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Abstract

This thesis compares the performance of the first-differenced maxi-
mum likelihood estimator (FDML) and the Blundell-Bond continuously-
updating system GMM estimator of the autoregressive parameter in an
AR(1) dynamic panel model without exogenous covariates, particularly
focusing on the close-to-non-stationary case. This case is far from triv-
ial, as a high degree of persistence is the norm rather than the exception
in economic panels. The results of the Monte Carlo simulations show
that the absolute mean and median biases of the FDML are higher for
low values of N and T in the close-to-non-stationary case. However, the
biases become negligible for both estimators as N and T increase. The
power of the GMM is generally higher than that of the FDML, while,
on the other hand, the GMM suffers from severe size distortions. This
problem is magnified both when T increases, as well as when the process
approaches non-stationarity. Finally, the GMM estimator is shown to dis-
play Cauchy properties when the process is very close to non-stationarity.
This produces some peculiar bias results for certain combinations of N
and T when using the GMM.
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1 Introduction

Dynamic panel data models are of high importance in empirical econometrics.
Their applications can be found in virtually all areas of economics: labor eco-
nomics, macroeconomics, finance, development economics and in applied mi-
croeconometrics. The statistical techniques for parameter estimation in the
dynamic panel model have traditionally been based on the generalized method
of moments, GMM. Two GMM-based methods for dynamic panel data have
been particularly successful in the empirical literature: the difference GMM es-
timator, which is due to Arellano and Bond (1991) and the system GMM of
Blundell and Bond (1998). A likelihood-based estimator, known as the first-
differenced ML (FDML), was developed by Hsiao et al. (2002). Recent research
has shown that the FDML outperforms the GMM in terms of size, power and
bias in most cases (cf. Hsiao and Zhang 2015). The FDML approach was ex-
tended to the case of cross-sectionally heteroscedastic errors by Hayakawa and
Pesaran (2015), who demonstrated that the performance of the FDML does not
deteriorate even when relaxing the homoscedasticty assumption.

However, there are other situations frequently encountered in empirical re-
search that may cause problems for the econometrician. An example of this
is the situation in which the data is close to non-stationary. The performance
of GMM-based estimators in this case has been well covered in the literature.
In these cases, the Arellano-Bond GMM estimator has been shown to perform
poorly compared to the system GMM (cf. Blundell and Bond 1998; Madsen
2008; Hayakawa and Pesaran 2015). For instance, there is a considerable in-
crease in bias for low N when using the difference GMM in lieu of the system
GMM for close to non-stationary data. This is a situation with potentially se-
rious ramifications, as a high degree of persistence is frequently encountered in
economic panels. For the FDML, while it has been established that the perfor-
mance of the estimator deteriorates when a unit root is present (Han and Philips
2013), its performance in the situation with almost non-stationary data has not
been examined. Considering its robustness under heteroscedasticity, the FDML
has recently emerged as a serious contender to the GMM in empirical economics
research. However, failing to perform in the nearly non-stationary case would
be considered a serious drawback, potentially limiting its usability in practi-
cal situations. The purpose of this thesis is, thus, to assess the finite-sample
properties of the FDML and the system GMM estimator of Blundell and Bond,
focusing particularly on the case of near-non-stationarity. The performance of
the estimators is assessed by examining the mean and median biases, as well as
the size and power of the two estimators.

The results of the Monte Carlo simulations show that the FDML has higher
absolute bias than the system GMM in the nearly non-stationary case. The
performance of the FDML is particularly weak when T is low. Moreover, the
power of the FDML tends to be slightly lower than that of the GMM. However,
for high values of N and T , the difference between the estimators is negligible.
The results further show that GMM estimator suffers from severe size distor-
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tions, which are exacerbated as N and T increase. This problem for the system
GMM was first noted by Hayakawa and Pesaran (2015), and is confirmed in this
thesis. Finally, the GMM estimator is shown to display anomalies in the mean
bias, which can be explained by the limiting distribution of the GMM estimator
being Cauchy in the nearly non-stationary case.

The reminder of the thesis is organized as follows. Section 2 introduces
the model and gives a brief outline of the two estimation methods considered
together with some asymptotic results. Section 3 describes the Monte Carlo de-
sign. Section 4 presents the results of the simulation study. The thesis concludes
with Section 5.

2 Theory

The dynamic panel data model considered in this thesis is based on the AR(1)
time series model, and can be described by

yit = αi + φyi,t−1 + uit (1)

for individuals i = 1, . . . , N and time periods t = 1, . . . , T , where αi are fixed
effects with E[αi] = 0, V[αi] = σ2

α = limN→∞
1
N

∑N
i=1 α

2
i < ∞, φ is the au-

toregressive parameter, and uit is the idiosyncratic error term. It is assumed
that the error terms uit are independent and identically distributed, and that
E[uit] = 0, V[uit] = σ2

u, E[|uit|4] <∞ and E[uituis] = 0 for each t 6= s. Further,
it is assumed that the initial observations yi0 = Op(1) are observed, and that
E[αiuit] = 0, as well as E[yi0uit] = 0. Throughout this thesis, a sequence of ran-
dom elements {XN} is said to be Op(1) if it is bounded in probability (tight), i.e.
if it for every ε ∈ R+ exists an integer M <∞ such that P(||XN || ≤M) > 1−ε
for each N ∈ N. Conversely, XN = Op(YN ) means that XN/YN is bounded in
probability 1.

If |φ| = 1, {yit} is a so-called unit root process, if |φ| < 1, the process is
called stationary, and if |φ| > 1, the process is called explosive. The focus of
this thesis is the case when the data are close to non-stationary; that is, when
the value of φ is close to unity. Hence, this situation is also known as the local
unit root (LUR) case.

Using the standard fixed effects estimator to estimate (1) gives biased es-
timates of φ (Nickell 1981). This is because the fixed effects estimator uses
demeaning, that is, subtracting the mean values on both sides of (1). How-
ever, using lagged values of the dependent variable as an explanatory variable
generates correlation between the demeaned lagged dependent variable and the
demeaned error term. Hence, estimates of φ will be biased. The bias is approxi-
mately equal to −(1+φ)/(1+T ) as N −→∞. Consequently, both for low values
of T and in the LUR case, the bias can be sizable. Such a situation is par-
ticularly common in microeconometric models, when many individuals (large

1All stochastic objects in this thesis are assumed to be defined on the probability space
(Ω,F ,P). The process {yij} takes values in the measurable space (S,S), where S is a Polish
space and S is its Borel σ-field.
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N) are sampled over a short time period (small T ). The first to propose an
unbiased estimator of (1) were Anderson and Hsiao (1981). This approach can
be described as follows. In order to eliminate αi, take the first difference of (1),
which yields

∆yit = φ∆yi,t−1 + ∆uit (2)

for t = 2, . . . , T , where ∆ = (1− L), and L is the lag operator. Now, Anderson
and Hsiao suggest to use either yi,t−2 or ∆yi,t−2 as instruments to remedy the

bias problem. The corresponding estimators φ̂AB1 and φ̂AB2 are

φ̂AB1 =

∑N
i=1

∑T
t=2 ∆yityi,t−2∑N

i=1

∑T
t=2 ∆yi,t−1yi,t−2

(3)

and

φ̂AB2 =

∑N
i=1

∑T
t=3 ∆yit∆yi,t−2∑N

i=1

∑T
t=3 ∆yi,t−1∆yi,t−2

(4)

However, the Anderson-Hsiao estimator has several issues that have led to its
decline in practical use. Firstly, the estimator is asymptotically inefficient for
all values of φ (Arellano and Bond 1991). Secondly, in the case of φ = 1, the
estimator is inconsistent for fixed T , and consistent but inefficient when T −→∞
(Kruiniger 2008; Phillips 2015). Finally, when φ increases towards unity, the
variance of the estimator explodes (Arellano and Bover 1995). This effect is
present even when φ = 0.80, which makes the AH estimator virtually useless
in the LUR case (ibid.). Instead, this thesis will focus on GMM and FDML,
which are introduced in sections 2.1 and 2.2. Section 2.3 presents the asymptotic
properties of GMM and FDML.

2.1 GMM

The first estimation technique considered in this thesis is the generalized method
of moments (GMM), which is due to Hansen (1982). The GMM is, as the name
suggests, an extension of the standard method of moments technique. The
difference between the GMM and the regular method of moments is that under
GMM, it is possible to define more moment conditions than there are parameters
to be estimated.

To simplify notation, let πit = αi + uit. Then, Arellano and Bond (1991)
show that for t = 3, . . . , T , the moment conditions

E[yis∆πis] = 0 (5)

can be utilized. If uit ∼ MA(0), it holds that s ≥ 2 and s ≥ 3 if uit ∼ MA(1).
Now, define the instrument matrix Zi as

Zi =


yi1 0 0 . . . 0 . . . 0
0 yi1 yi2 . . . 0 . . . 0
...

...
... . . .

... . . .
...

0 0 0 . . . yi1 . . . yi,T−2

 (6)
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and the vector of first-differenced errors as ∆πi = (∆πi3, . . . ,∆πiT )′. Using this
notation, the moment conditions can be written

E[Z ′i∆πi] = 0 (7)

for i = 1, . . . , N . Based on the moment conditions defined by (5), Arellano and
Bond (1991) construct a GMM-based estimator of φ. This approach is similar
to the Anderson-Hsiao technique. While Anderson and Hsiao utilize only yi,t−2

or ∆yi,t−2, the Arellano-Bond estimator uses all available lags as instruments.
The number of lags is highest for the time period closest to the final time T .
However, it was shown by Blundell and Bond (1998) that the Arellano-Bond
estimator significantly underestimates φ in the LUR case; the bias starts to
increase already when φ = 0.80. In order to remedy this problem, Arellano
and Bover (1995) and Blundell and Bond (1998) introduce additional moment
conditions, namely

E[πit∆yi,t−s] = 0 (8)

for t = 3, . . . , T and i = 1, . . . , N . For uit ∼ MA(0), it holds that s = 1 and
if uit ∼ MA(1), then s = 2. The joint moment conditions, that is, using (5)
together with (8), can be compactly written in matrix form as

E[Z̃ ′iπ
∗
i ] = 0 (9)

where Z̃i = diag(Zi,∆yi2,∆yi3, . . . ,∆yi,T−1), π∗i = (∆πi,πi)
′, where ∆πi is

as defined previously and πi = (πi3, . . . , πiT )′, for i = 1, . . . , N . Using these

moment conditions, the Blundell-Bond estimator φ̂GMM of φ is the solution to
the optimization problem

φ̂GMM = arg min
φ∈Φ

(
1

N

N∑
i=1

π∗i
′Z̃i

)
WN

(
1

N

N∑
i=1

Z̃ ′iπ
∗
i

)
(10)

where Φ is the compact set of all possible parameters and WN is a positive

semi-definite weight matrix, for which it holds that WN
P−→W according to the

weak law of large numbers. Here,
P−→, signifies convergence in probability. The

closed-form expression for the solution to (10) is

φ̂GMM =
q′−1Z̃W

−1
N Z̃ ′q

q′−1Z̃W
−1
N Z̃ ′q−1

(11)

where q = (q′1, . . . , q
′
N )′, qi = (∆y′i,y

′
i)
′, where ∆yi = (∆yi1,∆yi2, . . . ,∆yiT )′

and yi = (yi1, yi2, . . . , yiT )′, and q−1 is the lagged version of q. The weight
matrix can be estimated by

ŴN =

(
1

N

N∑
i=1

Z̃ ′iHZ̃i

)
(12)
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where H is the tridiagonal matrix

H =


2 −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

...
...

0 0 0 −1 2

 (13)

There are other ways of improving the finite-sample properties of the GMM
estimator of φ, in addition to just adding more moment conditions. Instead
of fixing the weight matrix in each stage of the estimation, the continuously
updating GMM estimator alters the weight matrix as the value of φ̂ is changed
during the minimization process. This type of GMM estimator is due to Hansen
et al. (1996). Formally, the minimization problem can now be written

φ̂GMM−CU = arg min
φ∈Φ

(
1

N

N∑
i=1

π∗i
′Z̃i

)
WN (φ)

(
1

N

N∑
i=1

Z̃ ′iπ
∗
i

)
(14)

Hence, the weight matrix is now a function of φ. It can be shown that introduc-
ing parameter-dependency on the weight matrix does not alter the asymptotic
properties of the estimator, a result that holds for all GMM estimators (Pakes

and Pollard 1989). Alternatively stated, the asymptotics of φ̂GMM−CU are

the same as those of φ̂GMM . However, even though the asymptotic properties
of the two estimators are equivalent, the continuously-updating estimator has
been shown to have a smaller finite-sample bias compared to the usual GMM
estimator (Newey and Smith 2004).

2.2 FDML

An alternative approach to estimating φ is by using FDML, which is due to Hsiao
et al. (2002). This estimator is denoted by φ̂FDML. The FDML approach is
the following. In order to eliminate αi, take again the first difference of (1) to
obtain

∆yit = φ∆yi,t−1 + ∆uit

which is the same as (2). For t = 1, the above expression is not well defined,
since ∆yi1 = φ∆yi0 + ∆ui1 and ∆yi0 is not observable. However, by continuous
substitution,

∆yi1 = φm∆yi,−m+1 +

m−1∑
j=0

φj∆ui,1−j

= φm∆yi,−m+1 + ηi1 (15)

Now, the analysis will differ slightly depending on whether the process is station-
ary or not. Assume first that |φ| < 1 and m −→∞, which means that the process
has been going on for a very long time. Then, it holds for t = 3, . . . , T and
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i = 1, . . . , N that E[∆yi1] = 0, V[∆yi1] = 2σ2
u/(1 + φ), C[ηi1,∆ui2] = −σ2

u, and
C[ηi1,∆uit] = 0. Alternatively, if |φ| ≥ 1, the process has started from a finite
point m that is behind the 0:th time point, so that E[∆yi1] = b, V[∆yi1] = cσ2

u,
C[ηi1,∆ui2] = −σ2

u, and C[ηi1,∆uit] = 0, where b, c ∈ R+. However, both for
unit root and for explosive processes, it is assumed that the increments are sta-
tionary. This enables the first difference of the process to be stationary. Let now
∆yi be as defined previously, and ∆u∗i = (∆yi1 − b∗,∆ui2, . . . ,∆uiT )′. Here,
b∗ = 0 if |φ| < 1 and b∗ = b if |φ| ≥ 1. The covariance matrix of ∆u∗i can be
expressed as

C(∆u∗i ) = Ω = σ2
uΩ
∗ (16)

where Ω∗ is equal to

Ω∗ =


ω −1 0 . . . 0
−1 2 −1 . . . 0
0 −1 2 . . . 0
...

...
...

...
...

0 0 0 −1 2

 (17)

where ω = (1/σ2
u)V(∆yi1). This is equal to 2/(1 + φ) if |φ| < 1, and c else.

Now, in order to find the likelihood function of ∆yi, note that ∆u∗i is a linear
combination of ∆yi, and that the Jacobian of this transformation is equal to
unity. This means that the joint probability density functions (p.d.fs) of ∆u∗i
and ∆yi are equal. Then, assuming that the uit:s are independent normal, the
joint p.d.f of ∆yi is equal to the likelihood function of (2), and is given by

L =

N∏
i=1

(2π)−T/2|Ω|−1/2exp

{
−1

2
u∗i
′Ω−1u∗i

}
(18)

The corresponding log-likelihood is

logL =
−NT

2
log(2π)− N

2
log|Ω| − 1

2

N∑
i=1

u∗i
′Ω−1u∗i (19)

The two unknown elements of Ω are σ2
u and ω. Proceeding from here, the

FDML technique involves utilizing the Anderson-Hsiao estimator φ̂AB2 to find
an initial estimate of φ. Then, the variance σ2

u is estimated by

σ̂2
u =

∑N
i=1

∑T
t=2

(
∆yit − φ̂AB2∆yi,t−1

)2
2N(T − 2)

(20)

In the stationary case, ω can be estimated either by 2(1 + φ̂AB2)−1 or by

ω̂ =
1

Nσ̂2
u

N∑
i=1

∆y2
i1 (21)
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In the non-stationary case, ω is estimated by

ω̃ =
1

(N − 1)σ̂2
u

N∑
i=1

(∆yi1 − b̂)2 (22)

where a consistent estimator of b is b̂ = N−1
∑N
i=1 ∆yi1. Using these estimates,

(19) is maximized numerically until convergence.

2.3 Asymptotic properties

This section considers the asymptotic properties of the GMM and FDML es-
timators by examining, in turn, the stationary, unit root and LUR cases. To
simplify notation, the asymptotic results relating to the continuously updating
GMM will be denoted just by φ̂GMM . As described in Section 2.1, the asymp-
totic results are the same, regardless of whether the weight matrix is dependent
on φ or not.

First, it is worth noting that under some fairly weak assumptions, it holds

that both the FDML and GMM estimators are consistent, that is, φ̂FDML
P−→ φ

and φ̂GMM
P−→ φ. 2. However, in addition to consistency, two other important

properties of estimators are asymptotic unbiasedness and asymptotic efficiency.
For the FDML in the context of dynamic panel models, the following theorem
holds.

Theorem 1. Given |φ| < 1, for T large and N arbitrary, the limiting distribu-

tion of the FDML estimator φ̂FDML of φ is

√
NT (φ̂FDML − φ)

L−→ N (0, 1− φ2) (23)

Proof. See Kruiniger (2008). �

In (23),
L−→, denotes convergence in law (in distribution). The implication of

Theorem 1 is that the FDML estimator is asymptotically unbiased, and asymp-
totically normal. It can also be shown that the asymptotic variance in (23) is
equal to the Cramér-Rao lower bound, which implies that the FDML is asymp-
totically efficient (Hahn and Kuersteiner 2002). However, when T is fixed and
N −→ ∞, the variance is higher than the Cramér-Rao bound, and hence, the

2This consistency result holds for all ML and GMM estimators. To see this, let y be
a data vector with p.d.f denoted by f(y) and θ0 be an unknown parameter vector to be
estimated. Then, the consistency conditions are (i) θ0 ∈ Θ, which is compact, (ii) for each
θ 6= θ0, f(y|θ) 6= f(y|θ0) (for the MLE) and WE [g(y,θ)] = 0 for θ0 = θ where W is

p.s.d., and Ŵ
P−→W (for the GMM), (iii) for the MLE log f(y|θ), and for the GMM g(y,θ),

is continuous at each θ ∈ Θ almost surely, and (iv) E
[
supθ∈Θ log f(y|θ)

]
< ∞ for the

MLE, and E
[
supθ∈Θ||g(y,θ)||

]
< ∞ for the GMM. Then, it holds that θ̂ML

P−→ θ̂0 and

θ̂GMM
P−→ θ̂0. See Newey and McFadden (1994) for further details.
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estimator is inefficient (Kruninger 2008).3 However, in this case, the estimator
is still consistent, asymptotically unbiased and asymptotically normal.

For the GMM estimator φ̂GMM , Álvarez and Arellano (2003) show that,
given |φ| < 1 and (logT )2/N −→ 0, as (N,T ) −→∞,

E
[√

NT
(
φ̂GMM − φ

)]
= −(1 + φ)

√
ζ +Op

(
logT√
NT

)
+ op(1) (24)

In equation (24), ζ = T/N 4. Using this result, it is possible to derive the fol-

lowing theorem regarding the asymptotic properties of φ̂GMM in the stationary
case.

Theorem 2. Given |φ| < 1 and (logT )2/N −→ 0, as (N,T ) −→ ∞, the GMM

estimator φ̂GMM of φ is asymptotically biased. The limiting distribution of
φ̂GMM is

√
NT

[
φ̂GMM −

(
φ− 1

N
(1 + φ)

)]
L−→ N (0, 1− φ2) (25)

Proof. See Álvarez and Arellano (2003). An alternative proof is given in the
supplement of Hsiao and Zhou (2017). �

Thus, the asymptotic bias is Op(
√
T/N), which implies that as N/T −→ ∞,

the asymptotic bias disappears. Moreover, it follows directly from (25) that as
N/T −→∞, the asymptotic variance of the GMM estimator attains the Cramér-
Rao lower bound.

It was recently shown (Hsiao and Zhou 2017) that using only one lag as
instrument will yield asymptotically unbiased estimators. However, in this case,

the asymptotic variance is equal to (1 + φ)
[
(1 +

σ2
α

σ2
u

) + φ(
σ2
α

σ2
u
− 1)

]
> (1 − φ2).

This implies that the asymptotic variance will be particularly inflated when φ
is close to unity.

Since this thesis deals with the situation with close to non-stationary data,
it is natural to describe the asymptotic results for φ̂FDML and φ̂GMM when
φ is exactly equal to one and when φ is local to one. These are dramatically
different from the stationary case, as manifested by Theorems 3, 4 and 5.

Theorem 3. For |φ| = 1, the limiting distribution of the FDML estimator

φ̂FDML of φ is

T
√
N(φ̂FDML − 1)

L−→ N (0, 8) (26)

as N,T −→∞ jointly.
3The reason that the asymptotic variance does not attain the Cramér-Rao lower bound

in the latter case is that with T fixed, the individual effects αi are not ancillary for φ and
σ2
u (Kruninger 2008). Andersen (1970) has derived conditions under which certain ML-based

estimators reach the Cramér-Rao bound. For a general discussion about ancillary statistics,
see e.g. Hogg, McKean and Craig (2014, pp. 426-433).

4The notation op(1) means that the sequence {XN} converges in probability to zero. Sim-
ilarly, XN = op(YN ) means that XN/YN converges in probability to zero. Since convergence
in probability implies convergence in law, if a sequence is op(1), it is also Op(1) by Prokhorov’s
theorem.
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Proof. See Kruiniger (2008) or Han and Phillips (2013). �

The rate of convergence here is Op(T
√
N), which is faster than the rate of con-

vergence in the stationary case, which is Op(
√
NT ) according to Theorem 1.

Hence, the larger limiting variance in (26) is compensated by a faster conver-
gence in distribution. The GMM equivalent of Theorem 4 is

Theorem 4. For |φ| = 1, the limiting distribution of the GMM estimator

φ̂GMM of φ is √
T (φ̂GMM − 1)

L−→ 2 C (27)

as N,T −→∞ jointly.

Proof. See Phillips (2014). �

In Theorem 4, C denotes a standard Cauchy variate, viz. a Cauchy distributed
random variable with location parameter equal to zero and scale parameter
equal to unity. It would be outright impossible to compare asymptotic means
and variances for (26) and (27), since the moments for the Cauchy distribution
are undefined 5. However, the median of such a variate exists and is equal to
zero.

Finally, consider the LUR case. Regrettably, there exists a considerable
research gap regarding the asymptotic results for the FDML in the LUR case.
However, for GMM, it is possible to formulate the following asymptotic results.

Theorem 5. For φ = 1+ c
Tγ , given c < 0 fixed, the following asymptotic results

regarding φ̂GMM hold.
(i) For γ = 1/2 and N → ∞ followed by T → ∞, or T → ∞ followed by
N →∞, √

NT (φ̂GMM − φ)
L−→ N (0, 4) (28)

(ii) For γ = 1 and N →∞ followed by T →∞,

√
NT (φ̂GMM − φ)

L−→ N
(

0,−8c
1− 2c− e2c

(1 + 2c− e2c)2

)
(29)

(iii) For γ = 1 and T →∞ followed by N →∞,

√
NT (φ̂GMM − φ)

L−→ N
(

0,−8c
1− 2c− e2c

(e2c − 2c− 1)2

)
(30)

5Let X be standard Cauchy, with p.d.f f(x) = 1
π(1+x2)

forx ∈ R. The definition of ex-

pected value is E[X] =
∫∞
−∞ xf(x) dx =

∫ a
−∞ xf(x) dx +

∫∞
a xf(x) dx, for some finite a ∈ R.

It suffices that only one of these integrals is finite for the expected value to exist. However,∫∞
a xf(x) dx =

∫∞
a x 1

π(1+x2)
dx = 1

π
limw→∞

∫ w
a

x
(1+x2)

dx = 1
2π

[
log(1 + x2)

]w
a

, which di-

verges, and similarly for
∫ a
−∞ xf(x) dx. Then, by the Lyapunov inequality, it follows that if

E[X] diverges, so does E[X2]. Finally, since the variance of X is V[X] = E[X2]− (E[X])2, the
variance does not exist either.
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(iv) For γ > 1 and N →∞ followed by T →∞,

√
NT 3−2γ(φ̂GMM − φ)

L−→ N
(

0,
8

c2

)
(31)

(v) For γ > 1 and T →∞ followed by N →∞,

√
T (φ̂GMM − φ)

L−→ 2 C (32)

Proof. See Phillips (2014). �

From Theorem 5, it is clear that the asymptotic properties depend on both
how close φ is to unity, as well as the order of convergence. Specifically, (v)
shows that normality can break down even when φ is lower than one. Note that
the distance between φ and unity is related to the value of γ. Hence, γ > 1 in
(iv) and (v) implies that in these two cases, φ is closer to unity than in cases
(i) to (iii). Hence, φ must be sufficiently close to one in order for the limiting
distribution to become Cauchy. Furthermore, T must tend to infinity before N ;
otherwise, the limiting distribution will be normal with limiting variance as in
(31).

To conclude this section, a few heuristic comments on the strengths and
weaknesses of the two estimators. The main issue with GMM-based estima-
tors is the rapid growth of the moment conditions. From equation (8), it is
straightforward to see that the increase in moment conditions is O(T 2); that
is, the number of moment conditions increases quadratically with T . Hence,
by increasing T and keeping N fixed, there will eventually be more moment
conditions than observations. This situation may lead to efficiency problems
(Satchachai and Schmidt 2008). On the other hand, the main advantage of the
GMM vis-à-vis ML-based methods is that it is not necessary to assume normal-
ity of the errors. For example, in finance, normality is usually too strong of an
assumption, due to the heavy-tailedness of financial returns.

While the asymptotic properties of the two estimators differ quite substan-
tially, particularly in the unit root case, the infinite sample-results are not of im-
mense practical importance. For instance, an econometrician examining cross-
country differences in inflation rates is limited to N ≈ 200, which is the approx-
imate number of countries of the world. Additionally, more often that than not,
data from developing countries will be scarcely available; hence, N is usually far
less than 200. Similarly, most macroeconomic indicators are collected annually
or quarterly at best, so T is usually relatively small as well. This further implies
that it is, instead, the finite-sample properties that are crucial for the practical
usability of the two estimators.

3 Monte Carlo setup

This section will briefly describe the Monte Carlo procedure. Again, the model
of interest is

yit = αi + φyi,t−1 + uit
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where uit ∼ N (0, 1). Individual effects are generated according to αi = (λ −
1)/
√

2, where λ ∼ χ2(1), so that E[αi] = 0 and V[αi] = 1. The autoregressive
parameter is varied according to φ ∈ {0.90, 0.95, 0.99}, while the values consid-
ered for N and T are N ∈ {50, 150, 500} and T ∈ {5, 10, 20, 30, 50}, respectively.
The number of Monte Carlo replications is set to 1,000. Due to the poor perfor-
mance of the Arelllano-Bond GMM when φ is near unity, only the FDML and
Blundell-Bond continuously-updating GMM will be used as estimation meth-
ods.

The experiment design is similar to that of Hayakawa and Pesaran (2015),
with two major differences. Firstly, in this thesis, φ takes values very close to
unity, while the Hayakawa and Pesaran paper only considers φ = 0.4 and φ =
0.9. Secondly, the previously mentioned paper weakens the homoscedasticity as-
sumption and allows for cross-sectional heteroscedasticity, i.e. uit ∼ N (0, σ2

i ),
where the error variances are σ2

i ∼ U(0.5, 1.5) 6. However, since the purpose
of this thesis is to investigate the effects of near non-stationarity rather than
of heteroscedasticty on the bias, size and power, the framework is simplified
slightly.

The software used in the Monte Carlo simulations is Matlab, version R2016a,
together with an external add-in for FDML and GMM for dynamic panel data
(Hayakawa 2017).

4 Results

Tables 1-3 in the Appendix report the mean and median bias, as well as the
size and power of the FDML and GMM estimators. The tables correspond to
φ = 0.90, φ = 0.95, and φ = 0.99, respectively. For the power calculations, the
value of φ under the alternative hypothesis is always 0.1 units lower than the
value under the null hypothesis. The reason that the numerical difference be-
tween the null and alternative hypotheses is fixed, is because given fixed sample
size, the power is larger when the difference between the two values of φ is high.

Consider first the bias results as T increases and N is fixed. The absolute
values of the biases, both the mean and median, are decreasing as T increases,
which is expected. The same results hold when N increases and T is fixed.
Hence, the absolute biases are decreasing both with N and T . However, gen-
erally, in order to reduce bias, it is more important to increase T rather than
N . This holds for all values of φ, and is particularly true for the FDML. That
the bias decreases faster with T for the FDML than the GMM is also noted by
Hayakwa and Pesaran (2015).

The absolute biases are generally larger when φ is closer to unity; this ap-
plies for both estimators. Also, the absolute biases are greater for the FDML
in most cases. However, for T = 20, T = 30 and T = 50, the FDML generally
outperforms the continuously-updating GMM when φ = 0.90 and φ = 0.95.

Diverting attention to the case with φ = 0.99, the GMM estimator is better

6This implies that E[σ2
i ] = 1 and V[σ2

i ] = 1
12

.
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for virtually every combination of N and T ; the exceptions being the mean bias
for the combination of T = 50 and N = 500, as well as the median biases for the
T = 30 when N = 150 and 500. The FDML performs relatively poorly when φ
is this close to unity, especially when T < 20. The GMM, on the other hand,
performs much better. Table 3 shows that the mean and median biases are
close to zero for the GMM when φ = 0.99. Considering that the Blundell-Bond
version of the GMM is more or less tailor-made for the situation with close-
to-non-stationary data, the bias results do not come as a major surprise. The
mean and median biases are generally negative for the FDML, while for GMM,
they tend to be negative for φ = 0.90 and φ = 0.95 and positive for φ = 0.99.

However, there is a noteworthy peculiarity for the GMM mean bias results
when φ = 0.99. Firstly, for N = 150 and N = 500, the absolute values of the
mean biases decrease, and then increase again, as T increases. Secondly, for
high values of T (T = 30 and T = 50), the absolute mean biases do not de-
crease with N , which is remarkable given that the sample size more than triples
from 150 to 500. This instability of the mean noted in the GMM case, but
not for the FDML, is an indication of the presence of Cauchy properties, which
are predicted by theory given that either of Theorem 4 or Theorem 5(v) holds.
Considering the GMM median bias instead, the median bias will asymptotically
tend to zero, and the rate of convergence is Op(

√
T ) according to theory. How-

ever, in the φ = 0.99 case, it is only as N = 500 that the median bias tends zero
quickly as T increases. Moreover, already with T = 30, the bias results of the
FDML are on par with those of the GMM.

Another property of the normal distribution is that the mean and median
are asymptotically equal. For the FDML, the mean and median absolute biases
are almost identical when N and T are simultaneously equal to 500 and 50,
with a slightly larger difference for φ = 0.99. However, for the GMM, this is
never true. Instead, there are considerable differences between the mean and
median biases, again indicating the presence of Cauchy properties in the GMM
estimator.

While the performance of the GMM is superior to the FDML in terms of
bias, the size is considerably higher than 5% for the GMM, irrespective of the
value of φ. Interestingly, the size of the GMM estimator is increasing with T , a
peculiarity also noted in Hayakawa and Pesaran (2015). Additionally, the size
of the GMM estimator is increasing with the autoregressive parameter φ, an
effect not observed in the likelihood estimator. For example, when φ = 0.99,
the size is above 96% even for N = 150 and T = 30. The augmentation of the
size distortion for high values of φ is noted in Hsiao and Zhang (2015), although
in that paper, the highest value considered for φ is 0.8. This thesis shows that
the size problem for the GMM is further exacerbated when φ is very close to
one. Regarding the power, it is considerably lower for the FDML, especially for
small values of T . Additionally, the power of the FDML is deteriorating as φ
approaches unity. However, when T = 30 and 50, the power of both estimators
is close to 100%, regardless of N .

A final comment on the GMM is that there are no results when N = 50
and T is 20, 30 and 50. This is because there are too many moment condi-
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tions relative to the number of observations in these cases. Although this can
be remedied by not using the full set of moment conditions, this will cause an
increase in the asymptotic variance, particularly in the LUR case, as shown in
Section 2.3.

5 Concluding remarks

The purpose of this thesis has been to investigate the finite-sample performances
of the FDML and continuously-updating system GMM in the dynamic panel
context, with a particular focus on the situation with close to non-stationary
data. Because of the wide range of applications of the dynamic panel model
in applied econometrics, the finite-sample properties of the different estimators
are of great importance.

The main finding of this thesis is the relatively large increase in bias of the
FDML as the value of the autoregressive parameter approaches unity. Addi-
tionally, the results of the Monte Carlo simulations show that the absolute bias
of the system GMM is lower for most combinations of N and T . However, as
expected, the biases are decreasing rapidly as N and T increase. The size and
power of the GMM estimator are both considerably higher than those of the
FDML. Notably, the size of the GMM estimator is increasing with both the
value of the autoregressive parameter φ and with the number of time periods
T . This peculiarity is not seen in the likelihood-based estimator. The power of
both estimators is shown to be close to 100% with N and T sufficiently large,
although the power of the FDML deteriorates slightly in the case of φ = 0.99,
even in the large-sample case. Another important result of the thesis concerns
the Cauchy properties of the GMM, which are manifested by instability in the
values for the mean bias. These peculiarities become evident when φ = 0.99.

As with any study, there are a number of limitations. Particularly, increas-
ing the number of Monte Carlo replications will certainly lower the bias and
increase the power. However, even with a lower number of replications, the
relative difference between the estimators can be inferred. Likewise, there is
virtually an infinite number of combinations of N and T that can be explored.
However, this will be saved for future research.

This thesis gives rise to two additional research questions. Firstly, whether
the FDML can be modified, so as to improve in cases with near-non-stationarity.
Secondly, if the results hold when extending the model to include more indepen-
dent variables than just the lagged dependent variable. This situation is even
more interesting in applied research, as researchers are often interested in the
effect of exogenous covariates on the dependent variable.
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Result tables

FDML GMM

N/T 5 10 20 30 50 5 10 20 30 50

Mean bias (× 100)
50 -7.333 -1.501 -0.037 0.025 0.090 0.739 -1.496 − − −

150 -4.692 0.120 0.225 -0.006 -0.056 -2.088 -1.087 -0.709 -0.659 -0.050
500 -2.345 0.537 0.052 0.048 -0.034 -0.942 -0.439 -0.114 -0.173 -0.123

Median bias (× 100)
50 -4.397 -0.826 -0.288 -0.135 -0.0090 3.323 0.889 − − −

150 -2.993 0.077 -0.017 -0.010 0.423 -2.933 -0.071 -0.407 -0.369 1.342
500 -1.512 0.184 -0.041 0.023 -0.035 0.196 -0.053 -0.240 -0.056 -0.058

Size
50 15.0 16.6 17.7 9.6 4.8 54.5 80.0 − − −

150 14.5 20.1 10.2 6.1 5.8 32.6 40.7 57.0 71.2 97.7
500 13.5 18.8 6.3 5.3 5.0 16.5 18.4 22.8 22.8 33.3

Power (H1: φ = 0.80)
50 26.6 43.1 75.6 98.8 100.0 60.4 89.3 − − −

150 32.1 51.2 98.5 99.9 100.0 32.3 86.0 97.2 97.5 98.7
500 38.7 79.2 99.1 100.0 100.0 83.3 98.1 100.0 100.0 100.0

Table 1: Mean bias, median bias, size and power for φ = 0.90.
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FDML GMM

N/T 5 10 20 30 50 5 10 20 30 50

Mean bias (× 100)
50 -9.397 -3.618 -0.593 0.018 0.042 2.526 -0.551 − − −

150 -6.623 -2.045 -0.075 0.129 0.034 -0.148 -1.419 -1.165 -0.842 0.355
500 -4.297 -0.785 0.172 0.074 0.053 -1.053 -0.876 -0.314 0.192 -0.141

Median bias (× 100)
50 -5.272 -1.964 -0.184 -0.055 -0.071 3.286 3.543 − − −

150 -3.379 -1.419 -0.261 -0.003 0.079 -3.679 -0.010 -0.301 -0.369 1.268
500 -2.458 0.424 -0.033 -0.047 0.056 -0.310 -0.111 -0.113 -0.076 -0.023

Size
50 14.9 15.9 17.9 19.3 12.5 68.6 87.1 − − −

150 14.4 14.2 19.5 16.8 7.5 51.3 63.4 76.4 80.2 98.6
500 18.5 13.9 17.7 9.4 3.6 29.4 36.8 38.4 41.0 50.1

Power (H1: φ = 0.85)
50 23.5 37.0 68.0 95.3 99.6 89.0 94.8 − − −

150 31.2 46.8 96.3 99.4 99.9 86.1 91.5 96.3 97.5 99.6
500 35.7 64.2 98.9 99.8 100.0 87.0 95.2 100.0 100.0 100.0

Table 2: Mean bias, median bias, size and power for φ = 0.95.

FDML GMM

N/T 5 10 20 30 50 5 10 20 30 50

Mean bias (× 100)
50 -12.133 -5.181 -2.394 -1.382 -0.711 1.429 0.066 − − −

150 -8.169 -3.529 -1.550 -0.850 -0.361 1.411 0.082 0.090 0.064 -0.262
500 -5.734 -2.599 -0.923 -0.465 -0.183 0.479 0.059 0.027 -0.315 -0.224

Median bias (× 100)
50 -8.922 -3.323 -1.660 -0.798 -0.384 0.915 0.925 − − −

150 -4.920 -2.098 -1.037 -0.265 -0.207 0.973 0.790 0.809 0.785 0.908
500 -3.219 -1.659 -0.547 -0.270 -0.165 0.861 0.636 0.349 0.149 0.082

Size
50 18.1 15.2 12.5 13.1 14.5 77.6 92.0 − − −

150 15.5 13.2 13.3 13.0 12.5 71.4 87.9 93.0 96.2 99.1
500 13.5 15.1 13.5 13.6 14.7 67.6 80.5 82.9 86.6 89.4

Power (H1: φ = 0.89)
50 15.0 33.7 57.8 90.0 97.2 97.8 99.0 − − −

150 26.9 41.7 89.2 95.2 98.1 97.8 98.7 99.6 99.6 99.3
500 36.1 48.2 95.1 97.5 99.8 98.5 98.1 100.0 100.0 100.0

Table 3: Mean bias, median bias, size and power for φ = 0.99.
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