RESILIENT MODEL SCHOOL IN NEPAL
ARCHITECTURE MASTER THESIS
RESEARCH & DESIGN PROPOSAL

LYDIA KOEDOOT
SPRING 2018
Lund University
ABSTRACT

During the Gorkha Earthquake in 2015 and its aftershocks, many schools have been damaged or collapsed in Nepal. Reconstruction of schools is still in progress. The lack of funding, resources, engineering skills, knowledge and accessibility makes it difficult for a lot of schools to reopen. My aim with this thesis project is to contribute to the resiliency of Nepal by proposing a design for a specific school in need.

Kitini High Secondary School is a secondary level school in Godavari, Lalitpur. The school has around 600 students, divided over four building blocks. One of the buildings is marked as unsafe after the earthquake. Two other blocks need to be demolished in the future due to road extension. The school owns land approximately 300 metres southwest of the current location which is available for construction of new facilities. The school is aiming towards becoming a model school, designed according to the standards set by the government of Nepal and guidelines for safe school design in seismic regions.

I travelled to Nepal to visit the school, meet the local people and to develop a tentative design proposal which we submitted to the Department of Education. After my trip, I have been working in Sweden on the final design to add spatial and architectural quality to the pragmatic model school proposal resulting in a proposal that is disaster resilient and a comfortable learning environment for the children.
2.1 Earthquakes

- **2.1.1 Earthquakes explained**
- **2.1.2 Earthquake effects**
- **2.1.3 Risk zones**
- **2.1.4 Gorkha Earthquake 2015**

2.2 Earthquake Effects on the Built Environment

- **2.2.1 Physical damage**
- **2.2.2 Factors affecting damage**

2.3 Seismic Design

- **2.3.1 Guidelines for earthquake-resistant building**
- **2.3.2 Construction materials**
- **2.3.3 Nepal National Building Code**

2.4 Climate-Induced Disasters

- **2.4.1 Floods**
- **2.4.2 Wind and thunder storms**
- **2.4.3 Fire**

2.5 Nepal

- **2.5.1 History**
- **2.5.2 Geography**
- **2.5.3 Infrastructure and resources**
- **2.5.4 Nepali architecture**
- **2.5.5 Traditional materials & construction methods**
- **2.5.6 School system**

2.6 School Design

- **2.6.1 Challenges of Nepal schools**
- **2.6.2 Guidelines for safe school design**
- **2.6.3 Role of school in resilient community**

3.1 Background

3.2 Program

3.3 Location

- **3.3.1 Geography**
- **3.3.2 Infrastructure**
- **3.3.3 Elevation**
- **3.3.4 Functions & services**

3.4 Challenges

4.1 Phase 1: Tentative Design

- **4.1.1 Introduction**
- **4.1.2 Urban planning**
- **4.1.3 Architectural design**
- **4.1.4 Construction**
- **4.1.5 Conclusion**

4.2 Phase 2: Final Design

- **4.2.1 Introduction**
- **4.2.2 Concept**
- **4.2.3 Masterplan**
- **4.2.4 Section**
- **4.2.5 Floorplans**
- **4.2.6 Elevations**
- **4.2.7 Detail**
- **4.2.8 Visualizations**

5.1 Background

5.2 Program

5.3 Location

5.4 Challenges

6.1 Abstract

6.2 Research and Design Project

6.3 Scope of Thesis

7.1 Background

7.2 Research and Design Project

7.3 Scope of Thesis

8.1 Introduction

8.2 Research and Design Project

8.3 Scope of Thesis

9.1 Introduction

9.2 Research and Design Project

9.3 Scope of Thesis

10 Conclusion

11 References

Acknowledgements
INTRODUCTION 1.1 BACKGROUND

“Earthquakes don’t kill people, buildings do.”

Earthquakes have a great impact on the built environment. They can destroy and impact social, physical and economic systems. But in most cases, it is not the earthquake itself that causes so much loss. The collapse of poorly constructed and unsafe located buildings is the cause of most human and economic loss. The built environment in seismic risk areas needs to be resistant and resilient for future disasters. Certain countries and regions are very prone to earthquakes due to their geographical location. Nepal is one of the risk regions that is frequently and severely hit. The main earthquake in 2015 killed nearly 9,000 people and left over 20,000 injured and 3.5 million homeless. Entire villages were flattened, and centuries-old architecture has been destroyed. Not only that, it is estimated that more than 5,000 schools were affected by the earthquake and its aftershocks, 1,000 of them collapsed.

The school system, which was already vulnerable before the earthquake, has been severely disrupted. It is important to rebuild schools to provide safe shelter and distraction for traumatized children. Personally, I am really interested in humanitarian (architecture) projects that help people in need. In my thesis I want to focus on a region threatened by natural disasters and propose a design for a safe (model) school which is resistant to future disasters.
The aim of my thesis project is to develop a design proposal for a school complex which is resistant to seismic forces and other context-specific hazards. This project consists of two parts. First, a thorough background research into the theory of seismology, seismic design and in particular safe school design according to the standards set by the government of Nepal. Secondly, a design project in which the acquired knowledge is applied.

I got in contact with Mr. Dinesh Thapa who is a teacher at Kitini Higher Secondary School in Godavari via the organization ETC (Educate the children) Nepal. This school has been damaged by the earthquake in 2015 and has been planning to propose the construction of a new model school as per standards of the Department of Education in Nepal. The proposal includes plans for the social, financial, educational, administrative and physical structures of the envisioned model school.

In March 2018, I have travelled to Nepal to visit the site and experience the context. I developed a design proposal for the new model school during my stay in Nepal as part of the proposal report, which we submitted on the 22th of March, 2018 at the Department of Education in Nepal.

The type design requirements for the model school are rather pragmatic in order to result in an affordable proposal. However, for this thesis project I developed several additional features in the design of the model school that will increase the architectural quality and comfort. The main key points in my design proposal are disaster resiliency and environmental sustainability.

The theoretical part of my thesis answers the questions how and where earthquakes are caused and how they affect the built environment (2.1 & 2.2). This research covers both general and detailed guidelines for constructing building structures in seismic regions for different commonly used construction materials in section 2.3. The focus of the guidelines will be on seismic measurements. Other context-specific hazards will also be discussed shortly in section 2.4. The guidelines given in 2.3 and 2.4 will result in a design toolbox for the design project.

In section 2.5, the historical, geographical, cultural and architectural context will be discussed with information about Nepal and specific information about the design region, the Kathmandu Valley. The final part of the theory will cover school design (2.6). This section discusses the school context in Nepal, their program and curriculum. Section 2.6 is a pre-section that leads up to the design project, since it addresses specific guidelines for safe school design including norms and standards that are given by the government of Nepal after the major earthquakes in 2015.

So, the main aim of the background research is to develop a solid foundation from which I will be able to design a disaster resilient school as per standards given by the Department of Education of Nepal. The project will be discussed in chapters 3-5. Chapter 3 discusses information about the program and location of the project. The results of the project will be displayed in chapter 4. The project has developed in roughly two phases. First the tentative design phase which covers the proposal that has been submitted in Nepal and secondly the final design phase which includes an additional alternative to the standard model school that has been proposed in the previous phase. How this alternative proposal can be of use will be discussed in the concluding remarks in chapter 5.
The earth consists of several layers: the inner core, outer core, mantle and the crust. The crust is the upper skin on the surface of the earth and is divided into several pieces called tectonic plates. The tectonic plates are constantly in motion. The plate boundaries are rough and have many faults. An earthquake happens when these plates suddenly slip past each other due to these faults. Energy that is stored overcomes friction and is being released, radiating outwards as seismic waves from the fault in all directions. The starting location of the earthquake is called the hypocentre. The epicentre is the location on the surface of the earth directly above the hypocentre. The surface where the plates slip is called the fault plane. The main and largest earthquakes are called mainshocks. Smaller earthquakes before and after the mainshock are called foreshocks and aftershocks.

<table>
<thead>
<tr>
<th>Types of faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal fault</td>
</tr>
<tr>
<td>Reverse fault</td>
</tr>
<tr>
<td>Sinistral strike-slip fault</td>
</tr>
<tr>
<td>Left-lateral strike-slip fault</td>
</tr>
<tr>
<td>Dextral strike-slip fault</td>
</tr>
<tr>
<td>Right-lateral strike-slip fault</td>
</tr>
</tbody>
</table>

Faults are basically cracks in the earth where different parts, crustal blocks, are moving in different directions relative to each other. There are different types of faults with different types of movement of the blocks (USGS, n.d.-b). Normal faulting occurs when the crust is pulled apart. The main block, the footwall, moves upwards relative to the overlying block, the hanging wall, which moves downwards. Reverse faulting is the opposite of normal faulting and occurs when the crust is compressed together. So here the footwall moves downwards, and the hanging wall is pushed upwards. Strike-slip occurs when crustal blocks move sideways past each other. Left-lateral strike-slip or sinistral strike-slip means that the far side moves to the left no matter which side you are on. Dextral strike-slip movement occurs when the far side moves to the right. Strike-slips usually have a nearly-vertical fault. Faults can vary from hundreds of kilometres to a few metres and are not always straight. Ruptures of faults can have significant bends and offsets.
There are two main types of seismic waves: body waves and surface waves. The body waves travel through the inner layer of the earth. They are faster and have a higher frequency than surface waves. (Michigan Technological University, 2007)

There are two types of body waves. P waves and S waves.

P waves
Also called primary waves or compressional waves. The particle motion is parallel to the propagation direction and travels through the earth by compression and dilation. They are in that way similar to sound waves.

S waves
Also called secondary waves or shear waves. The particle motion here is perpendicular to the propagation direction. These waves can only move through solid rock.

Surface waves travel mainly along the surface of the earth. They are the main cause of destruction during earthquakes. There are two kinds of surface waves: Love waves and Rayleigh waves.

Love waves
Love waves are the fastest surface waves and move the ground side-to-side with only horizontal motions. The particle motion is perpendicular to the propagation direction. They are the most destructive waves.

Rayleigh waves
Rayleigh waves have an elliptical motion perpendicular to the surface. This motion is retrograde, which means that the motion is counter-clockwise.

The magnitude of an earthquake is a number that characterizes the relative size and is based on the maximum motion that is recorded at a seismograph station. Different scales have been developed to measure an earthquake's magnitude: (USGS, n.d.-a)

- Local magnitude (M_L)
- Surface-wave magnitude (M_S)
- Body-wave magnitude (m_b)
- Moment magnitude (M_w)

The first and widely-used method is the Richter scale (M_L). The formula for this method uses the amplitude of the largest wave and the distance between the seismometer and the centre of the earthquake. The two different types of waves have separate formulas. (Spence, Sipkin, & Choy, 1889)

The standard body wave magnitude formula:
\[m_b = \log_{10}(A/T) + Q(D,h) \]

The standard surface wave magnitude formula:
\[M_S = \log_{10}(A/T) + 1.66 \log_{10}(D) + 3.30 \]

A: Amplitude of ground motion (microns)
T: Corresponding time (seconds)
Q (D, h): Correction factor which is a function of distance (D in degrees) between epicentre and station and focal depth (h in kilometres)
Recently, 1 s-period body P-waves are used for the calculations with the m_b scale and 18-22 s-period surface Rayleigh waves for the M_s scale (Spence et al., 1889). There are different variations of these formulas that are specific for geographic locations by considering their specific local factors. Earthquakes with a magnitude of 2.0 or less are called micro-earthquakes and can barely be felt. Magnitudes of 4.5 and higher can be felt by a sensitive seismograph anywhere in the world. The following table provides a rough idea of the occurrence frequency of larger earthquakes:

<table>
<thead>
<tr>
<th>M_s</th>
<th>Earthquakes per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5 - 8.9</td>
<td>0.3</td>
</tr>
<tr>
<td>8.0 - 8.4</td>
<td>1.1</td>
</tr>
<tr>
<td>7.5 - 7.9</td>
<td>3.1</td>
</tr>
<tr>
<td>7.0 - 7.4</td>
<td>15</td>
</tr>
<tr>
<td>6.5 - 6.9</td>
<td>56</td>
</tr>
<tr>
<td>6.0 - 6.4</td>
<td>210</td>
</tr>
</tbody>
</table>

Table 1: Frequency of occurrence of large earthquakes (Spence et al., 1889)

The Richter scale (M_L) and the two magnitude scales that evolved from this scale (M_s and m_b) can still be used for smaller and more local earthquakes but nowadays it is more common to use the Moment magnitude scale (M_w). This method can be used globally and can handle a wider range of earthquake sizes. This method is based on the total moment force of the earthquake as the name suggests. Moment is the product of the applied force and the distance of the movement that is created by the force. The moment magnitude scale is defined as following (Spence et al., 1889):

$$M_w = \frac{2}{3} \log_{10}(M_o) - 10.7$$

With the seismic moment ($M_o = \mu S d$).

So, the magnitude scales M_L, M_s and m_b are limited to smaller earthquakes of a magnitude lesser than M_5. M_w is applicable to all sizes but is more complicated. All scales should result in approximately the same value for any given earthquake. (USGS, n.d.-a)

The main damage that is induced by earthquakes is caused by the shaking of the ground (Arya et al., 2014, p. 23). It is hard to design with seismic factors in consideration due to the random effects of earthquakes. The effect of earthquakes on the built environment will be discussed further in section 2.2.

Earthquakes can cause ground failure. There are different types of ground failure. For example, rupture along the fault line at the boundaries of tectonic plates. Ground displacement can stretch from a few centimetres to several meters horizontally and vertically. Earthquakes can also induce landslides and falling of rocks due to loose material at hill slopes. Ground settlement, which is lowering of the ground surface due to compaction, only damages buildings to a certain extent (BRANZ, n.d.). Another type of ground failure is soil liquefaction which causes solid soil to act as viscous liquid. It can occur when there is low density water-saturated sand with uniform grain size within a depth of 8 metres. Heavy constructions will sink, and sand, silt and water will be pushed upwards to the surface by underground pressure. Ground settlement and liquefaction are visualized in the following figures:
2.1.3 Risk zones

Seismic activity varies depending on the geographical location and the distance from tectonic plate boundaries. The global tectonic activity map (figure 8) made by NASA shows the main tectonic plates and their type of movement.

Countries that are located at the boundaries of tectonic plates where there is frequent seismic activity are prone to earthquakes. This connection can be seen by comparing the global tectonic activity map (figure 8) and the global seismic hazard map (figure 9).

Seismic zones can be categorized in four zones:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Possible risk</th>
<th>MSK intensity scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Widespread collapse and destruction</td>
<td>IX or greater</td>
</tr>
<tr>
<td>B</td>
<td>Collapse and heavy damage</td>
<td>VIII</td>
</tr>
<tr>
<td>C</td>
<td>Damage</td>
<td>VII</td>
</tr>
<tr>
<td>D</td>
<td>Minor damage</td>
<td>VI maximum</td>
</tr>
</tbody>
</table>

Table 2: Seismic zones (Arya et al., 2014, p. 48)

My thesis project focuses on one of the most seismic active regions in the world, Nepal, which is located on the border between the Indian plate and the Eurasian plate and therefore highly prone to seismic activity. The Indian plate has been moving towards the north against the Eurasian plate. The collision of these two plates caused the Indian plate (subducting plate) to slip underneath the Eurasian plate (overriding plate) and resulted in the formation of the Himalayas. Tectonic plates are in constant movement and therefore cause frequent earthquakes in this region.
The Gorkha Earthquake that hit Nepal in 2015 was the worst earthquake in the country since 1934. The earthquake is named after the region where the epicentre of the earthquake was located, the Gorkha district, 85 kilometres north-west of the capital Kathmandu. The earthquake took place on Saturday, the 25th of April 2015 at 11:56 (NST) with a magnitude of Ms 7.8 (Mw 7.8, Ms 8.1). The earthquake killed nearly 9,000 people and injured 22,000 people.

The Indian plate which has been mentioned in the previous section is traveling with 45 millimetres per year. The collision between this plate and the Eurasian plate caused a thrust faulting. The rupture of the fault line was directed towards the east with a length of 120 km and width of 80 km (Hayes et al., 2017). It was the first major earthquake since the establishment of the National Seismological Center (NSC). This governmental organization continuously monitors earthquakes in Nepal. Up until today it has been recording hundreds of aftershocks of the Gorkha Earthquake. The most recent aftershock was at the 19th of January 2018 in Nepal. Up until today it has been recording hundreds of aftershocks of the Gorkha Earthquake. The most recent aftershock was at the 19th of January 2018 (M, 4.3) with the Epicentre in Dolakha, a region east of Kathmandu, according to the website of the NSC (National Seismological Centre, 2015, retrieved 21st of January 2018).

When an earthquake occurs, and the ground starts moving in random directions, masses connected to the ground also move irregularly due to the inertia of the mass. When the ground moves to the left, the mass on the surface will move with the opposite direction relative to the ground. It is if it is being pushed that way by a force which is called inertia force. The building mass resists motion because of its mass. The inertia force is also called Seismic or Lateral Load and is a horizontal reversible force acting on the building which is mainly responsible for damage or collapse of building structures. Besides horizontal forces, also vertical forces caused by vertical vibrations of the ground can cause damage to the building by temporarily increasing and decreasing the effective load.

The lateral force F can be expressed as a product of mass (m) and acceleration (a) or the seismic coefficient (k) and the weight of the structure (W): $F = ma = kW$. So, the seismic force is smaller when the structure is lighter. The seismic coefficient k can be defined as following: $k = Ag D I$. The higher the value of any of these factors, the higher the seismic force.

The design ground acceleration divided by the acceleration due to gravity Ag
The normalised design response spectrum, depending on soil profile and the vibration period of a building S
The structural factor depending on the ductility and damping of the structure. The larger the ductility and/or damping, the more force the structure can absorb and the smaller the value of D
The occupancy importance factor or hazard factor I

Structural elements are originally not meant to carry horizontal load. If the bending tension caused by horizontal reversible seismic forces exceeds the vertical forces in a structure, tensile stress will occur within the structural elements. This is shown in figure 13. Therefore it is important in seismic design to use materials that can cope with tension and shear forces (Arya et al., 2014, p.31).
Building structures are mainly meant to cope with vertical forces and therefore suffer damage when horizontal forces are applied which happens during an earthquake. Examples of damage to buildings are:

- Falling plaster / cracks in plaster
- Falling of inner and outer layers of the wall
- Horizontal and vertical cracks in walls
- Diagonal cracks in walls between openings
- Falling of other non-structural elements
- Dislocation of roof support
- Collapse due to foundation / soil failure
- Collapse due to deterioration of joints
- Collapse due to torsional failure of unsymmetrical buildings

There are different categories of damage induced by earthquakes with recommendations for what to do about it. These damage categories are shown in Table 3.

<table>
<thead>
<tr>
<th>Damage category</th>
<th>Extent of damage in general</th>
<th>Suggested post-earthquake action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 No damage</td>
<td>No damage</td>
<td>No action required</td>
</tr>
<tr>
<td>1 Slight non-structural damage</td>
<td>Cracks in plaster, falling plaster</td>
<td>Only architectural repair needed</td>
</tr>
<tr>
<td>2 Slight structural damage</td>
<td>Cracks in wall, damage to non-structural parts, load carrying capacity not reduced</td>
<td>Architectural repair needed to achieve durability</td>
</tr>
<tr>
<td>3 Moderate structural damage</td>
<td>Large and deep cracks in walls, load carrying capacity partially reduced</td>
<td>Buildings need to be vacated and reoccupied after restorations and strengthening</td>
</tr>
<tr>
<td>4 Severe structural damage</td>
<td>Gaps in walls, inner/outer walls collapse, 50% of main structural elements fail</td>
<td>Buildings need to be vacated and either demolished or extensively restored</td>
</tr>
<tr>
<td>5 Collapse</td>
<td>Large part or whole building collapses</td>
<td>Clearing site and reconstruct</td>
</tr>
</tbody>
</table>

Table 2: Categories of damage (Arya et al., 2014, p. 44)

How much damage a building suffers during an earthquake depends on the strength of the structure, the ductility and integrity of the building and the stiffness of the underlying soil (Arya et al., 2014, p. 33).

An important factor that influences the damage to buildings is the building configuration. The perfect stable shape for a building would be a box. So, buildings that are rectangular in both plan and elevation are much stronger and more able to endure earthquakes than L- or U-shaped buildings. Horizontal forces during an earthquake will twist a building with wings that are too long.

Another factor which is important are the openings in the building. Openings usually weaken the walls. The dimensions of openings should be restricted, or special measurements need to be taken to maintain structural integrity.

Also, a building should be stiff from bottom to top. Chance of damage increases if the transition between floors are interrupted or have a different material. Columns and shear walls should therefore be continuous from the foundation all the way to the roof.

Ductile buildings can absorb external forces by bending, swaying and deforming. Brittle buildings work the opposite, they break when overloaded during an earthquake. Examples of brittle materials are adobe, brick and concrete blocks. Reinforcement with steel or other ductile materials can add ductility to a building.

The ‘rocking effect’ can occur in rigid structures during an earthquake. If structural elements are not sufficiently tied together, the structure will fall apart. Rigid structures should act as an integral unit during earthquake shaking.

The foundation is the base of a building and is of great importance when it comes to the structural safety of a building. Ground failure can damage the foundation and indirectly the building structure. Isolated footings of columns as foundation can be problematic when the supporting soil is not uniform. Also, mixed foundation types within the same building structure can cause damage because of differential settlement. In cold and wet climates, the foundation cannot be too shallow.

Other factors that can lead to damage are poor construction quality and the quality of the used materials. Also poor workmanship and the lack of the right bonding units are factors that compromise structural integrity (Arya et al., 2014, p.35).
2.3.1 Guidelines for earthquake-resistant building

| Site conditions |

The density of the soil is very important when choosing a site for construction. Soil that contains very loose sands and sensitive clays is prone to liquefying and should be avoided. It is possible to compact soil that is vulnerable for liquefaction, but that procedure is very expensive. Therefore, it is better to avoid such soils altogether. Locations on slopes should be carefully analysed for potential landslides. Buildings should be placed on stable ground. It is better to divide the building into several blocks and put them on terraces than to have one large building with footings at different elevations (Arya et al., 2014, p. 53). Liquefaction occurs when the soil is saturated. Also, landslides can occur when the soil is saturated with water. For those reasons the site should be drained well at all time. The foundation must be protected against water with waterproof aprons. Pile foundation of 8 to 10 metres can be used on sites where saturated soil cannot be avoided (Arya, 1987, p. 11).

The types of soil should be classified as following:

<table>
<thead>
<tr>
<th>Foundation material</th>
<th>Foundation classification</th>
<th>Presumed safe bearing capacity in kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rocks in different state of weathering, boulder bed, gravel, sandy gravel and sand gravel mixture, dense or loose coarse to medium sand offering high resistance to penetration when excavated by tools, stiff to medium clay which is readily indented with a thumb nail.</td>
<td>HARD</td>
<td>≥ 200</td>
</tr>
<tr>
<td>2 Fine sand and silt (dry lumps easily pulverised by the finger), moist clay and sand clay mixture which can be indented with strong thumb pressure</td>
<td>MEDIUM</td>
<td>≥ 150 ≤ 200</td>
</tr>
<tr>
<td>3 Fine sand, loose and dry; soft clay indented with moderate thumb pressure</td>
<td>SOFT</td>
<td>≥ 100 ≤ 150</td>
</tr>
<tr>
<td>4 Very soft clay which can be penetrated several centimetres with the thumb, wet clays</td>
<td>WEAK</td>
<td>≥ 50 < 100</td>
</tr>
</tbody>
</table>

Table 4: Foundation soil classification and safe bearing capacity (MPPW, 1994, 7)

| Building structure |

Guidelines for the building structures highly depend on the materials that are used for the construction. In this section, general guidelines for seismic design will be given. Specific and material dependant guidelines will be discussed in section 2.3.2. Construction Materials.

For the plan of the building it is important that the building is symmetrical. If a building is asymmetrical, the random movements of the ground during earthquakes can lead to torsion. Also openings should preferably be placed symmetrical (Arya et al., 2014, p. 50).

Rectangular plans are more desirable in seismic design since projections and buildings that are too narrow can also cause torsional effect. The length of a building should therefore be restricted to three times the width (Arya et al., 2014, p. 51).

If a building needs to be longer, it is possible to use separation. With separation it is possible to have symmetry and regularity in each block when it comes to large buildings. There should be 30 to 40 millimetres between the blocks above the plinth level to prevent the blocks to hammer and pound each other during earthquakes. The separation can be filled with a material that can easily crumble so it works as a buffer material (Arya et al., 2014, p. 51).

Simplicity is also desirable for seismic design. Ornamentation can break or fall and create dangerous situations. Only reinforced ornamentation which is securely tied to the main building structure can be used (Arya et al., 2014, p. 52).

A box is the most ideal shape for a building in a seismic active area. It is therefore important to have interconnecting walls to enclose areas that act as a rigid box. This will increase the lateral strength of the walls. The ratio for masonry walls with wall spacing (a) and thickness (t) should be maximum 1/a = 40 (Arya et al., 2014, p. 53).

In countries where there is not much money available for reconstruction, like Nepal, it could be good to separate functions considering their importance. It can save a lot of money to only strengthen buildings according to their importance. The importance of buildings is defined as following:

<table>
<thead>
<tr>
<th>IMPORTANT</th>
<th>ORDINARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitals, clinics, communication buildings, fire and police stations, water supply facilities, cinemas, theatres and meeting halls, schools, dormitories, cultural treasures such as museums, monuments and temples, etc.</td>
<td>Houses, hostels, offices, warehouses, factories, etc.</td>
</tr>
</tbody>
</table>

Table 5: Importance of buildings (Arya et al., 2014, p. 48)
Combining the importance of buildings (Table 5) together with the seismic zones (Table 2) and the soil classification (Table 4) gives the categories of buildings (Table 6) that are commonly referred to when discussing seismic design guidelines for specific materials.

<table>
<thead>
<tr>
<th>Building category</th>
<th>Seismic zone</th>
<th>Importance of building</th>
<th>Soil classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A</td>
<td>important</td>
<td>Soft</td>
</tr>
<tr>
<td>II</td>
<td>A</td>
<td>important</td>
<td>Medium to hard</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>ordinary</td>
<td>Soft</td>
</tr>
<tr>
<td>III</td>
<td>A</td>
<td>ordinary</td>
<td>Medium to hard</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>important</td>
<td>Soft</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>ordinary</td>
<td>Soft</td>
</tr>
<tr>
<td>IV</td>
<td>B</td>
<td>important</td>
<td>Medium to hard</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>ordinary</td>
<td>Medium to hard</td>
</tr>
</tbody>
</table>

Table 6: Building categories for seismic strength purposes (Arya et al., 2014, p. 50)

The type of foundation is dependent on the material that is used for construction and will be discussed in the separate sections of the materials. However, there is a general concept that can be used for foundations. A way for buildings to absorb and mitigate the effects of an earthquake is to let the structure and foundation move separately from each other. This concept is called base-isolation. It basically isolates the structure from the shaking ground. Base-isolation can be applied by reducing the friction between the structure and the foundation by placing two layers of plastic membrane between them. It is also possible to have a flexible connection between structure and foundation such as short posts that are pin-connected to large stones. In this case the structure can rock to a certain extent but cannot cope with large displacements (Arya et al., 2014, p. 58).

Materials that can bear both tensile and compression forces are more suitable for resistant building. Often a combination of compression and tension strength is used, like reinforced concrete. Materials can be categorized according to their suitability for seismic design. Steel, wood and reinforced concrete are highly suitable. Masonry, reinforced brickwork, wood with brick nogging and reinforced adobe are moderately suitable. Unreinforced bricks, blocks and stone masonry with good mortar are slightly suitable. But unreinforced masonry with mud mortar, unreinforced earthen walls and wood logs without anchoring are unsuitable (Arya, 1987, p. 15).

The most commonly used construction materials that are suitable in seismic active areas, provided that seismic improvements are applied, will be discussed in the following sections.
2.3 SEISMIC DESIGN

Unreinforced concrete is brittle and cannot handle lateral forces that well. However, reinforced concrete (RC) is able to cope with the shear and tensile stresses during earthquakes and is therefore highly suitable for seismic design. Construction in various rural areas in earthquake-prone regions is often dependent on experience of local and small contractors. Lack of knowledge of how to properly build with reinforced concrete can compromise the strength of the building structure significantly. The guidelines given here are working guidelines for non-engineered, small and low-rise buildings (up to three storeys).

Common damage to RC buildings are for example sliding of roofs, falling of infill walls, crushing of column ends, diagonal cracking in columns or column-beam joint, collapse of gable frames and sinking or tilting of the foundation. Also, in RC constructions with infill walls and wide openings, the short column effect can occur which is visualized in the following figure:

The quality of the concrete is the most important factor in RC constructions. The final strength of the concrete is highly dependent on how the concrete is measured, mixed, reinforced, casted, compacted and cured. The proportion of the concrete mix for (non-engineered concrete) is usually 1 : 2 : 3 or 1 : 2 : 4 (cement : sand : aggregate). River shingle or crushed stones of maximum 20 mm can be used as aggregate. The easiest way is to calculate per sack of cement and use a wooden box of the same volume to measure the sand and aggregates. A 50 kg sack of cement has a volume of 0.0317 m3. The materials should be mixed directly before casting. If a driven mixer is not available in rural areas, then an impervious platform (iron sheets or concrete floor) can be used. First the aggregates should be spread out, then the sand and finally the cement on top. Everything must be mixed thoroughly in dry state before adding the water. The consistency is good when it is possible to make a soft ball of concrete that does not fall apart (Arya et al., 2014, p. 146).

The quality of the surface of the concrete depends on the formwork. The formwork should be impervious, water and cement should not be able to leak. Water resistant plywood is suitable for this.

Reinforcement should be covered with concrete with a minimum thickness of 15 mm in slabs, 25 mm in beams and columns and 40 mm in columns thicker than 450 mm. Overlap between bars should be minimum 45 times the diameter of the bar for plain mild steel bars and 50 times the diameter for high strength deformed bars. The ends of the bars in stirrups should be bend in 180 degrees in mild steel boards and 135 in deformed bars (Arya et al., 2014, p. 148). Casting should be done in a continuous process. Mixed concrete should not be let untouched longer than 45 minutes before casting. Compacting the concrete is important for the final strength of the concrete. Hand compaction can be done by rodding the fresh concrete with a rod of 0.5 m and 16 mm in diameter.

The concrete needs 14 days of water-curing to gain full strength. Which means that the surface of the concrete needs to be wet during the curing process for maximum density and impermeability of the outer layer.

The strength of concrete is defined as the 28 days age cube or cylinder crushing strength. A cube strength of 15-20 N/mm2 is sufficient. The tensile strength is only a tenth of the compressive strength. The brittleness of concrete can be compensated by reinforcing steel bars that take up the tensile and shear forces due to its ductility. Reinforcing steel bars can either be mild steel / medium tensile steel bars (MS) or high strength deformed steel bars (HSD).
Details of reinforced concrete beams and columns are given in the following figures. Reinforcement in beams should be applied as following:

![Beam Reinforcement](image1)

Figure 16: Reinforcement in beam (Arya et al., 2014, p. 152)

This beam construction has the following recommended limits on steel area ratio:

<table>
<thead>
<tr>
<th>Concrete</th>
<th>Steel</th>
<th>Pmax</th>
<th>Pmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 : 2 : 4</td>
<td>MS (Fy = 250 MPa)</td>
<td>0.011</td>
<td>0.0035</td>
</tr>
<tr>
<td>(Fc = 15 MPa)</td>
<td>HSD (Fy = 415 MPa)</td>
<td>0.007</td>
<td>0.0048</td>
</tr>
<tr>
<td>1 : 1½ : 3</td>
<td>MS (Fy = 250 MPa)</td>
<td>0.015</td>
<td>0.0048</td>
</tr>
<tr>
<td>(Fc = 20 MPa)</td>
<td>HSD (Fy = 415 MPa)</td>
<td>0.009</td>
<td>0.0029</td>
</tr>
</tbody>
</table>

Table 7: Limits on steel area ratio in beam (Arya et al., 2014, p. 153)

Reinforcement in columns can either have lateral ties (p) or spirals (b), of which the latter is much stronger and ductile:

![Column Reinforcement](image2)

Figure 17: Reinforcement in column (Arya et al., 2014, p. 154)

The following figures give recommended details of connections in earthquake resistant RC structures. The following notations are used:

- b: beam width
- D: column depth or width
- d: bar diameter of reinforcement
- h: beam height
- H: clear height of column
- L: span of beam
- s: diameter of bar
- S: floor slab
- B: beam
- C: column
- L: span of beam
- e: diameter of stirrup
- H₁: clear height of column
- H₁₁: 50 mm
- L₁: 450 mm

The notations are as follows.

- B: beam
- C: column
- S: floor slab
- L: span of beam
- H: beam height
- d: bar diameter of reinforcement
- e: diameter of stirrup
- H₁: clear height of column
- H₁₁: 50 mm

Figure 18: Connection between beam and girder (Arya et al., 2014, p. 155)

Figure 19: Connection between floor and beam (Arya et al., 2014, p. 155)

Figure 20: Connection between roof beam and exterior column (Arya et al., 2014, p. 156)

Figure 21: Connection between floor beam and interior column (Arya et al., 2014, p. 156)

Figure 22: Connection between floor beam and exterior column (Arya et al., 2014, p. 157)

Figure 23: Interior joint between haunched beam and column (Arya et al., 2014, p. 157)
Masonry

Masonry is a brittle material which makes it prone to damage under tensile and shearing stresses. Damage in unreinforced masonry buildings are caused by the heavy and stiff structure, the low tensile strength, brittle behaviour in tension and compression, weak connections, stress concentration at corners of openings and any asymmetry in plan and elevation. However, with measurements like reinforcement or addition of RC members, masonry can be very suitable for seismic design.

The quality of construction is important for the strength of the building. Good bonding and adequate connections must be made. Therefore, the following guidelines should be followed for mortar (see table 6 for the definition of the building categories):

<table>
<thead>
<tr>
<th>Building category</th>
<th>Cement-sand</th>
<th>Cement-lime-sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1 : 4</td>
<td>1 : 1½ : 1½</td>
</tr>
<tr>
<td>II</td>
<td>1 : 5</td>
<td>1 : 1 : 6</td>
</tr>
<tr>
<td>III</td>
<td>1 : 6</td>
<td>1 : 2 : 9</td>
</tr>
<tr>
<td>IV</td>
<td>1 : 7</td>
<td>1 : 3 : 12</td>
</tr>
</tbody>
</table>

For wall connections it is recommended to avoid continuous straight or toothed joints in only one wall. It is better to have sloping walls in the corner of 600 mm and building the walls from there (see figure 26) or to have alternating tooth joints in both walls with a height of 450 mm (see figure 26).

Walls should have a thickness (t) of at least 190 mm in a load bearing construction. The wall height should be restricted to 20 t and the length to 40 t. Openings in masonry walls should be restricted to certain dimensions. Guidelines are given in the following figure:

![Figure 26: Guidelines openings in bearing walls (Arya et al., 2014, p. 72)](image)

Roofs and floors should be as light as structurally and functionally possible since heavy structures have more inertia force during earthquake shaking. For schools, it is preferable to have pitched trussed roofs from a seismic point of view. The trusses need to lean on the eaves band or roof band. Flat roofs and floors can be constructed according to the jack arch roof/floor principle. The last span, or in large construction every fourth span, should be tied, see figure 28:

![Figure 27: Ties in jack arch roofs and floors (Arya, 1987, p. 27)](image)
Reinforced concrete slabs as floors have a binding effect and rigid diaphragm action and therefore do not necessarily need a roof band. However, for floors with joists and planks, a roof band is essential (Arya, 1987, p. 27).

Since masonry is a brittle material, reinforcement is essential for buildings that undergo seismic forces. Reinforcement should be placed in trussed roofs, gable ends, connections between roof and walls and between walls and foundation. Also, if openings do not follow the given guidelines, they should be reinforced. To resist lateral out-of-plane bending of walls, horizontal reinforcements are needed which are called horizontal bands or ring beams. Ring beams, also called ‘collar beams’, tie the walls together at a defined level. There are different types of rings beams at different levels (Arya, 1987, p. 28):

- Gable band, as enclosure of the masonry gable ends (triangular part). Connected to the eave level band
- Eave level band or roof band, placed at eave level of trussed roofs and below roofs or floors that consist of joists.
- Lintel band, placed above door and window openings.
- Plinth band, placed when soil is soft or non-uniform.

Vertical reinforcement needs to be placed at critical sections such as corners of walls, T junctions and jambs of doors and windows.

An alternative to these reinforcement methods is the confined masonry construction principle. Confined masonry consists of masonry walls, confined by horizontal (tie beams) and vertical (tie columns) RC confining members on all four sides of the masonry wall panels (Arya et al., 2014, p. 83). The sections of these RC member are much smaller than those in a RC frame construction. They do not work and transfer forces as in RC frames but rather function as ties that are resisting tensile stresses. Confined masonry can use different types of masonry such as burnt clay brick, concrete hollow or solid blocks or rectangularised stones. The following figure shows a typical two-storey confined masonry building:

![Figure 26: Confined masonry (Arya et al., 2014, p. 83)](image)

Both reinforcing methods and confined masonry rely on the joint action between the reinforcement and the masonry to resist lateral forces. So, both techniques are suitable for seismic design, even in earthquakes with large magnitudes (Arya et al., 2014, p. 91).

The concept of separation which has been discussed in the previous section 2.3.1, applies to masonry buildings to prevent hammering and pounding. Construction details of the gaps are displayed in the following figures:

![Figure 27: Crumple sections in separation (Arya, 1987, p. 35)](image)
As foundation, strip footing of masonry, plain concrete or reinforced concrete can be used. For seismic design, reinforced concrete is the most effective. However, masonry foundations are most commonly used. The depth of the footing should be around 75-90 centimetres below ground level to go below the weathering zone. In non-cohesive and soft soils, a minimum depth of 1.5 metres is recommended for pedestal footing. Pile foundations of 4 to 8 metres are recommended in case of liquefaction during earthquakes. The distance between two pedestal or pile foundations shall not exceed 1.5 metres (Arya et al., 2014, p. 94). The footing should have a width of at least 75 centimetres for a one-storey building. For a two-storey building a width of 100 centimetres is needed and for a three-storey building a width of 120 centimetres is recommended (Arya, 1987, p. 34). However, it is recommended for school buildings to restrict the height to two storeys.

An example of a brick pedestal foundation looks like is shown in the following figure:

![Figure 4.26: Example of a brick pedestal foundation](image)

1. Plinth/groundlevel beam
2. Steel bar from foundation to plinth beam
3. Brick pedestal
4. Plain cement concrete
5. One-brick flat layer
6. 150 mm thick sand filling

In non-cohesive and soft soils, a minimum depth of 1.5 metres is recommended below ground level using a safe bearing capacity of 7 to 9 t/m² (70 to 90 kN/m²). However, for deeper scouring depths at any particular location foundation depth may need to be increased below silty clay soil.

There are guidelines for the general construction and overall dimensions of stone buildings. First, the height of the construction should be restricted to one storey for building categories I and II, or two storeys for categories III and IV (see table 6 in 2.3.1). The height of one storey should be restricted to 3.5 metres and the wall thickness to 350-450 mm. The length of an unsupported wall, between cross walls, is restricted to 7 metres. If walls are longer, buttresses can be placed 3 metres apart from each other (Arya et al., 2014, p. 99).

Rubble masonry

Stone buildings are quite common in poor rural areas since the availability and transportability of other building materials is difficult there. Stone buildings without seismic improvements are very dangerous and have killed many people in the past under large magnitude earthquakes. It is recommended to use other building materials that are more suitable and safe. But if it is unavoidable to use this material due to transport and economic difficulties, seismic improvements should be applied.

The following figure shows a schematic cross section of a traditional stone building:

![Figure 31: Cross section of stone building](image)

1: Stone wall with mud mortar
2: Mud fill at roof and floor 150 to 300 mm thick
3: Branches, reeds
4: Log beams
5: Hammer crossed face
6: Chip and mud filling
7: Random rubble
8: Wall height 3 to 6 m
9: Wall thickness 0.5 to 0.9 m

Figure 31: Cross section of stone building (Arya et al., 2014, p. 97)
Stones should be laid in courses not higher than 60 centimetres. Stones that are equal to the wall thickness, so called ‘through stones’, should be laid in every 60 centimetres and maximum 1.2 metres apart from each other horizontally. Long stones should be used at corners and junctions of walls to bond perpendicular walls. If through stones are not available, the following elements can be used:

- In place of “through” stones, bonding elements of steel bars 8 to 10 mm in diameter in the stone wall.
- “Through” stones of full length equal to the wall thickness should be used in the previous section ‘Stone’ should be used.
- Long stones should be used at corners and junctions of walls to bond perpendicular walls. If through stones are not available, stones in pairs, each of about 3/4 of the wall thickness may be used where timber is available and more economical. Recommended sections are shown in Fig. 5.6.
- Stones should be laid in courses not higher than 60 centimetres. Stones that are equal to the wall thickness, so called ‘through stones’, should be laid in every 60 centimetres and maximum 1.2 metres apart from each other horizontally. Long stones should be used at corners and junctions of walls to bond perpendicular walls. If through stones are not available, the following elements can be used:

Regarding reinforcement, the horizontal reinforcement which has been discussed for masonry buildings in the previous section can be used for rubble masonry as well. As alternative, if steel is not available, wooden planks can be used as shown in the following figures:

How vertical reinforcement is placed, is shown in the following figure. Vertical reinforcement is not needed for category IV buildings.

For foundations, the guidelines given for masonry in the previous section and the general guidelines for foundations (2.3.1. > Foundation) applies. An example of a stone foundation is shown below:

All dimensions are in mm.

- b1, b2: wall thickness, All dimensions in mm.
- Number 1–8: Plinth level
- Number 9–13: Ground level
- Number 14–18: Compacted pebbles
- Number 19–23: Stone wall (375 mm thick)
- Number 24–28: Plinth level RC band
- Number 29–33: Foundation construction

Figure 32: Recommended openings in rubble masonry bearing wall (Arya et al., 2014, p. 100)

Figure 33: Through stones and other bond elements (Arya et al., 2014, p. 100)

Figure 34: Lintel level wooden band on all load bearing walls (Arya et al., 2014, p. 102)

Figure 35: Wood reinforcement at corners and T-junctions (Arya et al., 2014, p. 102)

Figure 36: Vertical steel in rubble masonry (Arya et al., 2014, p. 102)
Wood

Wood is very suitable for earthquake resistant building because of its high strength per unit weight. Although because of deforestation, it would be good to restrict the use of timber in seismic design. It is suitable in areas where there is still an abundance of this material.

The main advantages of constructing with timber is the lightness, the easy workability and the safe transportability which makes this material mainly suitable for post-earthquake relief (Arya et al., 2014, p. 111). However, there are several disadvantages such as the fact that it is a non-homogeneous and anisotropic material. The tension and compression strength are therefore not always the same within a timber member. The strength properties of timber vary and depend on many different factors. Also, shrinkage of wood can loosen joints easily. Seasoned wood, with less than 20% moisture, is needed if this material is used. Due to the small elastic modulus, wood can easily show large deformations. Also, defects and notches in the wood can decrease its strength and stiffness significantly. The length of the material is also restricted. The material should also be treated to avoid rotting and insect attack. One of the most important disadvantage is the combustibility of wood. Fires after an earthquake can be more destructive than the earthquake itself.

The following guidelines apply to the building plan of wooden buildings:

- Maximum spacing of bearing wall lines is 6 m. The maximum width of openings in the bearing wall lines is 4 m and the opening is at least 0.5 m away from the corner.
- Adjacent openings should be at least 0.5 m apart (see Fig. 6.9).
- The height of the building will be limited to two storeys plus attic.
- The storey height should not exceed 2.7 metres. The timber bracing should be at least 20 x 90 mm on the ground floors and 80 centimetres on upper floors, or 80 centimetres on ground floor if the building is single storey.
- The finished size of diagonal braces may be kept to 20 mm x 90 mm minimum.
- The timber studs should be at least 40 x 90 millimetres and the maximum spacing is 40 centimetres on ground floors and 80 centimetres on upper floors.
- Horizontal nogging members are framed into sills and horizontal nogging members are rigidly fixed into plinth masonry or concrete foundation as shown in Figure 8.6 Stud wall construction.
- The type of material used for wall coverings is also restricted. The wall covering that will be connected to the frame can be bamboo, reed matting covered with plaster, wooden boards, asbestos cement sheets or galvanized steel sheets (Arya, 1987, p. 20).
- The tension and compression strength are therefore not always the same within a timber member.
- Where sheeting is used, the edges of the sheeting should be fixed to the wall elements to increase the stiffness and strength of the building.
- Double studs to either side of doors and windows, 12mm bolt anchored to plank head at 1.50m cl and fitted with large washer and bolt 8.5 for direct. Use larger anchors for level.
- Wall plate top plate. Double stud to either side of doors and windows. 12mm bolt anchored to plank head at 1.50m cl and fitted with large washer and bolt 8.5 for direct. Use larger anchors for level.
- The strength properties of timber vary and depend on many different factors. Also, shrinkage of wood can loosen joints easily. Seasoned wood, with less than 20% moisture, is needed if this material is used. Due to the small elastic modulus, wood can easily show large deformations. Also, defects and notches in the wood can decrease its strength and stiffness significantly. The length of the material is also restricted. The material should also be treated to avoid rotting and insect attack. One of the most important disadvantage is the combustibility of wood. Fires after an earthquake can be more destructive than the earthquake itself.

A stud wall construction consists of timber studs and corner posts framed into sills, top plates and wall plates. Diagonal bracing stiffens the frame and absorbs lateral loads. The following figure shows the elements that are used in a stud wall:

The timber studs should be at least 40 x 90 millimetres and the maximum spacing is 40 centimetres on ground floors and 80 centimetres on upper floors, or 80 centimetres on ground floor if the building is single storey. The storey height should not exceed 2.7 metres. The timber bracing should be at least 20 x 90 millimetres. The wall covering that will be connected to the frame can be bamboo, reed matting with plaster, wooden boards, asbestos cement sheets or galvanized steel sheets (Arya, 1987, p. 20).
A brick nogged timber frame construction consists of studs, columns, sills, wall plates, nogging members and masonry in the space between the framing members. The following figure shows the elements used in brick nogged constructions:

![Diagram of brick nogged timber frame](image)

Figure 8.7 Brick nogged timber frame (Arya, 1987, p. 21)

The vertical framing in brick nogged constructions should be at least 60 x 100 millimetres. The horizontal nogging should be at least 50 x 100 millimetres, when the vertical spacing is 1 metre (Arya, 1987, p. 20).

Buildings in seismic active regions should act as an integral unity in order to absorb the lateral forces due to earthquakes. Bracing and securely connecting members of the walls and the roof is therefore very important. The following figures show where buildings need to be braced:

![Diagram of roof bracing](image)

Figure 41: Roof bracing (Beynon, 1990, p. 69)
It is very important for the roof to be securely connected to the main structure. The weight of the roof can cause the joints to fail with complete collapse of the building as result. Roof trusses are preferred over rafters and sheets over tiles. The following figure shows how rafters can be connected to the wall plate:

Timber buildings should be rigidly fixed into plinth masonry or a concrete foundation. If the foundation is continuous, ventilation openings should be made. Reinforcement is recommended in soft soils that are prone to liquefaction. On medium to hard soils, isolated footing can be used as shown in the following figure:

Innovative construction technologies

The government of Nepal (Ministry of Urban Development, Department of Urban Development and Building Construction (DUDBC)) published a design catalogue for reconstruction of earthquake resistant houses in March 2017. This catalogue consists of 17 seismic designs with 12 alternative materials and technologies which have not been covered by the Nepal National Building Code (The National Building Code will be discussed in the next section, 2.3.3.). This catalogue provides information about a variety of different materials, technologies, costs, sizes and layouts for both rural and urban residences. The designs in this publication includes architectural design, structural detailing and an estimation of the materials used. The following 11 technologies are covered (DUDBC, 2017):

Interlocking Brick Masonry

This technology consists of unburnt bricks that interlock each other and thereby reduce the mortar usage. Vertical reinforcement is possible on strategic locations. These bricks are economical, quick and environment friendly.
Load bearing structure of hollow concrete blocks is a good alternative to conventional brick masonry since they can be locally manufactured. And they are cheaper and environment friendly. In the confined variation, hollow concrete blocks carry the seismic loads and are confined by RC columns.

Random Rubble Masonry with GI Wire Containment

In this construction, wires are added to a rubble masonry structure to contain the stones. The wires are provided at both sides of the wall to prevent flexural failure. The reinforcement on both sides are connected to each other with ties that are going through the wall. This system does not require many changes to the local traditional way of building.

Bamboo and Stone Masonry Hybrid Structure

This technology uses seasoned and treated bamboo for the structural frame. Wattle and daub panels are used for the walls on the upper floor. Wattle is made of woven bamboo and daubed with a sticky soil-based material. The frame on the ground floor will be surrounding with a stone masonry wall with mud mortar.

Compressed Stabilized Earth Block Masonry

This technology is based on mud as construction material with added stabilizers like cement. This material is suitable for rural areas where transport of materials is difficult. Only a small amount of non-local material is needed.

Rat Trap Bond Masonry

In a Rat Trap Bond, all bricks are laid on their edges. Hereby an internal cavity is created within the wall. This will improve the thermal insulation. It is a modular type of construction. Therefore, heights and lengths are restricted to certain dimensions. The figures show how this technology works in T-junctions and corner junctions.

Earth Bag Masonry

This technology is probably the most simple, sustainable and cheapest method using ordinary soil that is present at the construction site. The soil found on site is put into Polypropylene bags and piled on each other with barbed wire as ‘mortar’. The wire will take up the shear and tensile strength, just like reinforcement in masonry walls.
Light Gauge Steel Structure

This construction is made of thin steel sections, called cold form sections since they are shaped at room temperature, cladded with light panels such as light gauge steel panels, cellular light weight concrete, cement fibre board, gypsum board or calcium silicate board. This technology requires good planning and precision skills regarding execution since the cold form sections are pre-fabricated.

Steel Structure

This construction is made of mild steel columns and beams, resulting in a steel moment resisting frame. Vertical and horizontal loads are resisted by this moment resisting frame. The floors have profile metal decking and the roof has steel tube trusses.

Debris block Masonry

In this technology blocks are made from stone or brick debris and stabilized with cement. This will help in debris management in post-disaster scenarios and improve the pre-disaster situation of the built environment.

Timber Structure

This system is made of vertical elements called timber studs and horizontal members. The vertical load is resisted by the studs and the lateral load by the cross bracing (see previous section ‘wood’). The floors have joists covered with planks and the roof is a wooden truss system. The figures show details of how to brace in wooden structures and how to connect the floor to the studs.

The government of Nepal, Ministry of Physical Planning and Works (MPPW), published the Nepal National Building code (NBC) in 1994 as a standard of good building practice. It covers mandatory rules of thumb for different construction materials. This publication was established after the 1988 earthquake and was the first initiative to develop such regulations.

Site conditions

There are several conditions that should be considered before choosing a construction site. A site is suitable unless the site is water-logged, a rock-falling area, a landslide-prone area, a subsidence and/or fill area, a river bed or swamp area (Ministry of Physical Planning and Works [MPPW], 1994, p.6). Local knowledge should be considered, especially the history of the built environment and its performance during past disasters is of importance. The MPPW suggests to carry out site exploration by digging test pits. The minimum requirements are two pits with a minimum depth of 2 metres. The allowable bearing pressure depends on the soil type.

The NBC uses the following division of seismic zoning in Nepal:
Building structure

The following figure shows guidelines that are set up by the MPPW for structures with reinforced concrete frame and without masonry infill walls.

The main building layout plan should have a rectangular shape according to the NBC. The building may have wings, but they have restrictions to their dimensions. The length of the wings K1 and K2 should be less than 0.25A or 0.25B. The width restrictions of the wings are shown in figure 2 (MPPW, 1994c).

For reinforced concrete with masonry walls, the following guidelines apply to openings in the bearing infill wall.

In addition to the shown restrictions, the height (H) shall not exceed 3A or 3B and the maximum height is set to 11 metres or 3 storeys (MPPW, 1994c).

The NBC has set up guidelines for building sizes in load-bearing masonry structures. The following table gives an overview of these limitations:

<table>
<thead>
<tr>
<th>Floor</th>
<th>Min. wall thickness (mm)</th>
<th>Max. height (m)</th>
<th>Max. short span of floor (m)</th>
<th>Cantilever (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load-bearing brick in cement mortar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>230</td>
<td>2.8</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1st</td>
<td>235</td>
<td>3.0</td>
<td>3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Ground</td>
<td>350</td>
<td>3.2</td>
<td>3.5</td>
<td>no</td>
</tr>
<tr>
<td>Load-bearing stone in cement mortar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>350</td>
<td>3.0</td>
<td>3.2</td>
<td>no</td>
</tr>
<tr>
<td>Ground</td>
<td>400</td>
<td>3.2</td>
<td>3.2</td>
<td>no</td>
</tr>
<tr>
<td>Load-bearing brick/stone in mud mortar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>350</td>
<td>3.0</td>
<td>3.2</td>
<td>no</td>
</tr>
<tr>
<td>Ground</td>
<td>350</td>
<td>3.2</td>
<td>3.2</td>
<td>no</td>
</tr>
</tbody>
</table>

Table 9: Building size limitation for load bearing masonry (MPPW, 1994, p. 2)
For earthen buildings and buildings that are constructed with low strength masonry, the following guidelines are important:

The chance of earthquakes is the main hazard in Nepal. Seismic forces have been proven extremely destructive in the past and are the cause of many indirect disasters such as landslides and fires. However, earthquakes are not the only hazards that Nepal is facing. Different regions in Nepal have to deal with other location specific hazards. These hazards are mostly climate-induced. Examples of climate-induced disasters are floods, storms and fire. Since the climate change is expected to progress, it is important to take these dynamic factors into consideration. The amount of construction measurements that can be taken in order to mitigate the effects of these hazards is limited. However, seismic design guidelines for connecting construction member can be used to also mitigate the effect of wind loads besides lateral seismic loads. Chances of fire spreading can be reduced by choosing the right materials and apply compartmentalization in the building layout for passive fire safety. It is important to be aware of the multi-hazard context when designing a school in Nepal. Floods, windstorms, thunderstorms and fire will be discussed in the following sections. Information about where they occur in Nepal and how to deal with these hazards in building construction will be given.
Nepal has more than 6,000 rivers that flow between different elevations from north to south. Flooding occurs every year around the end of the summer monsoon. The soil is saturated and surface runoff increases during that period. Earthquakes has proven to be the most destructive in terms of casualties. However, the number of people affected by floods is higher than any other disaster (Salike & Fee, 2015, p. 8). Due to climate change and the resulting increase in precipitation, climate-induced hazards such as floods are expected to increase in occurrence frequency. There are two types of floods in Nepal. Regular floods happen when a full river overflows during a few days of heavy rainfall. Flash floods do not happen gradually but occur when there is a sudden outburst after extreme heavy rainfall. Floods are most common in the southern, lower part of Nepal, the Terai. Every year, physical infrastructures are damaged and social structures disrupted. In the research area of my project, the Kathmandu Valley, floods do not occur as much as in the Terai but are still an issue to consider when constructing buildings. The following figure shows a study of flood risk in the Kathmandu Valley. Godavari, where the design site is located, can be considered safe from flooding.

There is not so much that can be done to protect schools from the effects of flooding as with earthquakes. The only thing possible to prevent the effects of flooding is to choose a suitable site which is not prone to flooding. If flood areas cannot be avoided, water resistant materials should be used and sleeping and living areas should be located above the flood level (Department of Education (DOE), Ministry of Education, 2016, p. 21).

Floods are caused by extreme heavy rainfall. Another type of disaster which is induced by this climate-related issue is landslides.
2.4 CLIMATE-INDUCED DISASTERS

2.4.2 Wind and thunder storms

Windstorms are mainly common in the flat Terai region from March to May. Casualties caused by storms are not as high as for earthquakes and floods and therefore, storms are not ranked as major disaster (Schools & Communities, 2012, p. 12). However, windstorms can be quite damaging to properties, so measurements need to be taken to prevent unnecessary damage. Windstorms and lighting strikes usually happen together at the same time.

Like in seismic design, all structural members should be properly tied together in order to ensure structural integrity during storms. Roofs that are susceptible to wind uplift should be avoided. It is also important to pick the right location, out of storm prone areas and with possible falling trees and flying debris in consideration. The walls and main structural system should be able to resist high wind loads and windows and doors should have proper locking systems. To protect against damage induced by lighting, lighting protection rods and earthing should be provided, especially when the building is located at exposed and high areas (Department of Education (DOE), Ministry of Education, 2016, p. 22).

2.4.3 Fire

Earthquakes can cause electric wires and gas pipes to break and cause fires. To decrease the chance of fire, fire proof materials or coatings should be used in the construction. Firefighting equipment and emergency exits should be wisely located at critical points and marked clearly. Compartmentalization is a design concept in which a building is divided into several fire compartments. Fires will be contained for a certain amount of time within these compartments. This is a passive concept of fire safety.

2.5 NEPAL

In order to design a building in Nepal, it is important to have obtained background knowledge of the context. This section will discuss Nepal's historical and cultural context, its geographical and demographical division and its infrastructural systems.

2.5.1 History

Nepal has a long history. The country was known to the Ancient Indians since it has been mentioned in classical Indian literature. The Indian Emperor introduced Buddhism in Nepal around the 3rd century BC. The Lichavis started to rule in Nepal from 200 AD. Nepal flourished under their power with impressive Buddhist and Hindu temples. After 879 AD, a series of kings, called the Thakuris, took over the power. After the Thakuris kings, a new series of kings emerged in the 12th century, the Malla. The caste system was introduced by them in the 14th century. In 1482, Nepal was divided into three kingdoms, but the country was reunited again in the 18th century by Privthi Nayan Shah who isolated to country to protect it from the growing power of the British in India. In the 19th century however, Nepal was forced to comprise with the British. The war in 1814 till 1816 resulted in the current country boundaries. In 1846, Rang Bahadur took power and became prime minister, or so-called Rana. Kings in Nepal have only a symbolic meaning, the Rana had the new power from then on. In 1932, Great Britain and Nepal signed a new treaty (Lambert, 2017).

From 1950 on until 2015, the constitution has changed many times. From royal authority, to democracy, communism, coalition government, monarchy and republic. In 2015, Nepal gained a new constitution. Nepal is since this new constitution divided into 7 states with 77 districts. It is nowadays a poor country with 29 million people of which most live by farming.
2.5.2 Geography

Nepal is about 800 kilometres along the Himalaya and 150 to 200 kilometres wide. The country is landlocked between India and China. Its total area is 147,181 km² of which 92.9% land. The highest point is the Mount Everest which reaches 8,848 metres. The country is divided into three physiographic areas: the Himal, Pahad and Terai. Himal is located in the Great Himalayan Range in the north of Nepal. It is a cold snow dominated region with high elevations. Pahad is another mountain region ranging from altitudes between 800 and 4,000 metres but does not have that much snow. Terai is the southern part of Nepal with lowland plains and some hill ranges which are formed and irrigated by the three major Himalayan rivers.

There are five climatic zones in Nepal that are more or less corresponding with the altitudes. Below 1,200 metres is a tropical and subtropical zone. Between 1,200 and 2,400 metres there is the temperate zone. The cold zone is between 2,400 and 3,600 metres and the subarctic zone between 3,600 and 4,400 metres and finally the arctic zone above 4,400 metres. There are five seasons in Nepal: The summer, the monsoon, the autumn, the winter and the spring. The differences in elevation result not only in different climates but also in different types of environments. At the highest elevation there is rock and ice and high-altitude grasslands and shrublands. There are coniferous forests on the Himalaya slope and in the hill region. In the south along the Indian border, tropical savannas can be found.

There are four main geological regions in the Himalaya of Nepal: the High Himalaya, the Middle Himalaya, the Siwalik, and the Terai. The High Himalaya is the highest and most rugged region, with peaks reaching over 8,000 metres. The Middle Himalaya is the transition zone between the High Himalaya and the Siwalik ranges. The Siwalik ranges are the lowest and the most dissected, with many small, isolated peaks. The Terai is the northern part of the Ganges Plains and is characterized by low-lying, flat terrain.

Most energy in Nepal comes from fuel wood with 68%. Followed by agricultural waste with 15%, animal dung at 8%, and 8% of imported fossil fuels (USAID, 2011). Nepal has no gas, coal or oil sources, these resources are imported from India or China. The topography of Nepal is ideal for hydroelectric projects due to its steep varying altitudes. There is a lot of potential in this field for the economy and welfare of the country. However, currently only 40% of all people in Nepal has access to electricity. In urban areas, 90% has electricity available while in rural areas only 5% has access. Power cuts are a daily phenomenon in Nepal due to poor installations.
Nepali architecture

2.5.4 Nepali architecture

Newar style and its building concepts and materials is Nepal's original building style and has remained nearly unchanged over the centuries. Nepali architecture reflects characteristics from India, Tibet and China since the country is located on the trade routes between those countries. The ancient Nepali architecture, established by the Newar people, is mostly present in the Kathmandu Valley with its three medieval city-states (Katmandu, Bhaktapur and Patan). Newar art and architectural style is mainly religious art but the traditional valley architecture can be categorized as both sacred and secular. The style is used for temples, monasteries, sacred houses and simple houses. The characteristics of this style are impressive brick work and wooden carving. Newar houses have pitched roofs, usually three storeys, narrow latticed windows, doors barred with large wooden planks and a courtyard (Build Abroad, n.d.). The Nepali architect Arniko (1245-1306) has been very influential in exporting this style across Asia.

Unfortunately, most ancient works have been destroyed during the centuries either by natural causes or by people. Many works were lost after events during the 14th century. When monarchy was restored in 1951 and Nepal reconnected with the development of fountains, gardens and streets. This took place after the Rana family took power. They established an isolationism policy by closing the borders to other countries except for Great Britain. Architecture from this period was strongly influenced by the British with neo-classical characteristics such as white plastered surfaces.

When monarchy was restored in 1951 and Nepal reconnected to other countries, there was a revival of interest in original Newar and Malla architecture. The development of new constructions was however more dependent on trade demands rather than traditions. The new organization of the Newar cast system is now adapted to the different specializations with flexibility to be able to switch between different skills to meet the needs and trade demands. Newar craftsmen were no longer limited to a specific field which allowed them to broaden their knowledge and find work more easily (Bonpace & Sestini, 2003, p. 15).

Nowadays, Nepali architects combine traditional styles and textures with modern aesthetics and comforts. This approach conserves and respects the architectural heritage of Nepal, while also contributing to a resilient built environment by improving buildings with seismic measurements.

<table>
<thead>
<tr>
<th>Sacred architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>The three prominent styles that can be distinguished in Nepali sacred architecture are the Pagoda Style, the Stupa Style and the Shikhara style. The pagoda style is mostly visible in Nepalese temples. Pagodas consists of multiple roofs with wide eaves which are supported by artistically carved wooden struts. Windows are mostly latticed or grilled in these kinds of buildings. This style evolved from the dome-shaped stupa and travelled across Asia and blended with Chinese traditional architecture (Build Abroad, n.d.). One of the most impressive pagodas is the one that Kathmandu is named for: The Kathmandadap. Unfortunately, this temple did not survive the earthquake in 2015. Reconstruction is in progress, it is estimated that the reconstruction will be finished in 2019.</td>
</tr>
<tr>
<td>The pagoda style is mostly visible in Nepalese temples. Pagodas consists of multiple roofs with wide eaves which are supported by artistically carved wooden struts. Windows are mostly latticed or grilled in these kinds of buildings. This style evolved from the dome-shaped stupa and travelled across Asia and blended with Chinese traditional architecture (Build Abroad, n.d.). One of the most impressive pagodas is the one that Kathmandu is named for: The Kathmandadap. Unfortunately, this temple did not survive the earthquake in 2015. Reconstruction is in progress, it is estimated that the reconstruction will be finished in 2019.</td>
</tr>
<tr>
<td>The stupa style is originated in ancient India as part of the Buddhist architectural culture. The shape of stupa buildings represents Buddha and the five Buddhist elements. The earth is represented by the square base, the water by the hemispherical dome, fire by the conical spire, air by the upper lotus parasol and the space by the sun and the dissolving point (Build Abroad, n.d.). One of the most impressive example of stupa architecture is the Swayambhu which is seen as the most sacred pilgrimage site for Newar Buddhists.</td>
</tr>
<tr>
<td>The stupa style is originated in ancient India as part of the Buddhist architectural culture. The shape of stupa buildings represents Buddha and the five Buddhist elements. The earth is represented by the square base, the water by the hemispherical dome, fire by the conical spire, air by the upper lotus parasol and the space by the sun and the dissolving point (Build Abroad, n.d.). One of the most impressive example of stupa architecture is the Swayambhu which is seen as the most sacred pilgrimage site for Newar Buddhists.</td>
</tr>
<tr>
<td>The three prominent styles that can be distinguished in Nepali sacred architecture are the Pagoda Style, the Stupa Style and the Shikhara style. The pagoda style is mostly visible in Nepalese temples. Pagodas consists of multiple roofs with wide eaves which are supported by artistically carved wooden struts. Windows are mostly latticed or grilled in these kinds of buildings. This style evolved from the dome-shaped stupa and travelled across Asia and blended with Chinese traditional architecture (Build Abroad, n.d.). One of the most impressive pagodas is the one that Kathmandu is named for: The Kathmandadap. Unfortunately, this temple did not survive the earthquake in 2015. Reconstruction is in progress, it is estimated that the reconstruction will be finished in 2019.</td>
</tr>
<tr>
<td>The stupa style is originated in ancient India as part of the Buddhist architectural culture. The shape of stupa buildings represents Buddha and the five Buddhist elements. The earth is represented by the square base, the water by the hemispherical dome, fire by the conical spire, air by the upper lotus parasol and the space by the sun and the dissolving point (Build Abroad, n.d.). One of the most impressive example of stupa architecture is the Swayambhu which is seen as the most sacred pilgrimage site for Newar Buddhists.</td>
</tr>
<tr>
<td>The three prominent styles that can be distinguished in Nepali sacred architecture are the Pagoda Style, the Stupa Style and the Shikhara style. The pagoda style is mostly visible in Nepalese temples. Pagodas consists of multiple roofs with wide eaves which are supported by artistically carved wooden struts. Windows are mostly latticed or grilled in these kinds of buildings. This style evolved from the dome-shaped stupa and travelled across Asia and blended with Chinese traditional architecture (Build Abroad, n.d.). One of the most impressive pagodas is the one that Kathmandu is named for: The Kathmandadap. Unfortunately, this temple did not survive the earthquake in 2015. Reconstruction is in progress, it is estimated that the reconstruction will be finished in 2019.</td>
</tr>
<tr>
<td>The stupa style is originated in ancient India as part of the Buddhist architectural culture. The shape of stupa buildings represents Buddha and the five Buddhist elements. The earth is represented by the square base, the water by the hemispherical dome, fire by the conical spire, air by the upper lotus parasol and the space by the sun and the dissolving point (Build Abroad, n.d.). One of the most impressive example of stupa architecture is the Swayambhu which is seen as the most sacred pilgrimage site for Newar Buddhists.</td>
</tr>
<tr>
<td>The three prominent styles that can be distinguished in Nepali sacred architecture are the Pagoda Style, the Stupa Style and the Shikhara style. The pagoda style is mostly visible in Nepalese temples. Pagodas consists of multiple roofs with wide eaves which are supported by artistically carved wooden struts. Windows are mostly latticed or grilled in these kinds of buildings. This style evolved from the dome-shaped stupa and travelled across Asia and blended with Chinese traditional architecture (Build Abroad, n.d.). One of the most impressive pagodas is the one that Kathmandu is named for: The Kathmandadap. Unfortunately, this temple did not survive the earthquake in 2015. Reconstruction is in progress, it is estimated that the reconstruction will be finished in 2019.</td>
</tr>
<tr>
<td>The stupa style is originated in ancient India as part of the Buddhist architectural culture. The shape of stupa buildings represents Buddha and the five Buddhist elements. The earth is represented by the square base, the water by the hemispherical dome, fire by the conical spire, air by the upper lotus parasol and the space by the sun and the dissolving point (Build Abroad, n.d.). One of the most impressive example of stupa architecture is the Swayambhu which is seen as the most sacred pilgrimage site for Newar Buddhists.</td>
</tr>
</tbody>
</table>
The most important traditional materials that are found in Nepal and used for construction of buildings will be discussed in this section. Clay, bricks & tiles, wood, stone, adobe and plaster are the main local materials found and processed in the Kathmandu Valley by the local people.

Clay, bricks & tiles

Bricks is the main building material used in Nepal which gives an overall unified character in Nepali urban spaces. Bricks are used for walls, roofs, pavements for streets and squares and some other parts of buildings as decoration in different patterns. The bricks are made from different types of clay that can be found in the Kathmandu Valley. The clays are dug from either river beds or from agricultural terraces on slopes. There are different clay colours with different purposes. Grey and black clays are used for common bricks and tiles. For plaster, grey and brown clays can be used. Grey clay can also be applied in mortar. Red clay is commonly used for pavement. Wall painting is done with white clays and joints can be plastered with yellow clays. Bricks are fired in kilns that are installed in situ and dismantled after the construction is finished to let the soil function as farmland again. Hundreds of kilns can be found in the Valley during the dry season. They are dismantled during the monsoon season to resume rice production.

The walls of buildings commonly consist of two leaves with clay and brick pieces in the space between them. The wall thickness is not always even since there are no standard brick dimensions in Nepal. The bricks are laid in regular bond and special tapered bricks, daci apa brick, are used to create very thin joints for aesthetic and technological purposes. The thin joints filled with an oil and clay based mortar, called silay, ensure good water resistance during the monsoon season (Bonpace & Sestini, 2013, p. 33). Special brick laying patterns are used above openings in Newar buildings. Also, the support of the corner pillars and base plinths of temples are decorated with symbolic decorative patterns.

The tiles used for roofs are flat and have grooves on both sides, so they fit into each other. Special formed brick tiles are used for ridge tops and hips which gives Nepali roofs a distinctive character. Tiles are also used as decoration of facades of some buildings. For this purpose, mostly ceramic glazed tiles are used. Terracotta is common in Bhaktapur and its surrounding villages.

The production of bricks and tiles happens during the drying of rice in open air which is part of the identity and character of public spaces in both urban and rural areas in Nepal. The similar colours of the building elements made by clay results in uniformity in urban and rural architecture and integrates the architecture with its environment.
Wood

Buildings were typically built up with a structural wooden frame filled with masonry. This building system is the original expression of the Newar building style. Kathmandu means ‘city of wood'. Unfortunately, many original wooden buildings have been destroyed in the past. The wooden construction combined with bricks can be found in both Newar houses and temples. They both have a central square cell made of thick walls as a rigid core. The Kasthamandap, mentioned in the section ‘2.5.4. Nepali architecture', is built with this system. As with many of these buildings, the wooden structure appears to have a more decorative rather than structural purpose.

The wood used in construction comes mostly from the Sal and Sisau forests in the southern part of the country, the Terai region. Sal is a very durable type of wood which is suitable for structural construction elements but also for non-loadbearing elements such as windows and doors. The wood is commonly protected with oil that also comes from the Sal tree for better durability. Other tree types that can be found around the Kathmandu Valley and are suitable for externally exposed construction elements are Gwaisasi, Salla, Utis and Sisau. Softer types of wood such as Bakaina, Alp, Padke, Simal, Karma ad Sisame are more suitable for furniture. Nowadays, the Valley region struggles with deforestation. Therefore, tree cutting is limited to the Terai region.

Since most building proportions of details are the same in Nepali architecture, it is easy to identify basic and common construction details of traditional buildings (Bonpace & Sestini, 2003, p. 53). In wooden buildings, joints are mostly made by wood. Other fixing materials are avoided in most cases. Roofs are typically made with the wood technology. Nepali roofs are steep and have large overhanging eaves to protect the building against rainfall and sun during the different seasons. Climate has a significant influence on the form of Nepali buildings. Roofs for residences have commonly two steep pitches of 40-50 degrees. A ridge beam is supported by a central column and the lateral gable walls. Two main rafters are tied to the central column and are supported by the lateral walls on wooden wall plates which transfer forces to the walls. On the main rafter, purlins are attached. Secondary rafters follow the slope of the roof and extend into the overhanging eaves. The following figure shows a axonometric section of a typical Newar house.

Another characteristic of Nepali architecture is the common use of vertical components. Columns are lined up in parallel rows and joined to a beam on top and a wooden beam or stone plinth at the bottom which results in a simple structural system supporting a thick brick wall. The structure has both an aesthetic and structural function. Examples of connections in this structure system are shown in the following figure:

Stairs are always made of wood in traditional buildings. They are quite steep and narrow and can be built in one continuous flight since the height of the stories are limited. Usually, 2-3 steps and landing are made out of bricks at the beginning of the flight (Bonpace & Sestini, 2003, p. 65).

Floors are usually made with rectangular battens with planks and the floor finish on top. Newar craftsmen developed construction methods to cope with the seismic forces. These methods use additional bracing by tying vertical and horizontal elements together with wedges that are connected through the wall so that the outer and inner joists that run around the building are connected. The following figures visualizes this concept:

Windows and doors are also commonly built with wood. They are always assembled in such a way that they are always structurally compressed. doors and windows usually consist of an internal and external frame that are connected with wooden ties. Openings have an aesthetic function. They are commonly decorated and are characterised by a grill. Windows on the storey are quite simple. This floor is usually used for sleeping in residential houses. The second storey usually has more impressive carvings and decorations where the main living area can be found.
| Stone |

Stone is commonly used in Nepal for the construction of temples, such as the shikhara temples, and public works, such as water tanks, squares, fountains and bridges. Also, religious sculptures representing animals or figures are usually made from stone.

Houses in Newar style, built with bricks, are supported by stone foundations. The stones used for this purpose are usually found along river beds and are usually used in their original state. Stone foundations have a symbolic meaning as well, it represents the base of the universe. A ceremony is usually held when the stone plates are laid. In some houses, also the walls and the entrance ways are made in stone as well. Stone plates are also very suitable for pavement of roads and squares due to their durability in heavy traffic and extreme climate.

Mines where stone were originally excavated can be found around the hills of the Kathmandu Valley. Due to the collapse of many of these mines, new quarries are in operation in the surrounding hills and mountains of the Valley. Most quarries can be found in the south near Parping village and Kirtipur city and Chobar gorge. Near Godavari, the place where my design site is located, marble stone can be found.

There are two types of stone. A black stone that is very strong and used for statues and a white stone which is mainly used for pavements. Because stones are quite difficult to transport due to its weight, most processing works are done in the countryside, where the stones are found.

Nowadays, most stone production is mainly for tourism purposes like hotels and such. Stone for religious purposes is not so much demanded anymore.

| Adobe |

Earth is used in several different ways in building construction. Adobe buildings constructed with the rammed earth method (pisé) are very common in rural areas of Nepal, especially along the Bagmati river. However, this method is rarely used in (semi) urban areas. Bricks made of earth are commonly used in these areas. Adobe bricks are sun dried in contrast to fired bricks. Mortar is also based on earth. As mentioned before, earth is also used to fill the gap between two brick leaves in wall constructions. The total thickness of adobe brick walls is never less than 50 centimetres. Earth is also used for the interior such as flooring, wall covering, fireplaces and other fixed furniture, resulting in a visual unity of the internal space. Earth has an essential practical function in roofing. It is spread on the wooden boarding to support the tiles on top of the steep pitched slopes. To prevent damage due to long term humidity near the wooden boards, bitumen should be applied in between the boards and the earth.

Many rural villages in the Valley are entirely constructed in adobe brick because of economic reasons. In some buildings in urban areas, the outer leaf or only the visible part of the building is constructed with fired bricks. The other parts of the building are made with adobe bricks.

Research results showed that the seismic resistance in adobe buildings is sufficient providing that the building has an adapted building layout and adequate connections between vertical and horizontal structural elements (Bonpace & Sestini, 2003, 121).

Nowadays, adobe is still quite common as construction material in rural areas. People usually construct their own houses with the local materials that are readily available. This saves money and reduces the damage to the environment. The adobe architecture, dominant in rural areas and along the Bagmati River, blends in with the local environment, is ecological and part of the cultural patrimony of the Kathmandu Valley. UNESCO states that it should be conserved and protected as monumental architecture (Bonpace & Sestini, 2003, p. 120).
Plaster has two main functions: protection against water penetration and aesthetics. Plaster is made from a local red or white clay. Houses are commonly decorated by using two different colours for the ground and the upper floors. The ground floor is usually lighter of colour. The inner walls usually have a red clay coating which makes it damp-proof and insecticidal.

The colour of the clay also depends on the ethnic group. The original Newar building tradition used daci apa bricks without plaster. The Rana family introduced neoclassical style in the 19th century which is characterized by the plastering technique based on air-hardening lime mortar (Bonpace & Sestini, 2003, p. 127).

Stucco is referred to as external covering while plaster is used for inside works. There are different types of plaster. Brick dust plaster consists of 2 parts of brick dust, 1 part of black pulse and 1 part of lime. Lime mortar, also called bajra mortar, consists of 2 parts brick powder, 1 part of sand and 1 part of lime.

Many traditional Nepali architectural works such as stupas and shikhara temples are covered with plaster. Covering with plaster gives a uniform character. Plastering is also part of a religious ritual. Temples, statues and houses are restored on the first day of the Dasain festival in September/October.

There are no special mines were limestone is excavated for lime production. Nowadays, hydrated lime is readily available in powder form. The Rana architecture and its neoclassical characteristics are often considered unimportant and overlooked, while it should be considered as a significant component of Nepali architecture according to UNESCO (Bonpace & Sestini, 2003, p. 135).

In the past, education in Nepal was based on home-schooling and gurukulas. In 1853, the first formal school was established. In 1951 the Nepalese democracy made it possible for more children to go to school. Before, school was mainly for the elite. The educational system is based on the Indian system. The enrolment has increased significantly from 1951 onwards. In 1951, there were 10,000 students in 300 schools and the literacy rate was 5% which increased to 63.9% in 2010 with 49,000 schools (Parajuli & Das, 2013). Public schools have received a lot of criticism on the quality of the education and social exclusion. Also the lack of infrastructure, centralized curriculum, textbooks, pedagogical strategies and poverty are factors that contribute to the poor education quality (Parajuli & Das, 2013).

There are two types of schools in Nepal, community schools and institutional schools. The latter is self-funded. The structure of education in Nepal is as following. First, there is primary education with grades 1-5. Then there is lower secondary level education from grade 6 to 8. It is possible for students to start vocational education after this which leads to a two-year program and results in a Technical School Leaving Certificate. Or it is possible to go further into secondary level which covers grade 9 and 10. Students can continue into grade 11 and 12 which is called higher secondary level. These schools are mostly private though. Higher education cover bachelor’s, master’s and PhD level education. Children usually start grade 1 at the age of six. Examinations are given after grade 8 (District Level Examination), grade 10 (Secondary Education Examination) and grade 12 (the national School Leaving Certificate).

School years in Nepal run from late April to late February/early March with break in the summer and October. April is when the new calendar year starts. School years in Nepal take place around October.

School years in Nepal run from late April to late February/early March with break in the summer and October. April is when the new calendar year starts. Since the summer is the monsoon season, many roads and bridges will be washed out by then. The major national holidays in Nepal take place around October.
Nepali schools face many challenges to remain open. They have especially been struggling after the earthquake in 2015. The school system has always been vulnerable. The literacy rate in Nepal is low and the drop-out rate of schools high. Schools in Nepal are unevenly distributed and, in some cases, hard to access. Many children have no access to education past primary level in remote areas. The earthquake in 2015 and the 2015 Nepal blockade (economic and humanitarian crisis since September 2015) have made it even worse. Schools were destroyed and the it has been tough for the country to keep remaining schools open. Schools are few and far in many rural areas, for example in Chitwan. Children have to travel far to get to school, but even then, they are most likely to drop out after grade 3 or 5 and forget what they have learned due to the lack of high schools and lack of funding to be send to higher studies in town schools (Khatiwada, 2015). The quality of the education system has received a lot of criticism due to lack of teachers, teaching material, tools and a proper curriculum. Also, funding can be a struggle. According to Lisa Lyons of ETC, it is unclear which schools have priority when it comes to funding. There are a lot of political issues involved.

The school as building faces many challenges as well in a multi-hazard context. School buildings in Nepal face seismic hazards and in some regions risks for flood and landslides. Windstorms and thunderstorms occur mainly in the southern part of Nepal and can blow off entire roofs of school buildings. More information about the specific climate-induced disasters can be found in section 2.4. Reconstruction of destroyed school buildings require a lot of time, money, effort and material. In some areas, mainly rural, it is hard to get resources for reconstruction.

For the construction and reconstruction of schools after the earthquake, guidelines for structural safety in a multi-hazard context should be followed. I refer to section 2.3 and 2.4 for physical guidelines for coping with seismic and climate-induced hazards.

| Type design |

The Department of Education (DOE) of the Nepalese government has, in collaboration with JICA and The Asian Development Bank, published guidelines for developing type designs for school buildings in Nepal in April 2016. This document presents the recommended procedures for the development of Type Designs for new school buildings in post-earthquake reconstruction of education facilities (Department of Education (DOE), Ministry of Education, 2016). Their philosophy is to use all resources efficiently, such as time and money. They strive for a balance between high functionality and cost effectiveness. The term ‘type Design’ can be defined as the functional, architectural, structural and infrastructural design of standard new school buildings which covers around 80% of all common needs. Standardization and modularization will reduce cost and improve quality. Modularization includes modular sizing of the buildings, the classrooms and building components such as doors, windows, building elements, fitting and fixtures.
2.6 SCHOOL DESIGN

RESEARCH

The DOE set up an overview of the overall facilities that needs to be provided at the different school types. These facilities are needed in addition to the basic classrooms. See table 12.

The first aid kit codes mean as following:

NT: A cupboard with first aid kits to be provided in the library

NT: A cupboard with first aid kits to be provided in labs, a separate counter with a nurse is preferred

Larger regional schools should also be considered as emergency facility to provide resources as immediate response to natural disasters. More about this can be read in the next section, 2.6.3.

SCHOOL DESIGN

Schools can be categorized by number of students. The following table shows an overview of this categorization and their requirements. However, Higher Secondary Schools (HSS) with over 900 students may be designed as individual cases with additional requirements for specific needs other than given in this overview. The 'Room combinations' uses the room type codes given in the previous table 10.

Room combinations

<table>
<thead>
<tr>
<th>Room type</th>
<th>Number of students</th>
<th>Grades</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Min</td>
<td>Max</td>
<td>Design</td>
</tr>
<tr>
<td>RPI</td>
<td>12</td>
<td>5</td>
<td>1-5</td>
</tr>
<tr>
<td>RP2</td>
<td>25</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>RP3</td>
<td>40</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>RS1</td>
<td>25</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>RS2</td>
<td>40</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>RS3</td>
<td>60</td>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 10: Classroom size categories (Department of Education (DOE), Ministry of Education, 2016, p. 11)

The following table shows the recommended room size categories given in this document. The table shows that 1 m² per student for primary schools is recommended and 1.2 m² per secondary school student. RP room types refer to primary school rooms and RS to secondary school rooms.

<table>
<thead>
<tr>
<th>School type</th>
<th>Code</th>
<th>Design number & sizes</th>
<th>Grade</th>
<th>Rooms</th>
<th>Room combinations</th>
<th>Student capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary 1</td>
<td>TD-P51</td>
<td>40</td>
<td>5</td>
<td>4</td>
<td>4RPI</td>
<td>48</td>
</tr>
<tr>
<td>Primary 2</td>
<td>TD-P52</td>
<td>90</td>
<td>5</td>
<td>4</td>
<td>4RPI</td>
<td>100</td>
</tr>
<tr>
<td>Lower secondary 1</td>
<td>TD-L51</td>
<td>140</td>
<td>8</td>
<td>8</td>
<td>8RS1</td>
<td>200</td>
</tr>
<tr>
<td>Lower secondary 2</td>
<td>TD-L52</td>
<td>220</td>
<td>8</td>
<td>8</td>
<td>4RS1+2RS2+2RS3</td>
<td>300</td>
</tr>
<tr>
<td>Secondary 1</td>
<td>TD-S51</td>
<td>160</td>
<td>10</td>
<td>10</td>
<td>6RS1+2RS2+2RS3</td>
<td>350</td>
</tr>
<tr>
<td>Secondary 2</td>
<td>TD-S52</td>
<td>300</td>
<td>10</td>
<td>10</td>
<td>4RS1+3RS2+3RS3</td>
<td>400</td>
</tr>
<tr>
<td>Secondary 3</td>
<td>TD-S53</td>
<td>480</td>
<td>10</td>
<td>14</td>
<td>6RS1+4RS2+4RS3</td>
<td>550</td>
</tr>
<tr>
<td>Higher secondary 1</td>
<td>TD-H51</td>
<td>600</td>
<td>12</td>
<td>12</td>
<td>4RS1+4RS2+4RS3</td>
<td>500</td>
</tr>
<tr>
<td>Higher secondary 2</td>
<td>TD-H52</td>
<td>600</td>
<td>12</td>
<td>16</td>
<td>6RS1+5RS2+5RS3</td>
<td>650</td>
</tr>
</tbody>
</table>

Table 11: School type and room size combination (Department of Education (DOE), Ministry of Education, 2016, p. 13)

Type design number & sizes

The following table shows an overview of the overall facilities that needs to be provided at the different school types. These facilities are needed in addition to the basic classrooms. See table 12.

School type requirements for various schools

<table>
<thead>
<tr>
<th>School type</th>
<th>Primary</th>
<th>Lower secondary</th>
<th>Secondary</th>
<th>Higher secondary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type code</td>
<td>TD-P51</td>
<td>TD-P52</td>
<td>TD-L51</td>
<td>TD-L52</td>
</tr>
<tr>
<td>Grade</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Student capacity</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 12: Type design requirements for various schools (Department of Education (DOE), Ministry of Education, 2016, p. 13)
Program considerations

The following sections will discuss considerations that need to be taken for the specific facilities. Also, disaster resilience and environmental sustainability will be discussed.

I have summarized the guidelines given by the DOE in their Type Design publication in the following points for each function (Department of Education (DOE), Ministry of Education, 2016).

Classroom size and space

- **Width : length** = 1 : 1 – 1 : 2
- **Student-teacher interaction**
- **Viewing distance** 2-7 m
- **Exit corridor minimum** 1.5 m
- **Ceiling height minimum** 2.75 m in hills/mountains and 3.6 m in Terai
- **All rooms visible from outside**
- **School size based on student number**
 - **Multi-functional / flexibility**
 - **Direct access to outdoor space**
 - **Doors easy to open/close. Provide vision panels**
 - **All doors open outwards to nearest exit**
 - **Minimum area of opening for natural light is 1/10 of room area**
 - **North oriented openings preferred**

Access

- **Equal access to all**
- **Emergency and fire exit**
- **Stairs width of minimal 2 m**
- **Maximum distance to exit from any point on single level is 30 m**

Library

- **Mandatory for schools with over 500 students**
- **Should be able to host 10% of all students at any time, 2.4 m² per student**
- **Flexible layout**
- **Ceiling height minimum 2.75 m in hills/mountains and 3.6 in Terai**
- **Separate space for storing, reserving and repairing books**

Laboratory

- **Science lab 4 m² per student, computer lab 2.4 m² per student**
- **3 types: fixed layout with services in perimeter, fixed benches with services or island layout**
- **Demo table for teacher and means for visual communication**
- **Space for sensitive apparatus**
- **Firefighting equipment, eye and face spray and first aid kit**

School administration

- **General office next to main entrance**
- **Principle office near general office**
- **Acoustic separation between offices and corridor or other rooms**

Staff room

- **Near administration area/reception/general office**
- **Overlook playing area**

Figure 68: Classroom standards (Department of Education (DOE), Ministry of Education, 2016, p. 17)
Sanitary facilities
- Boys and girls separate
- Naturally ventilated
- Lobbies to toilets also naturally ventilated
- Toilets for disabled
- In large schools, separate toilet for staff and visitors
- Non-slip tile floor
- Doors easy to open/close, undercut for air movement
- Septic tank at least 30 m away from ground water

Circulation and social spaces
- Clear internal signage
- All ground floor areas should be accessible to all
- Use of natural light, space and colour
- Durable floor and wall finishes
- Draught-proof lobbies
- Maximum distance to exit from any point on single level is 30 m
- Maximum distance to door from any point in passage is 20 m

Site infrastructure considerations
- Green spaces around school
- Proper playing ground
- Site selection considering soil condition, seismic zone, flood risk, wind risk etc.
- Hygienic sanitation
- Water should be tested against arsenic content in case of underground water supply
- Prominent entrance
- Good access for all from parking area
- Optional: Early childcare facility nearby for younger siblings
- Optional: Emergency shelter with proper equipment
- Optional: linked to early warning system

Space diagrams
The publication has provided three space diagrams that show the distribution and the relation between the various facilities within a school building. The space diagrams are provided for Primary School with < 100 students, Lower Secondary and Secondary School with < 480 students and Higher Secondary School with students up to 650.

![Space diagram Primary School (Redrawn from: Department of Education (DOE), Ministry of Education, 2016, p. 40)](image-url)
Figure 70: Space diagram (Lower) Secondary School (Redrawn from: Department of Education (DOE), Ministry of Education, 2016, p. 41)

LOWER SECONDARY AND SECONDARY SCHOOL (TD-LS1, TD-LS2, TD-SS1, TD-SS2 & TD-SS3)
SCHOOL SIZE (SMALL-LARGE)
STUDENT NUMBER UP TO 480

CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)

MUSIC & DRAWING (RS2)

CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)
CLASSROOM (RS1)

CLASSROOM (RS2)

CLASSROOM (RS3)

STAFF / TEACHERS ROOM
HEADMASTER ROOM
LIBRARY
RECEPTION
STAIRS
GUARD
PLAY AREA
STAIRS
GUARD
PLAY AREA
ENTRANCE TO SCHOOL

Figure 71: Space diagram Higher Secondary School (Redrawn from: Department of Education (DOE), Ministry of Education, 2016, p. 42)
To conserve energy, the orientation of the building and its openings should be designed properly. The orientation of buildings has influence on the natural light, shade and natural cooling and heating of the buildings. Another important aspect for energy conservation is insulation of building materials. Energy can also be conserved by reusing waste and using it for example as compost in school gardens. Choosing local materials and material with low embodied energy for construction of school buildings will save transportation efforts and hereby energy as well. If funding permits, solar PV cells on the roof can be used to generate energy for construction of school buildings will save energy. The roof can also be used to harvest rain water. If possible, waste-water should be recycled (Department of Education (DOE), Ministry of Education, 2016, p. 23).

Larger schools that are located on critical spots in a region can function as community centres that serve the entire community by providing various facilities and services. In that way, school buildings can be used more efficiently and can serve more people throughout the year. Providing these additional facilities such as emergency equipment, healthcare resources and extracurricular knowledge provision will contribute to a resilient future for the community. Various optional additional functions will be further discussed.

DR and ES considerations

The DOE also provides considerations for disaster resilience (DR) and environmental sustainability (ES). Considerations for disaster resilience have already been discussed in 2.3 with guidelines for seismic design and 2.4 for climate-induced hazards. Regarding environmental sustainability, the following considerations are important:

To conserve energy, the orientation of the building and its openings should be designed properly. The orientation of buildings has influence on the natural light, shade and natural cooling and heating of the buildings. Another important aspect for energy conservation is insulation of building materials. Energy can also be conserved by reusing waste and using it for example as compost in school gardens. Choosing local materials and material with low embodied energy for construction of school buildings will save transportation efforts and hereby energy as well. If funding permits, solar PV cells on the roof can be used to generate energy. The roof can also be used to harvest rain water. If possible, waste-water should be recycled (Department of Education (DOE), Ministry of Education, 2016, p. 23).

Larger schools that are located on critical spots in a region can function as community centres that serve the entire community by providing various facilities and services. In that way, school buildings can be used more efficiently and can serve more people throughout the year. Providing these additional facilities such as emergency equipment, healthcare resources and extracurricular knowledge provision will contribute to a resilient future for the community. Various optional additional functions will be further discussed.

DR and ES considerations

The DOE also provides considerations for disaster resilience (DR) and environmental sustainability (ES). Considerations for disaster resilience have already been discussed in 2.3 with guidelines for seismic design and 2.4 for climate-induced hazards. Regarding environmental sustainability, the following considerations are important:

Trees should be left untouched as much as possible for soil stabilisation and to reduce the extent of damage to land vegetation and the soil at the site. It is also recommended to plant additional trees and other vegetation around the building for shade. Trees are preferred over high walls. Trees and proper storm water drainage will also prevent soil erosion. The building should follow the existing land profile as much as possible and any natural waterways should be left the way they are (Department of Education (DOE), Ministry of Education, 2016, p. 23).

To conserve energy, the orientation of the building and its openings should be designed properly. The orientation of buildings has influence on the natural light, shade and natural cooling and heating of the buildings. Another important aspect for energy conservation is insulation of building materials. Energy can also be conserved by reusing waste and use it for example as compost in school gardens. Choosing local materials and material with low embodied energy for construction of school buildings will save transportation efforts and hereby energy as well. If funding permits, solar PV cells on the roof can be used to generate energy. The roof can also be used to harvest rain water. If possible, waste-water should be recycled (Department of Education (DOE), Ministry of Education, 2016, p. 23).

DR and ES considerations

The DOE also provides considerations for disaster resilience (DR) and environmental sustainability (ES). Considerations for disaster resilience have already been discussed in 2.3 with guidelines for seismic design and 2.4 for climate-induced hazards. Regarding environmental sustainability, the following considerations are important:

Trees should be left untouched as much as possible for soil stabilisation and to reduce the extent of damage to land vegetation and the soil at the site. It is also recommended to plant additional trees and other vegetation around the building for shade. Trees are preferred over high walls. Trees and proper storm water drainage will also prevent soil erosion. The building should follow the existing land profile as much as possible and any natural waterways should be left the way they are (Department of Education (DOE), Ministry of Education, 2016, p. 23).

To conserve energy, the orientation of the building and its openings should be designed properly. The orientation of buildings has influence on the natural light, shade and natural cooling and heating of the buildings. Another important aspect for energy conservation is insulation of building materials. Energy can also be conserved by reusing waste and use it for example as compost in school gardens. Choosing local materials and material with low embodied energy for construction of school buildings will save transportation efforts and hereby energy as well. If funding permits, solar PV cells on the roof can be used to generate energy. The roof can also be used to harvest rain water. If possible, waste-water should be recycled (Department of Education (DOE), Ministry of Education, 2016, p. 23).

Knowledge centre

The school can also educate adults by teaching them how to improve their houses to sustain in a multi-hazard context. Some parents keep their children from school, so they can work on their farmland. Providing lectures and workshops for both students and parents about practical matters like agriculture and craftsmanship can help families to improve their knowledge and skills in various fields and will motivate parents to send their children to school.

Leisure centre

Schools have limited opening hours. To use the building efficiently, it is possible to provide after school activities for the students. Also, during summer breaks, the school can still function as a leisure centre where children, students and parents can meet and organize activities together.

Table 13: Recommended construction materials

<table>
<thead>
<tr>
<th>Building element</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation</td>
<td>Brick or stone on cement, concrete reinforced footing</td>
</tr>
<tr>
<td>Wall</td>
<td>Brick or stone on cement, interlocking stabilised soil block, UPVC, ferrocement, bamboo-wire mesh-plaster, fibre reinforced composite, cement board</td>
</tr>
<tr>
<td>Floor</td>
<td>RCC slab, wooden, precast system, marble, tiles, IPC</td>
</tr>
<tr>
<td>Door/windows</td>
<td>Timber, aluminium, UPVC, galvanised iron</td>
</tr>
<tr>
<td>Roof</td>
<td>CGI sheet on wooden joists or steel truss, RCC slab</td>
</tr>
<tr>
<td>Staircase</td>
<td>RCC, timber, steel</td>
</tr>
</tbody>
</table>

Larger schools that are located on critical spots in a region can function as community centres that serve the entire community by providing various facilities and services. In that way, school buildings can be used more efficiently and can serve more people throughout the year. Providing these additional facilities such as emergency equipment, healthcare resources and extracurricular knowledge provision will contribute to a resilient future for the community. Various optional additional functions will be further discussed.

DR and ES considerations

The DOE also provides considerations for disaster resilience (DR) and environmental sustainability (ES). Considerations for disaster resilience have already been discussed in 2.3 with guidelines for seismic design and 2.4 for climate-induced hazards. Regarding environmental sustainability, the following considerations are important:

Trees should be left untouched as much as possible for soil stabilisation and to reduce the extent of damage to land vegetation and the soil at the site. It is also recommended to plant additional trees and other vegetation around the building for shade. Trees are preferred over high walls. Trees and proper storm water drainage will also prevent soil erosion. The building should follow the existing land profile as much as possible and any natural waterways should be left the way they are (Department of Education (DOE), Ministry of Education, 2016, p. 23).

To conserve energy, the orientation of the building and its openings should be designed properly. The orientation of buildings has influence on the natural light, shade and natural cooling and heating of the buildings. Another important aspect for energy conservation is insulation of building materials. Energy can also be conserved by reusing waste and use it for example as compost in school gardens. Choosing local materials and material with low embodied energy for construction of school buildings will save transportation efforts and hereby energy as well. If funding permits, solar PV cells on the roof can be used to generate energy. The roof can also be used to harvest rain water. If possible, waste-water should be recycled (Department of Education (DOE), Ministry of Education, 2016, p. 23).

Table 13: Recommended construction materials

<table>
<thead>
<tr>
<th>Building element</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation</td>
<td>Brick or stone on cement, concrete reinforced footing</td>
</tr>
<tr>
<td>Wall</td>
<td>Brick or stone on cement, interlocking stabilised soil block, UPVC, ferrocement, bamboo-wire mesh-plaster, fibre reinforced composite, cement board</td>
</tr>
<tr>
<td>Floor</td>
<td>RCC slab, wooden, precast system, marble, tiles, IPC</td>
</tr>
<tr>
<td>Door/windows</td>
<td>Timber, aluminium, UPVC, galvanised iron</td>
</tr>
<tr>
<td>Roof</td>
<td>CGI sheet on wooden joists or steel truss, RCC slab</td>
</tr>
<tr>
<td>Staircase</td>
<td>RCC, timber, steel</td>
</tr>
</tbody>
</table>
3 PROJECT

3.1 BACKGROUND

During the Gorkha Earthquake in 2015 and its aftershocks, many schools have been damaged or collapsed. Reconstruction of schools is still in progress. The lack of funding, resources, engineering skills and knowledge and accessibility make it difficult for a lot of schools to reopen.

Lisa Lyons, US director of ETC Nepal, has helped me to get in contact with people in Nepal. Her colleague, Mr. Laxmi Basukala, has contacted people in his network to help me find a location for my project and found a valuable connection, Mr. Dinesh Thapa. Mr. Thapa is a teacher at Kitini Higher Secondary School in Godavari. The school has been hit by the earthquake and they are looking to build new facilities and become one of the leading model schools in the region.

I visited Nepal from the 10th to the 24th of March, 2018 to visit the school, experience the context and develop a design proposal for the construction of the new facilities.
Kitini High Secondary School is a school which covers grade 1 to 12. The existing school buildings are not sufficient for the envisioned model school. I conducted a gap analysis to show the gap between what the school has and what the school needs. The full program with all facilities divided in groups is shown at page 84-85.

<table>
<thead>
<tr>
<th>Function</th>
<th>Existing m²</th>
<th>Needed m²</th>
<th>gap m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>427</td>
<td>3015</td>
<td>1588</td>
</tr>
<tr>
<td>Labs</td>
<td>75</td>
<td>180</td>
<td>105</td>
</tr>
<tr>
<td>Offices</td>
<td>107</td>
<td>274</td>
<td>167</td>
</tr>
<tr>
<td>Services</td>
<td>78</td>
<td>1765</td>
<td>1687</td>
</tr>
<tr>
<td>Sanitary</td>
<td>60</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>0</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Language Lab</td>
<td>0</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>In charge office</td>
<td>0</td>
<td>46-76</td>
<td>46</td>
</tr>
<tr>
<td>Meeting room</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Accountancy</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Management committee room</td>
<td>0</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Counselling room</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>In charge office</td>
<td>0</td>
<td>12-19</td>
<td>12</td>
</tr>
<tr>
<td>Meeting room</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Accountancy</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Management committee room</td>
<td>0</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Counselling room</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Emergency rooms</td>
<td>0</td>
<td>20-30</td>
<td>20</td>
</tr>
<tr>
<td>Canteen</td>
<td>0</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Health centre</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Conference hall</td>
<td>0</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Museum</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Hostel</td>
<td>0</td>
<td>475</td>
<td>475</td>
</tr>
<tr>
<td>Special toilets</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL EXISTING: 747
TOTAL NEEDED: 5380
TOTAL GAP: 4633
The school provided me with a list of facilities that they envisioned for the new facilities. The school is a higher secondary level school that educates children from grade 1 to 12. Grade 1 and 2, also called ECD, will be in a separate building complex with their own courtyard while grade 3-12 will share the same play and assembly area. Also, a shared service block needs to be built with communal facilities like a library and a canteen.

After a sketch study, I found out that having four sections is the most optimal organization considering the shape of the plot and the facilities that are needed per grade. One section for ECD, one section for grade 3 to 9, a section for shared service facilities and a section for grade 10 to 12.
The school which I will work with is located in Lalitpur, Godavari, Nepal. Lalitpur is one of the districts in Kathmandu Valley and is located south of the Kathmandu metropolitan area.

The community in which the school is situated is located along the road that connects Patan and Godavari (see infrastructure map on page 89). The school, which is funded by the government, owns land that will be used for the construction of the new educational facilities and two hostels. The location of the new facilities will be approximately 300 metres southwest of the existing school location.

I received the following land register map to work with:

Plot 330 and 220 are available property of the school. The educational buildings are assigned to plot 330 and the hostels to 220. The tentative design phase covers proposals for both plots. I focused only on the educational buildings on plot 330 in the final design phase.

Kathmandu Valley

The project location is on the border of the Kathmandu Valley. The Kathmandu Valley has been a main crossroad of ancient civilizations of Asia and hosts many cultural, historical and religious monuments. The capital was Bhaktapur until the 15th century. The valley is the most populated and developed area in Nepal. It is an economic, political, cultural and tourist hub which has a rich culture of street festivals.

The valley has the status of UNESCO World Heritage Site since 1979.

The Kathmandu Valley is shaped like a bowl with the lowest altitude at 1,425 metres above sea level. The valley is surrounded by several mountain ranges. The Bagmati river is the main river running through the valley.

The valley consists of three districts: the Kathmandu District, Lalitpur District and Bhaktapur District. The districts consist of several municipalities.
3.3 LOCATION

3.3.2 Infrastructure

Main transport infrastructure
The only international airport of Nepal is the Tribhuvan International Airport located in the Kathmandu Valley.

Roads are mainly constructed in the lower flat plains in the southern part of Nepal. Only the Asian Highway, also known as the H102 and H103 in the Kathmandu Valley, connects China and India from north to south through Nepal.

Projected railway system
Currently, Nepal has no functioning railway system. The railway system that has been established by the British in 1927 has been closed since 2014. However, the government has envisioned a 4,000 kilometres railway as part of their 20-year railways development plan. This railway system will connect the country east to west and also the northern part of Tibet in China to the Ganga in India.
3.3 LOCATION

KITINI SECONDARY HIGH SCHOOL
There will be various challenges within the project and during the process of the project. When it comes to the project itself, there are restrictions that need to be considered. First of all, the budget. Many schools struggle with financial support when it comes to reconstruction. Not only financial sources are scarce, there are also limitations regarding construction materials. Some materials are hard to transport to certain regions. In some cases, there is also a lack of construction skills and knowledge of proper engineering. The aim is to design a proper resilient facility which is affordable, and which makes use of local materials and construction practices.

Also, the specific design location has its challenges. The project site is a narrow long-stretched area which is quite restricting when locating the building blocks. The site is also located on a slope with an approximate height difference of 28 metres from the north down to the southwest corner. A buffer zone of approximately 6 metres from the plot borders should be considered since neighbours might have extended their property on our project site.

There are not only challenges within the scope of the project, but also during the design process itself. There is a lack of useful material and information online. Also, communication with people in Nepal can be quite challenging due to the language barrier, culture difference and distance. Traveling to Nepal was needed to experience the context myself, connect and work with the local people and develop the first ideas for this project.
The tentative design phase covers the first half of this design project which is the design proposal that we submitted to the Department of Education in Nepal. The school design in this proposal is developed according to the norms and standards set by the government for model schools. I developed this proposal during my stay in Nepal. I was there from the 10th to the 24th of March and worked with the Proposal Development Committee of Kitini HSS on the model school proposal. I was responsible for developing a design proposal for the new physical structures. We submitted the proposal at the 22nd of March, 2018. My work has been approved before submission by a local engineering firm, B.R. Engineering Consultancy, which also conducted a cost estimation of the proposal.
RESULTS

4.1 PHASE 1: TENTATIVE DESIGN

4.1.3 Architectural design

Ground floor: Grade 1-2

<table>
<thead>
<tr>
<th>Nr</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Classrooms</td>
<td>40-45</td>
<td>40</td>
<td>5 x 8</td>
<td>240</td>
<td>77,47,200.00</td>
</tr>
<tr>
<td>1</td>
<td>Mini garden</td>
<td>12</td>
<td>12</td>
<td>4 x 3</td>
<td>12</td>
<td>8000</td>
</tr>
<tr>
<td>1</td>
<td>Play area</td>
<td>375</td>
<td>375</td>
<td>-</td>
<td>375</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Toilets</td>
<td>12</td>
<td>12</td>
<td>6 x 2</td>
<td>12</td>
<td>3,87,360.00</td>
</tr>
<tr>
<td>3</td>
<td>Water taps</td>
<td>3</td>
<td>3</td>
<td>1 x 3</td>
<td>3</td>
<td>1,05,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Sleeping emergency room</td>
<td>21</td>
<td>21</td>
<td>3,5 x 6</td>
<td>21</td>
<td>9,03,840.00</td>
</tr>
<tr>
<td>1</td>
<td>Library</td>
<td>30</td>
<td>30</td>
<td>5 x 6</td>
<td>30</td>
<td>9,68,400.00</td>
</tr>
<tr>
<td>1</td>
<td>Game area</td>
<td>24</td>
<td>24</td>
<td>6 x 4</td>
<td>24</td>
<td>10,32,060.00</td>
</tr>
</tbody>
</table>

First floor: Grade 1-2

<table>
<thead>
<tr>
<th>Nr</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In charge room</td>
<td>12</td>
<td>12</td>
<td>4 x 3</td>
<td>12</td>
<td>3,87,360.00</td>
</tr>
<tr>
<td>1</td>
<td>Teachers room</td>
<td>21</td>
<td>21</td>
<td>3,5 x 6</td>
<td>21</td>
<td>6,77,880.00</td>
</tr>
</tbody>
</table>

BUILDING FOOTPRINT: 702 m²

TOTAL BUILDING COSTS: 1,22,10,000.00 Rs
RESULTS

4.1 PHASE 1: TENTATIVE DESIGN

DESIGN PROPOSAL KITINI HIGH SCHOOL, MARCH 2018

FLOOR 0

<table>
<thead>
<tr>
<th>Nr</th>
<th>FUNCTION</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Classrooms</td>
<td>40-45</td>
<td>40</td>
<td>5 x 8</td>
<td>320</td>
</tr>
<tr>
<td>1</td>
<td>Garden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Play corner</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Toilets + water taps</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
<td>10,76,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Sleeping emergency room</td>
<td>3-4</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
</tr>
<tr>
<td>1</td>
<td>Library (incl. library grade 7-9)</td>
<td>118,75</td>
<td>-</td>
<td>118,75</td>
<td>57,11,000.00</td>
</tr>
<tr>
<td>1</td>
<td>In charge room</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
<td>10,76,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Teachers room</td>
<td>50</td>
<td>10 x 5</td>
<td>50</td>
<td>21,52,000.00</td>
</tr>
</tbody>
</table>

FLOOR 1

<table>
<thead>
<tr>
<th>Nr</th>
<th>FUNCTION</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Classrooms</td>
<td>40-45</td>
<td>45 (50)</td>
<td>5 x 9 (10)</td>
<td>410</td>
</tr>
<tr>
<td>1</td>
<td>Garden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>Play corner</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Toilets + water taps</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
<td>8,07,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Sleeping emergency room</td>
<td>3-4</td>
<td>32,5</td>
<td>6.5 x 5</td>
<td>32,5</td>
</tr>
<tr>
<td>1</td>
<td>In charge room</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
<td>8,07,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Teachers room</td>
<td>50</td>
<td>5 x 10</td>
<td>50</td>
<td>17,14,000.00</td>
</tr>
</tbody>
</table>

BUILDING FOOTPRINT: 879,6 m²

TOTAL BUILDING COSTS: 4,17,76,400.00 Rs
4.1 PHASE 1: TENTATIVE DESIGN

Ground floor

<table>
<thead>
<tr>
<th>No.</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open library with reading area</td>
<td>150</td>
<td>10 x 15</td>
<td>150</td>
<td>64,56,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Canteen</td>
<td>40.5</td>
<td>9 x 4.5</td>
<td>40.5</td>
<td>17,43,120.00</td>
</tr>
<tr>
<td>1</td>
<td>Counselling room</td>
<td>14.63</td>
<td>4.5 x 3.25</td>
<td>14.63</td>
<td>6,29,675.00</td>
</tr>
<tr>
<td>1</td>
<td>Special toilets</td>
<td>14.63</td>
<td>4.5 x 3.25</td>
<td>14.63</td>
<td>6,29,675.00</td>
</tr>
<tr>
<td>1</td>
<td>Health centre</td>
<td>28.25</td>
<td>4.5 x 6.5</td>
<td>28.25</td>
<td>1,20,530.00</td>
</tr>
</tbody>
</table>

First floor

<table>
<thead>
<tr>
<th>No.</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conference hall</td>
<td>171</td>
<td>-</td>
<td>171</td>
<td>73,59,840.00</td>
</tr>
<tr>
<td>1</td>
<td>Management committee room</td>
<td>24</td>
<td>4 x 6</td>
<td>24</td>
<td>10,32,960.00</td>
</tr>
<tr>
<td>1</td>
<td>Accountancy office</td>
<td>20</td>
<td>5 x 4</td>
<td>20</td>
<td>8,60,800.00</td>
</tr>
<tr>
<td>1</td>
<td>Computer lab</td>
<td>30</td>
<td>42.25</td>
<td>42.25</td>
<td>18,18,440.00</td>
</tr>
<tr>
<td>1</td>
<td>Language lab</td>
<td>30</td>
<td>42.25</td>
<td>42.25</td>
<td>18,18,440.00</td>
</tr>
</tbody>
</table>

Second floor

<table>
<thead>
<tr>
<th>No.</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physics lab</td>
<td>30</td>
<td>42.25</td>
<td>42.25</td>
<td>13,63,830.00</td>
</tr>
<tr>
<td>1</td>
<td>Chemistry lab</td>
<td>30</td>
<td>42.25</td>
<td>42.25</td>
<td>13,63,830.00</td>
</tr>
<tr>
<td>1</td>
<td>Biology lab</td>
<td>30</td>
<td>42.25</td>
<td>42.25</td>
<td>13,63,830.00</td>
</tr>
<tr>
<td>1</td>
<td>Office area</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
<td>8,07,000.00</td>
</tr>
<tr>
<td>1</td>
<td>Vice principal office</td>
<td>40</td>
<td>8 x 5</td>
<td>40</td>
<td>12,01,200.00</td>
</tr>
<tr>
<td>1</td>
<td>Meeting room</td>
<td>32.5</td>
<td>5 x 6</td>
<td>32.5</td>
<td>10,49,100.00</td>
</tr>
<tr>
<td>1</td>
<td>Waiting area</td>
<td>32.5</td>
<td>5 x 6</td>
<td>32.5</td>
<td>10,49,100.00</td>
</tr>
</tbody>
</table>

BUILDING FOOTPRINT: 344.5 m²
TOTAL BUILDING COSTS: 3,21,95,760.00 Rs
RESULTS

4.1 PHASE 1: TENTATIVE DESIGN

DESIGN PROPOSAL KITINI HIGH SCHOOL, MARCH 2018

Ground floor

<table>
<thead>
<tr>
<th>No.</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Classrooms 60-70</td>
<td>70</td>
<td>7 x 10</td>
<td>350</td>
<td>1,50,64,000.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Garden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Toilets + water taps 3-4</td>
<td>25</td>
<td>5 x 5</td>
<td>25</td>
<td>10,76,000.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Storage</td>
<td>17.5</td>
<td>3.5 x 5</td>
<td>17.5</td>
<td>7,53,200.00</td>
<td></td>
</tr>
</tbody>
</table>

First floor

<table>
<thead>
<tr>
<th>No.</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Classrooms 60-70</td>
<td>70</td>
<td>7 x 10</td>
<td>350</td>
<td>1,50,64,000.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Library</td>
<td>127.5</td>
<td>7.5 x 17</td>
<td>127.5</td>
<td>54,87,600.00</td>
<td></td>
</tr>
</tbody>
</table>

Second floor

<table>
<thead>
<tr>
<th>No.</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Classrooms 60-70</td>
<td>70</td>
<td>7 x 10</td>
<td>350</td>
<td>1,12,98,000.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Library computer area</td>
<td>48.75</td>
<td>7.5 x 6.5</td>
<td>48.75</td>
<td>15,73,675.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>In charge room</td>
<td>18.75</td>
<td>7.5 x 2.5</td>
<td>18.75</td>
<td>6,05,250.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Teachers room</td>
<td>45</td>
<td>7.5 x 6</td>
<td>45</td>
<td>14,52,600.00</td>
<td></td>
</tr>
</tbody>
</table>

BUILDING FOOTPRINT: 656.4 m²
TOTAL BUILDING COSTS: 5,42,03,525.00 Rs
RESULTS

4.1 PHASE 1: TENTATIVE DESIGN

4.1.4 Construction

The following types of construction are suggested for the proposed buildings:

- **Walls**: Confined masonry
- **Foundation**: Concrete reinforced footing
- **Walls**: Bricks on cement with reinforcement (for example interlocking brick masonry with openings for vertical reinforcement) with finishing plaster
- **Floor**: RCC slab
- **Doors and windows**: Timber
- **Roof**: RCC (for the primary staircase) and steel (for secondary stairways)
- **Staircases**: RCC
- **Compound wall**: Bricks on cement with finishing plaster

COMPOUND WALL PLOT 330
- **Length**: 480 m
- **Width**: 30 cm
- **Height**: Varying from 2 to 4 m

COMPOUND WALL PLOT 220
- **Length**: 100 m each for each hostel, 200 m in total
- **Width**: 30 cm
- **Height**: Varying from 2 m and higher, depending on slope

ESTIMATED TOTAL COST OF SCHOOL STRUCTURE: **17,11,81,605.00 Rs**

BUILDING FOOTPRINT

Hostel boys

<table>
<thead>
<tr>
<th>Nr</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Bedrooms</td>
<td>4</td>
<td>12</td>
<td>3 x 4</td>
<td>300</td>
<td>96,84,000.00</td>
</tr>
<tr>
<td>3</td>
<td>Bathrooms</td>
<td></td>
<td>20</td>
<td>4 x 5</td>
<td>60</td>
<td>19,36,800.00</td>
</tr>
<tr>
<td>1</td>
<td>Warden</td>
<td></td>
<td>30</td>
<td>5 x 6</td>
<td>30</td>
<td>9,68,400.00</td>
</tr>
<tr>
<td>1</td>
<td>Emergency room</td>
<td></td>
<td>12</td>
<td>3 x 4</td>
<td>12</td>
<td>3,87,760.00</td>
</tr>
<tr>
<td>1</td>
<td>Entertainment room</td>
<td></td>
<td>75</td>
<td>-</td>
<td>75</td>
<td>24,21,000.00</td>
</tr>
</tbody>
</table>

BUILDING FOOTPRINT: **2 x 805 m²**

TOTAL BUILDING COSTS: **2 x 1,53,97,960.00 Rs**

Hostel girls

<table>
<thead>
<tr>
<th>Nr</th>
<th>FUNCTION</th>
<th>PERSONS</th>
<th>M²</th>
<th>L x B</th>
<th>TOTAL M²</th>
<th>COST ESTIMATION (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Bedrooms</td>
<td>4</td>
<td>12</td>
<td>3 x 4</td>
<td>300</td>
<td>96,84,000.00</td>
</tr>
<tr>
<td>3</td>
<td>Bathrooms</td>
<td></td>
<td>20</td>
<td>4 x 5</td>
<td>60</td>
<td>19,36,800.00</td>
</tr>
<tr>
<td>1</td>
<td>Warden</td>
<td></td>
<td>30</td>
<td>5 x 6</td>
<td>30</td>
<td>9,68,400.00</td>
</tr>
<tr>
<td>1</td>
<td>Emergency room</td>
<td></td>
<td>12</td>
<td>3 x 4</td>
<td>12</td>
<td>3,87,760.00</td>
</tr>
<tr>
<td>1</td>
<td>Entertainment room</td>
<td></td>
<td>75</td>
<td>-</td>
<td>75</td>
<td>24,21,000.00</td>
</tr>
</tbody>
</table>

BUILDING FOOTPRINT: **2 x 805 m²**

TOTAL BUILDING COSTS: **2 x 1,53,97,960.00 Rs**

Building Footprint: 2 x 805 m²

TOTAL BUILDING COSTS: **2 x 1,53,97,960.00 Rs**
The tentative design proposal is rather pragmatic, following the standards without any added qualities. Due to the restricting time schedule, many aspects have been simplified in this phase. This proposal can merely be considered as sketch study of the volumes and dimensions. This phase was completed with the midcrit presentation in the first week of April, once I arrived back in Sweden. Comments and remarks during the midcrit will be processed in the final design phase.
4.2 PHASE 2: FINAL DESIGN

4.2.1 Introduction

After my trip to Nepal and the midcrit presentation, the final phase of the design process started. For the final design phase, improvements are made to tentative model school design. Improvements in the site plan which makes more efficient use of the slope and improvements in the architecture of the buildings which increases the comfort, light conditions and spatial quality. The key aspects that are considered in the final design are:

Design Resiliency
- Resilient building construction
- Resilient building layout
- Resilient building materials
- Emergency meeting points/routes

Environmental Sustainability
- Solar power
- Rain harvest
- Natural daylight / ventilation
- Local materials

Architectural and Urban Quality
- Natural daylight
- Use of local material
- Use of colour
- Circulation indoor and outdoor space blend on different levels
- Viewpoints on different levels
- Natural vegetation
4.2.2 Concept

Separation
The length : width ratio may not exceed 1 : 3 due to torsion during an earthquake. Large buildings will be divided into smaller rectangular boxes that can resist lateral seismic forces.

Terracing
A Building that is divided in smaller sections and put on separate foundations can endure seismic forces better than a large building due to differential ground settlement.

Boxing
Buildings with irregular shapes are less able to endure seismic forces than regular shaped buildings. The construction will therefore be rectangular shaped.

Framing
The construction type that is used for the buildings is confined masonry. A reinforced concrete frame will be constructed and filled with reinforced masonry walls.

Natural daylight
Larger buildings will be split into sections and separated for natural daylight to enter and reach lower floors.

Building height
Higher buildings will be placed lower down the slope while lower buildings will be located at the higher part of the slope.

Blending of in & outdoor spaces
Indoor and outdoor spaces will flow into each other throughout the whole school area.

Space layout
Buildings are divided per grade. Services are located in between.
The length : width ratio may not exceed 1 : 3 due to torsion during an earthquake. Large buildings will therefore be divided into smaller rectangular boxes that can resist lateral seismic forces.

The school has two main entrances. One for ECD’s separate facility (1) and another for all other facilities (2). The main circulation routes within the school premises are at the north side. From there all facilities are accessible.

Emergency routes and assembly areas are spread throughout the school area, on open areas within and surrounding the school area.
4.2 PHASE 2: FINAL DESIGN

4.2.4 Section

LEVEL OVERVIEW

SECTION LOCATION
4.2 PHASE 2: FINAL DESIGN

4.2.5 Floorplans

LEVEL 0
Ground floor - BLOCK D

- D1 Classroom grade 10-12 67 m²
- D2 Classroom grade 10-12 65 m²
- D3 Classroom grade 10-12 65 m²

LEVEL 1
First floor - BLOCK D

- D4 Classroom grade 10-12 67 m²
- D5 Classroom grade 10-12 65 m²
- D6 Classroom grade 10-12 65 m²

LEVEL 2
Second floor - BLOCK D
Ground floor - BLOCK C

- D13 Classroom grade 10-12 67 m²
- D14 Classroom grade 10-12 65 m²
- D15 Classroom grade 10-12 65 m²
- D16 Classroom grade 10-12 65 m²
- D17 Classroom grade 10-12 65 m²
- D18 Library 113 m²
- C1 Conference hall 127 m²
- C2 Counselling room 14 m²
- C3 Health centre 23 m²
- C4 Canteen 41 m²
- C5 Special toilets 12 m²
RESULTS

4.2 PHASE 2: FINAL DESIGN

4.2.6 Elevations
4.2 PHASE 2: FINAL DESIGN

4.2.7 Detail

NATURAL DAYLIGHT
Skylights with plexiglass enable daylight to enter from above.

NATURAL VENTILATION
Air is able to escape between roof and skylight construction.

ROOF TILE SHEETS
The roof is covered with roof tile sheets which are safe, light and easy to work with.

OPTIONAL VENTILATION
This surface can be closed in winter and opened in summer with removable panels.

OPTIONAL ARTIFICIAL LIGHTING AND OTHER WIRES
In the profiled beam.

INSTALLATIONS
OPTIONAL ARTIFICIAL LIGHTING AND OTHER WIRES
4.2 PHASE 2: FINAL DESIGN

Materials

LOCAL FABRICATED BRICKS WITH POSSIBILITY FOR REINFORCEMENT

Special fabricated bricks with openings for reinforcement will be used for the walls. Reinforcement will be used both horizontally and vertically. The openings also reduce material use and weight.

IN SITU AND PREFAB REINFORCED CONCRETE

Reinforced concrete will be used for the loadbearing construction frame consisting of columns, beams and floor slabs.

CONCRETE TILES

Concrete tiles will be used for the outdoor spaces like the play/assembly area and the walking paths.

SYNTHETIC ROOF TILES

Synthetic roof tiles are safer in case of a disaster. Synthetic roof tiles are connected in sheets and are connected by screws to the roof construction.

YELLOW PLASTER

Service facilities, like libraries and offices in all blocks, will be indicated by a finishing layer of yellow plaster.

PLEXIGLASS

Plexiglass will be used for all windows and skylights. Choosing plexiglass over glass saves money and makes the building safer since it will not shatter during earthquakes.

WHITE PLASTER

Classrooms blocks are indicated by a finishing layer of white plaster.

WOOD

Wood will be used for the door and window frames. Also most furniture will be made of wood. The wood will be made fire-resistant.

Climate

SUN SCREEN

Optional sliding cover on steel wires for outdoor events

VENTILATION

Natural ventilation through semi-outdoor spaces

WATER TANK

Rain water will be collected in water tanks and used for irrigation and sanitary

SKYLIGHTS

Providing natural daylight to lower floors
The background research has helped me to gain a better understanding of earthquakes and their effect on the built environment. The research provided me with a design toolbox for seismic design which has been very useful during later phases of the project.

Travelling to Nepal has been an amazing experience. This project would not have been possible without the site visit. Designing and working in Nepal is different from working in a Swedish or Dutch context in so many ways. Working with the school committee on the model school proposal has helped me to develop myself and my skills. I learned it is important as an architect/engineer to be in close contact with the local people, the users, and be on-site when designing social architecture.

Developing a design proposal in a couple of days has been intense but rewarding. Working within a tight schedule helped me to simplify and frame the project to the most important aspects. I applied the guidelines and regulations that I found during the research to the tentative design. The school was very satisfied with the results and we submitted the proposal report to the Department of Education.

However, the tentative design proposal is rather pragmatic, following the standards and guidelines. The final design focuses on disaster resiliency and environmental sustainability while providing a comfortable and pleasant learning environment. The use of colour, light and indoor and outdoor spaces with various atmospheres on different levels has improved the architectural quality which is visible in the final design of the project.

I will be involved in the process of Kitini model school in the future. I will be following the progress on distant the coming months and I am planning to visit Nepal again in a later phase of the project. The exact details and steps that need to be taken in the future and how I can contribute during the process is not determined yet, but I am open and willing to contribute at any time and in any way possible in the development of Kitini High Secondary School towards a leading model school.
I would like to thank Lund University for the opportunity to pursue my master’s degree in architecture and all the facilities they have provided me to do so. I am in particular grateful to my supervisor, Maria Rasmussen, for guiding me with suggestions that have significantly improved my final results. I also want to thank Christer Malmström, my examiner, for his contributing feedback during the project.

I would like to express my very great appreciation to Kitini High Secondary School. I thank the school director, Sharoj Kumar K.C. for the opportunity to work with the school and his support during my stay in Nepal.

I am in particular grateful to Dinesh Thapa, teacher at Kitini HSS, for his indispensable support before, during and after my visit to Nepal with practical and work-related matters. My work for this project would not have been possible without him. It has been a great and valuable experience to work with him and the school.

I would like to thank Lisa Lyons, U.S. Director of ETC (Educate The Children) in Nepal. I was able to get in touch with Kitini High Secondary School and travel to Nepal thanks to her. Also, her colleague Laxmi Bhakta Basukala, Education Director at ETC, has been involved in the communication process whom I also like to thank.

I would also like to thank all other people that I met in Nepal. Arjun Koirala, Rup Narayan Chaulagain, staff and students at Kitini High Secondary school and Dinesh family. They all contributed in their own way by supporting me during my stay in Nepal and making this trip unforgettable.

I am very grateful to all my family members in The Netherlands. They have been a great support by motivating and encouraging me in all my pursuits to follow my dreams. I am particularly grateful to my parents who have supported me emotionally and financially throughout my entire studies.

I would also like to thank all my friends in Lund who have helped, supported and prayed for me during my thesis work.

Above all, I thank God Almighty for giving me the knowledge, strength, opportunity and the ability to follow the path He has prepared for me.

“For I can do everything through Christ, who gives me strength” – Philippians 4:13

Lydia Koedoot 2018
REFERENCES

DUDBC. (2017). Design catalogue, II.

