101

1€S

It

Department of Computer Science

ing LTH
ISSN 1650-2884
LU-CS-EX 2017-30

mneering

Faculty of Eng

A,._‘._..__ il

.—-
i

il
il L___:_

iy, ! n-
Ity

I,
i
Ikl

Iyl

_
iy

S THESIS | LUND UNIVERSITY 2017

4

MASTER

General Methods for the Generat

of Seamless Procedural C

inder

ias El

Tob

Lunds Tekniska Hogskola
Datateknik

General Methods for the Generation of Seamless
Procedural Cities

Tobias Elinder

Contents

Abstract 1
Acknowledgements 3
1 Introduction 5
1.1 Motivation and Objectives 5
1.2 Statement of Originality e 6

2 Background Theory 7
2.1 Introduction L L e 7
2.2 Practical Outline e 8
2.3 Scopeof thesis e 8
2.4 Theory o e 9
2.4.1 Related Work & Approach e 9

2.4.2 Reference cities e 11

3 Algorithm 13
3.1 Road Generation L 15
311 Inmpub ..o 15

ii

CONTENTS

3.2

3.3

3.4

3.5

3.6

3.1.2 0utput 15
3.1.3 Description e 16
3.1.4 Heatmap L e 16
3.1.5 Plot Polygons L e 17
Plot Generation L 17
3.2.1 Input . . . o e 17
3.2.2 0utput . . .o e e 17
3.2.3 Description 17
Sidewalk Generation L 18
3.3.1 Imput . .o e e e 18
3.3.2 Output e e 18
3.3.3 Description e 18
Building Generation L e 18
341 Input ..o e e e 18
3.4.2 0utput . ..o e 19
3.4.3 Description L 19
Apartment Generation 20
3.5.1 Input . .o e e e 20
3.5.2 0utput 20
3.5.3 Description e 20
Furniture Placement L 22
3.6.1 Inputo e e 22
3.6.2 Output 22

CONTENTS iii
4 Implementation 23
4.1 General e 23
4.2 Road Generation L e e 23
4.3 NOISE o e 24
4.3.1 Perlin-noise e 24

4.3.2 Heatmap e 25

4.4 Polygon Splitting L 25
4.5 UV-mapping o o o e e e e e 26
4.6 Generating plot polygons from road network oL Lo oo 27
4.7 Building height e 27
4.8 Building shapes L e 29
4.9 Mesh Placement L e e 30
4.10 Performanceo 30

5 Results 33
5.1 City Structure L e 34
5.2 Apartment Structure L L e e e 37
5.3 WIndows L e e 37
5.4 Furnishing L o e 38
5.5 Comparison to Reference cities e 38
5.5.1 Recreating Manhattan 38

6 Conclusion 43
6.1 Summary of Thesis Achievements L 43
6.2 Returning to Reference Cities e 44

6.3 Applications L e 44
6.4 Future Work oL 45
6.4.1 Improvements L L e e 45

6.4.2 Unexplored areaso e e e e 46

6.5 Final Thoughts o e 47

A Appendix A Lo 48

A0 Appendix B Lo 54
Bibliography 54

iv

List of Figures

3.1 Main structure diagram 14
4.1 Sample output from the single-banded Perlin function 25
4.2 Sample user-created heatmap 25
4.3 Calculating general_modi fier for noise_mp = 1, x is a random stochastic variable between 0 and 1 . 28
4.4 Calculating general_modifier for noise_mp = 0.5, x is a random stochastic variable between 0 and 1 29
5.1 Screenshot at ground level 34
5.2 Screenshot from inside a meeting room in an office oL oL 35
5.3 Heatmaps L e 35
5.4 Resulting cities oL 36
5.5 Changing turn rates o e e 36
5.6 Noise based cities oL e 36
5.7 Simple Apartmentso e e 37
5.8 Exteriorso e 38
5.9 Apartment subdivision for a simple small building floor 0oL 39
5.10 Apartment subdivision for a larger and somewhat more complicated building floor 39
5.11 A kitchen with furniture L e 40

5.12 Real Cities e 40

5.13 Procedurally Generated Cities o . . 40
5.15 Generated city, type = Grid like L 41
1 Apartment with room requirements e e e e 49
2 Apartment after one split L 50
3 Apartment after two splits, Bedroom placed 51
4 Apartment after three splits, Bathroom placed 52
5 Finished apartment, all rooms placed 53
6 Roads with lines placed on both sides, direction is reversed for opposing sides 54
7 Lines are split whenever intersecting the middle of a road, recursively creating new lines 55

8 Lines are checked for collisions against each other, intersection points are saved as polygon points.

Each line keeps track of potential parent line and child line. 56

9 In every polygon where the last point has the first point as child, a complete polygon and is formed

and saved. In this limited example, two polygons are created 57

vi

LIST OF FIGURES 1

Abstract

Procedural generation as a concept is as old as computer graphics. It is usually defined as a method for creating
data algorithmically as opposed to manually. Work in this area often revolves around noise functions and large
degrees of randomness, which works well for chaotic structures and for generating natural environments, but it
does not always suit more sophisticated and coherent environments. This thesis proposes some new approaches for
procedural generation, specifically on the subject of cities. Many of the solutions discussed are applicable in other
areas of procedural generation where order and coherency is important as well. Work on procedural cities has been
done before, but the scope has usually been limited to one or a few aspects of the city. For example the general
structure of the city and exteriors [1], building shapes [5], the room layout [2], or the interior of a single room
[9]. This project uses several of these ideas, combines them into a composite whole, and adds things like different

building types (office, apartment), different rooms (bathroom, living room etc), and further specifics.

This thesis will discuss the different methods employed as well as their inherent strengths and weaknesses.

LIST OF FIGURES

LIST OF FIGURES 3

Acknowledgements

I would like to express sincere thanks to:

Professor Michael Doggett, my supervisor during this project and a great support in every regard, who provided

valuable comments and suggestions.
Liselotte Schéfer Elinder, for proofreading.

Family and friends, for support, opinions, and constructive criticism.

LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation and Objectives

Before getting invested in computer graphics, my main area of interest within computer science was Al and more
specifically applied problem-solving algorithms. This manifested itself in a couple of side projects with game Al:s

and similar subjects.

After some learning on my own and some university courses I started looking into simple procedural generation. I

came to realize the width of the subject, as well as how sprawling and multifaceted the term is.

I knew that I wanted to do something quite independently and went to my former professor in graphics Michael
Doggett to talk about possible subjects. We ended up talking about procedural generation, and more specifically
cities. Procedural cities is nothing new, but other efforts have been limited in scope in a way that we wanted to
overcome. We talked about different concepts for making cities ground-up with interiors for the buildings and ended

up with the goal document for the project.

In essence the vision of the project was to achieve a procedurally generated city without ”illusions”, meaning cities
where there are no walls textured with details that are only superficial. A window on the outside of any building
should correspond to a window looking out of a room inside of that building. This demand for coherence proved to

be the project’s biggest challenge.

6 Chapter 1. Introduction

1.2 Statement of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or

submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon anyones copyright nor violate any
proprietary rights and that any ideas, techniques, quotations, or any other material from the work of other people
included in my thesis, published or otherwise, are fully acknowledged in accordance with the standard referencing

practices.

I declare that this is a true copy of my thesis, including any final revisions, as approved by my thesis committee and
the Graduate Studies office, and that this thesis has not been submitted for a higher degree to any other University

or Institution.

Chapter 2

Background Theory

2.1 Introduction

Procedural generation of environments is a very interesting field because of its immense potential for size and
unpredictability. Its primary uses are games and movies with huge vivid worlds. Procedural generation is perhaps
an area that seems easier on the surface than it is to actually work with. The constant weighing of order against
chaos in order for environments to appear plausible but not too predictable is something everyone who has tried

his/her hand on procedural generation should recognize. It makes every decision a careful planning act.

Lately, increased computer performance has allowed larger environments to be stored in memory, arguably reducing
the need for procedural generation in certain areas. However the cost of creating content in modern games has
also increased by an order of magnitude, which in contrast makes procedural generation more appealing, so there
are valid arguments to be made both for and against this approach. The game No Man’s Sky[11] managed to
generate a lot of interest in its procedurally generated terrain, but turned out a disappointment, possibly hurting
the publics general perception of procedural generation. Another possible deterrent against wide-scale adoption of
procedural generation could be the streamlining of the process with which virtual worlds are created today, often
in engines that work well only with static pre-determined meshes and environments. The biggest problem of all
with procedural generation however is simple; it’s not simple. On a small scale, anything created by procedural

algorithms can be created easier without it.

Cities are large and very complex, making them in theory a suitable but difficult target for procedural generation.

A good example of where this could be used in practice is the GTA series[13], these games span huge worlds and

7

8 Chapter 2. Background Theory

large cities, which is all handcrafted, requiring a huge effort. Maybe including procedural generation in some areas

could reduce costs and improve the final products.

Work has been done on cities, city layout and creation of individual building previously. There have also been some
attempts at generating rooms from building shapes. This project attempts to combine some of the ideas from these

previous projects.

2.2 Practical Outline

More specifically, procedurally generating environments in this case refers to the automatic placement of polygons
and static meshes. A polygon is a two-dimensional shape that can span up an arbitrary number of points, combining
very many of these polygons at different angles forms the basis for most 3D environments. Static meshes are models
where the polygons are already set in relation to each other, for example in the form of a chair. These polygons
and static meshes are what everything in the project boils down to. All the abstractions discussed simply aim to

provide a way to decide the properties of these polygons and static meshes.

This project was implemented in Unreal Engine 4. Most of the content is pure C++, and could probably have
been implemented without the help of a game-engine. There are a couple of benefits with using an existing engine
however, the biggest being the reduced amount of code needed to get the project going, as well as performance.
Placing many polygons and static meshes into the world quickly becomes very computationally intensive, Unreal
Engine (as well as other game-engines) is very good at optimizing and reducing the workload by for example
removing polygons that can’t be seen. For presentation purposes Unreal Engine also offers textures, materials and
lighting which makes the scene look a lot better. One reason for choosing this engine was that the author was

familiar with it.

2.3 Scope of thesis

Since the expressed goal of the thesis is the development of new methods, and the refinement of older ones, the
exact scope remained somewhat scalable through a large part of the project. The key parts have remained the
same though, which has been finding methods for a complete top-down generation of cities, from the general city
structure down to specific furniture placement. After this functionality was achieved on a basic level, focus was

instead shifted towards the generalization of the methods used, and widening the scope for the different methods.

2.4. Theory 9

In order to reduce the complexity of the problem, some specific constraints for the project were decided early on.

These were:

The whole city is situated on a completely flat surface.
e The city structure can be generated before everything else.

e There should be four types of interiors: office, living, shop, and restaurant. These environments do not need
to be very detailed, but their implementations should follow a scalable and interchangeable system that can

easily be expanded.
e The stairwells and elevators in buildings are allowed to follow simple pre-determined patterns.

e Apartments and rooms should be defined only two-dimensionally.

A few key questions were asked ahead of this project, which will be addressed in this thesis:

e [s it possible to generate the whole city procedurally? If not, why?
e At which level of the process is it necessary to fall back to predetermined objects and structures?

e Will it be possible to find general algorithms that cover a wide variety of cities? Or will they have to be tailor

made to specific types of cities and buildings?

e In terms of performance and scalability, are these algorithms feasible on a larger scale?

2.4 Theory

2.4.1 Related Work & Approach

Even though much potentially falls under the umbrella-term that is procedural generation, in many cases different
projects have very little in common. Procedural generation within different domains face very different challenges,
and are usually solved in very different ways. Generating content and goals for games procedurally can for example
result in goals being impossible to achieve. Scenarios like this has to either be checked post-generation and fixed,
or such conditions must be fundamentally impossible, achieving this can be very hard however. In our case, for
the cities and for procedural generation attempting some sort of realism in general, a big problem is implausible

environments that don’t quite make sense logically, we will return to this subject in later chapters.

10 Chapter 2. Background Theory

Finding literature that easily fits into the work flow of the project turned out quite hard. The fact that there is
so much information available about certain aspects (e.g. city structure) and so little about other (e.g. interiors)
made things complicated. As an introduction to several of the problems inherent to procedural cities, a survey by

George Kelly and Hugh McCabe [8] did a good job of presenting it simply and was a good place to start.

George and Kelly also created the project citygen[10], this project combines manual and automatic work. It does
this by using procedural algorithms more as tools rather than a foundation in order to give the user more control

in creating the city. This project does not handle interiors.

Another interesting, contemporary project is Esri CityEngine[12]. This is a very sophisticated program that also
seeks to combine manual and automatic labor to create prototype cities. These cities are used primarily for urban
planning. CityEngine uses procedural modeling heavily via its custom grammars; CGA, which can be written by

the users. This project does however also not handle interiors in any way.

The single most valuable literature available for this project, and was the seminal paper by Parish and Miiller which
outlines a method of generating road placement and city structure procedurally [1]. The method uses L-Systems?
and has since its inception been refined into a much simpler and more effective version by Sean Barrett [3] that
uses a priority queue? instead, originally in a blog post. This refined version is the method the road generation in

this project was based on.

Modeling of buildings procedurally is a problem which becomes much harder when coherence of exteriors and
interiors, as discussed earlier, has to be achieved. Good work on procedural exteriors (without interiors) exists
[5], but it was decided early on that imposing the conditions of the exterior onto interiors would put too many
limitations on the interiors. Because of this, it was decided that the exterior facade should be generated by the room
generator itself, in a way generating buildings from the inside - out, this approach made it hard to use previous work
at all for the building modeling. The chosen approach has some obvious drawbacks as well as some large benefits.
The main drawback is performance, in order to render the outside of a building the inside has to be generated first.
A large benefit however is that this allows interiors to ”make more sense”, adding windows where it’s logical, more
like in real buildings. It also alleviates some of the burden already put on interior generation since rooms have to

be generated from arbitrary shapes.

Regarding interiors of buildings, there was actually a surprising lack of information, and although there have been
projects done in this area [2] [4], none seemed to work well within this context, or the ideas proposed weren’t

simple enough to fit with this work flow. Although Dahl & Rinde’s work [2] seemed to have produced good

LA recursive grammar system first used to mathematically describe plants.
2An array that is always sorted where items can be placed and removed efficiently.

2.4. Theory 11

results (especially regarding corridor placement), it seemed hard to combine with what we wanted to achieve. An
important part of this project was to create an interior-generating system which allowed easily modifiable room
and apartment - descriptions, based on user-specified rooms and apartments. It was not obvious how one could
combine these goals with previous work. In the end a completely new approach was settled upon. This approach
starts with a description of rooms that should exist within the apartment, and recursively splits the apartment into
smaller and smaller pieces, assigning rooms to fitting parts. This is a simple and fast algorithm that gives a very

natural look at first glance, but does have some weaknesses, which will be discussed later.

All in all, it was clear that large parts of the project would have to be built from the ground, but with good

inspiration from previous work.

2.4.2 Reference cities

In order to have something to work towards, a few cities were chosen as reference cities. The patterns identified

and used in the project were found in the following cities.

e New York (specifically Manhattan)

e Central Los Angeles

e Urban Malmo

Results were compared to these reference cities in order to find improvements. Their layout and defining character-
istics have had a major impact on the final program. New York and Los Angeles have a lot more in common with

each other than with Malmo6 which has resulted in a program that is best suited for dense cities.

12

Chapter 2. Background Theory

Chapter 3

Algorithm

The logical structure that is responsible for building the city is based on a very modular top-down approach. The
city is built one step at a time, beginning with the most fundamental and then adding more and more detail.
The top-down approach means that information flows only downward. This was decided because of the increased
clarity and decreased complexity it brings. It does however mean that some limitations are imposed. The top-down
approach means that every step has to operate within certain limits and according to certain requirements. Having
steps that are well defined in their constraints, their expected input, and their expected output also means that
they can be used independently outside of the current program context. This top-down approach is strictly logical,
and does not imply anything about where geometry is actually generated in the program. For the specific steps in

this structure, see 3.1.

Roads are generated before anything else. It can be argued that this is not always correct because roads in many
(especially older) cities are younger than the oldest houses. But since one step should be finished before starting
with another step in the generation (in order to follow the strict approach discussed earlier), roads were deemed
most suited to start. It is hard to even conceive a program that does not start with generating the roads. Looking

at previous work, roads seem to always have been the starting point.

As a result of the road network, a number of plots defined by the empty areas in between the roads are created.
It can be discussed whether using these areas is sufficient. In real life less dense cities buildings are placed simply
on the side of the road, and not in between them. Ultimately it was decided however that finding plots in between
roads was the approach that worked best for our goals. These polygonal areas are independently handled one by

one in the next step, plot generation.

13

14

Chapter 3. Algorithm

Program Structure

Foad Generation

Plot Polygon

Plot Generation

Building Polygon

Building Generation

Interior Polygon

Apartment
Generation

Furniture Placement

Plot Polygon

Sidewalk Generation

All connections are one-to-many

Figure 3.1: Main structure diagram

The plot generator decides what to do with each plot, each of these plot polygons can be subdivided according to

the method discussed in 4.4. This (among other things) results in a number of building plots, these are handled in

the next step, building generation. Buildings are created floor by floor using the stairwell, the sides of the house,

and central corridors to determine polygonal areas to use in the next step, apartment generation. Apartment

generation, similarly to the plot generation step, starts with a polygon and subdivides it further, now into single

rooms. Taking these room polygons as input, the furniture placement steps determines location of specific meshes

and potentially adds additional polygons to the room.

Another way to look at the goals of the algorithm is as a declarative interface for the user, the user defines the

sizes and properties of buildings, and what should be included in apartments and rooms, and the algorithm tries to

accommodate all of the wishes at once. This is easy for building size height, but gets more complicated when it’s

3.1. Road Generation 15

about fitting user-specified rooms together in an arbitrary space.
This chapter will expand on each step discussed in this brief introduction.

For clarity, when discussing the different steps a common format will be used, with input defined as either obligatory
or optional. Input being obligatory means that it is central to the algorithm and cannot be omitted, optional means
that these parameters will be set to default values when omitted. It should be noted that in most steps there are

more parameters that could potentially be tweaked, only the most important ones are included.

3.1 Road Generation

3.1.1 Input

e Obligatory:
— Size of road network: The total number of roads to place.
e Optional:
— Custom population heatmap: An image provided by the user showing the population heatmap, replaces
the default noise-based population heatmap.
— Road Length: The in-engine length of each individual road piece.

— Maximum main road turning rate: The maximum possible change in rotation from the previous road for

a newly placed forward-oriented main road.

— Maximum secondary road turning rate: The maximum possible change in rotation from the previous

road for a newly placed forward-oriented secondary road.

— Main road advantage: In order for the big ”main” roads to be built first, with smaller roads around them,
main roads are given a higher priority than smaller roads, the user can define the specific advantage

themselves, a higher advantage yields more and longer big roads with less clustered cities.

3.1.2 Output

e An array of road lines with corresponding thickness describing the road network.

e An array of polygons describing the plots between the placed roads.

16 Chapter 3. Algorithm

3.1.3 Description

Parish and Miiller created a framework for a road generation algorithm [1], which was later refined [3]. This refined
version formed the basis for the road generation used in this project. The basic idea of this algorithm is to place
one "road piece” at a time. Using a priority queue, whenever a road is placed, the potential extensions of that road
are placed as well, each given a priority! depending on the determined value of the road, (to see how this value
is calculated see 4.2). Whenever a road is actually placed it might also need fitting to attach with other existing

roads.

Using this technique the main road is given slightly higher priority, and smaller roads are given lower, meaning
main city roads are placed before the smaller ones. This makes the small roads adapt to the larger roads instead of

vice versa, creating a more natural looking road network.

3.1.4 Heatmap

Positive Heatmap

This project uses a general heatmap which is either generated via simplex noise or provided by a user, which defines
what areas are particularly interesting. Taking this into consideration when giving each road its priority, it results in
more neat and predictable city structures by giving the road generation certain intuitive global goals. The heatmap

is grayscale and each position in the map corresponds to a single value.

Negative Heatmap

In addition to this general heatmap, this project uses a "negative” heatmap that is relevant for the area covered by
main roads. Basically, when a large road is placed, each new large road within a certain distance will have lower
priority than they would otherwise have. This attempts to make sure that the main roads do not go around in
circles around certain points. It also artificially emulates the reduced need of a main road close to an area where

there already is one close by.

IThe priority decides the position in the priority queue

3.2. Plot Generation 17

3.1.5 Plot Polygons

Plot shapes are found by placing one line to the left and one to the right of each road. These lines are checked against
the roads to see whether they intersect a road, if they do, lines are recursively cut into smaller lines. After this all
lines are checked for collision with the other lines, potentially forming polygons when several lines intersect. This
approach is simple on paper but a lot of work remains to be done after intersections are found. More information

on the method used is discussed in Section 4.6 as well as in Appendix B.

3.2 Plot Generation

3.2.1 Input

e Obligatory

— An array of polygons describing the plots between the placed roads.

3.2.2 Output

e An array of polygons describing the shapes of the specific houses that shall be built.

e An array of polygons not suitable for buildings but for simple areas that should still be textured and detailed.

3.2.3 Description

Plots are created from the shapes in between the roads generated by the road placement algorithm, meaning that
the shape of the plots are fundamentally dependent on the road generation. The plots themselves then go through

a number of decisions deciding how they will be handled. The alternatives are:

A simple plot with some texture and decorative meshes (for tiny plots).

A single building (for small to medium sized plots).

A block of several buildings and plots, resulting from a subdivision of the original plot (for medium-large

sized plots and upwards).

e A textured area with houses placed iteratively as long as there is room at random. (for very large sized plots

and upwards).

18 Chapter 3. Algorithm

The exact cutoffs are not important, there is also randomness involved in selection of appropriate type. This is
done to smooth out the overlaps between the different types of plots, so as to not make it too obvious at which

point a plot becomes a certain type.

3.3 Sidewalk Generation

3.3.1 Input

e Obligatory
— An array of polygons describing the plots between the placed roads.
e Optional

— Sidewalk width

3.3.2 Output

e Polygons describing the sidewalks that are to be placed in the world.

3.3.3 Description

The sidewalk generation is fairly simple, it places sidewalks all around the plots generated in the road generation step,
optionally with user-defined width. The exact polygons describing the sidewalk and sidewalk edges are generated

here.

Besides the polygon generation, meshes specific to the sidewalk are also placed in this step, such as street lamps.
The placement of these meshes follow pre-determined patterns and are not as interesting as other mesh-placement

algorithms. Every sidewalk has a certain chance to spawn meshes of a certain type independently of other sidewalks.

3.4 Building Generation

3.4.1 Input

e Obligatory

3.4. Building Generation 19

— A polygon describing the shape of the house at ground level.
— A description of which sides are allowed to contain windows.

— A description of which sides are allowed to contain entrances.

e Optional

— Minimum/Maximum number of floors.
— Height of a floor.

— The number of times the polygon has a chance of being reduced at random (for example by cutting of

an edge, increasing this number results in more irregular shapes and vice versa).

3.4.2 Output

e An array of polygons describing the shapes and locations of apartments to be populated in the building

3.4.3 Description

The building generation takes the polygon generated by the plot generation and optionally modifies it at random to
make it more interesting. These changes are strictly reductive since the position and shapes of other houses and the
other areas belonging to the plot are out of scope. The building generation is done individually and independently
floor by floor, always remembering the shape of the building from the previous floor as well as which sides may

contain windows. More about the building generation can be found in section 4.8.

Algorithm 1 Pseudo-code for building creation

1: for each floor do:

2: potentially modify building shape again, affecting all floors this level and above, strictly reductive modifi-
cation.

3: determine polygon describing the center stairway/elevator.

4: place corridors in each direction outwards from it.

5: determine apartments resulting from the intersection of center polygon, corridors, and sides of house, tell
the apartment which sides may contain windows (i.e. which walls face outwards from the building).

6: for all determined apartments do

7 if apartments is too large then

8: recursively split apartment until it’s within a reasonable size limit.

20 Chapter 3. Algorithm

3.5 Apartment Generation

3.5.1 Input

e Obligatory

— An array of polygons describing the shapes and locations of apartments to be populated in the building
with corresponding descriptions of which sides have doors, which have windows, which sides are exterior

walls, and of which type the apartment is (office, living, store, restaurant).

— Blueprint for the different kinds of rooms, with size specifications.

A description of which sides contain entrances.

3.5.2 Output

e An array of polygons describing the shapes of individual rooms, with corresponding descriptions of which
sides have doors, which sides have windows, which sides are exterior walls (walls towards the outside of the

building) and of which type the room is (bedroom, bathroom etc.).

3.5.3 Description

The apartment generation is perhaps the most interesting step, because of how much it affects the final result both
directly and indirectly (through determining the outer walls and windows of a building), as well as how varied
results it produces. The fact that the apartments generation affects the look of the buildings is very important to

keep in mind. Designing the algorithm, the two main goals were flexibility and performance.

This implementation is based on the idea that a good way to generate natural shapes of rooms is found by splitting
existing polygons in parts as opposed to for example fitting predetermined polygons together. All rooms are created
by splitting polygons continuously. A side benefit of this approach is that it makes it possible to make sure that all
rooms remain reachable from all other rooms without doing any path finding or graph traversal. The reason why
unreachable rooms are avoided is the fact that every time a room is split, both of the newly created rooms keep
their connections to rooms the previous one was already connected to. This means that connections between rooms
are never lost, which in turn means that as long as the original main room polygon has an entrance outwards, there
will be a path from that entrance to every room created. It’s also a strictly iterative approach of time complexity

n (where n is the total area of the apartment), making it scale well with increased size of apartments.

3.5. Apartment Generation 21

An aspect that becomes a challenge with this approach is the fact that all rooms are created equal. Some specific
rooms in real apartments are unlikely to act as junctions or be in the immediate way between other rooms. It is for
example unlikely that it would be necessary to go through a bathroom to get to the living room in a real apartment.
This problem can be handled by more careful splitting of rooms. In this implementation every room type blueprint
contains a boolean attribute that describes whether it works as a junction or not. When splitting a room which is
too big, the algorithm is attempting to make the room with the least connections a room without this attribute.

This is not a solution to the problem but it makes it much less prevalent.

When creating apartments, an essential function used very frequently is the function splitting of rooms in half. This
is an approximative method that is described in the figures in Appendix A and described in more detail in section

4.4.

Essential terms:

e Needed rooms: Room blueprints that need to exist in the final apartment, for living apartments this might

include a bathroom and a bedroom.

e Optional rooms: "Filler” rooms, an array of room blueprints that can be placed in case there is space leftover,
this array can be traversed multiple times as long as there is leftover space. For living apartments this might

include a bathroom and a bedroom.

Algorithm 2 Pseudo-code for the room placement

1: array emptyRooms

2: array finishedRooms

3: Add apartment polygon to emptyRooms

4: for blueprint in needed rooms do:

5: if polygon of suitable size exists in emptyRooms then:
6: remove polygon from emptyRooms

7 add polygon to finishedRooms with same type as blueprint
8: else if all polygons were too big then

9: Polygon p = first polygon in emptyRooms
10: remove p from emptyRooms
11: while p is too big do
12: split p in half
13: add one half to emptyRooms, keep the other as p
14

: add g to finishedRooms with same type as blueprint
Repeat for blueprints in optional rooms, and continue the algorithm while there are rooms left in emptyRooms.

22 Chapter 3. Algorithm

3.6 Furniture Placement

3.6.1 Input

e Obligatory

— A polygon describing the shape and location of the room, with corresponding description of which sides

have entrances and which sides have windows.
e Optional

— Alternative meshes for each object.

3.6.2 Output

e An array of meshes to be placed in the world.

3.6.3 Description

Furniture placement is done very simply, the goal being to find generalized and simple algorithms that cover a
lot of possible use cases. To create these a couple of real life apartments were studied, primarily living and office
apartments. It was found that most furniture placement in real life is done based on a few different geometrical

rules, see section 4.9.

Using different combinations of these possibilities all of the rooms in the city are generated. Each room type is
allowed to specify which furniture should be placed and according to which pattern, in any combination. This has
proven to be a solution that, while not covering all possible rooms, provides a wide variety of possibilities. This
solution is very scalable, building on the current concepts with more rooms and apartments requires very little

additional code.

The current implementation is quite small, because extending the current system with more rooms is not an
interesting part of the project from a research point of view. Defining more rooms with more meshes however would

go a long way towards making the city more diverse and interesting.

Chapter 4

Implementation

4.1 General

The program is implemented in Unreal Engine 4, polygons are rendered using the Runtime Mesh Component plugin,
and static meshes are placed as instanced static meshes. The shaders in the engine and similar effects have been

left untouched, and only minor details regarding textures and materials have been modified.
Polygons are triangulated and modified with the small but very adequate library polypartition®.

All of the static meshes used were either made for this project specifically or used free assets found online.

4.2 Road Generation

As mentioned earlier, the road generation is based on the improved version [3] of Parish and Miiller’s work[1]. This
version uses the priority queue. The comparison metric for the queue is a mix of a few different things. New road
pieces enter the priority queue when a road from the priority queue is placed. When placed, a road attempts to
place a new road piece in front and some attempt to place road pieces perpendicular to itself. The exact angles of
these roads are calculated by testing which directions yields the best priority, within a defined maximum angle. For
a certain maximum_change_intensity a road forward could have a rotation anywhere between previous_segment —
mazximum_change_intensity and previous_segment +maximum_change_intensity. This means that higher values

for maximum_change_intensity yields more curves and a value of 0 gives a strict grid network.

Lhttps://github.com/ivanfratric/polypartition

23

24 Chapter 4. Implementation

The value of a road is calculated as
noise_at_point(road-middle) + detriment

where a lower value gives higher priority. The term detriment is only relevant for larger main roads, and is then

calculated as

nung:oads detriment_range — distance(road, roads[n))

- * detriment;mpact
detriment_range

where roads are the main roads already placed within detriment_range and detriment;mpact is the magnitude of

the detriment.

This term detriment corresponds to a sample from the negative heatmap discussed earlier. This implementation is
not very optimized, and could be made faster by creating an actual image and then picking the samples from there,

however that would cost a little bit of accuracy.

For the generalized road placement algorithm, see [3].

4.3 Noise

The noise should be thought of as a pre-determined approximation of population density over different areas. It is
used in the road generation allowing it to follow global goals, as the individual road placements should in some way
follow a pattern. There are two distinct modes for generating this noise-map, either via a Perlin-noise function or

via a user-provided image. Generally, providing a user-defined heatmap gives better looking results.

Code wise, this is handled via a singleton-interface which any class can access to get noise values for specific

coordinates, this singleton is defined in the initial part of the program as either based on a heatmap or noise.

4.3.1 Perlin-noise

There are several ways to use Perlin-noise. It was decided that the simplest single-banded perlin noise would be

used for the city since lower complexity noise would be easier to work with and debug.

4.4. Polygon Splitting 25

Figure 4.1: Sample output from the single-banded Perlin function

Figure 4.2: Sample user-created heatmap

4.3.2 Heatmap

The user-provided heatmap is simply a gray scale image, the program works with any image but works best with
gradients, as that allows roads to find logical directions to build further roads, as otherwise the road generator has

a hard time ”climbing hills” towards the greatest population densities. See section 4.2 for details.

4.4 Polygon Splitting

A central function to many of the program is the creation of plots, buildings and rooms by splitting, or subdivision,
of polygons into smaller parts. In all of these instances the subdivision algorithm is the same, and looks like the

pseudo-code in Algorithm 3.

26 Chapter 4. Implementation

Algorithm 3 Pseudo-code Polygon Subdivision

Polygon originalPolygon

longestEdge = getLongestEdge(originalPolygon)

middle = middle(longestEdge)

otherEnd = middle + (Rotate90degrees(longest Edge))

otherEdge = find closest edge in originalPolygon that intersects with edge(middle, otherEnd)
firstEdge = first_of(longestEdge, otherEdge)

lastEdge = last_of(longestEdge, otherEdge)

edgesBetween = [all edges between firstEdge and lastEdge]

otherPolygon = edgesBetween + edge(middle, other End)

originalPolygon = original Polygon — edges Between + edge(middle, other End)

=
=4

This algorithm reduces the original polygon, adds a new edge where the previous was removed, and creates and
returns a pointer to a new polygon. In practice this is a lot of code because of the different properties belonging to
the polygon that has to be updated. For example in rooms, it is important to keep track of which walls allow for

windows.

4.5 UV-mapping

A problem that arose early when starting to place procedurally generated polygons in the world was how to correctly
find good UV-coordinates on the polygons?. Fortunately, there is a simple and for the most part adequate way of

determining good UV:s.

Since every polygon exists only on a 2D-plane, this plane and each tangent’s coordinates on this plane can be

determined from three points via basic linear algebra.

In practice it looks as follows 0.

Algorithm 4 Pseudo-code for UV-Mapping

1: Polygon pol

2: el = normalize(pol[1] — pol[0])

3: normal = el x (pol[2] — pol[0]);

4: €2 = normalize(el X n);

5: origin = pol[0]

6: for point in pol do:

7 point_x_coordinate = el - (point — origin)
8 point_y_coordinate = €2 - (point — origin)

This works well if these coordinates are found before triangulation of the polygons, since that way the correct

coordinates in relation to other vertices in the same polygon remain. It does not work as well for lots of tiny

2Coordinates for textures

4.6. Generating plot polygons from road network 27

polygons. This would work somewhat after triangulation for one triangle at a time but only be correct internally

and not externally for each separate triangle since seams between triangles would be very obvious.

4.6 Generating plot polygons from road network

Generating plot polygons from the road network got a lot more complex than expected and hoped. The basic idea
is to draw two lines, one on each side of every road, and then build polygons from intersections between these lines.
There are however, a lot of cases for these intersections to consider. One important thing to note is that these lines
extend a little bit beyond the length of the road itself, in order to be able to check for intersections with crossing

lines.

Before doing any intersection checks against other lines, collision tests must be done against the roads, if a road
connects to the road the line was based on. To solve this, lines are recursively split for every intersection with a
road. Remaining after this step is a list of lines at least twice as many as the number of roads not intersecting any

road.

After this, intersection checks are performed for each line against the other lines, continuously storing incomplete
polygons via linked structures and building onto them with new lines. Each line can contain a pointer to another
line that connects to its front, and a pointer to one line that connects to its back, thus creating a bidirectional
graph. Important to note is that what is stored and what will also become the polygon are not the exact points

belonging to the lines, but rather the intersection points between lines.

After these structures are established, it is possible to traverse these pointers by starting with a line and going
forwards or backwards until a node is encountered that has already been found, then a polygon can be created from

the path traveled.

For a visual example of how this algorithm works, refer to Appendix B.

4.7 Building height

A surprisingly troubling area was getting the algorithm deciding building height to work decently without making
it overly complex. A basic uniform distribution of heights within a range is not suitable, since in real cities most
buildings fall in a lower range of heights, while some buildings are much taller. Because of this some sort of

exponential distribution had to be used.

28 Chapter 4. Implementation

Remembering how the noise in the program is meant to emulate population density (section 4.3), it seems reasonable

that this should also influence the height of the buildings at different locations.

There are a lot of ways to calculate building height, the version that ended up in the program was the following.

Taking minFloors, maxFloors and noise_h_inf as parameters.

noise_mp = ((1 — noise_h_inf) + (noise(house_center) x noise_h_inf)

— In(rand_num_range(e=* + (1 — noise_mp), 1) * noise_mp
4

general_modi fier =

dif f = maxFloors — minFloors

This means that noise_mp uses a linear interpolation between 1 and 1 — noise_h_inf and general_modifier uses

inverse transform sampling with exponential distribution.

The final range for modifier of [0..1]. noise_h_inf is a constant in range [0..1] defined by the user. It determines
the influence the noise in the current spot should have on the height of a building. A value of 1 makes noise
extremely important for the height of buildings while a value of 0 makes the distributions for all buildings the same
independently of noise of current location. This value of noise_mp affects the final height in two major ways. It
is used internally to calculate general_-modifier and is also multiplied with it afterwards. noise_mp defines what
range of the exponential distribution should be used. This is done to emulate how larger buildings in cities also

have been found to have much greater variance in height. See 4.3 and 4.4.

L | L i i x i s i I il S

Figure 4.3: Calculating general_modifier for noise_mp = 1, x is a random stochastic variable between 0 and 1

Final height is calculated according to:

height = minFloors + dif f x general_modi fier

4.8. Building shapes 29

Figure 4.4: Calculating general_modi fier for noise_mp = 0.5, x is a random stochastic variable between 0 and 1

To see what this looks like applied on a whole city, see for example 5.15.

4.8 Building shapes

The concept of small functions applied iteratively is central to building shape generation. Every building receives
a polygon from plot generation to base the building on. This polygon is then modified, potentially several times.

Possible modifications are:

e Moving an edge inwards.
e Reducing size in every direction, ”shrinking” the polygon.

e Removing a corner by removing a vertex and adding two new vertices on the middles of what used to be the

edges connecting first the vertex.

These changes have certain chances to be applied at every pass, and the number of passes depends on user input,

the resulting modified polygon forms the base or ground level shape of the building.

A stairway/elevator area is randomly selected somewhere inside the house polygon. This stairwell, as well as the
four paths of 90 degree increments out from the stairwell, and the sides of the house, forms the boundaries for the

apartments.

For every level of the building there is a chance that the building shape is modified again, via one of the afore-
mentioned methods. This does not affect floors below; these modifications add onto each other. These changes are

strictly reductive, since the outside of the original house polygon is outside of scope for this part of the algorithm.

30 Chapter 4. Implementation

4.9 Mesh Placement

There are a couple of steps in the program where static meshes are placed in the scene, primarily in the furniture

placement, but also in sidewalk generation, plot decoration and house generation.

These different placements have some things in common since the strategies used for mesh placement are shared
throughout the program. Originally looking at real interiors, a few strategies for how furniture is generally placed
were found, These strategies were then expanded to include patterns observed for objects placed outside of buildings.

Made as simple as possible, these strategies were:

1. Placing an object along a random wall or a side of the polygon.
2. Placing an object in the middle of the polygon.
3. Placing objects in rows inside the polygon.

4. Placing objects at a random spot within the polygon.

In the program, these methods also take a list of blocking polygons as parameter. Polygons describing doorways
are included in this list of blocking polygons, as well as earlier placed objects. This means that these methods can
be used iteratively in any combination with each other. In this implementation the collision boxes for the different
meshes are taken directly from the collision bounding box automatically generated by Unreal Engine 4 from the

imported meshes.

For furniture placement, types 1, 2 & 3 are used. For outdoor vegetation, type 4 is used. For roof decoration, type 3
& 4 are used. Sidewalk decoration is not done by any sophisticated algorithm; meshes are simply placed repeatedly

with certain intervals.

4.10 Performance
Even though performance considerations are not as important for this thesis compared to the ideas it explores,
performance is extremely important in any practical application that might use these concepts.

A significant amount of thought has been put into performance for this project, an innate benefit of recursive

algorithms and algorithms with very limited scope is how they often reach a low time complexity.

4.10. Performance 31

In addition to these implicit design considerations, there have been some very explicit parts of the program added
just to increase performance. The program provides two different ways to generate the city, the simplest alternative
is to generate everything at once. Another alternative is to generate interiors for buildings when the camera is
close, and de-allocate interiors when the camera is further away. This is the default mode since it allows much
larger cities using the same amount of memory. It is important to note however that basic room calculations have
to be done even when interiors are not rendered, since these calculations decide window placements, which have to

be coherent with their locations at the outside of the building.

Performance considerations also include threading. Threading was implemented in order to be able to generate
parts of the city at runtime (although it also increases performance even if everything is generated at once), so that
parts could be generated and de-allocated dynamically, saving a lot of memory. The threaded part of the program
more specifically is the house generation. Everything related to a building can be calculated on other threads. One
problem however is that it is not currently allowed in UE4 to place objects and polygons into the world on any
other thread than the main game thread. This means that there is some stutter if doing runtime placement of

meshes and polygons.

32

Chapter 4. Implementation

Chapter 5

Results

33

34 Chapter 5. Results

This chapter will shows the different aspects of the program in their respective contexts.

Figure 5.1: Screenshot at ground level

5.1 City Structure

Through parameters many of the characteristics of the generated city can be decided by the user. A very influential
parameter is the population heatmap, or the lack thereof (see 4.2). To see the dramatic effect the population

heatmap has on the final result, refer to the heatmaps pictured in 5.3 and the corresponding city shapes in 5.4.

Regarding our reference cities the maximum allowed turn rate of a road is very important. It should be close to
zero for smaller roads if the city should look like Manhattan (see 5.12a). But to achieve the look of "messier” /less

grid-like cities like Malmé (see 5.12¢) the turn rate should be higher.

Adjusting only the maximum road turning rate affects the city shape in major ways. To see how changing this

variable can affect a city based on the same population heatmap see 5.5.

For clarity, three different parameter combinations were used for the road generation to generate the results in this

5.1. City Structure 35

Figure 5.2: Screenshot from inside a meeting room in an office

(a) Heatmap 1 (b) Heatmap 2 ¢) Heatmap 3

Figure 5.3: Heatmaps

chapter, found in table 5.1, these types are referenced in the attached images.

Type Max main road turn rate (degrees) | Max secondary road turn rate (degrees)
Grid like | 2 0

Normal 20 5

Chaotic | 30 15

Creating the road network via Perlin noise produces quite different results, for examples, see 5.6. Perlin noise tends
to produce more sprawling cities, a problem with using perlin noise is how the cities tend to be less centralized than

one might want, occasionally forming separate clusters.

36 Chapter 5. Results

(a) City 1, type = Normal
(b) City 2, type = Normal (c) City 3, type = Normal

Figure 5.4: Resulting cities

(a) City 2, type = Grid like (b) City 2, type = Chaotic

Figure 5.5: Changing turn rates

(a) Noise based city, type = Grid like (b) Noise based city, type = normal (c) Noise based city, type = Chaotic

Figure 5.6: Noise based cities

5.2. Apartment Structure 37

1

(a) An office apartment

(b) A living apartment

Figure 5.7: Simple Apartments

5.2 Apartment Structure

The apartment generation is capable of producing apartments of any size, but is best understood by looking
at smaller examples, looking at the results in 5.7, it’s very clear how the algorithm has worked to create these

apartments step by step.

The office apartment 5.7a contains four rooms. This means that there have been three splits, since every split
creates one additional room. The Apartment generation algorithm has begun by splitting the whole apartment into
two pieces, assigning one of them the role of meeting room (the room to the left with the table). The right half has
been subdivided again, a working room has been placed in the top part, then the bottom part resulting from this

split has been split one final time, placing a toilet and an empty room.

The living apartment 5.7b also contains four rooms, meaning there has been three splits here as well, resulting in
a living room, a kitchen, a toilet and a bedroom. The order in which these three splits were performed can easily

be deduced.

5.3 Windows

Windows are handled simply, every apartment type provides a density and (possibly randomly defined) dimensions
for windows, and for every exterior wall in a room that allows windows, a number of windows given by the formula
window_density x wall_length are fit evenly across the wall. For an example of windows in an office apartment see

5.8a.

Apartments on the ground level are handled a bit differently than apartments on other floors. They are allowed

38 Chapter 5. Results

(a) Windows on an office apartment

(b) Restaurant exteriors

Figure 5.8: Exteriors

to have entrances outwards, and can be decorated with awnings and simple signs, see 5.8b, the windows on the

bottom floor need to accommodate these things.

For some more perspective on how the apartment generation algorithm works on a larger scale, see figures 5.9 and

5.10.

5.4 Furnishing

The way the mesh placement uses a few pre-determined patterns has been discussed in 4.9. Figure 5.11 shows how
it can look in practice, this example with a kitchen is used because it shows several of the different patterns used

at once.

The oven, fridge and kitchen-mesh are specified to be placed along a wall, so the algorithm has found suitable places
alongside walls. The table is specified to be placed in the center of the room. The chairs are specified to be placed
within regular intervals around another polygon (the table). The kettle is specified to be placed at a random point

on another polygon (the table).

5.5 Comparison to Reference cities

5.5.1 Recreating Manhattan

Making a heatmap that somewhat approximates Manhattan allows us to compare the results of the algorithm to

the real counterpart.

5.5. Comparison to Reference cities

39

Figure 5.9: Apartment subdivision for a simple small building floor

Figure 5.10: Apartment subdivision for a larger and somewhat more complicated building floor

40 Chapter 5. Results

‘/ A\ ‘:'

J - S SSSASSSAIINE SRRy

Figure 5.11: A kitchen with furniture

(a) Manhattan, NYC (b) Los Angeles

Figure 5.12: Real Cities

Figure 5.13: Procedurally Generated Cities

5.5. Comparison to Reference cities 41

(a) Real manhattan
(b) Crudely Improvised heatmap

Figure 5.15: Generated city, type = Grid like

The scale of the procedural Manhattan is smaller, otherwise the accuracy is acceptable, with height distribution for
different areas successfully approximating the distribution in real Manhattan. The only information the program

has access to is the heatmap in 5.14b.

An aspect that the program does not handle currently is how large cities next to water (such as New York) tend to

have roads along the sea shores, enclosing the city. This could be a nice addition to the program.

42

Chapter 5. Results

Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

This project was successful in creating a prototype that achieves all the essential goals we set out to achieve. As a

base of discussion, we’ll return to the questions posed in the introduction:

e Is it at all possible to generate whole cities procedurally? If not, why? A: Yes, it’s definitely possible.

e At which level of the generation does the project have to fall back to predetermined objects and meshes? A:
The furniture and meshes placed in the world are predetermined objects, because of the sheer detail necessary
in these objects, it’s very hard to procedurally generate them in-engine, however it is possible that procedural
techniques could be used when modeling them before importing them into the engine. Stairwells and elevator

shafts are also pre-designed.

e Will it be possible to find general algorithms that cover a wide variety of cities? Or will they have to be tailor
made to specific types of cities and buildings? A: The algorithms currently in place cover modern western
urban cities. They do not support villas, gardens or older buildings, more algorithms and models are needed
to cover these different types of environments. This also means that the algorithms are not as suited for the
construction of less dense, older cities like Malmo as they are for cities like New York or Los Angeles. In
terms of city layout, the system is based on previous work [1], and this system is very flexible and can cover

a lot of different cities.

e In terms of performance and scalability, are these algorithms feasible on a much larger scale? A: Yes, although

43

44 Chapter 6. Conclusion

some implementations currently are at worst n? or n * m, these are spatial algorithms that can be optimized

by using quad trees or similar.

6.2 Returning to Reference Cities

As touched upon in the previous section, the algorithms produced work best for very dense cities where all space
is occupied. Since the program does not currently support placing buildings outside of plots, or generating plots
that are not completely surrounded by roads, it does not work as well with many of the areas in outskirts of larger

cities or smaller cities, since buildings in these areas are often placed alongside roads, as opposed to in between.

This means that Manhattan and Los Angeles can be modeled satisfactorily whereas trying to create Malmé does
not work as well within the current program. Improvements to allow for cities more similar to Malmé would include
algorithms for placement of plots and buildings that are not entirely surrounded by roads. To model the older
parts of Malmé with older (and very complicated) buildings more sophisticated building-generation algorithms are

needed as well.

6.3 Applications

The most obvious use for procedural generation is in entertainment, specifically games and movies. Games today
can offer much more than they did twenty years ago, but in sense of scale of environments, things have not changed
that much. As discussed in the beginning, the true potential and allure of procedural generation in the context of
physical environments is the sheer size that is possible to achieve, effectively bypassing the bottlenecks put in place
by computer memory and human workload. In fact, to generate truly infinite worlds, there is no other choice than
to utilize procedural algorithms. As of today, it’s still much harder to implement environments procedurally than
manually. On a small scale anything that can be done procedurally can just as easily or way easier be placed by a
designer. Perhaps with more research in this area, this could change, or at least the difference could become less

pronounced.

This project has tried to procedurally generate as much of its content as possible. In a more practical setting it
might be more reasonable to make parts of an environment manually, and other parts procedurally. One could for
example use the interior generation in combination with manually designed building-shells, since the apartment and
room generation only needs the general shape of the current building floor as input. This allows for the ”best of

both worlds”, where a designer can design what’s really important manually, and use procedural generation to fill

6.4. Future Work 45

out the details. Even simple procedurally generated interiors make a building much more interesting than a hollow

one. Since a small if any sacrifice in memory is needed in order to do this, it seems like a good alternative.

6.4 Future Work

6.4.1 Improvements

Plot Generation

One good example of areas where the program might have gotten too complex is the plot generation. What began
as a simple idea, placing lines along each road and checking for intersection, turned out much harder than expected,
with a large amount of edge cases which had to be handled. A better approach might be saving the connections
between roads generated in the road generation step and building a multi-directional graph based on the roads.
Thereafter one could find polygons by for example starting in a node, walk along edges always turning left, and

when (if) returning to the starting node, build a polygon based on the path.

Apartment Generation

Before apartments are placed, the corridors from the stairwell of the house are laid out. This is done in a very strict

way, and could be made more interesting by making the stairwell placement and building layout more dynamic.

For the apartment generation itself, there exist a couple of problems, the severity of which depends highly on the
use-case, originating in the recursive room design. The problems manifest themselves in two major weaknesses of
the apartment generation. First, it’s not possible to tell the algorithm where a certain room should be. This means
that for example in a store it is not possible to specify that the main room with shelves should be in the front, next
to the street, at least not for now. Stores and restaurants in the program are currently being treated as single-room

apartments, so this weakness does not show.

The second weakness is what was discussed earlier, that although possible to influence, the algorithm cannot
guarantee specific rooms not being junction points. Being a junction point means that the room contains at least
two entrances, and could possibly be the only way between at least two other rooms. This is a problem with for
example toilets, which should logically only have one entrance and definitely not be the passageway between other

rooms.

46 Chapter 6. Conclusion

It is unclear whether these problems can be completely solved without abandoning the simple recursive structure
of apartment generation, which otherwise has a lot of benefits in how simple and yet powerful it is and how natural

it looks.

Furniture Placement

Although the furniture placement as a concept is simple and suits its role fine, it deserves to be expanded upon.
To further improve this step it seems logical to add more placement rules and simply more possible meshes. A very
interesting next step could be creating and adding procedurally generated meshes that could fit the rooms even

better, for example a kitchen that is expanded to fit a specific wall.

6.4.2 Unexplored areas

There are a lot of possible ways to improve and build on this project. When it comes to the different steps of the
project, all of them deserve to be expanded and refined. Within the time limits of this thesis it was not possible to
make every part of the program simple and manageable, but few if any parts of the program are complex in and
of their selves. The complexity that exists is due to the fact that a lot of time was put into prototyping. This was

intentional, but it did not allow for the level of polish that one might want in production-level work.

Apart from the project itself, there are a lot of areas outside of the scope of this project that would be very interesting
to study in depth. This project does not cover the environment outside of the city, or hilly cities. Water, docks,
and bridges are other natural extensions of this project, and hopefully these improvements could be combined with
the project as it is right now without too many merging problems, since these parts should only affect the road

generation step.

Vegetation in the project has remained simple, both in terms of how its placed randomly or predictably in certain
spots, and in terms of the complexity of the meshes themselves. An interesting continuation in this area could be

different ways of implementing procedural vegetation, perhaps as L-Systems|[7].

Another area that could be interesting to look more into is weather. An interesting paper on this topic uses the
environment at hand to calculate weather and clouds procedurally [6]. These kinds of modifications that are done

strictly post-city generation should be easy to apply.

6.5. Final Thoughts 47

6.5 Final Thoughts

Though not without flaws, this project has shown that areas not always considered suitable for procedural gener-
ation, large-scale complicated coherent environments, can be tackled by procedural algorithms. Hopefully this is
an area that can continue to develop in parallel with manual creation of environments as the subject of computer

graphics continues to mature.

48 Chapter 6. Conclusion

.1 Appendix A

.1. Appendix A

49

area = 1000
type = undecided
junction = fa

Rooms to place:

Bedroom (200 <
Bathroom (100
Living Room (300

@ Doorway

lse

area < 400) avoid junction
< area < 200) avoid junction
< area < 700) allow junction

Figure 1: Apartment with room requirements

50

Chapter 6. Conclusion

Rooms to place:

Bedroom (200 <
Bathroom (100
Living Room (300

@ Doorway

area = 550
type = undecided
junction = false

Rooms still too big
for bedroom,
split again

area < 400) avoid junction
< area < 200) avoid junction
< area < 700) allow junction

Figure 2: Apartment after one split

.1. Appendix A

area = 250
type = Bedroom
junction = false

area = 300
type = undecided
junction = true

Placing
bed room

Rooms to place:

Bathroom (100 < area < 200) avoid junction
Living Room (300 < area < 700) allow junction

@ Doorway

Figure 3: Apartment after two splits, Bedroom placed

52

Chapter 6. Conclusion

area = 250
type = Bedroom
junction = false

area = 450
type = undecided
junction = true

area = 130
type = Bathroom
junction = false

area = 170
type = undeci19g
junction =

placing bathroom

placing line to
the

right of

entrance to avoid

Rooms to place:
Bedroom—{200<—area—<—40 &Féid Function creating two
Brthreonr(H00<area <200 averdsunction junction rooms

Living Room (300 < area < 700) allow junction L. .0 only one

15 needed

@ Doorway

Figure 4: Apartment after three splits, Bathroom placed

.1. Appendix A 53

area = 250
type = Bedroom

area = 450 junction = false
type = Living
Room junction =

area = 130
type = Bathroom
junction = false

frue

placing Living
Room, suitable
room already
exists, using that

Rooms to place:

_ L .
Bedroemn—{200<—area— IHH} &Féid THiction
B?fh'iam (Ho—<—area~<200)—=averd j?”gtia”.

@ Doorway

Figure 5: Finished apartment, all rooms placed

54 Chapter 6. Conclusion

.1 Appendix B

Figure 6: Roads with lines placed on both sides, direction is reversed for opposing sides

.1. Appendix B 55

Figure 7: Lines are split whenever intersecting the middle of a road, recursively creating new lines

56 Chapter 6. Conclusion

Figure 8: Lines are checked for collisions against each other, intersection points are saved as polygon points. Each
line keeps track of potential parent line and child line.

.1. Appendix B 57

Figure 9: In every polygon where the last point has the first point as child, a complete polygon and is formed and
saved. In this limited example, two polygons are created

58

Chapter 6. Conclusion

Bibliography

[1] Pascal Mller, Yoav I H Parish. Procedural Modeling of Cities. ETH Zrich, Central Pictures, Switzerland, 2001.

[2] Alexander Dahl, Lars Rinde. Procedural Generation of Indoor Environments. Chalmers University of Technology,

Gteborg 2008
[3] Sean Barrett. L-Systems Considered Harmful. 2007-2009

[4] Evan Hahn, Prosenjit Bose, Anthony Whitehead. Persistent Realtime Building Interior Generation. Carleton
University, 2006

[5] Pascal Muller, Peter Wonka, Simon Haegler, Andreas Ulmer, Andreas Ulmer, Luc Van Gool. Procedural Mod-
eling of Buildings. ETH Zurich, Arizona State University, K.U. Leuven 2006

[6] Ignacio Garcia-Dorado. Fast Weather Simulation for Inverse Procedural Design of 3D Urban Models. Purdue

University, Google Research 2017
[7] Przemysaw Prusinkiewicz The Algorithmic Beauty of Plants 1990
[8] George Kelly, Hugh McCabe A Survey of Procedural Techniques for City Generation ITB, Dublin, Ireland 2006

[9] Paul Guerrero, Stefan Jeschke, Michael Wimmer, Peter Wonka Edit Propagation using Geometric Relationship
Function s Vienna University of Technology, KAUST, IST Austria 2014

[10] George Kelly, Hugh McCabe Citygen: An Interactive System for Procedural City Generation Institute of

Technology Blanchardstown, Ireland
[11] https://www.nomanssky.com/
[12] http://www.esri.com/software/cityengine

[13] https://www.rockstargames.com/grandtheftauto/

59

Programmer attempting to steal artists job

Tobias Elinder

LTH
tobiaselinder@gmail.com

Automatically generating environments is a very appealing concept. Instead
of manually creating environments you can create rules which in turn create the
content. This project has used this idea to build whole cities, including interi-
ors, automatically (procedurally).

What are the actual problems that procedural generation solves? Well for
one - it saves a lot of manual labor. You also don’t have to store things in
computer memory. Imagine creating a huge world manually, for example in a
game. A huge map would occupy a lot of space on your hard drive, and if
you make the world big enough it wouldn’t fit at alll Anyone with experience
playing computer games should be familiar with the GTA series, which boasts
beautiful and intricate environments, but they would be even more interesting
if the maps and cities could be made much bigger, this is where procedural
generation shines. With procedural generation it’s even possible to have infinite
worlds, only generating areas when close, like a storyteller reacting to a person’s
choices by improvising new content on the fly. Procedural generation is also
more dynamic than manual generation in that it’s possible to tune parameters
of the generator for very different results very quickly, without having to rebuild
a massive world by hand.

This project has looked at how whole cities can be created with procedural
algorithms, from the toilet in a small apartment to whole neighborhoods and
structure of road networks. You’d think this was a well explored research area
but it isn’t. There have been a couple of projects working on procedural city
structure and a few working on building interiors before, but few if any has ever
tried to do everything simultaneously, which seems like a logical end goal. The
vision for this project was a complete city without shallow facades, meaning that
a window on a building far away should also lead in to a room when getting
close enough.

What makes procedural cities/buildings so hard is the need for coherency
balanced against unpredictability. Generating a mountain is easy, no coherency
gives chaotic results, and nature is chaotic! Make an office with similar chaotic
techniques and you’ll end up with very unsafe work environments with cliffs in
the middle of the office floor and windows behind bookshelves. Make the rules
too strict and you’ll end up with a sterile and predictable set of rectangular
rooms where everything is always in the same location. To avoid these two
extremes you have to find a middle ground where the environment is structured
and coherent, but unpredictable. To do this I created a top-down method which
generates roads first, then plots from road structures, then buildings from plot
structures, the apartment and rooms from building structures, and so on. There
is a lot going on beneath the surface, but the general algorithms themselves are
actually quite simple. For a peek at the algorithms in action, see this demo.

https://youtu.be/n1eZOV8r_g4

	Tom sida
	Tom sida

