devices will then alternate
between Rx and Tx mode, communicating relevant data to each other. The devices
will then go into a post-processing phase eventually going back to deep-sleep [12,
p.26]. The duty cycle, or the average wake time of a device during a connection
interval, as well as how much energy is used in each of these phases, will be what
determines the power consumption of a connection interval.

ZigBee handles connection events almost the same way as BLE [13]. The main
difference in power consumption between the two technologies will come from the
duration and power consumption of the different phases of the connection event.
When ZigBee devices are scanning for connections, it is the ZigBee end-device that
is responsible for scanning and initiating a connection, rather than the routers.
This behavior is more energy demanding as a scan event is more costly than an
advertising event [14].

Thread end-devices also use the duty cycle pattern. Sending a message to a
Thread end-device will get routed through the Thread network, finally arriving at
the router connected to the destined end-device. The message will then be stored
in the router for a set amount of time, before being discarded or retrieved. When
a Thread device wakes up, it polls its connected router for messages, and if there
are messages queued up they are sent in alternating Rx/Tx modes. If the Thread
device wants to send a message to its router, it simply forms a thread package
and wakes up to send it [15]. Since Thread routers are usually not powered by
a battery, there is no need to maintain a shared connection interval value in a
Thread network and the end-device decides for itself how often it should wake up.

Another factor when talking about power consumption is how the technologies
handles interference. Packages in transfer that are lost or damaged have to be re-
sent, increasing the time of connection events. Bluetooth manages interference by
using frequency hopping, a technique used to switch between frequency channels
to avoid collision and interference. ZigBee and Thread are both built on top of
802.15.4 and thus uses CSMA/CA to handle interference. CSMA/CA is a way
for multiple devices to transmit data on a single channel while avoiding collisions.
Using CSMA/CA will slightly prolong the time ZigBee and Thread devices has to
maintain a connection event [14].

4.2 Memory requirements

BLE, ZigBee and Thread are often run on embedded systems with limited hard-
ware. One restriction when working with limited hardware is the limited amount
of flash and RAM memory and a wireless technology with high memory require-
ments will not always be a valid option. Choosing a stronger MCU for a device just
because it has more memory would not only be excessive but could also become
costly. This might not appear crucial for smaller projects, but when manufactur-
ing thousands of units, companies can save a lot of money by choosing the correct
MCU. By choosing a wireless technology which require less memory, the device
might be able to be run on a cheaper MCU.

Wireless technology stacks don’t have a definite memory requirement, as they
are developed by different manufacturers and memory requirement will depend on

22 Comparison of LE technologies

how the stack is implemented. Most of the stacks can be configured at compile time
to include/exclude certain features. Since both size and compilation options vary
between manufacturers it was hard to directly compare the different technologies.

For our comparison we have summarized the memory requirements for the
different stacks, with a couple of different compilation options. We found data for
the ZigBee stack from Texas Instruments (TI), the Bluetooth stack from Nordic
Semiconductor, and for the Thread stack we ourselves compiled and analyzed
OpenThread, the first Thread Group certified Thread stack. When analyzing the
Thread stack we studied the .elf files using the arm-eabi-size command from the
GNU ARM Embedded Tool-chain and was able to get the required flash and RAM
memory requirements. The memory requirements will also vary depending on the
compilation target, so the targeted chip-set is also included in our measurements.

The memory usage for the different stacks can be found in Tables [4.1, 4.2,
4.3] [16][17][18]. The comparison contains two different versions of Nordic Semi-
conductor’s stack, S110 which only supports peripheral and S132 which support
all 4 Bluetooth LE roles, up to eight connections and concurrent role operations.
Data for the ZigBee stack comes from TI and includes a configuration for whether
to include the PRO functionality set and/or the secure option. The PRO function-
ality includes several newer enhancements compared to the regular ZigBee stack
and will need more memory. The secure option includes whether to include au-
thentication, encryption and other security options. The memory requirements
measured for OpenThread is based on the stack required for a REED router. The
required resources can be reduced significantly for a sleepy-end-device, which is
not router-eligible. The decision to study the memory requirements for the REED
and not every separate device, is purely based on convenience/time.

ZigBee and Thread have statistics for both with and without security, the
Nordic Semiconductor BLE stacks doesn’t have that option. Not all data are
comparable between the different stacks and as mentioned earlier it is hard to give
a fair comparison when there are so many factors included. There are, however,
some conclusions that can be drawn, which will be further discussed in Section 8.1

Coordinator Router End-Device
PRO Secure Flash/RAM Flash/RAM Flash/RAM
on on 158.4K/6.7K 158.2K/6.7K 128.2K/5.3K
on off 149.2K/6.7K 148.0K/6.7K 120.1K/5.2K
off on 147.1K/6.6K 146.9K/6.6K 121.9K/5.2K
off off 137.8K/6.6K 136.6K/6.6K 113.8K/5.2K

Table 4.1: Memory usage for TI’s ZigBee stack (Z-Stack) compiled
for Texas Instrument CC2530 module.

Comparison of LE technologies 23

SoftDevice/SoC family Functionality Flash RAM
S110 8.0/nRF{51822/51422} Single mode peripheral. 92KB 8KB

S132 3.0/nRF52 Every BLE role.
20 connections 120KB 8KB

Table 4.2: Memory usage for Nordic Semiconductor’s BLE stack.

Security Flash RAM
off 51KB 14KB
on 68KB 15KB

Table 4.3: Memory usage for OpenThread REED, developed by
NEST, compiled for ARM Cortex-M3 target.

4.3 Security

In a world where we are more connected than ever, and even your toothbrush can
be connected to your phone, it is highly important that even the smallest devices
are securely connected. It becomes even more important when you consider an
unknown entity could compromise or manipulate connected devices such as health
monitors or even your car.

For low powered connectivity devices such as BLE, ZigBee and Thread, there
are going to exist a couple of main attack surfaces.

• Passive eavesdropping The process of a third party device listening to
the data being sent between two devices.

• Man In The Middle Attack (MITM) A third party device impersonates
the two other devices in order to get the other devices to connect to it
instead. The third party can then route the communication between the
two devices. This will give the illusion that the two original devices are
actually connected to each other while allowing the third party device to
block or inject messages between the devices.

• Identity tracking BLE also have the problem of Identity tracking [19]
where a malicious entity associates a BLE address with a person and physi-
cally track that person based upon the presence of the BLE device. This is
less of a problem for ZigBee and Thread, as these devices don’t tend to be
carried around by people.

Bluetooth manages the problem of identity tracking by periodically changing
the address of a BLE device. This stops a malicious entity from following a BLE
device solely based on the proximity of a device with a certain address.

Passive eavesdropping is a problem that can be mitigated by encrypting data
in transfer. All the technologies we investigated encrypts their data with 128-bit
AES cryptography, an encryption standard classified by the National Institute of
Standards and Technology (NIST) as secure for federal government applications
[20, p.37].

24 Comparison of LE technologies

For MITM attacks a strong encryption might not be enough, as the encryption
will be rendered useless if a malicious entity can intercept the key exchange process.
How key exchange is handled when joining a new network is crucial to prevent
MITM attacks and is also where the different technologies differ the most.

• BLE Before a BLE device can communicate with another device, a pairing
procedure is carried out. It is in the pairing procedure the device exchange
device information in order to establish a secure connection [19]. The secu-
rity of the pairing procedure is determined by what’s called security modes
and levels. BLE supports two different security modes

– Security Mode 1 Enforces security by means of encryption. It has
four different levels [6, p.45][19].

∗ Level 1 The link is not encrypted.
∗ Level 2 The link is encrypted with AES-128, the key exchange is

not authenticated.
∗ Level 3 The link is encrypted and the key exchange is authenti-

cated with Secure Simple Pairing methods.
∗ Level 4 The link is encrypted and the key exchange is authenti-

cated with LE Secure Connections pairing.
– Security Mode 2 Enforces security by means of data signing. It has

two different levels [6].
∗ Level 1 Unauthenticated data signing.
∗ Level 2 Authenticated data signing.

For security mode 1, obviously, level 1 offers no security and the connection is
vulnerable to both passive eavesdropping and MITM attacks. Level 2 offers
more protection against passive eavesdropping as long as the third party has
not acquired the decryption keys. Security Level 3 and 4 both require the
key exchange to be authenticated by both devices. The difference between
level 3 and 4 is that level 3 have to be Bluetooth legacy compatible, using
a custom key exchange protocol, while level 4 uses Elliptic Curve Diffie-
Hellman (ECDH) key exchange. The authentication methods provided by
BLE are

– Pass key An identical six-digit passkey is displayed on both devices
and have to be verified before the key exchange is verified.

– Out Of Band (OOB) Another wireless technology is used to ex-
change keys, such as Near Field Communication (NFC). The security
of this method is entirely dependent on the OOB technology security.

Level 4 also provides an authentication method called Numeric comparison
based both devices generating confirmation values based on nonce data from
the other device. This value then has to be confirmed by a human before
the connection is approved. Numeric comparison is considered the most
secure authentication method for BLE. Depending on what authentication
method is used, level 3 and 4 offers high resilience to both MITM and passive
eavesdropping attacks.

Comparison of LE technologies 25

Security mode 2 does not really protect the key exchange process as it is
more directed towards data integrity than data confidentiality and does not
really stop any of the attacks. Mixing security mode 1 and 2 should give a
highly secure connection.

• Thread Security in Thread is based on TLS communication using AES.
The TLS secret is agreed on by using Elliptic Curve J-PAKE. J-PAKE is
a password-authenticated key exchange protocol with “juggling”. What this
means is that Elliptic Curve Diffie-Hellman is used for the key agreement
process and Schnorr signatures as proof to authenticate the agreement [21].
Thread also uses a network-wide key in order to prevent eavesdropping and
targeted disruption.
The process of joining a Thread network is called a joining process. The
components in the joining process are going to be a connecting device, a
Border Router, a Joining Router and a Commissioner. The Commissioner
will be a device controlled by an administrator of the Thread network and
is the device that authenticates the joining device. The Joining Router is
responsible for, if the new device is approved by the Commissioner, handing
out network keys and network addresses to new device. A very basic join
process can look something like this.

1. The connecting device sends a connection request to a Border Router.

2. The Border Router, without allowing the connecting device into the
network, forwards the request to a Joining Router.

3. The Joining Router sends a request to a commissioning device. This
device can be something like a phone or Thread controller in the users
possessions.

4. The user physically verifies that some alphanumerical passkey provided
by the connecting device is displayed on the commissioning device.
This passkey is something that can also be verified physically on the
device, such as a serial number.

5. If the user verifies the passkey the connecting device is allowed by the
Joining Router to join the network.

These steps can sometimes be trivialized as one device in the network can
assume several roles in the process. This approach is highly resilient to both
passive eavesdropping due to the use of AES and TLS, and MITM attacks
due to its key exchange and joining protocols.

• ZigBee Security in a ZigBee network is based on a three-layer security
model [22] working on the MAC, Network (NWK) and Application (APL)
layers. In a ZigBee network, there will always be one, and only one, de-
vice known as a Trust Center (TC). The TC is responsible for distributing
and managing keys in the network, as well as authenticating untrusted join
requests. In a ZigBee network, there exist two types of keys.

– Link-layer Key Is used to secure unicast communication on the net-
work [23] and is a key directly established between two devices.

26 Comparison of LE technologies

– Network Key A network-wide key used for broadcasting information
on the network. This key is always shared by all devices in the network.

ZigBee devices always come pre-installed with default symmetrical network
and Link Layer keys so that unencrypted keys never have to be sent through
the network. This, however, is entirely dependent on the safekeeping and
handling of these pre-installed keys. If for instance the network key would be
compromised through one weak device in the network, the entire network
would be compromised [23]. ZigBee has one exception to the rule about
never sending unencrypted keys on the network. This weakness is presented
when a non-preconfigured device joins the network, as one unencrypted key
can be sent to allow secure communication to this device. This one-time
exception leaves a small time frame where a malicious entity could sniff the
key and compromise the network [23].
ZigBee can be considered a safe network, resilient to both passive eaves-
dropping and MITM attacks, as long as keys are properly managed and
stored. However, using pre-installed keys and sending unencrypted keys on
the network present some potentially critical security risks.

Chapter5
Automation IO, standardization or custom

solution

Transmitting data over a wireless medium can be done in various ways. In BLE,
profiles are used to define how different use cases or scenarios can be solved using
the BLE stack. With the adoption of the Automation IO profile into the Bluetooth
standard and the apparent interest shown by u-blox, one begins to wonder what’s
the advantage of having a standardized profile and what keeps companies from
defining custom profiles if there is a demand for the functionality. The Automation
IO profile and the possibility of controlling I/O signals wirelessly could open up
new opportunities in IoT, home automation, and in the industry. Providing a
standardized way to control and monitor the signals of a generic IOM, as long as a
BLE module can connect to it, could save both time and money for the end-users.

This chapter will investigate the impact of using the standardized Automation
IO profile for exposing I/Os compared to a custom BLE profile and when each
solution is most suitable.

The Automation IO profile is designed in a way that any IOM should be
able to be represented, and this brings with it both benefits and caveats. To
fulfill the requirement of being able to represent any IOM, the profile has to be
rather comprehensive and offer many options for representing a signal. One of the
strengths of the Automation IO profile is its flexibility. Many of the requirements
of the profile are marked as optional [1][2] and there is no limit for how many
characteristics there can be in the service, except for the size of the GATT-table
in the BLE stack. The end-user can themselves chose what subset of features they
want to support in their implementation of the profile, allowing the final product
to be anything from very barebones, to very comprehensive and adaptable.

Automation IO’s claim of being able to represent any generic IOM, while
true, might not always the best option. Automation IO is a predefined profile,
and the functionality offered by the profile may or may not fulfill the needs of a
vendor. As Automation IO is a predefined profile, it prohibits users from adding or
removing functionality, such as adding additional descriptors, if they want to claim
compliance with the profile. Perhaps only a small subset of features of Automation
IO is required, and a barebone implementation is still too excessive, but exposing
I/Os through Bluetooth is still the required behavior. Automation IO could also
provide too little functionality, such as if the user wants to process a signal before
transmitting it. Automation IO only supports exposing the current value of a pin

27

28 Automation IO, standardization or custom solution

and thus processing the signal is not allowed.
Fortunately, it is possible to define custom services in Bluetooth. Depending

on the use case, a custom service may be easier to implement and introduce less
complexity in the system. A custom service will also allow the implementation to
be better customized to the needs of an individual device. A custom service will,
however, require the definition of a custom profile, which will require knowledge
and time, and could in the end cost a company more money. Deciding on using a
custom solution, not following the Automation IO standard, will also prevent the
service from claiming to be an Automation IO Service, which comes with its own
limitations.

The benefit of following a predefined profile is that it acts as a contract for
what the profile can and can not do. If a service claims to follow a predefined stan-
dard, it will always contain a certain set of characteristics and descriptors, comply
with certain security requirements, and behave in a deterministic way. Predefined
services allow the development of generic profile-based peripherals and centrals.
One example of this would be that an AIO central always know an AIO periph-
eral will contain nothing other than digital, analog and aggregated characteristics.
That behavior might allow a vendor to use a generic client, such as a mobile appli-
cation, to monitor their device running their version of an Automation IO Service.
This is true in general for any Bluetooth profile, as using a standardized profile
comes with the benefit of knowing that other devices supporting the same profile
will be able to interact with each other.

For comparison’s sake, we also investigate how ZigBee and Thread handle stan-
dardizing use cases. ZigBee APs can be directly compared to Bluetooth profiles.
ZigBee does however not offer an AP for exposing I/Os and building a custom
profile would be necessary. Thread does not provide an application layer and de-
signing a custom protocol for how to represent pins would be needed. Not having
an application layer would, however, allow for a super barebones solution where a
simple 1/0 could be used to control an output pin if that was the sole purpose of
the Thread end-device. ZigBee Alliance and The Thread Group have worked to-
gether to get the ZigBee application layer running on top of Thread [24]. Thread
could theoretically benefit from ZigBee APs as well, and if an Automation IO
profile becomes available for ZigBee, it would also become available for Thread.

What approach is “the best” when exposing data over a wireless medium is
going to be entirely dependent on use case. A standardized Bluetooth profile brings
with it many benefits but also forces the user to comply with the specifications
of the profile. In Chapter 8.2 we will analyze some use cases to see whether a
standardized or custom profile is the best option.

Chapter6
Provisioning

An interesting question we came across when framing the issues for this rapport
was how to best provision a device. Provisioning is the act of preparing or equip-
ping a network to allow it to provide a new service. In our case, this was the act
of how to initialize an AIO server to represent a generic I/O module. This might
seem to be a trivial problem, but when dealing with IoT devices where the BLE
module is placed in a hard to reach places with limited options for connecting,
provisioning becomes an important question.

Some interesting metrics to consider when talking about provisioning are

• Accessibility How easy is it to connect to the module in order to push new
settings?

• Simplicity How does the user push settings to the module? Does the user
have to know how to code or is it a simpler interface?

• Adaptability How easy is it to modify settings when the module is running?

• Memory Since the device might run on limited power it is also interesting
how the service handles powering off.

We considered a couple of different approaches to provision an AIO server and
what benefits and restrictions come with them.

• Hard coded One way to provision a module is to embed the settings in the
firmware of the BLE module. This approach is appropriate if the layout of
the IOM is previously known, as well as what characteristic and settings will
be required. This approach will store the settings in the flash memory of the
device and will persist when the device is powered off. This approach, how-
ever, requires the device to be re-flashes if the IOM or the desired structure
of the service is changed. These changes would also have to be made directly
in the firmware source code, which is usually some low-level programming
language.

• Setup script Setting up the Automation IO Service with a user defined
script, run at device power on, could be one way to provision a device. This
would, unlike having the settings for the server hard-coded in the firmware,
allow the user to define the service in a higher level scripting language.
This approach could also be modified to let the device run a configuration

29

30 Provisioning

document rather than running a scripting engine. This would limit the
logic applied to the service, but would save memory that would be required
to run a scripting engine. This approach would abstract and simplify the
configuration of the device, but would still need to be re-uploaded in order
to push changes.

• Transmitting data via UART If the BLE module has a Universal Asyn-
chronous Receiver/Transmitter (UART), serial data could be pushed from
the connected host (if there is one) to set up the Automation IO Service.
This would allow the user to customize the initialization of the module to the
exact needs of the specific module. This approach would allow for a custom
command set to be used when setting up the service, such as Attention-
Commands (AT-Commands), which would be more user-friendly and not
require the user to know low-level programming. These commands would
also be sent asynchronously which would allow the service to be modified
even while running. This approach does obviously rely on the module hav-
ing a UART connection to a module connected host. Unless specified by the
firmware, this approach will not provide persistent settings and will have to
be re-provisioned on power on.

• Transmitting data wirelessly Sending data, such as AT-Commands,
wirelessly would display many of the same benefits and restrictions as for
sending data over UART. The main difference is that sending data wirelessly
would eliminate the need for a UART connection and even a module con-
nected host. Instead, the module would have to include a service dedicated
to receiving commands over BLE, such as the u-blox Serial Port Service
(SPS) [25].

There will, of course, be more ways to provision a device, but these are the
ones we investigated during this thesis. The best way to provision a device is going
to be dependant on the situation, as we will see in Chapter 8.2 where we are going
to evaluate some common use cases and analyze what choice of provisioning is best
for each case.

Chapter7
Prototype solution on a u-blox module

We conducted our thesis work at u-blox, a company working with wireless semicon-
ductors and modules in the automotive, industrial and consumer markets. Their
technology is based on wireless communication and positioning using short range
radio (Wi-Fi/Bluetooth), GPS or cellular networks. Our thesis work was based
in the Malmö office which is primarily working on developing short-range Wi-Fi
and Bluetooth chips/modules. Part of our thesis work involved integrating an
Automation IO Service in one of u-blox’ cable replacement modules.

We decided, together with our mentor at u-blox, that the NINA-B1 module
would be suitable for this work. The NINA-B1 module is a standalone short range
Bluetooth low energy module that runs Bluetooth V4.2 and comes pre-flashed
with u-blox’ connectivity software. The module, however, offers full support for
running customer developed applications directly on top of the BLE stack.

When developing our service we used a NINA-B1 Evaluation Kit (NINA-B1-
EVK) which is an evaluation board mounted with a NINA-B1 module. The EVK
gave us a simple interface to the module, allowing us to access the module pins
as well as giving us a simple serial interface letting us debug and re-flash the
module from a computer [Fig. 7.1]. Our initial plan was to develop a standalone
application running an Automation IO Service on the module. However, since one
of the goals of this thesis was to evaluate how Automation IO could be integrated
into an already existing solution, we instead decided to build our prototype solution
on-top of u-blox’ existing connectivity software.

7.1 System overview

The u-blox connectivity software is the default firmware for the NINA-B1 and what
we used as a base when integrating Automation IO in the NINA-B1 module. The
connectivity software is an extensive piece of software with the goal of providing
users a high-level interface to the NINA-B1 module where they can connect the
module to other BLE devices acting as either a central or peripheral, customizing
it the way they want to use it. AT-Commands (described in Section 7.3.2) are
used to interface with the module and allow the user to perform device discovery
and connections, but also to set up, read, or write to any standard or custom BLE
service.

AT-Commands can either be sent as serial data through the UART, from a

31

32 Prototype solution on a u-blox module

Figure 7.1: A NINA-B1 evaluation kit.

module connected host or wirelessly with the SPS. The SPS is one of u-blox’
custom BLE service designed to send and receive serial data streams over BLE.

AT-Commands can also be used to configure low-level settings for the module,
such as connection intervals, advertising settings and security modes and levels.

[Fig. 7.2] show an overview of a typical system, using u-blox’ connectivity
software.

Prototype solution on a u-blox module 33

Figure 7.2: An overview of a system using the connectivity software.

Integrating Automation IO in the current version of the connectivity software
rather than building a standalone application came with a lot of benefits, but
also some restrictions and limitations we had to work around. The connectivity
software, as previously mentioned, comes pre-built with functionality for device
discovery, connecting to other devices, etc. allowing us to fully focus on the core of
this thesis, Automation IO. The downsides, however, of working on such a vast and
complex system is that it is not necessarily built to support the functionality you
want to integrate and additions had to be made in some parts of the system. When
discussing how to integrate Automation IO with the rest of the system, it was
requested that the service would work in parallel with the SPS and other GATT
services, allowing the Nina to run several services at once, without disturbing each
other [Fig. 7.3].

34 Prototype solution on a u-blox module

Figure 7.3: An overview of how the module should work with Au-
tomation IO integrated.

7.2 The process

Together with our mentor at u-blox, we decided on some goals for the implemen-
tation process.

1. Our first goal was to implement a Minimal Viable Product (MVP), a bare-
bones implementation of the Automation IO Service, with a hard coded
static characteristic representing the value of a single pin. The MVP was
intended to give us a good overview of the system, as well as an estimation of
the complexity and time requirements of working on the NINA-B1 module.

2. The second step in the process was to provide full support for digital charac-
teristics, as they appeared easier to implement than analog characteristics.
This activity included allowing users, via AT-Commands, to define charac-
teristics and what pins they would represent, as well as having a character-
istic representing a group of digital pins rather than just a single pin.

3. In the third step of our implementation, we include both analog and aggre-
gated characteristics. With the inclusion of these characteristics, the AIO
Service could now represent any arbitrary IOM.

4. The fourth and final step would be to implement time and value triggers. As
there are four time-trigger settings and eight value-trigger settings and they
each interact with each other differently, we decided on some key triggers to
include and focused on them. By this point, the service would fully comply
with the Automation IO Service and profile specifications [1][2], but not
necessarily implement every optional requirement.

5. We also developed an Android application, able to connect to and control
an Automation IO Service. The application would give us a way to test
our system, as well as act a tool to illustrate the use of an Automation
IO Service. We developed and updated the application in parallel with the
Automation IO Service in step 3 and 4.

Prototype solution on a u-blox module 35

We set these goals as the baseline for our project and the final aim of the
prototyping stage of the thesis. We felt that by completing these milestones, we
would have a product that could properly showcase the benefits and restrictions
of AIO and how to integrate it into an existing cable replacement solution.

7.3 Implementation

This section will go through the steps and design consideration we took when
implementing the Automation IO Service on the NINA-B1 module. We will also
discuss the problems we faced when implementing the prototype, as well as how
we handled them.

7.3.1 Implementation tools

U-blox uses Visual Studio and Visual GDB to develop and flash firmware onto their
modules. Visual GDB is a plugin for Visual Studio that allows us to flash and
debug firmware, using the onboard J-Link hardware on the EVK. NINA-B1 can
be programmed both with ARM mbed and nRF5 SDK. We used nRF5 SDK for
our prototype since that is the SDK used for the rest of the connectivity software.
The SDK is developed by Nordic Semiconductor; a company focused primarily on
the development of ultra-low-powered wireless Systems on Chip (SoC) solutions.
The nRF5 SDK is a software development environment for their SoC. It contains
everything needed to interact with the hardware and the BLE stack.

To configure and test our module we used a program called s-center. The
s-center software is developed by u-blox and is a tool to configure, evaluate and
test their short-range modules. It is a graphical application interface that we used
primarily to send AT-Commands to our module.

7.3.2 AT-Commands

As s-center and the connectivity software of the NINA-B1 module already featured
full support for AT-Commands, we naturally decided to use AT-Commands to
provision the Automation IO Service as well. The connectivity software featured
an AT-parser, with rules for what commands should be accepted. It was a simple
process to extend the rule-set for the NINA-B1 to allow the commands we felt
was necessary to provision our service and pass the parameters on to whatever
function we decided.

We defined four custom AT-Commands for the Automation IO Service. Three
commands to add characteristics, one for each type of characteristic, and one
command to add triggers to a characteristic. It was necessary to provide one AT-
Command for each type of characteristic as the parameters for each type were
different. Each of these commands allows the user to configure what security
permissions should be set for the characteristic, whether to use indications or
notifications and what pins should be bound to each characteristic.

36 Prototype solution on a u-blox module

7.3.3 Automation IO server

Automation IO is a fairly big profile, with many mandatory and optional re-
quirements. Those requirements result in a fair amount of necessary logic. The
final-, high-level- design for the implementation of the Automation IO Service is
illustrated in [Figure. 7.4]. In the initial design for the MVP, the structure was
considerably different, as we placed all of our logic in the AIOService. The pur-
pose of the MVP was to get to know the SDK and existing software. It also helped
us to estimate how long the service would take to implement. After progressing
past the MVP, the code base quickly grew and as we added more functionality, like
triggers and dynamic characteristics, we had to expand our design of the system.

Figure 7.4: An illustration of how the different components com-
municates in the Automation IO Service.

Digital and Analog Characteristics

The first part of our work was to implement support for digital and analog char-
acteristics. These characteristics are the backbone of the service, as they are what
hold the actual values of the pins.

One of the first problems we encountered was that the nRF5 SDK didn’t allow
us to intercept a read request for a characteristic from a connected device. Instead,
it automatically responds with the value stored in the GATT-table of the BLE
stack. The solution we wanted to implement would read the value of the GPIOs
(also referred to as pin or pins in this section) corresponding to the characteristic
when a read request was received and respond with the current value. However,
since this wasn’t possible, we always had to keep the characteristic values up-
to-date in the GATT-table. This requirement introduced some unnecessary logic
where we had to periodically read the current value of the pins and update the
values in the GATT-table, rather than just intercepting a read request and respond

Prototype solution on a u-blox module 37

with the current value of the pins at that time. This way of periodically polling
the value of the pins would, however, turn out to be a blessing in disguise, as this
behavior would become a necessity later in the project.

When a connected client writes to a characteristic, we have to update the
state of the pin associated with that characteristic. In our initial implementation,
a digital characteristic only contained the state of the GPIOs related to it and no
information of the connection between the physical GPIOs and their respective
values. Each characteristic had to include a data structure to store what physical
GPIOs the particular characteristic contained, so we could find which pins to write
to when a client updates the value of a characteristic. Similarly, when the value
of a pin was changed, we had to find all characteristics associated with that pin.
A change of a pin value can happen hundreds of times per second, meaning we
have to find the corresponding characteristics for a pin just as often. To avoid
iterating through the list of characteristics every time a pin value changes, we
created a simple map (just an array) with pin number as keys and pointers to
the components which include that pin as value. This structure was chosen to
save processing power and RAM, as well as providing a quick way to find what
characteristics are associated with each pin. This data structure was later found
useful for triggers too and was moved out from the AIOService to the shared
characteristic data structure, as seen in [Fig. 7.4].

As previously mentioned we began with implementing digital characteristics,
as working with digital GPIOs appeared to be easier (can only have the value 1 or
0). A Digital characteristic can contain multiple digital GPIOs, and representing
the value of each pin can be done with two bits. Each pin can be in one of four
states, as seen in Table 7.1. The active and inactive state represents whether the
pin has a high or low current on it. The tri-state is for removing the pin’s influence
from the rest of the circuit, and the unknown state is for when the device can’t,
for some reason, report the condition of a pin.

State Value
Inactive state 0b00
Active state 0b01
Tri-state 0b10

Unknown state 0b11

Table 7.1: Pin states in a digital characteristic.

The value of the digital characteristic is padded to whole bytes in little en-
dian order. An example of a digital characteristic with three pins could look like
0b00010001, where the first and third pin is active and the second pin is inactive.
The fourth pin does not exist and is only padded zeroes. Working with digital
characteristics requires extracting/setting specific bits in its value. Bit shifting
and masking make code less readable, however, it is a necessary evil. Below is an
example for how to update the internal value of a digital characteristic.

38 Prototype solution on a u-blox module

// Sets a specific pin to inactive in a digital characteristic
..
pinIndex = 3; // Index for the pin in the digital

characteristics pin list
mask = (~(1 << (2 * (pinIndex % 4)))); // Ones except the two

bits associated with the pin.
value[pinIndex / 4] = value[pinIndex / 4] & mask;
...
// Now update the digital characteristic in the stack with the

new value
sd_ble_gatts_value_set (..., ..., &value);

After we had finished our implementation of digital characteristics, it was
easy to add support for analog characteristics. An analog characteristic can only
contain one pin, and its value is represented by a 16-bit number. Having only one
pin in the characteristic made it simpler to update and extract values from the
characteristics since no masking was required. However, reading an analog value
from an analog pin turned out to be harder than reading a digital value. An analog
pin must be sampled using an ADC (Analog-to-digital converter). Functionality
for ADC is included in the SDK and was wrapped by u-blox code. However, the
wrapped code didn’t sample with the correct speed and didn’t support sampling
of multiple analog signals, so we had to write our own ADC from scratch.

Aggregated characteristic

The aggregate characteristic is a characteristic that represents the state of all
analog and digital characteristics with the read property, aggregated in a single
characteristic. The value of the aggregate characteristic start with the state of
all digital characteristics, and pads them with zeros to whole bytes, then adds
the analog 16-bit values. An example of the aggregate characteristic, if the service
contains the digital characteristic from before 0b00010001 <=> 0x11 and combine
it with an analog characteristic value 0xA202, the aggregate characteristic value
is 0x11A202. Remember that characteristic values are written as little endian, so
the actual value of the analog characteristic is 0x02A2 <=> 674 and not 0xA202
<=> 41474.

When there are multiple digital characteristics, it is not as simple as copying
the values from each digital characteristics after each-other into the beginning of
the aggregate. Digital characteristic values are padded if they don’t contain a mul-
tiple of four GPIOs. This padding is unnecessary in the aggregated characteristic
and should only have padding for the last byte. So digital characteristics values
had to be un-padded before adding them to the aggregate.

Triggers

In Automation IO there are two kinds of triggers, called time- and value trigger.
For a client to change the trigger conditions, a characteristic can have a descriptor
containing the settings for each trigger. Time- and value triggers can be com-
bined in several different compositions and would require unique logic for many

Prototype solution on a u-blox module 39

of them. Instead, we decided to focus on the triggers we, as well as our mentor
at u-blox, found most valuable. We decided to place the logic for triggers in a
separate component seen in [Fig. 7.4]. The AIOService is responsible for initi-
ating the trigger handler component when an AT-Command is received for a
trigger configuration. When a client changes the trigger condition, it is the re-
sponsibility of the AIOService to updates the trigger handler component with
the new trigger configuration. When a GPIO changes value, and it fulfills a trigger
condition, the trigger handler component makes a callback to the AIOService,
which then notifies or indicates the correct characteristics.

The data structure created for storing characteristic data/configurations tur-
ned out to be useful for triggers as well. For each characteristic we have to save
the corresponding time- and value triggers and some additional information about
previous state and values. One value trigger condition, for example, is to trigger
when an analog value goes from above to below a threshold, making us have to
store the previous value for the characteristic as well.

For digital characteristics, we currently support 5/7 conditions and for analog
characteristics 6/11. Adding support for the remaining triggers would be straight-
forward since many of the remaining triggers are just variations of triggers already
implemented. We implemented the most “sophisticated” analog value trigger as
the other triggers are just subsets of it. The reason behind not implementing ev-
ery trigger was that we wanted to focus on other parts of the prototype, so the
remainder of the conditions are left as an exercise for u-blox.

7.3.4 Automation IO client

In the early stages of our prototype, we used an application called NRF Connect,
created by Nordic Semiconductor, to connect to, and monitor our service. The
application can discover arbitrary services, characteristics, and descriptors on a
connected device (NINA-B1).

Even though we did find this tool, we had two primary reasons that made
us want to implement our own Automation IO client. First, we needed a more
customized interface to be able to utilize and test Automation IO, second, we
wanted it as a tool to show the usefulness of a generic app to control an Automation
IO Service.

We decided to implement a simple Android application that was able to act
as a Automation IO central and could interact with the service in an intuitive
way. Implementing the client was straightforward and the only problems we had
was with the Android BLE stack, and after reading about it, we found that we
weren’t the only ones having problems with it. We had days when our application
just stopped working for some phones, and after a software update of the phone,
the app started working again. The BLE stack has a problem when new services
and characteristics are added to a peripheral when the phone is connected to a
device. In those cases, Bluetooth has to be restarted on the phone for it to be able
to rediscover new services and characteristics. We found some hidden methods in
the Android API, which refreshes the device Bluetooth cache. However, it didn’t
always work as we expected.

40 Prototype solution on a u-blox module

7.4 Evaluation

With the prototype solution finished, we wanted to evaluate how good the proto-
type was and if we fulfilled the requirements stated by u-blox.

To verify that our implementation of the AIO Service complies with the Au-
tomation IO profile, we used the Bluetooth PTS. The PTS connects to the NINA-
B1 module using a Bluetooth dongle connected to a computer and runs a compre-
hensive set of test cases defined by the Bluetooth SIG, intended to verify that the
functionality of the service complies with the profile specification. The PTS has
support for disabling tests for non-mandatory features. We disabled the features
that our module doesn’t support, such as some trigger conditions. To investigate
how the inclusion of the Automation IO Service affect the rest of the NINA-B1
module, we conducted tests for power consumption, memory usage, and through-
put.

• Power consumption By powering the NINA-B1 chip with an oscilloscope,
it is possible to measure the power consumption of the NINA-B1 module.
With the help of the oscilloscope, we could measure average energy con-
sumption over a time interval. The tests consisted of different combinations
of analog sampling time and indication/notification intervals.

• Memory usage Visual GDB shows the flash and RAM requirements after
each compilation. To make sure those numbers were correct, we also ex-
tracted the flash and RAM usage from the generated .elf file, in a similar
manner of how we did with OpenThread. The resulting difference was the
same, except the difference given from the .elf file gave us an exact value
in bytes, instead of rounding to whole KB. We also included the dynamic
memory needed for characteristics and triggers. The RAM usage shown by
the compiled program will always be allocated, even when not including the
AIO Service. We calculated the dynamic memory by logging the size of
every malloc made when adding characteristics and triggers. U-blox has
implemented a heap, so we are calling a custom made malloc, which “allo-
cates” memory from a static buffer. However, we will refer to it as dynamic
memory, since by using it, other parts of the connectivity software will have
less memory to use.

• Throughput One of the use cases for the connectivity software is to send
data with the SPS. It is possible to use it to stream or send larger chunks
of data. To see if our module interferes with the throughput of the SPS
we conducted some performance tests. By using the s-center software, it is
possible to perform a data pump. What the data pump does is to push as
much random data as possible over serial to NINA-B1, then the NINA-B1
transmits it over the SPS to a connected device. For this experiment, we
couldn’t use the app we developed, because it didn’t have support for the
SPS, and we couldn’t use the u-blox app which supports SPS because it
didn’t support AIO. Instead, we used NRF Connect. With it, we could
subscribe to notifications for characteristics in the SPS, as well as in our
AIO Service.

Prototype solution on a u-blox module 41

For a test to be valid, the results should be reproducible. The Power consump-
tion results are the average power consumption over a 10 second period and the
throughput tests are an average over a two minute period.

Every test we ran on the module was based on data from several indepen-
dent measurements. Many factors can differ when performing measurements on
a device, but we attempted to mitigate as many of them as possible by having
a consistent lab setup, as can be seen in [Fig. 7.5]. We did not perform our
measurements with any other lab setup, as this was not relevant as part of an
integration test of Automation IO. Other factors such as the number of other de-
vices which operate on the same radio bands can impact the test results and could
unfortunately not be mitigated, as we had to run our tests in our office.

Figure 7.5: Lab setup to measure power consumption and through-
put on a NINA-B1-EVK.

42 Prototype solution on a u-blox module

Chapter8
Results

In the following chapter we will present and reflect on the result of our thesis work.
We will present results for the comparison of LE technologies, conclusions about
provisioning and the Automation IO profile, as well as the result of our prototype
implementation.

8.1 Comparison of LE technologies

This section will display the results of the comparisons carried out in Chapter 4.
We also compiled a summary of the different technologies and how they compare
to each other for different metrics. This comparison can be seen in matrix form
in Section 8.1.4.

8.1.1 Battery

As previously discussed in Chapter 4.1 all of the compared technologies utilize
cyclic sleep patterns and the difference in battery consumption will depend on how
the technologies optimize these duty cycles. Evaluating the battery consumption
of the different technologies turned out to be harder than we initially anticipated.
Factors such as data throughput, distance, and optimizing connection parameters
all change the power consumption of a device.

Previous comparisons of Bluetooth LE and ZigBee [14][13] indicates, that when
similarly configured, that BLE is ∼ 2, 5 times as energy efficient as ZigBee. It also
shows that the length of the connection event, i.e. how well the power cycles are
optimized, is the main contributor to the power requirements of the technologies.

Texas Instruments measured power consumption for a BLE device configured
as a peripheral with a 1000ms connection interval. When running on a CR2032
coin-cell battery, their findings indicated an expected battery life of ∼ 400 days
[26]. If the connection interval were increased to the maximum allowed value
of 4000ms, the expected battery life would increase, according to the formula
provided in the paper, to ∼ 1600 days or ∼ 4, 4 years.

We could not find a similar approximation for ZigBee, but [14] indicates that
BLE has ∼ 2, 5 times better energy utility than ZigBee which would result in
ZigBee having an approximate battery life of ∼ 1, 76 years on a CR2032 coin-cell
battery.

43

44 Results

Unfortunately, since Thread is a rather new technology, we did not find any
comparisons with other low powered technologies. We did, however, find an ap-
proximation of the average battery life of a Thread end-device powered by a
CR2032 coin-cell battery, waking every 10 seconds, approximating a lifetime of
∼ 2, 6 years [15].

These estimations were all for peripherals/end-devices with short duty cycles
and low throughput. As these conditions change, so will the battery life of the
device. These values can, however, be used as indicators for our comparison.
The tests shows that BLE is the most power efficient technology which can be
contributed to the four times higher data rate over-air, as well as the utilization of
frequency hopping to avoid interference [14]. The greater data rate is going to lower
the amount of time the device has to stay in Rx/Tx mode, thereby shortening the
time of the connection events. ZigBee and Thread appear to have similar power
consumption, although the limited available information on Thread makes it hard
to know for sure.

8.1.2 Memory

As mentioned in Section 4.2 it is hard to compare memory usage between differ-
ent wireless technologies. Variables such as compile target, library manufacturer,
security features, and feature levels all factor in to the final flash size and RAM
requirement of the technology. The compile target is different for all technologies,
BLE and Thread are both compiled for the ARM Cortex-M family, however, not
for the same models. TI’s ZigBee stack is compiled for their own MCU, which is
based on industry-standard 8051 MCU. The difference between the ARM MCUs
shouldn’t make a difference big enough to change the conclusions established in
this section. The ARM and 8051 chip sets does, however, have some noticeable
differences in how they manage memory. 8051 does make better use of flash and
RAM, however, for bigger systems this should not impact the memory require-
ments in a significant way [27]. The companies responsible for development of
the different stacks are all well established and we have assumed that they have
well-developed stacks, without unnecessarily large memory usage.

In Table 8.1 we compare the different technologies with as similar compilation
options and device roles as possible. In favor of ZigBee, we also included the non-
PRO version. For Thread we only have the memory usage for a REED device,
meaning the memory usage for Thread shown in Table 8.1 could be decreased
further for a sleepy-end-device.

ZigBee has the highest flash requirement (121.9KB) of the three, but the best
RAM (5.2KB). BLE requires about 30KB flash less than ZigBee, making it possible
to fit on a MCU with 128KB flash, but application size will be very constrained.
OpenThread, requiring 24KB less flash than BLE, could easily fit into a 128KB
flash MCU with plenty of room for the application. RAM usage for BLE and
Thread are higher than ZigBee, where BLE requires about 3KB more and Thread
a whole 10KB more. However, RAM usage for a Thread sleepy-end-device could
most likely be reduced significantly compared to a REED. Thread markets as a
standard with low memory footprint, which match our findings for OpenThread.

We could also argue that a ZigBee router, BLE central and a Thread REED

Results 45

can be compared since they have similar roles. They receive data from a low energy
device and can route it to other devices. BLE does not support mesh networking;
however, the central could act as a router in a piconet and could therefore perform
some of the same tasks as a Thread or ZigBee router. Memory requirements for
the central/router roles follow the same pattern as the peripheral/end-device roles,
as can be seen in Tables [4.2, 4.1, 4.3]

Overall it looks like ZigBee requires a lot of flash memory compared to BLE
and Thread, making it the worse alternative for memory constrained devices. BLE
performs decently from a memory perspective and could, depending on the appli-
cation size, even be run on a 128k MCU. Thread is a newly developed technology
and was developed to have a small memory footprint. The OpenThread stack
shows that they have succeeded in that regard, and that it is possible to have an
advanced low power technology with mesh networking and still keep the memory
requirements low.

Stack Device type Security Flash RAM
ZigBee PRO End-Device on 128.2KB 5.3KB
ZigBee End-Device on 121.9KB 5.2KB
BLE S110 Peripheral on 92KB 8KB
OpenThread REED on 68KB 15KB

Table 8.1: Memory usage for end-devices summed from Tables 4.1,
4.2, 4.3.

8.1.3 Security

Some of the main attack surface for low powered wireless technologies in general
are: Passive eavesdropping, MITM attacks, and for BLE, identity tracking. This
section will compare how the different technologies handle these security threats.

• Identity tracking Bluetooth LE handles the problem of Identity tracking
by using Identity Resolving Keys to change its public address [6, p.31] peri-
odically. Bluetooth also features a non-discovery mode to hide the devices
public address from general-discovery. Tracking devices in a Thread or Zig-
Bee network based on signal strength is entirely possible, but as ZigBee and
Thread devices are not designed to be carried around by a person, this does
not impose the same threat.

• Passive eavesdropping Passive eavesdropping is a problem mitigated by
encrypting data in transfer, as well as proper management of secure keys.
BLE, ZigBee, and Thread all uses AES-CCM cryptography to encrypt their
data and should be secure against passive eavesdropping, as long as their
secure keys are not acquired. Each connection generates unique keys in both
Thread and Bluetooth LE and as long as the key-exchange process is secure
Thread and BLE keys should be safe as well. ZigBee devices have been
known to come pre-installed with default network and link-layer keys with
a history of having been publicly exposed [23]. As mentioned in Chapter

46 Results

4.3 ZigBee also present a security flaw where it sends an unencrypted key
through the network that could allow a network sniffer to acquire the key.

• MITM attacks How resilient a technology is to MITM attacks depends
on how to secure the pairing/joining process of the technology is. For a
key-exchange process to be resistant to MITM attacks, the key-exchange
must use a secure procedure, as well as provide a way for the user to verify
the authenticity of the connection. Thread was built with security in mind
from the beginning and always require a network administrator to verify the
joining device before allowing it to join the network. This joining process
uses Schnorr signatures as a passkey to verify the connection. Bluetooth
LE allows the user to specify what security mode and level they want for
their device. Some of these security levels do not provide MITM protection
while some do. If the device is running a Bluetooth version lower than
4.2, the only “secure” option is using either passkey or OOB for verification
[19]. Bluetooth 4.2 introduced Secure Connections, further increasing the
security of the verification methods and adding the Numeric comparison
option, considered highly resilient to MITM attacks. ZigBee should, in
theory, be safe to MITM attacks, as all ZigBee devices come pre-installed
with keys for secure communication. However, since these keys are known
to be compromised, MITM attacks are entirely possible for ZigBee.

In summary, Thread and Bluetooth LE appears to provide the strongest over-
all security and is proven to be resilient to both passive eavesdropping and MITM
attacks. For BLE, however, the security is entirely dependent on what security
mode/level, verification process, and Bluetooth version the user decides to use.
ZigBee uses strong cryptographical algorithms for data in transfer, but displays
some major security flaws when handling secure keys and could be vulnerable to
both MITM and Passive eavesdropping attacks.

8.1.4 Summary of the technologies

In [Fig. 8.2] we have summarized the main differences between the BLE, ZigBee,
and Thread technologies. We have included a summary of the metrics that have
been previously discussed, as well as some other differences we have come across
in our research. Some of the data for Thread has been taken from evaluations of
6LoWPAN, but as this is the technology Thread is built on, it is bound by these
values.

8.2 Automation IO use cases

The purpose of this section if to find use cases for the Automation IO Service in a
u-blox product, as well as for other companies looking to implement Automation
IO in their own products. We will also use these use cases as a way to evaluate
the different approaches presented in Chapter 5 and 6.

1Limited by 6LoWPAN, Thread is bound by these values.

Results 47

Bluetooth LE ZigBee Thread
Battery consumption ∼ 4,4 years ∼ 1,76 years ∼ 2,6 years
Memory requirement
End-device

92KB Flash
8KB RAM

121.9KB Flash
5.2KB RAM

<68KB Flash
<15KB RAM

Encryption AES-128 AES-128 AES-128

Key exchange
User defined. Support
for password and
Numeric comparison.

JPAKE
with Juggling.

Pre-installed keys
and Security Center.

Max Data Rate [6][28] 1Mbit/s 250kbps 250kbps1

Nominal range [14][28] 50m 10-100m 25-50m1

Interference
handling [14] Frequency hopping CSMA/CA CSMA/CA

Mesh capability No Yes Yes

Table 8.2: A summary of the different low powered wireless tech-
nologies and their differences.

• A small company manufacturing watering systems for gardens wants to offer
their customer the option to control their watering systems from a mobile
device. It is a somewhat small business, with limited knowledge of BLE and
low-level programming. The companies goal is to be able to turn on/off the
watering system wirelessly, as well as notify the user if the moisture in the
soil is below a certain level.

The company decides to purchase a cable replacement module, such as a
NINA-B1 module pre-flashed with support for Automation IO, and connect
the GPIOs on the chip to the old system. The Automation IO Service can
map the pin to control the on/off switch to a digital characteristic, and the
moisture sensor to an analog characteristic. The NINA-B1 module, which
has recently added support for running start-up scripts, is provisioned by
flashing a script to the module. End-users can then control the system by us-
ing a mobile application built for managing generic AIO Services, developed
by a third party.

Provisioning the device through a start-up script is ideal for this use case.
The watering company, with its limited programming knowledge, can pro-
vision the device through a high-level programming language and only have
to learn the API for interacting with the module. A start-up script will also
re-provision the device when rebooted, which is ideal when the end-user just
want the product to work without provisioning the device. Depending on
the model of the watering system, it is also possible for the company to
customize the script depending on the needs of each model.

If the company wanted a custom solution, rather than the Automation IO
solution, they would have had to develop custom firmware, as well as a
client application. For a small company with limited resources, the use of a
pre-defined standard is going to save both time and money.

• A large production company using robots in their production line want to
upgrade their current system architecture. Previously the robots were coor-

48 Results

dinated by a master computer through physical cables, which the company
wants to replace with a wireless solution. The robots need to communicate
when they have finished a task, as well as additional information required
to prepare the other robots on the line (Such as if the robots have to switch
tools). An Automation IO module, such as the NINA-B1, could be used
for this task. As the robots only have to communicate information that can
be conveyed through the state of analog or digital pins, the Automation IO
Service is sufficient for exposing the signals to the shared master computer.
The master computer acts as a central for all connected robots and runs the
logic for informing the other robots when certain tasks are finished.
The modules are provisioned over the UART connection from the module
connected robot. Since each robot has a slightly different set-up of pins,
they can push AT-Commands over UART to provision the module to the
specifications required by each robot. A generic set-up script or hard-coded
solution would not be flexible enough for this use case. The modules could
also receive AT-Commands wirelessly over the included SPS from the master
computer if additional provisioning were required to accommodate the rest
of the system.
As Automation IO sufficiently fills the need for the company, there is no
need for them to invent a custom standard and they could instead adopt
the Automation IO profile. Using a pre-defined profile will not only save
the company time but also reduces the risk of error when developing their
product.

• In a home where several different appliances offer BLE connectivity. The
homeowner wants to be able to connect to each of the home automation
devices to monitor and control them. For instance, the owner wants to be
able to turn on/off light bulbs as well as read the status of the washing
machine with a single mobile application. If each of the home automation
devices ran a custom profile to expose its data, the user application would
need to include logic for how to handle each of the custom profiles. In home
automation, it is common that the different devices are produced by various
companies. To give the end-user a simple way to interface with all of these
devices without needing a separate controller for each device, it is important
that the devices agree on one protocol for communication. Automation IO
can act as that protocol, as it is designed for generic IOMs and could be
adapted to fit most home automation appliances. The problem arises when a
home automation device wants to convey more data that can be represented
simply by pins. In that case, something like the SPS would be better suited
for conveying the data.
Another benefit of using the Automation IO profile for home automation
devices would be that a technician could connect to and diagnose any ar-
bitrary device in the house through a single diagnostics device. This would
make it easier for the technician to troubleshoot devices without having to
find the specific connectivity software required for each device.

• A company develops a circuit where one of the output pins is connected to a
i2C circuit. An I2C circuit is a way to connect a single output from a pin too

Results 49

many input signals for other chips. This could be solved with a modified ver-
sion of Automation IO by having one characteristic for each chip connected
to the I2C circuit and with an internal address for the different chips. The
company decides to implement a custom version of Automation IO, where
a characteristic has a descriptor for the internal addressing required. The
company provisions their device by hard coding the Automation IO settings
in their custom firmware, as every module has the same layout and there is
no plan to change the chip in the foreseeable future.

Automation IO is a generalized standard and does not provide the ability to
extend the profile with additional information needed for specific use cases.
In the Automation IO specification, it is also stated that a characteristic
should be directly representative of the pins it is mapped to, which would
not be accurate in this use case, as severe characteristics would be needed
to represent a single pin.

• Companies developing products that have an interface to the outside world,
such as pins, can include logic in their product that acts on the state of
those pins. The companies are looking for a method to control and monitor
their products wirelessly. Instead of including the Bluetooth connectivity
inside of their own product, they use a standalone cable replacement module
running Automation IO and connects it to the pins of their product. The
company can now either use an existing Automation IO client or create their
own to control and monitor their product over Bluetooth.

Provisioning

When provisioning a device, we have shown that every approach presented in
Chapter 6 can be useful. There are, however, some choices that will be preferred
in most use cases. Hard-coding a solution should only be the preferred solution
if the design of the IOM and desired structure of the service is previously known,
there is no module connected host, and there is no room for a scripting language.
The hard-coding approach leaves a lot to be desired for flexibility but does however
have its benefits in terms of performance.

Running a script at start-up to provision the device is ideal if the module is
not connected to a host MCU. The module can be used as a standalone module
and will be ready to use directly when powered on. A module without a connected
host could also be provisioned by sending AT-Commands over-air. This would,
however, require this to be done every start-up, as well as require a service to
receive these commands, such as a SPS.

Running a scripting engine and storing a script on the device does, however,
demand both memory and processing power from the device. If the device is
connected to a host, it could instead be provisioned by having the host push AT-
Commands through the device UART. This approach would require less power
from the module and will also offer more flexibility. A device could, if needed, add
more characteristics to a module without having to reboot it, as AT-Commands
are sent asynchronously over the UART.

50 Results

Standard or custom solution

We have shown through our use cases that the Automation IO profile is highly flex-
ible and can be adapted to most use cases where exposing digital and analog pins
are required. We have also shown the potential benefits of using a standardized
profile when exposing data, rather than building a custom profile. A standard-
ization brings with it the benefits of providing connectivity between every device
that implements the Automation IO profile. For instance, a vendor could utilize a
generic AIO client application developed by a third party for monitoring their sen-
sors. The use of a common standard is especially important if AIO is to be used in
home automation, as needing to include different custom profiles for every device
in a home would not be a sustainable solution. A pre-defined profile will also de-
crease the risk of error when implementing a service, as the specification has been
tested and designed to cover every use case. From our findings, we would always
recommend following the Automation IO profile when exposing I/Os over BLE if
possible, as it brings with it several benefits and few disadvantages. It is, however,
not always possible to follow the Automation IO specifications. Automation IO
is a specification for low lever monitoring and control of pins. If a device has to
include more information than what is supported in the Automation IO profile, it
would not be possible to follow the specification. Also for the times when real-time
communication over pins are necessary, AIO might not be a feasible solution.

8.3 Resulting product

This section will discuss the results acquired when running the tests and measure-
ments explained in Section 7.4.

8.3.1 Automation IO proof of concept

Our final prototype of the AIO Service, running on a NINA-B1 module, supports
every mandatory and many of the optional features specified in the Automation
IO profile. The prototype supports all types of characteristics and most of the
critical trigger conditions.

Profile verification

As previously mentioned we verified our implementation with the PTS. We modi-
fied the PTS to run every test applicable for our prototype, testing a wide variety
of regular/edge cases. Some of the cases the PTS tests for correctness are:

• Characteristics are formatted correctly.

• Writing and reading to characteristics.

• All mandatory descriptors are present.

• Configure all different configurations of triggers and check that they send
the correct indication/notification.

• Check that triggers only trigger when they are supposed to.

Results 51

After a couple of iterations of tests and modifications of our prototype, the
final product is a prototype that passes every PTS test and thus should comply
with the Automation IO profile.

Power Consumption

To be able to compare the results from our different measurements, we had to
establish a baseline for the power consumption of the device when running without
an AIO Service. We implemented the AIO Service in such a way that if the
AIO Service is not set-up by AT-Commands it will not exist on the server and
therefore will not impact the power consumption of the device. This baseline test
is the second result in Table 8.3, where the power consumption was 1.61 mA.
When measuring our baseline, we connected a central to the NINA-B1 module
but had no logic running for the AIO Service. After establishing our baseline, we
measured the power consumption for various combinations of analog sample time
and notification/indications. All of our measurements are the result of measuring
the mean power consumption over a period of 30 seconds. The measurements were
performed by having one analog characteristic, running at different sample rates
and notification/indication intervals.

From studying our measurement data we can see that sampling alone does
not impact the power consumption considerably, 1.61 mA compared to 1.66 mA.
We can see the same pattern when examining the difference between running 10
notifications/s, but varying the sample time between 10/s and 100/s on row 4 and
6 in Table 8.3, where the difference is 0.03mA. We could also not see any notice-
able difference between sending indications or notifications. In theory, indications
should require more power, since indications require an ACK before sending the
next indication package. Having to wait for an ACK should cause the length of
a connection event to be longer, and therefore the device must be awake a longer
period. The big difference in power consumption comes from the number of indi-
cations/notifications per second. Increasing the number of notifications sent from
10/s to 100/s increased the power consumption of the module by 0.3 mA.

By configuring triggers to only notify/indicate a characteristic when it is
needed can save a lot of power. Avoiding the transmission of unnecessary indi-
cations/notifications is crucial if power consumption is an important factor. The
best way to avoid sending unnecessary indications/notifications is to have well-
constructed trigger conditions. If the value is intended, for instance, for a human
to monitor a device, it might be sufficient to notify the value at most once per
second.

The service disables sampling and triggers when there isn’t a central connected
to further save battery. Sampling and triggers are started when a central connects
and stops when it disconnects. If no central is connected, there isn’t any logic
executed. Therefore when the Nina-B1 is idle, our AIO Service shouldn’t draw
any power.

52 Results

Method Samples Power cons.
Not connected. Advertises every 1 second off 1.57 mA
Connected, no timers running
no notifications or indications off 1.61 mA

Connected, no timers running
data pump over SPS. off 2.59 mA

Connected, 10 notifications/s 10/s 1.64 mA
Connected, 10 indications/s 10/s 1.64 mA
Connected, 10 notifications/s 100/s 1.67 mA
Connected, 100 notifications/s 100/s 1.94 mA
Connected, 100 indications/s 100/s 1.95 mA
Connected, no notifications or indications 100/s 1.66 mA

Table 8.3: Average power consumption of the NINA-B1 in different
scenarios.

Throughput

Testing throughput is part of the tests to make sure we don’t impact the current
connectivity software. By testing the throughput of the SPS while running differ-
ent configurations of AIO, we could see how much our service interfered with the
SPS. We picked the SPS for our throughput tests, as the SPS is one of the most
common tools for end-users of the NINA-B1 modules. When measuring through-
put, we looked at how many kbps the SPS could transmit while running different
configurations of the AIO Service. We also investigated a metric we call “discarded”
that represents the percent of AIO notifications discarded because of having a full
transmit buffer. The “discarded” metric will be further discussed later in this sec-
tion. We decided to use notifications when performing our tests, as it should give
the AIO Service a higher throughput and therefore should impact the SPS more.
The results in Table 8.4 show the throughput of the SPS when running AIO in dif-
ferent configurations. The results show in Table 8.5 are intended to show the limit
of how many indications/notifications can be sent without discarding notifications
when running the AIO Service without any other services.

The maximum throughput of the SPS, without anything else running on the
NINA-B1, was 27 kbps. When including our AIO Service, without running any
logic from it, reducing the throughput of the SPS to 24 kbps, which we currently
can’t explain. The throughput of the SPS when including the AIO Service in an
idle state is going to be the baseline for this experiment. We can, unsurprisingly,
see a decrease in the throughput of the SPS while increasing the frequency of no-
tifications. We built our prototype in a way where the notifications of the AIO
Service had priority over the SPS, and since the SPS data pump is attempting
to flood the channel with as many packages as possible, it is only logical to see a
decrease in throughput. What we found most interesting is the difference between
having three separate analog characteristics or a single aggregate characteristic.
Including a way to notify the entire state of all characteristics at once was an excel-
lent idea when designing the AIO specification. The row showing notifications/s,
is per characteristic, meaning when we have three characteristics, the number of

Results 53

notifications/s is three times as many as when having an aggregate. In row 3, we
can see that with three characteristics and 20 * 3 total notifications/s sent, the
SPS drops to 17 kbps, but with the aggregate, the SPS can still transmit at 24
kbps. Sending one notification with six bytes payload is going to be more effi-
cient than sending three different notifications with two bytes payload each (one
analog signal is represented by two bytes). With three separate analog character-
istics which notify individually, the percentage of discarded notifications increase
quickly. What should be noted is that these tests are edge cases. Normally the
load of the SPS would not be as high as the data pump.

For the setup we were using when measuring the number of notifications
that get discarded when running only the AIO Service, notifications start get-
ting dropped somewhere between 100 and 200 individual notifications/s.

In conclusion, by using reasonable trigger settings, it should be possible to run
the Automation IO Service in parallel with the SPS without any interference. A
regular use case for the Automation IO Service would include having at most 10
characteristics, none of which notify more often than once every second. We can
see in our results that this shouldn’t decrease the throughput of the SPS at all,
even when running the data pump.

1 analog 3 analog Aggregate 3 analog
Sent/s kbps Discarded kbps Discarded kbps Discarded
0 24 0% 24 0% 24 0%
1 24 0% 24 0% 24 0%
10 24 0% 22 0% 24 0%
20 23 0% 17 0% 24 0%
50 19 0% 6 10% 18 0%
100 10 0% 5 50% 6 0%
200 3 23% - - 2 16%

Table 8.4: Throughput running SPS data-pump together with AIO
notifications.

1 analog 3 analog Aggregate 3 analog
Sent/s discarded discarded discarded

1 0% 0% 0%
10 0% 0% 0%
20 0% 0% 0%
50 0% 0% 0%
100 0% 30% 0%
200 6% 67% 11%

Table 8.5: The amount of discarded notifications when running only
the AIO Service.

54 Results

Memory requirement

The final test we performed is for the memory requirement of the AIO Service.
Ideally, we would like the AIO Service to have a low memory footprint, to save
memory for the other parts of the connectivity software. Some relevant data
for this experiment is flash and RAM requirements for the connectivity software
before and after the code for the AIO Service is added, which can be seen in Table
8.6. The dynamic memory requirement for adding characteristics and triggers are
shown in Table 8.7. Reducing the dynamic memory required for characteristics
and triggers could be done by replacing some arrays we implemented with a fixed
size with linked list structures, which doesn’t allocate unnecessary memory.

The GATT-table in the Nordic BLE stack (the SDK) has a limited size. Char-
acteristics and descriptors take up rows in the GATT-table and filling this table
up are going to be what limits how much memory our service can allocate at most.
Our tests show that the limit for the AIO Service is about six characteristics with
every optional descriptor and trigger for each characteristic. Calculating the maxi-
mum size of the AIO Service can be done by using the data in Table 8.7 and results
in a maximum memory requirement of approximately 900 bytes. It is possible to
increase the size of the GATT-table by modifying Nordics BLE stack and in that
case the calculation would have to be modified accordingly.

Original Automation IO Difference
Flash 406KB 422KB 16.2KB
RAM 55KB 55KB 416B

Table 8.6: Memory usage without the AIO Service enabled.

Dynamic Dynamic memory
Digital Characteristic 64B
Analog Characteristic 77B
Aggregate Characteristic 72B
Per unique GPIO with one or more Characteristics 44B
Value/Time Trigger 28B

Table 8.7: Memory costs for adding more characteristics to the AIO
Service.

Further improvements

The AIO Service is fully functional. However, some minor things should be dis-
cussed/updated/fixed before deploying our prototype into production.

• If the transmit buffer is full, it means that we are trying to send more
data than the BLE stack can handle. Usually, it is not a problem that the
transmit buffer is full, and you can just wait until there is room in the buffer.
The SPS uses this technique. For AIO we have triggers that are configured

Results 55

to send updates at a particular speed, or as soon as a value updates. If the
BLE stack can’t handle this speed, there is a question of how to manage
packages that can not fit in the buffer.
We experienced this problem when we performed our throughput tests, af-
ter the implementation phase of the thesis and therefore didn’t have time
to find an optimal solution to this issue. What we did was to introduce
a FIFO-queue with about 20 slots available, which act as a buffer for our
service. When the queue is full, we throw away the top element (the oldest)
and add the newest notification/indication. This method discards the oldest
queued packet, but there is a problem with this approach. If one charac-
teristic trigger very fast, and one very slow. For instance, if we have one
characteristic which triggers 100 times per second, and one which triggers
every 10 seconds. Losing one notification/indication from the first charac-
teristic would not be critical, but overriding a notification from the second
characteristic because of the much faster first characteristic pushing it out
of the queue could cause large problems. The worst case would be that the
slowly updating characteristic is never notified/indicated.
A solution could be an array with buffers for each characteristic and then
cycle through it when the Tx buffer is free. This approach would give all
characteristics the same priority and therefore solve the problem above.
Also, something which needs to be discussed, is which service should have
the priority when notifying/indicating. Currently, both the SPS and the
AIO Service sends notifications/indication to the stack individually, which
is a classic race condition between the services. Extracting the logic for
sending notifications/indications to a shared queuing system would be the
ideal solution. Other services can then use this system to send notification-
s/indications.

• Since Nordics SDK doesn’t allow for intercepting read requests, our solution
instead periodically poll every pin and updates the current value in the
GATT-table. For some use cases, this behavior is entirely unnecessary, and
if a read requests could be intercepted the polling time could be optimized.
For instance, if an analog characteristic had a time trigger that notifies once
every 60 seconds, it would be exaggerated to sample the analog pin ten
times/s, which is our current default. If we instead could sample it as the
notification/indication was to be sent and when we received a read request,
we could reduce the sampling frequency by as much as 99,9%. This approach
could help save both processing power and reduce power consumption.
This optimization would, however, not always be possible. For instance, if
the characteristic has a value trigger, each sampled value would be signif-
icant to whether the characteristic should trigger or not, and could not be
disregarded.
This improvement could be interesting to investigate but would require that
the Nordic SDK added support for intercepting read requests.

• The ADC we implemented is fully functional, but how we process the sam-
pled value could be further improved. We do not currently support any noise

56 Results

reduction of the signal and a single faulty sample could cause a trigger to
send a notification/indication incorrectly. A solution to this problem would
be to require the analog signal to supply a user-defined number of identical
or near identical samples in a row before the state of the pin is updated in
the AIO Service.

8.3.2 Android application

To fully evaluate AIO we implemented a client for Android. Since it follows the Au-
tomation IO profile, it is capable of connecting to any Automation IO server. The
client does, however, not support all features of the profile and only support the
ones we have implemented in our service. The reasoning for not fully implement-
ing the profile was that we would have no way of verifying our implementation, as
our server didn’t have support for every feature.

Images of our application can be seen in [Fig. 8.1],[Fig. 8.2],[Fig. 8.3].

Figure 8.1: Screen
showing all ex-
posed GPIOs on
the server.

Figure 8.2: Write to
individual pins in
a digital charac-
teristic.

Figure 8.3: View for
writing to a trig-
ger descriptor.

The application has full support for reading/writing to characteristics, modi-
fying any potential trigger conditions, subscribing to notifications or indications,
and can sort characteristics based on whether it is an analog, digital, or aggregate
characteristic.

Chapter9
Discussion and conclusions

In this chapter, we reflect on the results presented in Chapter 8 as well as general
thoughts about working with this project.

9.1 LE Technologies

Previously in this thesis, we made a comparison of three popular LE wireless
technologies. We studied power consumption, memory requirements, and security,
and found that the technologies are similar in many ways. They all utilize duty
cycles to save power, and in regular use they should end up with a battery life of
at least one year on a CR2032 coin-cell battery. Thread has the lowest memory
requirements, even though we only found measurements for a REED, which would
require more memory than a sleepy-end-device. A Thread device can fit into 128
KB flash and 8 KB RAM, making it a great option for limited SoCs. A BLE
peripheral doesn’t require much more memory and is therefore also a good choice
when memory is restricted.

All technologies display similar power usage and memory requirement, how-
ever, Bluetooth LE consumes the least power and Thread requires the least mem-
ory, and sometimes this will be the decider on what technology to use.

The thesis also examined how the different technologies would handle expos-
ing low level digital and analog signals. Since I/Os can be wired to pretty much
anything, it could be catastrophic if someone unauthorized gained access to the
module. This is the reason why it is highly important that the technology ex-
posing the I/Os provides high protection against malicious entities. Each of the
technologies provides encrypted communication and should, in theory, provide a
secure network. However, as mentioned in Section 8.1.3, ZigBee does suffer from
some security flaws due to their key management protocols and use of pre-installed
network and link-layer keys. Having an educated network administrator that is
aware of the flaws in the ZigBee security model is crucial. Otherwise, they might
get a false sense of safety. Bluetooth and Thread both provide a security solu-
tion where the authenticity of a connection has to be confirmed by a moderator
of the system, offering protection against most of the common threats against
low-powered technologies. We do feel that Thread networks do provide the most
interesting approach to security by giving users an easy way to decide whether a
device is allowed to join a network by using a commissioning device and always

57

58 Discussion and conclusions

enforcing a high-security model.
Many of our findings talks against ZigBee. It has the worst power efficiency,

requires the most flash memory, and has some major security flaws. ZigBee does,
however, come with a couple of benefits not present in the other technologies. Zig-
Bee provides an extensive amount of profiles for controlling household appliances
and is widely used in home automation. For instance, ZigBee provides profiles
for e.g. light bulbs/dimmers, thermostats, pumps, and home alarms. BLE is an
attractive technology, but the lack of home automation profiles and its single-hop
technology makes it harder to cover every connected device in a household. BLE
do not support mesh functionality, but if the BLE central act as a Wi-Fi/Bluetooth
gateway, the information can still be exposed outside of the BLE piconet and in
that way create a home network. In the wearable device market, Bluetooth is
currently uncontested. This is mainly because both Thread and ZigBee require
stationary routers and are not designed to be mobile, as well as the widespread of
Bluetooth in mobile phones.

Thread differs from BLE and ZigBee when it comes to the application layer.
Thread doesn’t define the application layer, making it free for the developer to
choose how he/she want to implement it. Based on our evaluation of Thread, we
feel it is a strong contender for the IoT. The memory requirements for Thread
is great and if it is possible to fit the ZigBee application layer on top of Thread,
without adding too much memory, Thread might pose a problem for the survival of
ZigBee. As both Thread and ZigBee can be built on the same underlying hardware
architecture and are intended to solve the same use cases, Thread might spell the
end of ZigBee.

We believe that Thread with its IPv6 compatibility together with a smart
application layer, e.g. the ZigBee application layer, will rule the home network.
BLE does what it does well and if the use case is a wearable product or for a simple
single hop use, Bluetooth wins out over the other technologies. The question is if
BLE can fight its way into the home network. The problem with BLE is that a
BLE product is limited to its piconet and might not be reachable from the other
side of a home. If reachability between different piconets is required, a bridge with
its own networking logic would be necessary, whereas in Thread and ZigBee the
mesh networking works as is. Having a few ZigBee lights in a house would, for
instance, extend the ZigBee network to an entire house, as each of the lights can
act as a router for the rest of the network, same goes for Thread. If you add a new
ZigBee product, it will, therefore, be reachable inside the entire house. Something
to note is the recent release of Bluetooth 5.0 that supports mesh networking for
Bluetooth Regular. Perhaps this can be used to extend the network in a simpler
way for BLE devices and make BLE a competitor to ZigBee and Thread for home
automation purposes.

9.2 Automation IO profile

In our investigations, we have concluded that Automation IO is a comprehensive
and flexible profile and fills the gap of low-level control of IOMs that has previously
been missing in BLE. Controlling the pins of any IOM provides a low-level interface

Discussion and conclusions 59

to practically any device and the use cases for such an interface is nearly endless.
We also investigated whether the Automation IO profile is always the correct

choice when exposing I/Os. The problem of having a standard is that a standard
don’t consider exceptions and sometimes the Automation IO profile is just not
enough to cover every single use case where exposing I/Os over BLE is needed.
We did, however, show that following a standard comes with several benefits and
very few downsides. Aside from the complications involved in developing a cus-
tom standard and the errors that can come with it, following a standard will also
guarantee the interoperability with every other device using that standard. Hav-
ing a standard opens up the possibility for companies to develop only the client
or server side of the profile and have someone else produce the counterpart. For
instance, a company can focus on developing wireless sensors and have the users
themselves decide how they want to interact with them (application, Webb in-
terface, etc.). Or the opposite, buy an Automation IO sensor and use a generic
controller application or self-developed application, for monitoring and controlling
their device.

When investigating the practical use cases for Automation IO, we found that
there are an enormous amount of possibilities. There are, however, some use cases
where Automation IO is more suitable than others. Automation IO is ideal when
requiring a low-level interface to a peripheral, or when several devices need to
communicate simple events to each other through a common central. Automation
IO triggers are a valuable tool that allows BLE devices not to communicate more
often than they have to and in that way save power. By letting the devices
themselves notify the central when certain events occur, which could be crucial in,
especially, automation scenarios.

9.3 Prototype at u-blox

The Automation IO prototype ended up being fully functional and supports all of
the core components of the profile. When used for regular use cases, we show that
our service doesn’t interfere with the rest of the services of the NINA-B1. There
does, however, still exist some problems with our prototype that would have to be
addressed before using our solution in a final product. Firstly, u-blox has to decide
if the Automation IO or SPS should have priority when sending notifications/indi-
cations. Secondly, the problem with the priority between different characteristics
in our service for indications/notification. These problems should not be very hard
to rectify and we have proposed simple solutions in Section 8.3.1.

We use AT-Commands for the provisioning of the service. Our investiga-
tion hints that it is not always the most efficient solution. For many cases, it is
enough, but for a standalone MCU running our Automation IO Service, it is not
a functional solution. For the Nina-B1, the standard way of provisioning is over
AT-Commands and therefore it is ours too. We have talked about using start-up
scripts to make the module standalone and not need a connected host. U-blox
is currently working on a scripting solution and hopefully, in the future, such a
scripting language can be used with Automation IO to enable some of the use
cases we discussed in Chapter 8.2.

60 Discussion and conclusions

We think Automation IO is a perfect addition to the existing functionality of
the connectivity software and we have shown that it is possible to include Automa-
tion IO into the current software without interference. We have highlighted the
issues which need to be addressed before production. U-blox has shown interest in
including our solution in their standard connectivity software and should hopefully
be able to in one of their upcoming software updates.

9.4 Contributions

The thesis work was evenly distributed during the course of the project and we
where both involved in most parts. Some areas of the implementation of the
prototype were naturally divided among us, e.g. Jakob worked more with triggers
and Kasper with the AT-Commands. We began our implementation with pair
programming because it made it easier to learn about the code base and API. Later
on, when we felt more comfortable with the existing code base, we started working
on different parts in parallel to streamline the development. With that said, both
of us have been involved in every component in our prototype. When writing our
thesis, we worked on different sections in parallel but was both ultimately involved
in every part.

9.5 Conclusion on the project

In conclusion, we both feel that this thesis has been a success. Both u-blox and
ourselves are happy with our prototype solution, as well as the investigation on
how u-blox benefit from including an Automation IO Service in their products. We
would, however, have wanted to further polish our service, to remedy the problems
previously discussed. Due to time constraints, this was not an option, but as u-
blox intend to pursue Automation IO, we have full confidence that these problems
will get fixed.

We also feel that we performed a thorough evaluation of the Automation IO
profile and gave a general insight on what uses there might be for such a profile.
Investigating the differences between the different LE technologies was a larger
endeavor than we initially thought and should perhaps have been done more thor-
oughly if time permitted. We only included three technologies, where there exists
several more. We also only skimmed the top of each technology, but did, however,
feel we found enough information for the scope of this thesis.

Chapter10
Future work

In this chapter we are going to discuss some of the ideas we have for the future
of Automation IO. We will look at what will be the next step for Automation IO
in the u-blox cable replacement modules, as well as what future possibilities there
can be for the Automation IO profile.

10.1 Scripting language

To fully realize the potential of the Nina-B1, we want it to be able to run as a
standalone product. There is currently not a way to provision the Nina-B1 if it is
run standalone and any settings would have to be hard-coded. Having a start-up
script in a higher level programming language could make the Nina-B1 standalone.
Further, it could be used, not only as a way to provision the device, but to interact
with the different modules of the connectivity software. For instance the scripting
language could subscribe to events from the back-end of the Automation IO Service
and use it for other purposes as well. u-blox is currently researching how to include
a scripting language such as JavaScript/LUA/Python in their products.

10.2 Styling elements

One of the main use cases for Automation IO is for user control and monitoring
of generic IOMs. The Automation IO profile is currently limited to exposing
the exact state of the IOM and only has a single descriptor intended for a user
descriptor. For instance, if an analog characteristic is representing the value of an
analog thermometer, there is no way for the client to know what temperature a
certain analog characteristic value corresponds to, or how it should show the value
in the client.

An idea would be to either extend the Automation IO profile or define a
new profile built on top of AIO, that could include an additional descriptor for
styling elements in each characteristic. Such a descriptor could contain additional
information about the data included in the characteristic and how to pre-process
it before displaying it. Some example use cases could be:

• A temperature value should be displayed, but before displaying it, the analog
value should be transformed to display degrees Celsius rather than a voltage.

61

62 Future work

A transformation formula could be defined in a descriptor to tell the client
how to process the value. This could also be implemented in a generic
Automation IO client today, even though it is not in the profile.

• A digital characteristic should map to a light switch and can turn it on/off.
The client is a IoT application for controlling IoT devices. The styling de-
scriptor could define that the characteristic should be displayed as a switch,
rather than a 1/0 value. It could also define that the characteristic should
have priority and should be displayed before any other characteristic.

10.3 Smarter clients

One of the use cases we use to highlight the usability of Automation IO is when
it can be combined with a general application. Where it is possible to just plug
anything to the chip running Automation IO. There are a few great applications
today that is used to automate the daily life, two of them are Tasker and IFTTT.
Those are very powerful applications and if they included support for Automation
IO, it would open a lot of new doors. Some examples:

• A PIR motion sensor is connected to Nina-B1, the digital input pin is
mapped to a digital characteristic containing a trigger with the condition
“trigger when the pin goes from zero to one”. In Tasker or IFTTT we then
could send an email, make an API call to a server, turn on the lights or
any other of the thousands of combination possible, when the sensor detects
motion. All of this without writing a single line of code.

• Instead of buying expensive light sensors to Philips Hue, you can connect a
light dependent resistor to an analog characteristic, whenever it’s value goes
above a threshold, we could set the application to turn on the light.

Changing the Automation IO profile to better fit some specific purposes will
probably not be easy. Instead we can move the logic to the client application
e.g. an Android application. The application will still follow the specification,
only it can add additional functionality. We touched one of the enhancements in
the previous section. Letting the user input a formula for how an analog value
should be transformed before displaying it to the user. Our Android application
is very simple, it only displays the information the AIO Service exposes, in a more
readable way.

References

[1] Bluetooth Special Interest Group. Automation IO Profile, July 2015. Rev.
1.0.0.

[2] Bluetooth Special Interest Group. Automation IO Service, July 2015. Rev.
1.0.0.

[3] Bluetooth SIG. Specification of the Bluetooth system, June 2010. Covered
Core Package version: 4.0.

[4] Mats Andersson. Use case possibilities with bluetooth low energy in iot
applications. https://www.u-blox.com/sites/default/files/products/
documents/BluetoothLowEnergy-IoT-Applications_WhitePaper_
%28UBX-14054580%29.pdf. [Online; accessed 25-May-2017].

[5] Bluetooth SIG. Gatt services. https://www.bluetooth.com/
specifications/gatt/services. [Online; accessed 25-May-2017].

[6] Kevin Townsend, Carles Cufí, Robert Davidson, et al. Getting started with
Bluetooth low energy: tools and techniques for low-power networking. "
O’Reilly Media, Inc.", 2014.

[7] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation
of bluetooth low energy: An emerging low-power wireless technology. Sensors,
12(9):11734–11753, 2012.

[8] Bluetooth SIG. Adopted specifications. https://www.bluetooth.com/
specifications/adopted-specifications. [Online; accessed 19-June-
2017].

[9] "Thread Group Inc". Thread commissioning. http://threadgroup.org/
Portals/0/documents/whitepapers/Thread%20Stack%20Fundamentals_
v2_public.pdf, July 2015.

[10] Jonas Olsson. 6lowpan demystified. http://www.ti.com/lit/wp/swry013/
swry013.pdf, July 2014.

[11] Drew Gislason. Zigbee Wireless Networking. "Elsevier Science", August 2008.

[12] Christin Lee Joakim Lindh and Marie Hernes. Measuring bluetooth
low energy power consumption. http://www.ti.com/lit/an/swra478c/
swra478c.pdf, January 2017.

63

https://www.u-blox.com/sites/default/files/products/documents/BluetoothLowEnergy-IoT-Applications_WhitePaper_%28UBX-14054580%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/BluetoothLowEnergy-IoT-Applications_WhitePaper_%28UBX-14054580%29.pdf
https://www.u-blox.com/sites/default/files/products/documents/BluetoothLowEnergy-IoT-Applications_WhitePaper_%28UBX-14054580%29.pdf
https://www.bluetooth.com/specifications/gatt/services
https://www.bluetooth.com/specifications/gatt/services
https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Stack%20Fundamentals_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Stack%20Fundamentals_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Stack%20Fundamentals_v2_public.pdf
http://www.ti.com/lit/wp/swry013/swry013.pdf
http://www.ti.com/lit/wp/swry013/swry013.pdf
http://www.ti.com/lit/an/swra478c/swra478c.pdf
http://www.ti.com/lit/an/swra478c/swra478c.pdf

64 References

[13] Artem Dementyev, Steve Hodges, Stuart Taylor, and Josh Smith. Power
consumption analysis of bluetooth low energy, zigbee, and ant sensor nodes
in a cyclic sleep scenario. In Proceedings of IEEE International Wireless
Symposium (IWS). IEEE, April 2013.

[14] Matti Siekkinen, Markus Hiienkari, Jukka K Nurminen, and Johanna Niem-
inen. How low energy is bluetooth low energy? comparative measurements
with zigbee/802.15. 4. In Wireless Communications and Networking Confer-
ence Workshops (WCNCW), 2012 IEEE, pages 232–237. IEEE, 2012.

[15] Thread Group Inc. Thread commissioning. http://threadgroup.
org/Portals/0/documents/whitepapers/Thread%20Battery-Operated%
20Devices%20white%20paper_v1_public.pdf, July 2015.

[16] Texas Instruments. Zstack-cc2530 release notes, April 2012. Rev. 2.0.

[17] Nordic Semiconductor. S110 nrf51. http://infocenter.nordicsemi.com/
pdf/S110_SDS_v2.0.pdf, February 2015. Rev. 2.0.

[18] Nordic Semiconductor. Softdevice specification s132 softdevice. http://
infocenter.nordicsemi.com/pdf/S132_SDS_v4.0.pdf, March 2017. Rev.
4.0.

[19] Matthew Bon. A basic introduction to ble security. https://eewiki.net/
display/Wireless/A+Basic+Introduction+to+BLE+Security, 2016. [On-
line; accessed 24-April-2017].

[20] William Burr William Polk Elaine Barker, William Barker and Miles
Smid. Recommendation for key management –part 1: General(revision
3). http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_
part1_rev3_general.pdf, July 2013.

[21] Thread Group Inc. Thread commissioning. http://threadgroup.org/
Portals/0/documents/whitepapers/Thread%20Commissioning%20white%
20paper_v2_public.pdf, July 2015.

[22] H. Li, Z. Jia, and X. Xue. Application and analysis of zigbee security services
specification. https://doi.org/10.1109/NSWCTC.2010.261, April 2010.

[23] Tobias Zillner. Zigbee exploited. https://www.blackhat.com/docs/us-
15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-
And-The-Ugly-wp.pdf, August 2016.

[24] Zigbee Alliance. Zigbee alliance and thread group successfully demonstrate
products running zigbee’s universal language for smart devices on thread net-
works. http://www.zigbee.org/zigbee-alliance-and-thread-group-
successfully-demonstrate-products-running-zigbees-universal-
language-for-smart-devices-on-thread-networks/, December 2016.
[Online; accessed 10-May-2017].

[25] u blox. u-blox low energy serial port service. https://www.u-
blox.com/sites/default/files/LowEnergySerialPortService_
ProtocolSpec_%28UBX-16011192%29.pdf, March 2017.

http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Battery-Operated%20Devices%20white%20paper_v1_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Battery-Operated%20Devices%20white%20paper_v1_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Battery-Operated%20Devices%20white%20paper_v1_public.pdf
http://infocenter.nordicsemi.com/pdf/S110_SDS_v2.0.pdf
http://infocenter.nordicsemi.com/pdf/S110_SDS_v2.0.pdf
http://infocenter.nordicsemi.com/pdf/S132_SDS_v4.0.pdf
http://infocenter.nordicsemi.com/pdf/S132_SDS_v4.0.pdf
https://eewiki.net/display/Wireless/A+Basic+Introduction+to+BLE+Security
https://eewiki.net/display/Wireless/A+Basic+Introduction+to+BLE+Security
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
https://doi.org/10.1109/NSWCTC.2010.261
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Zillner-ZigBee-Exploited-The-Good-The-Bad-And-The-Ugly-wp.pdf
http://www.zigbee.org/zigbee-alliance-and-thread-group-successfully-demonstrate-products-running-zigbees-universal-language-for-smart-devices-on-thread-networks/
http://www.zigbee.org/zigbee-alliance-and-thread-group-successfully-demonstrate-products-running-zigbees-universal-language-for-smart-devices-on-thread-networks/
http://www.zigbee.org/zigbee-alliance-and-thread-group-successfully-demonstrate-products-running-zigbees-universal-language-for-smart-devices-on-thread-networks/
https://www.u-blox.com/sites/default/files/LowEnergySerialPortService_ProtocolSpec_%28UBX-16011192%29.pdf
https://www.u-blox.com/sites/default/files/LowEnergySerialPortService_ProtocolSpec_%28UBX-16011192%29.pdf
https://www.u-blox.com/sites/default/files/LowEnergySerialPortService_ProtocolSpec_%28UBX-16011192%29.pdf

References 65

[26] Joakim Lindh Sandeep Kamath. Measuring bluetooth low energy power con-
sumption. http://www.ti.com/lit/an/swra347a/swra347a.pdf. [Online;
accessed 18-May-2017].

[27] Sillicon Labs Wade Gillham. Choosing between an 8-bit or 32-bit mcu.
http://community.silabs.com/t5/Official-Blog-of-Silicon-Labs/
Choosing-Between-an-8-bit-or-32-bit-MCU-Part-1/ba-p/155815,
November 2015.

[28] Auday A.H. Mohamad Mahmoud Shuker Mahmoud. A study of efficient
power consumption wireless communication techniques/modules for internet
of things (iot) applications. http://dx.doi.org/10.4236/ait.2016.62002, April
2016.

http://www.ti.com/lit/an/swra347a/swra347a.pdf
http://community.silabs.com/t5/Official-Blog-of-Silicon-Labs/Choosing-Between-an-8-bit-or-32-bit-MCU-Part-1/ba-p/155815
http://community.silabs.com/t5/Official-Blog-of-Silicon-Labs/Choosing-Between-an-8-bit-or-32-bit-MCU-Part-1/ba-p/155815

	Introduction
	Motivation
	Scope
	Outline

	Theory
	Bluetooth Low Energy
	Bluetooth Automation IO
	Thread
	ZigBee
	AT-Commands

	Methodology
	Thesis goals
	Theoretical part
	Practical part

	Comparison of LE technologies
	Battery consumption
	Memory requirements
	Security

	Automation IO, standardization or custom solution
	Provisioning
	Prototype solution on a u-blox module
	System overview
	The process
	Implementation
	Evaluation

	Results
	Comparison of LE technologies
	Automation IO use cases
	Resulting product

	Discussion and conclusions
	LE Technologies
	Automation IO profile
	Prototype at u-blox
	Contributions
	Conclusion on the project

	Future work
	Scripting language
	Styling elements
	Smarter clients

	References

