Unbiasing entomological kHz Scheimpflug LIDAR data

Author: Alexandra Andersson
Supervisor: Mikkel Brydegaard
Co-supervisor: Samuel Jansson

Department of Physics
Division of Combustion Physics
Applied molecular spectroscopy and remote sensing
January 11, 2018
Abstract

Insects can be mapped using a method called Scheimpflug Lidar (LIght Detection And Ranging). Sending out light in the near infrared range and detecting the backscattered echo, it is possible to resolve flying organisms in range and time. Insect observations can be distinguished from the background signal through adaptive thresholding.

The detected signal will contain two components; one from light that has scattered on the insect body, and the second due to the wing-beats cycles of the insect. Further, the shape of the wing-beat signal may contain several harmonics due to non harmonic motion and specular reflections.

The wing-beat frequency (WBF) of an insect can be found using a parametrization model where the wing-beat component of signal is projected on a number of harmonic functions. Projections using different possible WBF are done, and the frequency that generates the lowest residual is chosen as the WBF of the signal. Previously, the model has been used in short frequency ranges around a WBF estimated from the signal and the power spectrum of the signal since the model is biased towards minimum possible frequency and Nyqvist frequency.

In this thesis, three different compensation methods to overcome the frequency preferences of the model has been investigated with promising results. Further, range biasing and detection limits of the system has been investigated, showing that a longer exposure time makes it possible to detect signals with almost five times as low intensity and reduced the apparent size of the insect. Regarding the range biasing, the system generally detects more observations at short ranges due to higher sensitivity. However, when the range increases a higher amount of observations with long transit time is detected.
I want to thank

• My supervisor Mikkel Brydegaard for giving me the opportunity to be part of an incredible project

• My co-supervisor Samuel Jansson for all the help he has provided, everything he taught me, for an amazing time in Ivory Coast and for his patience every time I screwed up.

• Elin Malmqvist for everything I learned in Ivory Coast, for all the fun moments during the field campaign and for always having her door open for questions.

• Jérémie Zoueu for the opportunity to be part of the field campaign and taking care of us during the time in Africa.

• All the PhD students in Yamoussoukro who were very warm and welcoming and always helped out.

• International Science Program, Uppsala for sponsoring flight tickets to Ivory Coast.

• Physiographical society, Lund for sponsoring the Lidar system.

• FaunaPhotonics, Danish Innovation Fond and Ifakara Health Institute for sponsoring Tanzania campaign.

• CAnMove, Lund Laser Centre and LU for general support.

• My boyfriend Anton Linnér for his support and encouragement.

• Jonas Ravelid, Vassily Kornienko and Josefin Kylli for your support and your help with feedback on the report and presentation.

• My colleagues in the Physics and Lazershows without you I would not have had such a fun time these five years.

• My friends and family for all the support and encouragement.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoF_{reg}</td>
<td>Degrees of freedom in regressor</td>
</tr>
<tr>
<td>DoF_{body}</td>
<td>Degrees of freedom in envelope</td>
</tr>
<tr>
<td>FoV</td>
<td>Field of view</td>
</tr>
<tr>
<td>OCS</td>
<td>Optical cross-section</td>
</tr>
<tr>
<td>PoF</td>
<td>Plane of sharp focus</td>
</tr>
<tr>
<td>ToF</td>
<td>Time of flight</td>
</tr>
<tr>
<td>WBF</td>
<td>Wing beat frequency</td>
</tr>
</tbody>
</table>
SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Apparent size</td>
<td>[mm]</td>
</tr>
<tr>
<td>(B_p)</td>
<td>Pixel - receiver optics distance</td>
<td>[mm]</td>
</tr>
<tr>
<td>(C)</td>
<td>Linear regression coefficient</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(d)</td>
<td>Tissue path length</td>
<td>[mm]</td>
</tr>
<tr>
<td>(D_{\text{rec}})</td>
<td>Diameter of receiver telescope</td>
<td>[mm]</td>
</tr>
<tr>
<td>(D_{\text{trans}})</td>
<td>Diameter of transmitting telescope</td>
<td>[mm]</td>
</tr>
<tr>
<td>(f_{\text{min}})</td>
<td>Minimum observable frequency for an observation</td>
<td>[Hz]</td>
</tr>
<tr>
<td>(f_{\text{max}})</td>
<td>Maximum observable frequency for an observation</td>
<td>[Hz]</td>
</tr>
<tr>
<td>(f_i)</td>
<td>Test frequency (i)</td>
<td>[Hz]</td>
</tr>
<tr>
<td>(f_N)</td>
<td>Nyquist frequency</td>
<td>[Hz]</td>
</tr>
<tr>
<td>(f_{\text{sample}})</td>
<td>Sample frequency</td>
<td>[Hz]</td>
</tr>
<tr>
<td>(F_{\text{rec}})</td>
<td>Focal length of receiver telescope</td>
<td>[mm]</td>
</tr>
<tr>
<td>(F_{\text{trans}})</td>
<td>Focal length of transmitting telescope</td>
<td>[mm]</td>
</tr>
<tr>
<td>(g)</td>
<td>Anisotropy factor</td>
<td>-</td>
</tr>
<tr>
<td>(h_{\text{max}})</td>
<td>Number of sine/cosine functions in regressor</td>
<td>[#]</td>
</tr>
<tr>
<td>(H_{\text{pix}})</td>
<td>Pixel height</td>
<td>[(\mu)m]</td>
</tr>
<tr>
<td>(I)</td>
<td>Intensity</td>
<td>[uint16]</td>
</tr>
<tr>
<td>(l)</td>
<td>Number of time samples of observation signal</td>
<td>[#]</td>
</tr>
<tr>
<td>(L)</td>
<td>Baseline separation</td>
<td>[mm]</td>
</tr>
<tr>
<td>(N_{\text{pix}})</td>
<td>Number of pixels</td>
<td>[#]</td>
</tr>
<tr>
<td>(p)</td>
<td>Pixel number</td>
<td>-</td>
</tr>
<tr>
<td>(P_0)</td>
<td>Laser power</td>
<td>[W]</td>
</tr>
<tr>
<td>(r)</td>
<td>Distance</td>
<td>[m]</td>
</tr>
<tr>
<td>(R_{\text{term}})</td>
<td>Reflectance of termination target</td>
<td>[%]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{es}})</td>
<td>Sum of squared residual for test frequency (f_i)</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{esbody}})</td>
<td>Body residual</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{esbody}})</td>
<td>Analytical body residual</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{esregr}})</td>
<td>Regressor residual</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{esregr}})</td>
<td>Analytical regressor residual</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{estot}})</td>
<td>Total residual</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{R}_{\text{estot}})</td>
<td>Analytical total residual</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(S)</td>
<td>Laser spot size</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>Observation transit time</td>
<td>[ms]</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Wing-beat period</td>
<td>[ms]</td>
</tr>
<tr>
<td>(W)</td>
<td>Size of sliding minimum</td>
<td>[#]</td>
</tr>
<tr>
<td>(W_{\text{pix}})</td>
<td>Pixel width</td>
<td>[(\mu)m]</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td>Unit</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>(\delta_{pix})</td>
<td>Pixel coverage</td>
<td>[#]</td>
</tr>
<tr>
<td>(\gamma_p)</td>
<td>Observed scattering angles</td>
<td>[°]</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Central wavelength of laser</td>
<td>[nm]</td>
</tr>
<tr>
<td>(\mu_a)</td>
<td>Absorption coefficient</td>
<td>[cm(^{-1})]</td>
</tr>
<tr>
<td>(\mu_e)</td>
<td>Extinction coefficient</td>
<td>[cm(^{-1})]</td>
</tr>
<tr>
<td>(\mu_s)</td>
<td>Scattering coefficient</td>
<td>[cm(^{-1})]</td>
</tr>
<tr>
<td>(\mu_s')</td>
<td>Reduced scattering coefficient</td>
<td>[cm(^{-1})]</td>
</tr>
<tr>
<td>(\sigma_{obs})</td>
<td>Optical cross-section for observation</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\hat{\sigma})</td>
<td>Least squares fit of observation signal</td>
<td>[mm(^2)]</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Swing angle</td>
<td>[°]</td>
</tr>
<tr>
<td>(\Phi_{1,1+2h_{max}})</td>
<td>Regressor of harmonics</td>
<td>-</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Tilt angle of sensor</td>
<td>[°]</td>
</tr>
</tbody>
</table>
CONTENTS

1 **INTRODUCTION** 1
1.1 Medical and ecological background 1
1.2 Entomological Lidar 2
1.3 Modulation spectroscopy 3
1.4 Aim 4

2 **LIGHT-TISSUE INTERACTION** 5
2.1 Single scattering events 5
2.2 Multiple scattering in tissue 5
2.3 Light-insect interaction 6

3 **INSTRUMENTATION** 9
3.1 Scheimpflug lidar 9
3.2 Experimental setup 10
3.3 Range calibration 11

4 **DATA ANALYSIS** 13
4.1 Raw data processing 13
4.1.1 Insect thresholding and extraction 13
4.1.2 OCS and apparent size calibration 15
4.2 Finding the fundamental wing beat frequency 16
4.2.1 Parameterization model 16
4.2.2 Frequency preference of the model 19
4.2.3 Fine tuning 22

5 **FIELD CAMPAIGNS** 25
5.1 Ivory Coast field campaign 25
5.2 Tanzania field campaign 27

6 **RESULTS** 29
6.1 Detection limit 29
6.2 Range biasing 30
6.3 Frequency preference compensation 33

7 **DISCUSSION** 37
7.1 Detection limit 37
7.2 Range biasing ... 37
7.3 Frequency preference compensation 38

8 Conclusions and outlook 41
Chapter 1

INTRODUCTION

1.1 Medical and ecological background

Malaria is one of the diseases that kill most people over the world today. In 2015 almost 450,000 people died [1] which makes the malaria mosquito the deadliest animal in the world.

Mosquitoes normally feed on nectar, but in several mosquito species the females need human blood to produce eggs. After mating the females seek a human host for blood by following the body odor (CO_2, ocentanol). After feeding on blood, the females rest for a couple of days while digesting the bloodmeal and develop eggs. When the females have laid their eggs, in or close to water, the reproduction cycle repeats until the female dies [2].

A mosquito can only be infected by malaria by feeding on a human host who bears the malaria parasite. The parasite does not transmit to the eggs, so a human is only infected if they are bit by a mosquito that has fed on a malaria infected host in a previous instance [3]. A mosquito lives roughly 2 weeks in nature, meaning that the females only mate once, maybe twice, in their lifetime. The probability that the mosquito both has been infected and has mated twice is small, but due to the large number of mosquitoes, there are over 200 million malaria cases every year [1].

Unfortunately, there is no fully protecting vaccine or medicine for malaria today. The main product is malaria prophylaxes which serves both as vaccine and medicine. However, some parasites have become resistant to some prophylaxes and therefore it is important to do preventative work to avoid malaria. Today the preventative work mainly consists of mosquito spray and bed-net campaigns. Unfortunately, neither the sprays or the nets give full protection; in Tanzania for example, a prevention program [4–6] resulted in the mosquitoes changing their activity pattern during the day.

To be able to do more preventive work like draining of wet areas and urban planning, it is of importance to be able to monitor mosquitoes and their habits, especially since there are several mosquito species that are active in different
areas, at different times of the year, that are infectious to different degree and have different behavior. Further, it is necessary to be able to distinguish the females from the males to get a more detailed understanding of the ecology of either gender.

The easiest and most common way to monitor mosquitoes is using mosquito traps. Traps can attract mosquitoes in several ways, for example by \(CO_2 \), light traps or human bait. Trapping mosquitoes, it is easy to study how many mosquitoes from different species that are captured in different areas, at different times of the year. The drawbacks with traps are that they might be biased towards some species, it is hard to cover large areas, and they have low time resolution.

![image](a) ![image](b)

Figure 1.1: a) Image of a female aedes aegypti. b) Image of mosquito traps in Tanzania, [5].

1.2 Entomological Lidar

An alternative to conventional traps is to detect insects using entomological Lidar [7–9], (laser radar), which can be used to detect and map aerosols and particles in the atmosphere by detecting the backscattered echo of a laser [10–13]. For example, entomological Lidar has earlier been used to map insect density and speed [14], and to monitor insect pests in crops [15,16]. A Lidar setup usually consist of a laser connected to an expanding telescope, and a receiving telescope that focuses the backscattered light onto a detector. Using a pulsed laser, the echoes can be range resolved using time of flight (ToF) [17–21] as illustrated in Figure 1.2.

Apart from the pulsed laser technique, another method for range resolved Lidar using a continuous laser can be used [2,22]. However, this was previously pursued using a telescope baseline separation between the telescopes in the order of hundreds of meters and hence a wide angle objective is required. Unfortunately, the aperture size is compromised when the acceptance angle is high which means a lower light collection efficiency. To be able to detect insect echoes from the full range of the laser beam with a compact setup, at a low cost and with high efficiency, a method called Scheimpflug Lidar, that uses the Scheimpflug principle [23,24] has been used [25].
1.3 Modulation spectroscopy

The detected insect signal will contain a component due to the light scattered on the body of the insect, as well as a component due to light scattered on the beating wings [26–30]. The fundamental wing-beat frequency, (WBF), which can vary in a range between 10-1000 kHz depending on insect species [31] depend on the flight speed, acceleration and ambient temperature [32–35].

The wing-beat signal may contain several harmonics due to harmonic motion and specular reflections [36]. The full modulation spectra of insects has been studied using an electro-optical tool [37–39] and can be used for insect classification [37] since species with similar fundamental WBF can vary in harmonic content, as can be seen in Figure 1.3.

Comparing mosquitoes to other insects, mosquitoes have a higher WBF than several other species. Female mosquitoes typically have a WBF around 400-600 Hz and males around 600-800 Hz [40,41].

The fundamental WBF of the signal can be found using a model trying to fit a number of harmonics containing the WBF to the signal. Since the WBF is unknown, a vector with test frequencies is defined. For each test frequency the body signal is obtained with a sliding minimum filter given by the test frequency. A regressor consisting of a number of harmonics containing the current test frequency and overtones of it is fit to the signal. When all frequencies in the test vector has been tested, the frequency that results in the fit with the lowest residual is chosen as WBF.
Figure 1.3: Modulation power as a function of frequency for two different insect observations. The two observations have the same WBF but the strength of the overtones differ.

1.4 Aim

The drawback with the described frequency selection method is that the model favors high and low frequencies, which means that it has not been possible to test frequencies in the full range from 1 to the Nyqvist frequency with reliable results. Instead, the range of the test frequencies has earlier been limited to a small span around a preliminary WBF obtained from the time series of the insect [42]. The aim of this thesis is to investigate the frequency preference of the model and find a way to compensate for the methodological biasing in the frequency and range domains.
Chapter 2

LIGHT-TISSUE INTERACTION

2.1 Single scattering events

Single scattering of light on particles depends on the particle size. Assuming only elastic scattering, Rayleigh scattering is applicable when considering small particles with a particle diameter much smaller than the wavelength of the light. If the particle diameter is in the same magnitude as the wavelength, or larger, Mie scattering can be used.

The scattering cross-section for Rayleigh scattering is dependent on the wavelength to a factor \(\mu_s,R \propto \frac{1}{\lambda^4} \), whereas Mie scattering has a scattering coefficient dependent of the wavelength to a factor \(\mu_s,M \propto \frac{1}{\lambda^2} \) [43]. Except for the lower dependence on the wavelength, Mie scattering is highly dependent on the particle size [44], and has a lower fraction of backscattering.

2.2 Multiple scattering in tissue

When illuminating tissue with light, the photons can be transmitted to the tissue where they can undergo multiple scattering and absorption. If the optical properties are known, the propagation of light in tissue can be modeled by the Radiative Transfer Equation, (RTE). The RTE can be solved using the diffusion equation [45] if the sample size is small than the mean free path. In case of larger tissue chromophores, the photomigration in tissue can instead be described by a random walk model [46]. In the model, the probability distributions of the step size and the deflection angle is used to predict the next scattering event.

The distribution of Mie scatterers can be approximated by the Henyey-Greenstein scattering phase function [47].

From the Henyey-Greenstein function, the scattering coefficient, \(\mu_s \), that gives the probability of scattering per unit path length, can be obtained. To compensate for the anisotropy, \(g \), the scattering coefficient is most often expressed...
as the reduced scattering coefficient

\[\mu'_s = \mu_s(1 - g). \]

(2.1)

Absorption can be applied according to Beer Lambert’s law,

\[I = I_0 e^{\mu_a c d}, \]

(2.2)

where \(c \) is the concentration, \(d \) is the path length before absorption, and \(\mu_a \) is the absorption coefficient giving the probability of absorption per unit path length. The total attenuation in the tissue can be described by the extinction coefficient,

\[\mu_e = \mu'_s + \mu_a. \]

(2.3)

2.3 Light-insect interaction

The wings of an insect are thin, (about 400 nm), and dry, and can be described as a multilayer thin film [48] consisting of chitin and melanin. When illuminated, the backscattered light is either a specular reflection from the utmost layer, or a diffuse reflection from the underlying layers. Considering the insect body, the light can be either scattered on the surface, or entering the tissue where the photons undergo multiple scattering and absorption. Since only a fraction of the diffuse light will be scattered 180°, there are losses due to absorption and omni-directionally scattered light.

![Figure 2.1: Illustration of losses in intensity due to omni-directional scattering.](image)

The wings beat and will therefore give rise to a strong specular backscattered signal when the wing surface coincide with the optical axis, and a weak signal when coinciding with the laser beam. This results in a signal that consist of a broad constant contribution from the body with high intensity wing-beats on top, as can be seen in Figure 2.2.
Figure 2.2: Time series of an observation. The signal consists of a signal from the body and the signal from the wings.
Chapter 3

INSTRUMENTATION

3.1 Scheimpflug lidar

Backscattered echoes from different ranges, r, will be projected with sharp focus at different distances, B_p, from the lens plane of the receiving telescope. Echoes from infinite depth are projected on a distance corresponding to the focal length of the receiving telescope, $B_p = F_{\text{rec}}$, and as the range decreases, B_p will increase. In order to obtain sharp focus over a long range the Scheimpflug principle [23,24] is implemented in the setup. That is done by placing the first pixel, p_1, of the line array sensor in the focus of the receiving telescope and then tilt the line array sensor with an angle θ, as can be seen in Figure 3.1. By increasing the length of the sensor, or increasing the tilt angle, θ, to maximum, echoes from shorter ranges can be projected.

The plane of sharp focus, (PoF), is given by the Scheimpflug and Hinge intersects, i.e. a plane where the lens plane and the image plane intersect, as well as two planes parallel to those. The intersects and the geometry of the setup are drawn in Figure 3.1. In case of a Lidar system, the setup has to be arranged so that the PoF coincides with the laser beam [25].

Due to the triangular geometry of the setup, the range resolution of a Scheimpflug Lidar system is tangential. The resolution is limited by the camera pixel size, the telescope baseline separation distance, L, and the field of view, (FoV) of the camera (that increases with range). In comparison to a ToF Lidar system [17–21] where the range resolution is limited by the pulse width, a Scheimpflug system has a higher resolution at short distances. The temporal resolution of the Scheimpflug Lidar system is limited by the read-out-speed of the camera.
Figure 3.1: Drawing of the setup. Echoes from different ranges, r, are projected with sharp focus at different distances, B_p, from the receiving lens. Hence the image plane, (line array sensor), is tilted by an angle θ, in relation to the laser beam and lens plane of the receiving telescope. The result is that signals from an infinite depth are projected on the first pixel placed in the focal point of the receiving lens, $(B_p = F_{rec})$, and signals from shorter ranges are projected at pixels with a longer B_p. The plane in which sharp focus is obtained, (which should coincide with the laser beam) is given by the Scheimpflug and Hinge intersects, i.e. a plane where the lens plane and the image plane intersect, as well as two planes parallel to those.

3.2 Experimental setup

The setup includes a 808 nm 3.2 W diode laser, transmitting through an expanding refractor telescope (diameter 102 mm and focal length 500 mm). Backscattered light is collected with a Newtonian telescope (diameter 205 mm and focal length 800 mm) and focused onto a line array sensor which is tilted 45 degrees in relation to the optical axis of the receiving telescope. The telescopes are mounted on a telescope mount with a baseline separation distance $L = 814$ mm. To facilitate alignment and focusing, a monitoring camera is mounted between the telescopes.

The laser, which is aligned horizontally and terminated on a neoprene target with a reflectance of approximately 4%, is connected to a multiplexing driver triggered by the camera strobe. The triggering enables modulated measurements where the laser is intermittently switched on and off between exposures, meaning that every second recorded line will include the backscattered echo from the laser, (on slot), and every second recorded line will be a recording of the optical background signal, (off slot). The optical background signal is later used to subtract the background from the on slot.

An image of the setup can be seen in Figure 3.2 and the system parameters can be seen in Table 3.1.
Table 3.1: Table of the system parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value [unit]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiver telescope focal length</td>
<td>F_{rec}</td>
<td>800 [mm]</td>
</tr>
<tr>
<td>Transmitting telescope focal length</td>
<td>F_{trans}</td>
<td>500 [mm]</td>
</tr>
<tr>
<td>Receiver telescope diameter</td>
<td>D_{rec}</td>
<td>205 [mm]</td>
</tr>
<tr>
<td>Transmitter telescope diameter</td>
<td>D_{trans}</td>
<td>102 [mm]</td>
</tr>
<tr>
<td>Baseline separation distance</td>
<td>L</td>
<td>814 [mm]</td>
</tr>
<tr>
<td>Laser wavelength</td>
<td>λ</td>
<td>808 [nm]</td>
</tr>
<tr>
<td>Laser power</td>
<td>P_0</td>
<td>3.2 [W]</td>
</tr>
<tr>
<td>Number of pixels</td>
<td>N_{pix}</td>
<td>2048 [#]</td>
</tr>
<tr>
<td>Pixel width</td>
<td>W_{pix}</td>
<td>14 [\mu m]</td>
</tr>
<tr>
<td>Pixel height</td>
<td>H_{pix}</td>
<td>200 [\mu m]</td>
</tr>
<tr>
<td>Reflectance termination plate</td>
<td>R_{term}</td>
<td>4 [%]</td>
</tr>
<tr>
<td>Laser spot size</td>
<td>S</td>
<td>233×25 [mm2]</td>
</tr>
</tbody>
</table>

3.3 Range calibration

The observed scattering angles between the laser beam and a pixel p, is given by

$$\gamma_p = \tan^{-1}(L/r).$$ (3.1)
The relation between the distance, r, an echo origins from, and which pixel, p, the echo is projected on is given by

$$r = L[pW_{pix}(\sin(\theta) - \cos(\theta)\tan(\phi)) + B_p] \over pW_{pix}(\cos(\theta) + \sin(\theta)\tan(\phi)) + B_p\tan(\phi)].$$

(3.2)

where B_p for a pixel p is given by

$$B_p = \frac{r_{term}F_{rec} - F_{rec}}{r_{term}F_{rec}} - pW_{pix}\sin(\theta),$$

(3.3)

The swing angle ϕ, i.e. the angle between the laser beam and the receiver axis, is given by

$$\phi = \tan^{-1}(L/r_{term}) - \tan^{-1}\left(\frac{p_{term}W_{pix}\cos(\theta)(r_{term} - F_{rec})}{r_{term}F_{rec}}\right).$$

(3.4)

where p_{term} is the pixel on which the echo from the termination plate at distance r_{term} is positioned.
4.1 Raw data processing

The raw data, in 16 bit unsigned integer format, is read into matrices in Matlab, one file containing 10 seconds of collected data at all ranges at a time. The background (off slot) is subtracted from the data (on slot) by subtracting a mean of the two neighboring off slots from every on slot. An image of a typical file during dusk can be seen in Figure 4.1. The insects can be seen as the small yellow dots (high intensities) and the small regions of higher intensity with a periodic structure arising from the wing beats.

\[\text{Figure 4.1: From the original time-range map, the insect signals can be seen as small areas with a periodic structure arising from the wing beats.} \]

4.1.1 Insect thresholding and extraction

From the file, the minimum, median and maximum intensities are obtained, as can be seen in Figure 4.2. The threshold for what is considered to be an insect,
corresponding to a signal-to-noise ratio, \(SNR = 2 \), is set to

\[
I_{\text{thresh}} = I_{\text{med}} + 5 \times I_{\text{iqr}},
\]

where \(I_{\text{med}} \) is the median and \(I_{\text{iqr}} \) is the interquartile range intensity of every time sample. A plot of maximum, median and minimum intensities for the same file as in Figure 4.1 can be seen in Figure 4.2.

Figure 4.2: The maximum, median and minimum intensities for each time and range can be extracted from the file. This is used to set a threshold for an insect observation intensity.

Identification of positions corresponding to insects in the time-range file are done using a binary mask. The mask maps the positions that have an OCS exceeding the threshold intensity. The edges of the insect area is eroded with a 1 pixel \(\times \) 3 time samples window to omit observations that are too short to be analyzed. Further, it is dilated with a 5 pixel \(\times \) 30 time samples window to include flanks of observations which are not above threshold and make sure no observations are analyzed twice. The resulting binary mask is used to determine which positions in the original time-range map that are extracted and saved as an insect observation in time and range.

All range pixels associated with one time sample for a specific observation are then summed into a time series. The time series, range-time map and other relevant observation and file parameters are saved into a .mat-file that is used for the frequency analysis. A schematic flowchart of the raw data processing can be seen in Figure 4.3.
Figure 4.3: The process during the raw data processing starts with reading the files and obtaining the median, minimum and maximum intensities for every time sample in the file. The intensities are converted to OCS, and the insect observations can be identified in OCS using set thresholding and extraction parameters.

4.1.2 OCS and apparent size calibration

The intensity of the time series is calibrated from counts in uint16 to optical cross-section (OCS), σ_{obs}, in units of mm^2 as done by Brydegaard [26,49–51],

$$\sigma_{\text{obs}} = \frac{\sigma_{\text{term}} \cdot r_{\text{obs}}^2 (I_{\text{obs}}(r) - I_{\text{med}}(r))}{(I_{\text{med}}(r) \cdot r_{\text{term}}^2)}. \quad (4.2)$$

where the optical cross-section at the termination can be calculated as

$$\sigma_{\text{term}} = S \cdot R_{\text{term}}, \quad (4.3)$$

where R is the reflectance of the termination plate and S is the illuminated area on the termination, which can be seen in Figure 4.4.

Further, the size of a detected insect is calibrated in terms of apparent size,

$$a = \frac{r \cdot \cos(\theta) \delta_{\text{pix}} W_{\text{pix}}}{F_{\text{rec}}}, \quad (4.4)$$

where δ_{pix} is the maximum number of range pixels associated with one separate time sample.
4.2 Finding the fundamental wing beat frequency

The time series will consist of the reflection from the body of the insect and the reflections from the wing beats. There are several ways to find the WBF from a detected time series. The WBF can be estimated by \(WBF = \frac{1}{\tau} \) where \(\tau \) is an estimation of the time between the wing beats \[42\]. Other methods include using Cepstrum analysis \[52\], finding the WBF by Hilbert-Huang transform \[53\], or Fourier transform \[42\]. In Figure 4.5 a time series and a Fourier transformed time series can be seen, showing the WBF, the transit time, \(\delta t \), and the wing beat period, \(\tau \), \[42\].

The problem with these methods is that the wing beats in the time series are often irregular, and the power spectra are often noisy and may contain side lobes, which results in a lower frequency than the actual WBF is considered to be the WBF.

4.2.1 Parameterization model

Another way of finding the WBF, developed by Brydegaard \[36\], is to fit a number of harmonics containing the WBF and overtones to the time series. Since the WBF is unknown, harmonics containing all possible WBF for the observation are fit to the signal, one frequency at a time.

The lowest possible WBF is given by the transit time of the observation. A criterion of three wing-beats within the time series is defined, resulting in a minimum possible WBF, \(f_{min} = \frac{3}{\Delta t} \). The maximum possible WBF is the Nyquist frequency \(f_N = \frac{f_{sample}}{2} \). When all possible frequencies has been tested, the frequency that yields the fit with the lowest residual is chosen to be the WBF.

For every frequency \(f_i \) that is tested, the body contribution, \(b \), of the signal
Figure 4.5: The WBF can be obtained using the median peak distance in the power spectrum or by using the time difference between the peaks in the time series.

is obtained using a sliding window that slides through the signal and chooses the lowest value of OCS within the window to represent the body contribution. The window size depends on the current test frequency as $W = 2 \times \frac{f_N}{f_l}$, rounded to closest integer. The size of the window, W, is related to the degrees of freedom, (DOF’s) as

$$\text{DoF}_{\text{body}} = \frac{l}{W},$$

rounded to closest integer, where l is the number of time samples in the time series. Further, the time series corresponding to the body contribution is smoothed with a Gaussian filter with full width half maximum $FWHM = \frac{W}{2}$, and the noise level of the corresponding time samples are added.

The signal arising from wing beats is the difference between the original time series and the body time series. The wing signal is reconstructed by projecting the time series on a regressor, Φ, consisting of a number of harmonic functions with the current test frequency and overtones of it.

$$\Phi_{l,1+2h_{\max}} =$$
\[
\begin{bmatrix}
 b_1 & b_1 \sin(2\pi h_1 f_i t_1) & b_1 \cos(2\pi h_1 f_i t_1) & b_1 \sin(2\pi h_2 f_i t_1) & \ldots & b_1 \cos(2\pi h_{\max} f_i t_1) \\
b_2 & b_2 \sin(2\pi h_1 f_i t_2) & b_2 \cos(2\pi h_1 f_i t_2) & b_2 \sin(2\pi h_2 f_i t_2) & \ldots & b_2 \cos(2\pi h_{\max} f_i t_2) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
b_l & b_l \sin(2\pi h_1 f_i t_l) & b_l \cos(2\pi h_1 f_i t_l) & b_l \sin(2\pi h_2 f_i t_l) & \ldots & b_l \cos(2\pi h_{\max} f_i t_l)
\end{bmatrix}
\]

The variable
\[h_k = 1, 2, \ldots, h_{\max} = 1, 2, \ldots, \left\lfloor \frac{f_N}{f_i} \right\rfloor \]
is a counter, giving the number of sine and cosine functions respectively. By multiplying the current test frequency with \(h_k \), the first sine and cosine functions in the regressor will contain the current frequency being tested as WBF, the second sine and cosine functions contain the first overtone, etc. This means that the number of columns in the regressor, i.e. the degrees of freedom in the regressor, is given by

\[\text{DoF}_{\text{regr}} = 1 + 2h_{\max}, \]
corresponding to one unknown constant, \(h_{\max} \) sine functions and \(h_{\max} \) cosine functions. Multiplying with \(b_{1,2,\ldots,l} \) corresponds to weighing the regressor with the the OCS contribution from the body. The weighing is done since there would be no signal from the wing beats unless the body of the insect is in the laser beam. An illustration of the weighing of the regressor can be seen in Figure 4.6.

\[\text{Figure 4.6: Illustration of the weighing effect of the harmonic functions.} \]

Using linear regression, (least squares method),

\[C = (\Phi^T \Phi)^{-1} \Phi \sigma_{obs} \] \hspace{1cm} \text{(4.5)}

\[\hat{\sigma} = \Phi \cdot C, \] \hspace{1cm} \text{(4.6)}
a fit of the time series is obtained and the sum of squares residual,

$$res_i = \sum_{j=1}^{l} (\sigma_{obs,j} - \hat{\sigma}_j)^2,$$

between the fit and the time series for the current test frequency is saved.

This results in a frequency dependent residual vector, Res_{tot}, with a residual value res_i for every tested frequency, f_i, and the frequency that yield the lowest residual is chosen as WBF.

4.2.2 Frequency preference of the model

If a signal that does not contain any frequency would be seeded into the model, the residual curve should be flat. If a signal containing a frequency is seeded into the model, the expected residual curve should be flat, except for dips corresponding to the frequency of the signal and the overtones of this frequency. Unfortunately the model is biased toward the extremes, it either chooses a high frequency, which is referred to as the right ditch, or a low frequency, referred to as the left ditch, as can be seen in Figure 4.7.

![Figure 4.7: Illustration of the two ditches. If the model chooses a low frequency DoF$_{regr}$ is larger than the number of sample points in the time series and a transform is obtained. If the model chooses a high frequency, the window size is small and follows the time series up in the wings.](image)

The frequency preferences of the model is investigated by seeding the parametrization model with 1000 empty observations, (data that does not contain any insect observation and hence no frequency), of different transit times, which can be seen in Figure 4.8.
Figure 4.8: Residual vector when seeding data that does not contain any observation into the parametrization model.

The residual curve, Res_{tot}, in Figure 4.8 can be split into two pieces, $Res_{tot} = Res_{body} \cdot Res_{regr}$. Res_{body} arises from the sliding window, i.e. the residual if the body is fit to the signal, and Res_{regr} arises due to the harmonics, i.e. the residual if the regressor would not be weighed with the body. This can be seen in Figure 4.9.

Figure 4.9: a) Residual vector from the regressor as a function of frequency. When DoF$_{regr}$ increases for lower frequencies, the residual decreases. b) Residual vector from the sliding as a function of frequency. When DoF$_{body}$ increases for higher frequencies, the residual decreases.

As it can be seen from Figure 4.9, the sliding window gives rise to a step
behavior favoring high frequencies. That is a result of the size of the sliding window. The window size can at minimum be 2 time samples, resulting in the lowest value of every second sample point in the time series describing the body. In that case the body time series itself almost describes the original time series. Passing these specific frequencies where the window size changes, for example around 700 Hz where it changes from $W = 2$ to $W = 3$ and the body contribution suddenly is described by every third value in the time series, results in a sudden decrease in DoF_body and hence a sharp increase in the residual.

Considering Res_{regr} there is a similar step behavior. The steps are decreasing towards lower frequencies as a result of an increasing DoF_{regr}. For frequencies up to $f_i = \frac{1}{7}$, DoF_{regr} is larger than the number of sample points in the time series. Hence there will be one or more harmonics to describe every point in the time series, and the fit is a transform yielding zero residual. The shorter transit the time of the observation, the higher the lowest observable frequency that yields a transform becomes.

In order to properly determine the wing-beat frequency in an insect signal, the frequency preferences of the model have to be evaluated and accounted for. Three main alternatives to compensate for frequency preferences have been investigated in this thesis; using an general analytic function, observation specific function, and lifting up the residual curve at every DoF_{regr} change or change in window size.

Compensation method - Analytic function

The first alternative is to use an analytic expression to reconstruct the step behavior of the residual curve,

$$\hat{\text{Res}}_{\text{tot}} = \hat{\text{Res}}_{\text{regr}} \cdot \hat{\text{Res}}_{\text{body}} = (1 - \frac{\text{DoF}_{\text{regr}}}{l}) \cdot (1 - \frac{\text{DoF}_{\text{body}}}{l}).$$

(4.8)

The resulting analytical function for an observation with $l = 100$ can be seen in Figure 4.10.

The original residual curve is then divided by the analytical function in order to compensate for the preferences towards low and high frequencies.

Compensation method - Analytical function using Res_{body}

The second alternative is to compensate for the preferences towards high frequencies by division between the original residual curve and the body residual Res_{body}. The preference towards lower frequencies cannot compensated for in the same manner by division with Res_{regr}, since that would erase the dips for matching WBF as as well. Instead, the step shape of Res_{regr} is found by fitting Res_{regr} to the analytical function describing the regressor residual in the previous method, multiplied with an extra factor in order to better match the observation specific shape. The final expression is described as

$$\text{Res}_{\text{tot},i} = (1 - \frac{\text{DoF}_{\text{regr},i}}{l^c}) \cdot l^c \cdot \text{Res}_{\text{body}},$$

(4.9)
Figure 4.10: Total analytical function and analytical residual curves for the body and the regressor for an observation with \(l = 100 \).

where \(l \) is the number of time samples in the time series, and the exponent \(c \) is an unknown variable, found by a fminsearch function in Matlab.

Compensation method - Lifting

The third alternative is to use two vectors, \(D_{body} \) and \(D_{regr} \), that gives the number of DoF’s in the sliding window and regressor for every frequency respectively. For every two consecutive frequencies where the \(DoF_{body} \) or \(DoF_{regr} \) changes, the difference between the corresponding residual values are added to the the residuals of lower frequencies before the DoF change.

4.2.3 Fine tuning

When model biases are accounted for, the frequency that gives the lowest residual is chosen to be the WBF. Since only a limited number of frequencies are tested originally, the analysis is done once more in a 5% range around the chosen WBF, to obtain a frequency resolution of 0.5 Hz. The process of the frequency analysis can be seen in the flowchart in Figure 4.11.
Figure 4.11: The frequency analysis includes extracting the observation data obtained from the main process. If the observation has at least three wing-beats it is analyzed. A model is constructed for a number of test frequencies, and the frequency yielding the lowest residual is selected as the WBF. The model consists of a sliding window that slides through the time series and chooses the lowest value of OCS in the window to build a body vector. The wing beats are constructed using a regressor with a constant and set of harmonic functions, which depends on the test frequency. Using linear regression (least squares method) a fit of the time series is obtained and the sum of squares residual of the fit and the time series is saved in a residual vector with a residual corresponding to every test frequency. Model biasing is compensated for and the frequency that gives the lowest residual after compensation is chosen as WBF. Finally, the WBF is fine tuned in a small range around the chosen WBF.
Chapter 5

FIELD CAMPAIGNS

5.1 Ivory Coast field campaign

The first part of the data was collected during a field campaign in Yamous-soukro in Ivory Coast, using a Scheimpflug Lidar system with a sample frequency of 1750 or 3500 Hz. The system was aligned horizontally and terminated after 516 m. The system and termination positions can be seen in Figure 5.1.

![Map over the system and termination positions in Ivory Coast.](image)

Figure 5.1: Map over the system and termination positions in Ivory Coast.

The data from Ivory Coast is used to investigate how the detection limits in terms of apparent size and OCS change when the sample frequency changes. The data is recorded just before dawn (04.30-06.30 am), at two different days with clear sky condition. This period is chosen since it is the time closest to dawn/dusk when the insects activity peak, where recordings using both sample frequencies without setup problematics and with similar weather conditions could be obtained. The number of observations recorded can be seen in Figure 5.2.

Images of the the system and the campus can be seen in Figure 5.3.
Figure 5.2: Histogram over the recording times for the observation used to investigate the detection limit.

Figure 5.3: a) On our way to eat lunch b) Working with the setup on the roof outside the lab c) Samuel is cutting branches that would interrupt the laser beam. d) African morning sun from the window where the setup was placed. e) Group picture with Professor Jérémie Zoueu who was our contact person, and Benoit Kouakou, a PhD student who works with Lidar.
5.2 Tanzania field campaign

The other part of the data comes from measurements in Lupiro in Tanzania where a Scheimpflug Lidar system was recording data of insect activity during five days. The laser beam was aligned horizontally over a field in the outer part of the village. The setup parameters were identical to the one used in Ivory Coast, except that it was terminated after 595 m and had a constant sample frequency of 3500 Hz. The system and termination positions, as well as the house where the system was placed can be seen in Figure 5.4.

![Figure 5.4: a) Map over the system and termination positions in Tanzania. b) Image of the laser beam in Tanzania.](image)

In this thesis, approximately 120,000 insect observations from August 31 to September 1 are used to study the range dependent biases of background light and transit times of the observation. Further, a sample of 1000 observations from dusk (ca 7.00 pm) August 31 is used to study the frequency preferences of the model.
Chapter 6

RESULTS

6.1 Detection limit

The relation between OCS and apparent size can be seen in Figure 6.1, showing that the relation between the apparent size and OCS has the same gradient when using 1750 Hz and 3500 Hz, but the curve for 1750 Hz is shifted towards lower OCS. Studying the distribution of OCS and apparent size in Figure 6.1 it can be seen that the limit of detectable OCS decrease with almost a factor 10 when decreasing the sample frequency from 3500 to 1750, whereas the detectable apparent size is increased with a factor 1.1.

Figure 6.1: Scatter plot of apparent size vs OCS and Biomass spectrum of apparent size and OCS. The limits for detectable OCS decrease with almost a factor 10 when the sample frequency is decreased to half. Further, the detectable apparent size is increased with a factor 1.1.
In Figure 6.2, range dependent biomass spectra can be seen for 1750 and 3500 Hz, showing the change in detectable OCS, while the range distribution is unchanged.

Figure 6.2: Range dependent biomass spectra using a sample frequency of 1750 Hz and 3500 Hz. Using a sample frequency of 1750 Hz, the detectable OCS decrease approximately from 1 mm2 to 0.5 mm2. The sample frequency does not affect the range distribution of observations.

6.2 Range biasing

In Figure 6.3, the relation between transit time and range for the approximately 120000 observations from 18.37 August 31 to 10.37 September 1, 2016, can be seen. Most observations have rather short transit times, (<50 ms), and more observations are detected at shorter ranges. However, the number of observations with long transit times increase with increasing ranges.

In Figure 6.4, the range dependent background, median, minimum and noise level intensity, averaged from 3 minutes of recordings during dusk and mid day August 31, is plotted. During dusk, the background level is approximately constant, while there is a range dependence during day. Further, a scatter plot between background level and noise level can be seen in Figure 6.4, showing a linear relation between background and noise levels during day.
Figure 6.3: Transit time for the almost 120 000 observations during the first two days of the measurements in Tanzania. Most observations are short and are detected close to the system. However, when the range increase, a higher amount of observation with longer transit times are detected.
Figure 6.4: Background, median, minimum and noise level intensity as a function of range during day and dusk. Scatter plot between background level and noise level during day and dusk. During dusk, the relation between noise and background level appears to be constant, while there is a linear dependence during day.
6.3 Frequency preference compensation

In Figure 6.5, residual curves after compensation can be seen for a 30 ms observation with clear wing-beats. In Figure 6.6, 6.7 and 6.8 residual curves after compensation can be seen using the analytical function, analytical function with observation specific Res_{body}, and the lifting method, respectively. The chosen WBF for the three methods are marked in with an arrow.

![Figure 6.5: Residual curves for the three compensation methods for a clear observation. The chosen WBF is color-coded and marked. The lifting method and the method using the observation body residual chooses the correct WBF whereas the method using analytical function chooses a WBF around 700 Hz.](image)

It can be seen from Figure 6.5 and 6.6 that compensation using an analytical function, results in a residual curve biased towards high frequencies. Further, the function does not succeed in compensation for the steps in the residual curve.
Figure 6.7: Residual curve and compensation curve using analytical $\tilde{\text{Res}_{\text{regr}}}$ and Res_{body}. The chosen WBF is marked. Even after compensation there are remaining steps in the residual and there is a small bias towards higher frequencies.

Figure 6.8: Residual curve and compensation curve using the lifting method. The chosen WBF is marked in the power spectrum. An overcompensation using the lifting method can be seen around 100 and 300 Hz, resulting in an increased residual.

Using the observation body residual instead, there are still steps present in some cases, even if they are not as pronounced as when using an analytical function. Further, there is a remaining bias towards higher frequencies. This can be seen in Figure 6.5 and 6.7.

The lifting method is biased towards lower frequencies due to the larger DoF_{regr} for low frequencies, as can be seen in Figure 6.5. Further, in some observations, there are DOF changes in a dip, resulting in overcompensation when lifting the curve up, as around 300 Hz in Figure 6.8.

The distribution of the WBF of 580 observations for the three methods can be seen in Figure 6.9. The method using an analytical function is biased towards frequencies above 700 Hz, i.e. where DOF_{body} changes, whereas the method using an observation body residual and the lifting method gives a more
similar distribution. However, using the observation body residual gives an increased amount chosen WBF around 290 Hz, 438 Hz and 500 Hz, and hence seems to have a higher likelihood of choosing frequencies at DoF changes.

Figure 6.9: WBF distribution for the three compensation methods using 1000 test observations. No compensation, or compensation using the analytical function results in a clear bias toward higher frequencies. The lifting method and the method using the observation body residual results in more observations with lower WBF, which coincides with manual WBF selection. Further, there are small peaks around known DoF changes when using the observation body residual, e.g. round 210 Hz, 290 Hz 500 Hz and 700 Hz.
Chapter 7

DISCUSSION

7.1 Detection limit

Investigating the detection limit of the system shows that there is a connection between the sample frequency and the smallest OCS that can be detected, as seen in Figure 6.1. A lower sample frequency means that the exposure time is longer, the laser pulse energy is higher, and hence it is easier to detect insects giving rise to low intensity signals given that exposure time does not exceed transit time. The shift towards higher apparent sizes using a lower sample frequency can be explained by that the insect have time to cover more range pixels during an exposure.

7.2 Range biasing

From Figure 6.4 it can be seen that there is a clear dependence on range regarding the background level during the day. That might be due to sunlight, clouds, branches that are shadowing the sun etc. However, since mosquitoes in general are active during dusk and dawn and measurements naturally would take place during those times of the day, where the background level seems to be constant, this might not be a problem worth emphasizing.

Considering Figure 6.3, more observations are detected at short ranges, which is an effect of the range-dependent sensitivity.

Further, the number of observations with long transit times increase with range. This is partly due to the expansion of the beam width at longer distances, so an insect flying straight through the beam has a longer transit distance. In reality, some insects are flying along the beam. In that case the insect is considered to be detected on the median range for the observation. Insects that flies along the whole beam and hence have a longer transit time are then considered to be detected at longer ranges than insects that fly along the beam only at short ranges. The main reason to the range dependent transit time is, however, the increasing probe volume, which is the region where the laser
beam overlaps with the field of view of the camera.

7.3 Frequency preference compensation

Analytical function

The main problem with the analytical function is that while the observation residuals vary depending on \(l \) as well as the size and shape of the body and wing-beats, the analytical compensation curve only depend on \(l \) without taking the shape and size of body and wings into account.

In Figure 4.10, it can be seen how the stepwise residual increase is equal for all steps of the analytical \(\hat{\text{Res}}_{\text{regr}} \), which is not the case for the observation residual \(\text{Res}_{\text{regr}} \). Further, in the analytical function, \(\hat{\text{Res}}_{\text{body}} \), the residual difference for every step is increasing towards higher frequencies, which is not in accordance with the observation residual \(\text{Res}_{\text{body}} \). Studying Figure 6.5 and 6.6, it can be seen that the shape and step sizes of the uncompensated residual curves can differ between observations to a large extent.

Due to the mismatch of the step-sizes in the observation residual and the compensation curve, steps will still be present in the residual after compensation. This is mainly a problem regarding regressor residual, as the analytical expression \(\hat{\text{Res}}_{\text{regr}} \) have a higher gradient for low frequencies than \(\text{Res}_{\text{regr}} \). The result is a compensation method that is biased towards higher frequencies, as can be seen in Figure 6.9.

Analytical function using \(\text{Res}_{\text{body}} \)

As can be seen from the results part, using the observation body residual is a suitable compensation method in some cases. The main problem is the mismatch of the step height in the \(\text{Res}_{\text{body}} \) and \(\hat{\text{Res}}_{\text{tot}} \) that results in a small "false peak". In case of short and unclear observations that lack sharp real peaks, the model find one of the false peaks. In Figure 6.9, this is seen as biasing towards frequencies with DoF changes according to Figure 4.8, for example, 700 Hz, 500 Hz, 438 Hz and 210 Hz.

Step lifting

As can be seen from Figure 6.5 and 6.8, the lifting method is a good alternative in some cases. The main problem is the overcompensation that occurs when there is a DoF change that coincides with the WBF or an overtone at low frequencies.

Apart from the frequency preference of the model, there are other factors that will affect the result of the frequency distribution. The data contains lots of insufficient observations that lack clear wing-beats, which often coincide with a short transit time. As can be seen from Figure 4.8 and 4.9, a shorter transit time leads to sharper steps and a sinusoidal behavior in the residual curves. If the observation also lack clear wing-beats, the results is that that either a frequency
corresponding to a DoF change, the frequency of the body contribution, or a random frequency due to the sinusoidal behavior is chosen as WBF.
Chapter 8

CONCLUSIONS AND OUTLOOK

The investigation of the detection limit suggests that a lower sample frequency means a lower detectable OCS which was as expected. However, only two different sample frequencies are compared in the study. To be able to come to significant conclusions the detection limit should be investigated further.

Regarding the range biasing, the most important results are that less observations are detected at longer ranges, and transit times are longer at increasing ranges, which should be kept in mind when investigating transit times of observations.

The parametrization model has shown to be a reasonable method to find the WBF of the time series in the full frequency range, when compensating for the frequency preferences of the model. Unfortunately, neither of the compensation methods that has been tested is problem free.

Presently, the lifting method is the method that gives accurate WBF for most observations. The two remaining problems with the lifting method are when the WBF coincide with a change in DoF, and the low frequency biasing due to the sinusoidal shape of the body time series, is not as frequent as the DoF change biasing in the other two models.

Most of the observations where the model does not find the WBF accurately have short transit time, lack clear wing-beats, etc. Several criteria to sort out low-quality observations, such as shape and size of the body and wing-beats, has been investigated during the year and should be investigated further. Being able to sort out observations that the model is unable to analyze would reduce the biasing that can be seen in the WBF distribution, and facilitate further improvement of the compensation methods.
Bibliography

APPENDIX

Matlab codes
Raw data processing

clear all
close all
clc

% Define directory of files
	dn='J:\Field Campaign Yamoussoukro\20170409\';

fn=dir([dn '*.dat']);
 [~,ind]=sort([fn.datenum]);

% Define geometry and system parameters

noFiles=length(fn);
noPix=2048;
clock=20;
SNR=2;
tDiff=0;
marginToTerm=4;
shrink=ones(1,3);
transFoc=0.5;
transDiam=0.102;
recFoc=0.8;
recDiam=0.205;
pixLength=200e-6;
pixPitch=14e-6;
sensTilt=45;
sepDist=0.814;
termDist=516; %598;
spotWidth=0.233;
spotHeight=0.025;
termRefl=0.04;

P1=polyfit([0 termDist],[transDiam spotWidth],1);
P1=@(r) P1(1)*r+P1(2);
P2=polyfit([0 termDist],[transDiam spotHeight],1);
\(P2@(r) = P2(1) \cdot r + P2(2); \)

% Define struct to save obs variables
observation=[];

frDark=zeros(noPix,noFiles);
frMin=zeros(noPix,noFiles);
frMed=zeros(noPix,noFiles);
frMax=zeros(noPix,noFiles);
frIqr=zeros(noPix,noFiles);
frThresh=zeros(noPix,noFiles);
frTermIntensity=zeros(1,noFiles);
frTermPos=zeros(1,noFiles);
frTermWidth=zeros(1,noFiles);
frTime=zeros(1,noFiles);
frRange=zeros(noPix,noFiles);
frProbeVol=zeros(1,noFiles);
frOCSconv=zeros(noPix,noFiles);
frTermOCS=zeros(noPix,noFiles);
frMinDet=zeros(noPix,noFiles);
frMaxDet=zeros(noPix,noFiles);

% Read every file
for k=2:noFiles
 % Opens, reads and shapes the file
 fid=fopen(fullfile(dn,fn(k).name),'r','b');

 noLines=fread(fid,1,'*uint16');
 [-~]=fread(fid,1,'*uint16');
 [-~]=fread(fid,1,'*uint32');
 newLine=fread(fid,1,'*uint8');

 timeStamp=zeros(noLines,1);
 slotIncr=zeros(noLines,1);
 slotInd=zeros(noLines,1);
 Draw=[];

 l=1;
 while newLine==1
 timeStamp(l)=fread(fid,1,'*uint32');
 slotIncr(l)=fread(fid,1,'*uint16');
 slotInd(l)=fread(fid,1,'*uint8');
 Draw(:,l)=fread(fid,noPix,'*uint16');
 l=l+1;
 newLine=fread(fid,1,'*uint8');
 end

 while noLines>size(Draw,2)
 timeStamp(end)=[];
 end

end
slotIncr(end)=[];
slotInd(end)=[];
noLines=noLines-1;
end
while slotInd(end)~=0
 Draw(:,end)=[[];
timeStamp(end)=[[];
slotIncr(end)=[[];
slotInd(end)=[[];
noLines=noLines-1;
end
fclose(fid);

Draw=flipud(Draw);
brightSlots=find(slotInd);
darkSlots=find(~slotInd);

bgr=interp1(timeStamp(darkSlots),Draw(:,darkSlots),
 timeStamp(brightSlots),'linear');
D=Draw(:,brightSlots)-bgr;
noLines=size(D,2);

%% Uses the file name to define when the file was recorded
name=fn(k).name;
temp = datetime(fn(k).datenum, 'ConvertFrom', 'datenum');
temp = temp + hours(tDiff);
TanzaTime = datenum(temp);
frTime(k)=TanzaTime;

%% Retrieve statistics
frDark(:,k)=median(Draw(:,darkSlots),2);
Dsort=sort(D,2);
frMin(:,k)=Dsort(:,1);
frMed(:,k)=Dsort(:,round(end/2));
frMax(:,k)=Dsort(:,end);
frIqr(:,k)=Dsort(:,round(3/4*end))-
 Dsort(:,round(1/4*end));
frThresh(:,k)=frMed(:,k)+SNR*abs(frMed(:,k)-frMin(:,k));
D=D-repmat(frMed(:,k),1,noLines);

%% Termination
[frTermIntensity(k),frTermPos(k)]=max(frMed(:,k));
termEnd=frTermPos(k)-1+find(frMed(frTermPos(k):end,k)>...
 frTermIntensity(k)/2,1,'last');
termStart=flipud(frMed(:,k));
termStart=frTermPos(k)+1-find(termStart((2049-frTermPos(k)):end)
 <frTermIntensity(k)/2,1,'first');
frTermWidth(k)=termEnd-termStart+1;
frTermIntensity(k)=sum(frMed(termStart:termEnd,k));
% Regions of interest
ROImask=zeros(noPix,noLines);
ROImask(1:(frTermPos(k)-marginToTerm*frTermWidth(k)),:)=1;
FOVregion=1:(frTermPos(k));

%% Range vector
termPixDist=1/(1/recFoc-1/termDist);
pix_y=sind(sensTilt)*pixPitch*(noPix/2-(1:noPix)');
termPix_z=sqrt(termPixDist^2-pix_y(frTermPos(k))^2);
pix_z=cosd(sensTilt)*pixPitch*(1:noPix)';
pix_z=flipud(pix_z)+termPix_z;
termAng=atand(sepDist/termDist);
termPixAng=atand(pix_y(frTermPos(k))/pix_z(frTermPos(k)));
alpha=termAng-termPixAng;
pixAng=atand(pix_y./pix_z);
rAng=pixAng+alpha;
frRange(:,k)=sepDist./tand(rAng);
dr = interp1((frRange(1:(end-1),k)+frRange(2:end,k))/2,diff(frRange(:,k)),...
frRange(:,k),'pchip','extrap');

%% Probe Volume
beamWidth=P1(frRange(FOVregion,k));
beamHeight=P2(frRange(FOVregion,k));
FOVwidth=pixLength*frRange(FOVregion,k)./pix_z(FOVregion);
FOVheight=sind(sensTilt)*pixPitch*frRange(FOVregion,k)./pix_z(FOVregion);
probeVolWidth=min(beamWidth,FOVwidth);
probeVolHeight=min(beamHeight,FOVheight);
probeVolume=dr(FOVregion).*probeVolWidth.*probeVolHeight;
frProbeVol(k)=sum(probeVolume(1:frTermPos(k)));%

%% OCS calibration
frTermOCS(k)=probeVolWidth(frTermPos(k))•probeVolHeight(frTermPos(k))•termRefl;
frOCSconv(:,k)=frTermOCS(k)•frRange(:,k).^2./(frMed(:,k)•...
frRange(frTermPos(k),k).^2);
frOCSconv((length(FOVregion)+1):end,k)=0;
OCSmap=D.*repmat(frOCSconv(:,k),1,noLines);
frMinDet(:,k)=frOCSconv(:,k)•(frThresh(:,k)-frMed(:,k));
frMaxDet(:,k)=frOCSconv(:,k)•((2^16-1)-frMed(:,k));

%% Find insect observations
Dmask=(D>repmat(frThresh(:,k)-frMed(:,k),1,noLines)).•ROImask;
Dmask=imerode(Dmask,shrink);
Dmask=imdilate(Dmask,grow);
T=bwconncomp(Dmask);
%% Extract and parameterize observations

entry=[];
if T.NumObjects>0
 for l=1:T.NumObjects
 [rr,tt]=ind2sub(size(D),T.PixelIdxList{l});

 entry(l).fn=k;
 entry(l).rInd=min(rr):max(rr);
 entry(l).tInd=min(tt):max(tt);

 entry(l).rtMap=OCSmap(entry(l).rInd,entry(l).tInd).*...
 Dmask(entry(l).rInd,entry(l).tInd);
 entry(l).bsTS=sum(entry(l).rtMap,l);
 entry(l).time=datevec(frTime(k))+[0 0 0 0 0 time]
 (brightSlots(round(mean(entry(l).tInd))));
 entry(l).time=datenum(entry(l).time);
 entry(l).dt=length(entry(l).tInd)/fs;

 entry(l).centralPix=round(mean(entry(l).rInd));
 entry(l).range=frRange(entry(l).centralPix,k);

 [~,entry(l).pixCoverage]=mode(tt);
 entry(l).appSize=sind(sensTilt)*pixPitch*entry(l).pixCoverage*...
 entry(l).range/sqrt(pix_y(entry(l).centralPix)^2+...
 pix_z(entry(l).centralPix)^2);
 end

observation=[observation entry];
end

%% Saving

disp('Saving...')
dn2 = 'C:\Users\Alexandra\Documents\Master_Matlab\Master_matFilesElf\FA_in\';
save([dn2 'FA_in_Elf14_300short.mat'],'observation','frDark','frMin','frMed',...
 'frMax','frIqr','frThresh','frTermIntensity','frTermPos','frTermWidth',...
 'frTime','frRange','frProbeVol','frOCScov','frTermOCS','frMinDet','frMaxDet')
disp('Saved.')
Frequency analysis

% Required variables for this function: observation time series, sample frequency and noise amplitude
function eventOut = FA(event)

t_ser = event.OCS_event';
l_event = length(t_ser);
f_sample = event.f_sample;
max_t = l_event/event.f_sample;
t = linspace(0,max_t,l_event);

% Create Pow spec and freq vectors
% max meas freq is Nyqvist frequency
Freq_max = event.f_sample/2;
% min 3 wingbeats
Freq_min = 3/(max_t);

% Create test frequency vector
fminind = ceil(Freq_min/(Freq_max - 1)/500);
Freq_test = linspace(Freq_min,Freq_max,501-fminind);

% Enter freq an loop, if the event fulfill the conditions
if findpeaks(t_ser) > 2
 % Loop through and find np harmonics
 for f = 1:length(Freq_test)
 period = 2*Freq_max/Freq_test(f);
 body_np = bodyFilt(t_ser,Freq_test(f),Freq_max,event.half_noise);
 wings_np = t_ser - body_np;

 % Build regressor
 harm_np = [ones(l_event,1)];
 for h = 1:floor((Freq_max/Freq_test(f)))
 harm_np = [harm_np sin(2*pi*h*Freq_test(f)*t)' cos(2*pi*h*Freq_test(f)*t)'];
 end

 % Body weighing
 regr_np = harm_np.*repmat(body_np,[1 size(harm_np,2)]);
 coeff_np = regr_np\t_ser;
 coeff_wing = harm_np\t_ser;
 coeff_body = body_np\t_ser;
 end
end

if findpeaks(t_ser) > 2
 % Loop through and find np harmonics
 for f = 1:length(Freq_test)
 period = 2*Freq_max/Freq_test(f);
 body_np = bodyFilt(t_ser,Freq_test(f),Freq_max,event.half_noise);
 wings_np = t_ser - body_np;

 % Build regressor
 harm_np = [ones(l_event,1)];
 for h = 1:floor((Freq_max/Freq_test(f)))
 harm_np = [harm_np sin(2*pi*h*Freq_test(f)*t)' cos(2*pi*h*Freq_test(f)*t)'];
 end

 % Body weighing
 regr_np = harm_np.*repmat(body_np,[1 size(harm_np,2)]);
 coeff_np = regr_np\t_ser;
 coeff_wing = harm_np\t_ser;
 coeff_body = body_np\t_ser;
 end
end
t_ser_fit_np = regr_np*coeff_np;
resi_np(f) = sum((t_ser - t_ser_fit_np).^2)/l_event;

wingfit = harm_np*coeff_wing;
resiwing(f) = sum((t_ser - wingfit).^2)/l_event;

bodyfit = body_np*coeff_body;
resibody(f) = sum((t_ser - bodyfit).^2)/l_event;

end

%% Preference compensation

h = floor(Freq_max./Freq_test);
DOF_regr = 1+(2.*h);
W = round(2.*Freq_max./Freq_test);
DOF_wind = l_event./W;

Res_regr = (1-(DOF_regr./l_event));
Res_wind = (1-(DOF_wind./l_event));
Res_tot = Res_regr.*Res_wind;

% Alternative 1 - Analytical function

Res_1 = resi_np./Res_tot;

% Alternative 2 - resibody

resi_p = resi_np./resibody;
c = resi_p(1);
height = resi_p;
X = DOF_regr./l_event;
fitcoeff = fminsearch(@wingan,[c,4],[],X,l_event,height);
height = (1-X).*fitcoeff(1).*(l_event.^(1/fitcoeff(2)));

Res_2 = resi_p./height;

% Alternative 3 - lifting it up

Res_3 = resi_np;

for u = 1:length(DOF_wind)-1
 if DOF_wind(u) ~= DOF_wind(u+1)
 if u == 1
 Res_3(u) = Res_3(u) + (Res_3(u+1) - Res_3(u));
 else
 Res_3(1:u) = Res_3(1:u) + (Res_3(u+1)-Res_3(u));
 Res_3(u) = (Res_3(u-1) + Res_3(u+1))/2;
 end
end
if DOF_regr(u) ~= DOF_regr(u+1)

if u == 1
 Res_3(u) = Res_3(u) + (Res_3(u+1) - Res_3(u));
else
 Res_3(1:u) = Res_3(1:u) + (Res_3(u+1) - Res_3(u));
 Res_3(u) = (Res_3(u-1) + Res_3(u+1))/2;
end
end

% Find min res - change res dep on method
res = Res_3
[res_fin,f0ind] = min(res);
f0_p = Freq_test(f0ind);

% Fine tuning

for f = 1:length(test_reg)
 body = bodyFilt(t_ser,test_reg(f),Freq_max,event.half_noise);
 wings = t_ser - body;
 harm = [ones(l_event,1)];
 for h = 1:floor((Freq_max/test_reg(f)))
 harm = [harm sin(2*pi*h*test_reg(f)*t) cos(2*pi*h*test_reg(f)*t)';]
 end
 regr = harm.*repmat(body_np,[1 size(harm,2)]);
 coeff = regr\wings;
 t_ser_fit = regr*coeff;
 resi_fine(f) = sum((wings - t_ser_fit).^2)/l_event;
end
[res_ft, ind_ft] = min(resi_fine);
f0 = test_reg(ind_ft);

%%% Build up correct fit

body_p = bodyFilt(t_ser, f0, Freq_max, event.half_noise);
wings_p = t_ser - body_p;

DC = ones(l_event,1);
harm_p = [DC];

for h = 1:floor(Freq_max/f0_p)
 harm_p = [harm_p sin(2*pi*h*f0_p*t)' cos(2*pi*h*f0_p*t)'];
end

regr_p = harm_p.*repmat(body_p, [1 size(harm_p,2)]);
coeff_p = regr_p\wings_p;
t_ser_fit_p = regr_p*coeff_p;
t_ser_res_p = sum((wings_p - t_ser_fit_p).^2)/l_event;

%%% Save event parameters to event struct

event.harmDOF = DOF_regr(f);
 event.bodyDOF = DOF_wind(f);
...
else
 event.harmDOF = NaN;
 event.bodyDOF = NaN;
 ...
end

eventOut = event;
Body time series

% Sliding window creating body time series
% Requires, time series, current test WBF, f_s and noise amplitude

function bodyVect=bodyFilt(ts,f0,fs,noiseAmp)

L=round(2*fs/f0);

odd=mod(L,2); % Check if window is even or odd sized

if odd
 tsb=imerode(ts,ones(L,1)); % Sliding minimum
else
 tsb=imerode(ts,ones(L,1)); % Sliding minimum
 tsb=(tsb(1:(end-1))+tsb(2:end))/2; % interpolation
 tsb=[tsb(1); tsb];
end

W=normpdf(0:L,L/2,L/(4*sqrt(2*log(2))))/sum(normpdf(0:L,L/2,L/(4*sqrt(2*log(2))))); % Gaussian filter

bodyVect=tsb+noiseAmp;