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Abstract
This paper valuates two different financial contracts, the European Call and the Spread
option using the Fourier transform. In the European Call case the underlying asset
is modelled by the geometric Brownian motion stochastic differential equation. All
necessary conditions in order for the transform to exists are examined and it turns out
that the payoff needs to be scaled by an exponential factor which includes a constant
a where a < 0. Later an optimization problem is defined in order to find the a which
yields the best numeric integration. At the end the Fourier method is compared against
the Black Scholes formula yielding a difference with 10−15 in magnitude.

In the Spread option case the underlying assets are modelled by a two-dimensional
Heston model with three volatilities, one for each asset and one for how they effect
each other. Here the payoff need to be scaled by two different exponential factors each
including one constant, call them a and b where a < 0 and b < 0. Again an optimization
problem is defined in order to find the a, b which yields the best numeric integration.
The Fourier method for this case is compared against a Monte Carlo simulation with
and without a control variate.
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1 A first approach
The section ”A first approach” derives and presents a result that is already known in
the field of valuating derivative assets using the Fourier method. The section should
be seen as a theory section where both the author and the reader get familiar with the
Fourier approach. So that later when approaching a more advanced financial contract,
the experience gained from the first section, will make the second part easier to read
and work through. All calculations have been done by the author and thus, hopefully
will come across as easy to follow.

1.1 The model
This subsection starts by defining what kind of financial contract will be valuated. After
a model is chosen, which determines the behaviour of the stock in the financial contract.
In order to understand the model a few definitions are mentioned. At the end it is
explained how the value of the financial contract is obtained.

The financial contract that will be used in section is known by the name European Call.
A European Call is an option, giving the buyer the right to purchase an asset at a certain
price on a certain date in the future. We see S as a stochastic process, i.e a family of
random variables St which are all defined on the same probability space (Ω,A,P). One
could imagine that the value of the stock St depends on time and some randomness,
e.g. 100 SEK is worth more today than 100 SEK one year later due to inflation, on the
other hand, the cost of energy might raise which leads to less profit and less dividends to
stockholders and the value decreases. There fore we assume that the value of St can be
described by some function St = f(t,Wt) where Wt is a Brownian motion, i.e we assume
that St is an Itô process.
Definition 1. An Itô process is defined to be an adapted stochastic process that can be
expressed as the sum of an integral with respect to Brownian motion and an integral with
respect to time

St = St0 +
∫ t

t0
σ(s,Ws)dWs +

∫ t

t0
µ(s,Ws)ds. (1)

This is of course, a bit heavy notation, so one usually write

dSt = µtdt+ σtdWt

The above (1) is called a Stochastic differential equation (SDE), and it’s used to model
many things, where one of them is the value of a stock. A natural question to ask is,
what if we instead have a process St = f(t,Xt), where Xt itself may be another process
driven by time and a Brownian motion. How would the dynamics look for St? The
famous Itôs lemma answers this question.
Definition 2. In its simplest form, Itô’s lemma states the following: for an Itô drift-
diffusion process

dXt = µtdt+ σtdWt
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and any twice differentiable scalar function f(t, x) of two real variables t and x, one has

dSt = df(t,Xt) =
(
∂f

∂t
+ µt

∂f

∂x
+ σ2

t

2
∂2f

∂x2

)
dt+ σt

∂f

∂x
dWt.

In this paper the value of a stock will be modelled by different SDE:s where the first one
we consider is called a geometric Brownian motion (GBM).

dSt = rStdn+ σStdWt GBM (2)

St0 = st

r, σ ∈ R

It is a well known result that the solution to (2) is St = ste
(r−σ

2
2 )t+σWt [1]. Given a

European Call contract we have the following payoff function φ(ST ) = (ST −K)+ where
K is the strike price. We now wish to derive that arbitrage free price of this contract
using the Fourier method.

In the book written by Björk, the author argues on page 103 that the fair price is given
by Pt = e−r(T−t0) EQ

[
(ST −K)+|FSt

]
[2]. Where Q represent the risk-neutral measure.

The book presents the mathematical details of why this must be true, here we will aim
for the intuition why it must be true. One could simply argue that in a fair world, the
price of a financial contract at some date, should be the discounted payoff received at
that date. E.g if you were to receive 100 SEK with certainty today, it would be fair to
sell this certainty at a price equal to your payoff, i.e 100 SEK. But if you were to receive
100 SEK with certainty in one year, and wanted to sell that certainty today. Then the
fair price would be 100 SEK discounted to todays value. But of course most contracts
does not give a specific amount of money with certainty. Thus in pricing of a contract,
we need to look at the payoff the holder expects to receive, and discount that value to
today. The risk-neutral measure Q is a probability measure such that each share price
is equal to the discounted expected future payoff, i.e exactly what we want. One can
prove that such a measure exists if and only if the market is free of arbitrage [2].

Now by letting f be the log distribution of ST given St and s = log(ST ), further more
let k = log(K) τ = (T − t0), and Pt be the value/price, then we obtain

Pt = e−rτ EQ
[
(ST −K)+|FSt

]
= e−rτ EQ

[
(eln(ST ) − ek)+|FSt

]
=∫

R
e−rτ

(
es − ek

)+
f(s)ds =

∫ ∞
k

e−rτ (es − ek)f(s)ds = g(k).
(3)
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1.2 The Fourier transform
In this subsection the Fourier transform is defined and the condition necessary for the
transform to exist is presented. At the end it is investigate if the value of the financial
contract, above defined as g(k) can be transformed.

Definition 3. For f ∈ L1(R) its Fourier transform, is defined as

f̃(w) = F(f)(w) =
∫
R
e−iwxf(x)dx

F : L1(R)→ Cb(R) = {Set of bounded and continuous functions on R}

Given f ∈ L1(R) then

|f̃(w)| = |F(f)(w)| =
∣∣∣∣∫

R
e−iwxf(x)dx

∣∣∣∣ ≤ ∫
R
|e−iwxf(x)|dx =

∫
R
|f(x)|dx <∞.

That is, f̃ is bounded. And considering

|f̃(w + h)− f̃(w)| =
∣∣∣∣∫

R
f(x)(e−i(w+h)x − e−iwx)dx

∣∣∣∣ ≤ ∫
R

∣∣∣f(x)(e−i(w+h)x − e−iwx)
∣∣∣ dx =∫

R
|f(x)||e−iwx||(e−iwh − 1)|dx ≤

∫
R
|f(x)||(e−iwh − 1)|dx =

∫
R
|f(x)e−iwh − f(x)|dx

Now f(x)e−iwh converges point wise to f(x) and |f(x)e−iwh| ≤ f(x) ∈ L1(R) then by
the dominated convergence theorem we have

|f̃(w + h)− f̃(w)| ≤
∫
R
|f(x)e−iwh − f(x)|dx→ 0 (h→ 0).

That is, f̃ is uniformly continuous and thus, continuous, and the Fourier transform is
well defined.
By plugging in what we know we can investigate the integrability of (3).

‖g(k)‖1 =
∫
R

∣∣∣∣∫ ∞
k

e−rτ (es − ek)f(s)ds
∣∣∣∣ dk =

∫
R

∣∣∣∣∣∣∣
1√
2π

∫ ∞
k

(s0e
− τσ

2
2 +
√
τσs − e−rτek)e−s2/2︸ ︷︷ ︸
≥0

ds

∣∣∣∣∣∣∣ dk =

∫
R

1√
2π

∫ ∞
k

e−
(s−
√
τσ)2

2 − ek−rτ−s2/2dsdk =∫
R
s0Φ(−k +

√
τσ)︸ ︷︷ ︸

(∗)

− ek−rτΦ(−k)︸ ︷︷ ︸
(∗∗)

dk

(4)

Where (∗) does not converge, while (∗∗) is finite.
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1.3 Calculating the Fourier transform and setting up the in-
verse Fourier transform

In this subsection we start by tacking care of the problem of the non-converging integral.
This is followed up by calculating the transform. Then the inverse Fourier transform is
defined. In our case the inverse transform represents the value that we seek. Again we
verify the necessary conditions that must be fulfilled in order for the inverse transform
to exists. At the end we express the value of the European call as an inverse Fourier
transform.

Earlier we saw that (∗) does not converge, while (∗∗) is finite. Thus we conclude that
g 6∈ L1(R). On the other hand, we also learned that the factor ek made (∗∗) converge,
this becomes useful.
The trick is now to define pt ≡ e−akPt, a < 0 then pt ∈ L1(R) ∀k thus the Fourier
transform exists. If p̃t(w) denotes the Fourier transform of pt then we obtain

p̃t(w) =
∫
R
e−iwke−akPt(k)dk =

∫
R
e−iwke−ak

∫ ∞
k

e−rτ (es − ek)f(s)dsdk =∫
R
e−rτf(s)

∫ s

−∞
e−iwk(es−ak − ek−ak)dkds =∫

R
e−rτf(s)es(−(a+iw))

(
es

a− 1 + iw
− es

a+ iw

)
ds =

e−rτ

(a+ iw)(a+ iw − 1)

∫
R
f(s)es(1−a−iw)ds.

(5)

Definition 4. For a random variable X the characteristic function φ is defined as the
expected value of eitX

φX(t) = E[eitX ] =
∫
R
eitxfX(x)dx.

Using the definition of characteristic function, we notice that (5) becomes

p̃t(w) = e−rτφlog(ST )(−w − (1− a)i)
(a+ iw)(a+ iw − 1) = (6)

Where log(ST ) ∼ N
(
ln(st) + (r − σ2

2 τ), σ2τ
)

= N (µ, σ̃2).

Theorem 1.1. If X is normal distributed, X ∼ N (µ, σ2), then φX(t) = eitµ−
1
2σ

2t2

Proof. Set Y ∼ N (0, 1) then σY + µ ∼ N (µ, σ2), and
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φY (t) = 1√
2π

∫
R

eity︸︷︷︸
cos(ty)+i sin(ty

e−
y2
2 dy = 1√

2π

∫
R

cos(ty)e−
y2
2 dy.

Since y 7→ sin(ty)e−
y2
2 is odd

Differentiating with respect to t yields

φ′Y (t) = − 1√
2π

∫
R

sin(ty)ye−
y2
2 dy integration by parts yields

φ′Y (t) = 1√
2π


[
sin(ty)e−

y2
2

]∞
−∞︸ ︷︷ ︸

=0 (odd)

−
∫
R
t cos(ty)e−

y2
2 dy

 =

−tφY (t)⇒
(ln(φY (t))′ = −t and with φY (0) = 1 we conclude that

φY (t) = e−
t2
2 . Thus

φX(t) = φσY+µ = E[eit(σY+µ)] = eitµ E[eitσY ] = eitµφY (σt) = eitµe−
σ2t2

2

And thus, φlog(ST )(γ) = eiγµe−
σ̃2γ2

2 .

Definition 5. For f̃ ∈ L1(R) its inverse Fourier transform, is defined as

f(x) = F−1(f̃)(x) = 1
2π

∫
R
eiwxf̃(w)dw

F−1 : L1(R)→ Cb(R) = {Set of bounded and continuous functions on R}

To show that the definition of the inverse Fourier transform is well defined is analogue
to showing that the Fourier transform is well defined.
Now we want to calculate the inverse Fourier transform of (6). Thus we must first verify
that p̃t ∈ L1(R). We have∣∣∣∣∣e−rτφlog(ST )(−w − (1− a)i)

(a+ iw)(a+ iw − 1)

∣∣∣∣∣ =
∣∣∣∣∣∣e
−rτeiµ(−w−(1−a)i)− 1

2σ
2τ(−w−(1−a)i)2

(a+ iw)(a+ iw − 1)

∣∣∣∣∣∣ =

e−rτ
∣∣∣e(1−a)µ− 1

2σ
2τ(w2−(1−a)2)+iw((1−a)σ2τ−µ)

∣∣∣
√
a2 + w2

√
(a− 1)2 + w2

=

e−rτ+(1−a)µ− 1
2σ

2τ(w2−(1−a)2)
∣∣∣eiw((1−a)σ2τ−µ)

∣∣∣
√
a2 + w2

√
(a− 1)2 + w2

=

e−rτ+(1−a)µ− 1
2σ

2τ(w2−(1−a)2)

√
a2 + w2

√
(a− 1)2 + w2
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We are interested in determining the integrability (in w) thus the interesting part in this
case is e−

1
2 (w2−(1−a)2)

√
a2+w2

√
(a−1)2+w2

= g(w). We have that g is an even function, continuous and
doesn’t have any singularities. By Weierstrass the maximum value of g exists on any
compact set, and thus we can conclude that g is integrable by

∫
R
g(w)dw = 2

∫ ∞
0

e−
1
2 (w2−(1−a)2)

√
a2 + w2

√
(a− 1)2 + w2

dw =

∫ M

0

e−
1
2 (w2−(1−a)2)

√
a2 + w2

√
(a− 1)2 + w2

dw +
∫ ∞
M

e−
1
2 (w2−(1−a)2)

√
a2 + w2

√
(a− 1)2 + w2

dw <

M max
w∈[0,M ]

g(w) +
∫ ∞
M

e−
1
2 (w2−(1−a)2)

√
a2 + w2

√
(a− 1)2 + w2

dw ∼

M max
w∈[0,M ]

g(w) +
∫ ∞
M

e−
1
2w

2

w2 dw <∞

Therefore we conclude that p̃(w) ∈ L1(R) and its inverse is

pt(k) = 1
2π

∫
R
eiwkp̃t(w)dw.

Using that pt ≡ eakPt, and that the price is a real number, we obtain

Pt = <
(
eak

2π

∫
R
eiwkp̃t(w)dw

)
=

Pt = eak

2π

∫
R
<
(
eiwkp̃t(w)

)
dw.

(7)

1.4 The real part of the integrand is an even function
This section proves that the integrand in the inverse transform i.e the value of the
European call is an even function. This result comes handy later when numerically
calculating the inverse.

Focusing on the product eiwkp̃t(w) we obtain
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eiwkp̃t(w) = eiwk
e−rTφlog(ST )(−w − (1− a)i)

(a+ iw)(a+ iw − 1)︸ ︷︷ ︸
x+iy

=

e−rτ

|x+ iy|2
(x+ iy)eiwk+iµ(−w−(1−a)i)− 1

2σ
2τ(−w−σ2(1−a)i)2 =

e−rτ+µ(1−a)− 1
2σ

2τ(w2−(1−a)2)

|x+ iy|2
(x+ iy)ei

q︷ ︸︸ ︷
w(−µ+ σ2τ(1− a) + k) =

e−rτ+µ(1−a)− 1
2σ

2τ(w2−(1−a)2)

|x+ iy|2
(x cos(q) + ix sin(q) + iy cos(q)− y sin(q))

By taking < we obtain

<
(
eiwkp̃t(w)

)
=

<

e−rτ+µ(1−a)− 1
2σ

2τ(w2−(1−a)2)

|x+ iy|2
(x cos(q) + ix sin(q) + iy cos(q)− y sin(q))

 =

e−rτ+µ(1−a)− 1
2σ

2τ(w2−(1−a)2)

|x+ iy|2
(x cos(q)− y sin(q))

with
x = a2 − a− w2 even in w

y = 2wa− w odd in w

|x+ iy|2 = (a2 − a− w2)2 + (2aw − w)2 even in w

e−rτ+µ(1−a)− 1
2σ

2τ(w2−(1−a)2) even in w ⇒
<
(
eiwkp̃t(w)

)
even in w

1.5 Calculation of the inverse Fourier transform
Here we conclude that the inverse transformation is not possible to calculate analyti-
cally and thus we present on how we approximate the integral in order to calculate it
numerically.

The price is even in real numbers and therefore (7) is equal to

Pt = eak

π

∫ ∞
0
<
(
eiwkp̃t(w)

)
dw =

eak

π

∫ ∞
0
<
(
eiwk

e−rτφlog(ST )(−w − (1− a)i)
(a+ iw)(a+ iw − 1)

)
dw =

e−rτ

π

∫ ∞
0
<
(
ek(iw+a)φlog(ST )(−w − (1− a)i)

(a+ iw)(a+ iw − 1)

)
dw

(8)
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It is not possible to calculate (8) analytically, which implies that we must calculate it
numerically. We approximate in the following way.

e−rτ

π

∫ ∞
0
<
(
ek(iw+a)φlog(ST )(−w − (1− a)i)

(a+ iw)(a+ iw − 1)

)
dw ≈

e−rτ

π

∑
k∈N

w
(n)
k <

ek(ix(n)
k

+a)φlog(ST )(−x(n)
k − (1− a)i)

(a+ ix
(n)
k )(a+ ix

(n)
k − 1)

 (9)

1.6 How to choose a?
In the section ”Calculating the Fourier transform and setting up the inverse Fourier
transform” we said that we can make the transform exists as long as a < 0. In this
section we determine the actual value of a, i.e how to find an a that suits the numerical
inverse integration the best.

We have not commented on how to choose a more than that a < 0. We want to choose a
in such a way, that the integrand behaves as ”nice” as possible, to improve the behaviour
of the numerical integration. Here ”nice” means that the integrand oscillates as little as
possible. First of all since the integrand is holomorphic, the value of a will not change
the value of the integral (in theory). Set

h(a) = <
(
ek(iw+a)φlog(ST )(−w − (1− a)i)

(a+ iw)(a+ iw − 1)

)
,

remember that µ = ln(st) + (r − σ2

2 )τ ⇒

h(a) = ek(iw+a)ei(ln(st)+(r−σ
2

2 )τ)(−w−(1−a)i)− 1
2 (σ2τ2(−w−(1−a)i)2)

(a+ iw)(a+ iw − 1) =

ek(iw+a)+(ln(st)+(r−σ
2

2 )τ)(−iw+(1−a))− 1
2 (σ2τ2(−w−(1−a)i)2)

(a+ iw)(a+ iw − 1) .

In the paper by M.Wiktorsson, see [3], Wiktorsson argues that that in order for the
inverse transform to exists. We can choose any a such that a ∈ A+

ST
, where

A+
ST

= {x > 0 : EQ[S1+x
T ] <∞}.

Furthermore he draws the conclusion that the oscillations are proportional to |h(a)|, and
that the oscillations will be more pronounced when the modulus of w is small. From
there he draws the conclusion that the oscillations will only be significant when |w| is
small. There after he conclude that |h(a)| ≤ h(a)|w=0, where h(a)|w=0 is given by
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h(a)|w=0 = eka+(ln(st)+(r−σ
2

2 )τ)(1−a)− 1
2 (σ2τ((1−a)i)2)

a(a+ 1) =

eka+(ln(st)+(r−σ
2

2 )τ)(1−a)+ 1
2σ

2τ(1−a)2

a(a+ 1) .

Then he states that the function h(a)|w=0 is convex in a on the set A+
ST

, and therefore
has a unique minimum in A+

ST
. Wiktorsson says that as a rule of thumb, a is chosen

such that a = amin = mina h(a)|w=0. Then he states that it turns out that a = amin and
w = 0 is a saddle point for the function h(a).
All in all, if we run an optimizer, finding an a which is a local min for h(a)|w=0, then
convexity tells us that it is a global minimizer. Thus, we can run a simple routine, in
this case, the golden-section method on (−∞, 0) to find a.

1.7 Implementation
In this section the Fourier method is implemented in MATLAB and tested against
another method of pricing an European call. At the end the results are compared.

We are now interested to see how the Fourier approach compares to the standard way of
valuating a European Call. In both [1] p.105 and [2] p.153 the Black-Scholes formula is
mentioned and derived as an exact way of pricing the European Call. Where the price
is given by

C(St, t) = N (d1)st −N (d2)Ke−rτ

d1 = 1
σ
√
τ

(
ln
(
st
K

)
+
(
r + σ2

2

)
τ

)
d2 = d1 − σ

√
τ

With the following values taken from [4] example 21.3

Table 1: Values of constants needed to determine the price.

K = $ 5.976
r = 0.01
t = 0
T = 148

365
st = 5.03
σ = 0.65.
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With table 1 we then obtain

Table 2: The price of a European Call, with values from table 1 for the two different
methods.

Fourier method price $ 0.511475842046357
Black Scholes formula price $ 0.511475842046358
Error $ −1.998401444325282 · 10−15.

In table 2 we can see that the Fourier method is highly accurate. Below follows an image
showing the value of the European Call for different strikes K = 2, 4, 6, 8, . . . , 20 using
both the Fourier method and the Black Scholes formula. Running the golden section
method yields a = −3.470177.

Figure 1: Here we see the value of the European Call using both the Fourier method ’+’
and the Black Scholes formula ’o’ for different strikes.
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2 Spread option
In this section the spread option is valuated under the assumptions that the assets follows
a Heston model. The idea is to follow the same recipe as in the case of the European call.
A Fourier approach to the spread option has been done before, but with other models for
the assets. Thus, the combination of the spread option and a two dimensional (assets),
and three dimensional (volatilities) Heston model is the contribution of this paper.

A spread option is a type of option where the payoff is based on the difference in price
between to underlying assets. Here we will consider what is called the spread call, which
has a payoff defined as (S1(T )−S2(T )−K)+. With arguments as before, the price of this
contract is given by Pt(K) = e−r(T−t0) EQ

[
(S1(T )− S2(T )−K)+|FSt

]
. Since we have

two underlying assets we have to use a two-dimensional Fourier transform. Here we are
going to first transform in K and then later in S2. Let k = log(K), x = log(S1(T )), y =
log(S2(T )), and let P̃t be the Fourier transform of the payoff.

2.1 The Fourier transform of the spread option
In this subsection we set up the Fourier transform and investigate whether it fulfills
the necessary conditions for existence. Just as in the case of the European call it turns
out that the transform doesn’t exist but using again an exponential factor solves the
problem.

We are interested in calculating

Π = e−r(T−t0) EQ
[
(S1(T )− S2(T )−K)+|FSt

]
=

e−r(T−t0) EQ
[
(ex − ey − ek)+|FSt

]
=

e−r(T−t0) EQ
[

1
(2π)2

∫
R

∫
R
eiw2yeiw1kP̃tdw1dw2|FSt

]
.

(10)

Where P̃t denotes the Fourier transform of the spread option, and the integral in the
expectation the inverse Fourier transform.
Before we can start transforming in k we need to make sure that the integrand is inte-
grable. By letting f(k) = (ex − ey − ek)+, we continue by

‖f · 1{−∞<k<log(S1−S2)}‖1 =
∫
R
f(k)1{−∞<k<log(S1−S2)}dk =

∫ log(S1−S2)

−∞
ex − ey − ekdk.

(11)
Which is directly a problem, f 6∈ L1(R). We will use same trick as before multiply with
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e−ak, then ‖e−akf‖ ∈ L1(R),∀a < 0.

‖fe−ak1{−∞<k<log(S1−S2)}‖1 =
∫
R
f(k)e−ak1{−∞<k<log(S1−S2)}dk =∫ log(S1−S2)

−∞
e−ak(ex − ey − ek)dk =

∫ log(S1−S2)

−∞
ex−ak − ey−ak − ek(−a+1)dk <∞

(12)

Since e−akf ∈ L1(R), a < 0 we can now calculate its Fourier transform in k.

∫
R
(ex − ey − ek)+e−ak−iw1kdk =

/
−a− iw1 = z1

/
=
∫ log(S1−S2)

−∞
(ex − ey − ek)ez1kdk =

(ex − ey)z1+1

z1(z1 + 1)
(13)

Since a < 0 the integral vanish at −∞. Now we wish to compute the transform in y,
which means that first we must investigate the integrability.

‖(ex − ey)z1+1

z1(z1 + 1) 1{x>y}‖1 =
∫
R

∣∣∣∣∣(ex − ey)z1+1

z1(z1 + 1)

∣∣∣∣∣1{x>y}dy =

1
|z1(z1 + 1)|

∫ x

−∞
(ex − ey)z1+1dy =

/
v = ey

/

= 1
|z1(z1 + 1)|

∫ ex

0
(ex − v)z1+1dv

v
=/

v = pex
/

= 1
|z1(z1 + 1)|

∫ 1

0
(ex − pex)z1+1dpe

x

pex
=

1
|z1(z1 + 1)|

∫ 1

0
ex(z1+1)(1− p)z1+1 1

p
dp = ex(z1+1)

|z1(z1 + 1)|

∫ 1

0
p−1(1− p)z1+1dp

(14)

Where (14) doesn’t converge, which is easily seen by investigating the integrand in a
neighbourhood around the boundary. We investigate what happens if we use our normal
trick and multiply by e−by.
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‖e−by (ex − ey)z1+1

z1(z1 + 1) 1{x>y}‖1 =
∫
R

∣∣∣∣∣e−by (ex − ey)z1+1

z1(z1 + 1)

∣∣∣∣∣1{x>y}dy =

1
|z1(z1 + 1)|

∫ x

−∞
e−by(ex − ey)z1+1dy =

/
ey = v

/
=

1
|z1(z1 + 1)|

∫ ex

0
v−b(ex − v)z1+1dv

v
=/

v = pex
/

= 1
|z1(z1 + 1)|

∫ 1

0
p−be−xb(ex − pex)z1+1dpe

x

pex
=

ex(z1+1−b)

|z1(z1 + 1)|

∫ 1

0
p−b−1(1− p)z1+1dp = ex(z1+1−b)

|z1(z1 + 1)|β(−b, z1 + 2) =

ex(z1+1−b)

|z1(z1 + 1)|
Γ(−b)Γ(z1 + 2)
Γ(−b+ z1 + 2)

(15)

We see that in (15) we must have b < 0 in order to have integrability (remember a < 0).
Thus the Fourier transform becomes

∫ x

−∞

(ex − ey)z1+1

z1(z1 + 1) e−bye−iw2ydy =
∫ x

−∞

(ex − ey)z1+1

z1(z1 + 1) ey(−b−iw2)dy =
/
−b− iw2 = z2

/
=

∫ x

−∞

(ex − ey)z1+1

z1(z1 + 1) eyz2dy =
/

ey = v

/
=
∫ ex

0

(ex − v)z1+1

z1(z1 + 1) vz2−1dv =
/

v = pex
/

=

∫ 1

0

(ex − pex)z1+1

z1(z1 + 1) (pex)z2−1exdp =
∫ 1

0

ex(z1+1)(1− p)z1+1

z1(z1 + 1) pz2−1ex(z2−1)exdp =

ex(z1+1+z2)

z1(z1 + 1)

∫ 1

0
pz2−1(1− p)(z1+2)−1dp = ex(z1+1+z2)

z1(z1 + 1)β(z2, z1 + 2)

ex(z1+1+z2)

z1(z1 + 1)
Γ(z2)Γ(z1 + 2)
Γ(z1 + z2 + 2) = ex(z1+1+z2)

z1

Γ(z2)Γ(z1 + 1)
Γ(z1 + z2 + 2) =

ex(z1+1+z2) Γ(z2)Γ(z1)
Γ(z1 + z2 + 2) = p̃t(w1, w2).

(16)
Where <(z1) > 0, <(z2) > 0. With p(t) = e−ake−byP (t) we have that (10) becomes

1
(2π)2 e

−r(T−t0)eakeby EQ
[∫

R

∫
R
eiw2yeiw1kp̃t(w1, w2)dw1dw2|FSt

]
. (17)

2.2 The inverse Fourier transform of the spread option
In this subsection we verify that the transform fulfills the necessary conditions in order
for the inverse Fourier transform to exists. Then the inverse is calculated.
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Now in order to continue, we must verify that the inverse Fourier transform exist, i.e
that p̃t(w1, w2) ∈ L1(R2). The gamma function is an analytical function in the right
half-plane and has no zeros, which implies that p̃t(w1, w2) is continuous and integrable
at every compact subset. Thus, the only problem to consider is how p̃t(w1, w2) behaves
for large values of w1 and w2 i.e what happens at the limits of

∫
R
∫
R |p̃t(w1, w2)| dw1dw2.

While investigating if p̃t(w1, w2) ∈ L1(R2) the factor ex(z1+1+z2) is not of interest as it the
imaginary part becomes 1 while taking the absolute value, the real part doesn’t depend
on w1, w1 and thus doesn’t affect integrability. The interesting part is what happens
with the gamma functions when the absolute value of w1 and w2 becomes large.

Theorem 2.1. Stirlings formula For |z| → ∞, δ > 0 and | arg z| < π − δ it holds
that

log Γ(z) ∼
(
z − 1

2

)
log z − z + 1

2 log(2π) + log
(

1 +O
(1
z

))
See [5] p.257 Eq 6.1.41 for a reference. Then we can see that

log Γ(z + x) ∼
(
z + a− 1

2

)
log(z + x) − z − a+ 1

2 log(2π) + log
(

1 +O
(1
z

))
∼
(
z + a− 1

2

)
log(z) +

(
z + a− 1

2

)
log
(

1 + a

z

)
− z − a+ 1

2 log(2π) + log
(

1 +O
(1
z

))
∼
(
a+ z − 1

2

)
log(z) + z log(1 + a

z
) − z − a+ 1

2 log(2π) + log
(

1 +O
(1
z

))
∼
(
z + a− 1

2

)
log(z) − z + 1

2 log(2π) + log
(

1 +O
(1
z

))
Since elog Γ(z) = Γ(z) we obtain

gx(w) = |Γ(x+ iw)| =
√

2πe−π2 |w||w|a− 1
2 +

(
1 +O

(
1
|w|

))

under the condition that x is fixed and that w ∈ R. Since gx is continuous and doesn’t
have any zeros it follows that there exists constants 0 ≤ cx ≤ Cx such that

cxe
−π2 |w|

√
1 + w2 ≤ gx(w) ≤ Cxe

−π2 |w|
√

1 + w2

By using these approximations on the quotient of Gamma functions in p̃(w1, w2) (16)
we obtain that

|p̃(w1, w2)| ≤ C

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + (w1 + w2)2

−a−b+ 3
2
e−

π
2 (|w1|+|w2|−|w1+w2|)

Let 0 < δ < 1 and

Mδ = {(w1, w2) ∈ R2 : δ · (|w1|+ |w2|) > (|w1|+ |w2|)− |w1 + w2| ≥ 0}.

Then for (w1, w2) ∈ R2\Mδ,
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|p̃(w1, w2)| ≤ C

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + (w1 + w2)2

−a−b+ 3
2
e−

π
2 (|w1|+|w2|−|w1+w2|) ≤

C1

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + (w1 + w2)2

−a−b+ 3
2
e−δ

π
2 (|w1|+|w2|) ≤

C1

√
1 + w2

1
−a− 1

2
e−δ

π
2 |w1| ·

√
1 + w2

2
−b− 1

2
e−δ

π
2 |w2| ∈ L1(R2)

On the set Mδ we instead have the following upper bound

|p̃(w1, w2)| ≤ C

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + (w1 + w2)2

−a−b+ 3
2
e−

π
2 (|w1|+|w2|−|w1+w2|) ≤

C2

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + (w1 + w2)2

−a−b+ 3
2

Since
√

1 + t2 is an even function of t, and with the property that
√

1 + δ2t2 ≥ δ
√

1 + t2

it holds on Mδ that
√

1 + (w1 + w2)2 ≥
√

1 + δ2w2
j ≥ δ

√
1 + w2

j with j = 1 ∨ 2. This
implies that

|p̃(w1, w2)|C2

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + (w1 + w2)2

−a−b+ 3
2
≤

C2

δ−a−b+
3
2

√
1 + w2

1
−a− 1

2
√

1 + w2
2
−b− 1

2

√
1 + w2

1
−a− 3

4
√

1 + w2
2
−b+ 3

4
= Cδ

√
1 + w2

1
− 5

4
√

1 + w2
2
− 5

4 ∈ L1(R2).

The final conclusion is then that

‖p̃(w1, w2)‖1 =
∫
R

∫
R
|p̃(w1, w2)|dw1dw2 =∫ ∫

Mδ

|p̃(w1, w2)|dw1dw2 +
∫ ∫

R2\Mδ

|p̃(w1, w2)|dw1dw2︸ ︷︷ ︸
∈L1(R2)

<∞⇒

p̃(w1, w2) ∈ L1(R2)

The idea on how to prove that p̃(w1, w2) ∈ L1(R2) was developed under communication
with Anders Holst at the mathematical department LTH.
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2.2.1 The moment generating function

Since its now clear that the inverse Fourier transformation exists, the next step is to
calculate it. This is done in this sub subsection, and it turns out that the moment
generating function appears.

Due to Fubinis theorem (17) can be rewritten as

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
EQ

[
e(iw1k+ak)+(iw2y+by)p̃t(w1, w2)|FSt

]
dw1dw2 =

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
EQ

[
e−z1k−z2yp̃t(w1, w2)|FSt

]
dw1dw2 =

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
EQ

[
e−z1k−z2yex(z1+1+z2) Γ(z2)Γ(z1)

Γ(z1 + z2 + 2) |F
S
t

]
dw1dw2 =

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2) E

Q
[
e−z2y+x(z1+1+z2)|FSt

]
dw1dw2,

(18)

remember that x and y are the random variables. Taking use of the following definition:

Definition 6. The moment generating function of a multivariate n-dimensional random
variable X = (X1, X2, . . . , Xn) is

MX(t) = E
[
etTX

]
=
∫
Rn
et
TXfX(x)dx1 . . . dxn.

And then defining the conditional moment generating function with respect to the con-
ditional probability density function as

MX|Y(t) =
∫
Rn
et
TXfX|Y(x)dx1 . . . dxn.

We can rewrite (18) as

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2)MX1,X2(z1 + 1 + z2,−z2)dw1dw2 = Π (19)

Where MX1,X2 is to be understood as the conditional moment generating function for
(X1, X2) = (log(S1(T )), log(S2(T ))), and will here after be refereed as the moment gen-
erating function.

Above in (19) we have an expression for the inverse transform. If we knew the moment
generating function, the only thing left would be to evaluate the integral. Which leads
to the next part.
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2.3 Derivation of the moment generating function
Earlier we saw that if we only knew the moment generating function we could valuate
the inverse transformation. The idea here is to derive the moment generating function.
To be able to do this we must determine on how to model our two different assets in
the spread option. With our model at hand it is possible to derive a partial differential
equation that the moment generating function must fulfill. By solving the differential
equation, the function is then derived.

Up to this moment we have not said anything about the structure for the underlying
assets, we have just derived a formula for the price for an arbitrary structure. Therefore
we are going to assume the following model for the underlying assets.

dS1 = rS1dt+ S1

(√
V1dW11 + σ1m

√
VmdW12

)
dS2 = rS2dt+ S2

(√
V2dW21 + σ2m

√
VmdW22

)
dV1 = κ1(θ1 − V1)dt+

√
V1σ1dWV1 (20)

dV2 = κ2(θ2 − V2)dt+
√
V2σ2dWV2

dVm = κm(θm − Vm)dt+
√
VmσmdWVm

Where dW11, dW21 are idiosyncratic risks and dW12, dW22 are common risk. The factors
σ1m, σ2m determines on how much the assets are exposed to the common risk.

Further more we assume the following non zero correlations.

dW12 · dWVm = ρ1mdt

dW22 · dWVm = ρ2mdt

dW11 · dWV1 = ρ11dt

dW21 · dWV2 = ρ22dt

dW12 · dW22 = ρ12mdt (21)

We wish to derive the moment generating function for (log(S1(T )), log(S2(T ))), thus
we set X1 = log(S1(T )) and X2 = log(S2(T )) and calculate the dynamics for them
respectively, according to (20). By Itô, definition 2, setting Xi = log(Si(T )) implies that

dXi =
(

0 + 1
2

(
− 1
S2
i

dS2
i

))
+ 1
Si
dSi =(

r − Vi
2 − Vm

σ2
im

2

)
dt+

(√
VidWi1 + σim

√
VmdWi2

)
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and thus we obtain the following system of equations for X1, X2

dX1 =
(
r − V1

2 − Vm
σ2

1m
2

)
dt+

(√
V1dW11 + σ1m

√
VmdW12

)

dX2 =
(
r − V2

2 − Vm
σ2

2m
2

)
dt+

(√
V2dW21 + σ2m

√
VmdW22

)
dV1 = κ1(θ1 − V1)dt+

√
V1σ1dWV1 (22)

dV2 = κ2(θ2 − V2)dt+
√
V2σ2dWV2

dVm = κm(θm − Vm)dt+
√
VmσmdWVm .

Going back do the definition of the moment generating function and using general ar-
guments we have that

m(t) = MX1,X2(z1, z2) = E[ez1X1+z2X2|FS1,S2,V1,V2,Vm
t ] (23)

Which implies for t < u < T

m(t) = EQ[ez1X1+z2X2|FS1,S2,V1,V2,Vm
t ] =

EQ
[
EQ

[
ez1X1+z2X2|FS1,S2,V1,V2,Vm

u

]
|FS1,S2,V1,V2,Vm

t

]
= EQ

[
m(u)|FS1,S2,V1,V2,Vm

t

]
Thus, m(t) is a martingale which further implies that when applying Itôs lemma to m(t)
the drift is identical equal to zero. By definition and by using that (X1, X2, V1, V2, Vm)
is a Markov chain, we obtain m(t) = MX1,X2(z1, z2) =
EQ[f(t,X1(t), X2(t), V1(t), V2(t), Vm(t))
|(X1(0), X2(0), V1(0), V2(0), Vm(0)) = (x1, x2, v1, v2, vm)]. While restricting our self to
the set where MX1,X2(z1, z2) is well-defined, we can apply Itôs lemma directly to f and
thus obtain the following.

∂tfdt+ ∂x1fdX1 + ∂x2fdX2 + ∂v1fdV1 + ∂v2dV2 + ∂VmfdVm+
1
2
(
∂2
ttfdt

2 + ∂2
x1x1fdX

2
1 + ∂2

x2x2fdX
2
2 + ∂2

v1v1fdV
2

1 + ∂2
v2v2fdV

2
2 + ∂2

vmvmfdV
2
m

)
+

∂2
tx1fdtdX1 + ∂2

tx2fdtdX2 + ∂2
tv1fdtdV1 + ∂2

tv2fdtdV2 + ∂2
tvmdtdVm+

∂2
x1x2fdX1dX2 + ∂2

x1v1fdX1dV1 + ∂2
x1v2fdX1dV2 + ∂2

x1vmfdX1dVm+
∂2
x2v1fdX2dV1 + ∂2

x2v2fdX2dV2 + ∂2
x2vmfdX2dVm+

∂2
v1v2fdV1dV2 + ∂2

v1vmfdV1dVm+
∂2
v2vmdV2dV1.

(24)
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Using the box algebra and the correlations from (21) we have that
dt2 = 0
dX2

1 = V1dt+ σ2
1mVmdt

dX2
2 = V2dt+ σ2

2mVmdt

dV 2
1 = V1σ

2
1dt

dV 2
2 = V2σ

2
2dt

dV 2
m = Vmσ

2
mdt

dtdX1 = dtdX2 = dtdV1 = dtdV2 = dtdVm = 0
dX1dX2 = σ1mσ2mρ12mVmdt

dX1dV1 = σ1V1ρ11dt

dX1dV2 = 0
dX1dVm = σ1mσmVmρ1mdt

dX2dV1 = 0
dX2dV2 = σ2V2ρ22dt

dX2dVm = σ2mσmVmρ2mdt

dV1dV2 = dV1dVm = dV2dVm = 0.
Inserting all the differentials into (24) we obtain

∂tfdt+

∂x1f

((
r − V1

2 − Vm
σ2

1m
2

)
dt+

(√
V1dW11 + σ1m

√
VmdW12

))
+

∂x2f

((
r − V2

2 − Vm
σ2

2m
2

)
dt+

(√
V2dW21 + σ2m

√
VmdW22

))
+

∂v1f
(
κ1(θ1 − V1)dt+

√
V1σ1dWV1

)
+

∂v2

(
κ2(θ2 − V2)dt+

√
V2σ2dWV2

)
+

∂Vmf
(
κm(θm − Vm)dt+

√
VmσmdWVm

)
+

1
2

(
∂2
x1x1f(V1 + σ2

1mVm) + ∂2
x2x2f(V2 + σ2

2mVm)+

∂2
v1v1fV1σ

2
1 + ∂2

v2v2fV2σ
2
2 + ∂2

vmvmfVmσ
2
m

)
dt+

∂2
x1x2fσ1mσ2mρ12mVmdt+
∂2
x1v1fσ1V1ρ11dt+

∂2
x1vmfσ1mσmVmρ1mdt+
∂2
x2v2fσ2V2ρ22dt+

∂2
x2vmfσ2mσmVmρ2mdt.
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As mentioned earlier, m(t) is a martingale, and thus the drift must be zero. Thus, by
collecting all contributions ”in” dt those term must equal zero, i.e

∂tfdt+

∂x1f

(
r − V1

2 − Vm
σ2

1m
2

)
dt+

∂x2f

(
r − V2

2 − Vm
σ2

2m
2

)
dt+

∂v1fκ1(θ1 − V1)dt+
∂v2fκ2(θ2 − V2)dt+
∂Vmfκm(θm − Vm)dt+

1
2

(
∂2
x1x1f(V1 + σ2

1mVm) + ∂2
x2x2f(V2 + σ2

2mVm)+

∂2
v1v1fV1σ

2
1 + ∂2

v2v2fV2σ
2
2 + ∂2

vmvmfVmσ
2
m

)
dt+

∂2
x1x2fσ1mσ2mρ12mVmdt+
∂2
x1v1fσ1V1ρ11dt+

∂2
x1vmfσ1mσmVmρ1mdt+
∂2
x2v2fσ2V2ρ22dt+

∂2
x2vmfσ2mσmVmρ2mdt = 0.

Which can be rewritten as the following PDE

∂tf+(
r − V1

2 − Vm
σ2

1m
2

)
∂x1f + σ1V1ρ11∂

2
x1v1f + σ1mσmVmρ1m∂

2
x1vmf + V1 + σ2

1mVm
2 ∂2

x1x1f+(
r − V2

2 − Vm
σ2

2m
2

)
∂x2f + σ2V2ρ22∂

2
x2v2f + σ2mσmVmρ2m∂

2
x2vmf + V2 + σ2

2mVm
2 ∂2

x2x2f+

σ1mσ2mρ12mVm∂
2
x1x2f+

κ1(θ1 − V1)∂v1f + σ2
1

2 V1∂
2
v1v1f+

κ2(θ2 − V2)∂v2f + σ2
2

2 V2∂
2
v2v2f+

κm(θm − Vm)∂vmf + σ2
m

2 Vm∂
2
vmvmf = 0.

(25)
Going back to the definition of m(t) (23), we see that

m(T ) = E[ez1X1+z2X2|FS1,S2,V1,V2,Vm
T ] we know all information⇒

m(T ) = ez1X1+z2X2 = f(T,X1, X2, V1, V2, Vm)
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That is, f(T,X1, X2, V1, V2, Vm) = ez1X1+z2X2 is a boundary condition to (25).

Now by making the ansatz that
f(τ,X1, X2, V1, V2, Vm) = eA(τ)+z1X1+z2X2+B1(τ)V1+B2(τ)V2+Bm(τ)Vm , τ = T − t and by
setting τ = 0 the above boundary condition implies

f(0, X1, X2, V1, V2, Vm) = eA(0)+z1X1+z2X2+B1(0)V1+B2(0)V2+Bm(0)Vm =
ez1X1+z2X2

⇒
A(0) = 0
B1(0) = 0
B2(0) = 0
Bm(0) = 0.

The ansatz for f might appear as magic, but it can be justified. There are no correlations
between Vi, Vj i 6= j i.e ρ(Vi, Vj) = 0 i 6= j. Thus, there will be no cross-terms in
Vi, Vj i 6= j i.e they can be linearly separated. There is correlation between Vi and Xj,
ρ(Vi, Xj) = ρjidt and dXj · dVi = Viσiρjidt which is captured as term in the function
Bi. Also dX1 · dX2 = σ1mσ2mVmρ12mdt which is captured in the function Bm. Thus
the moment generating function can be linearly separated in the exponent in terms of
X1, X2, V1, V2 and Vm.

From here and throughout this subsection, Xi will be thought of as Xi(0) and Vi as
Vi(0) in order to improve readability in the coming somewhat messy calculations. With
our ansatz we can determine A,B1, B2 and Bm by plugging f into (25). Now remember
that τ = T − t which means that dτ = −dt and we obtain

0 = −(A′ +B′1V1 +B′2V2 +B′mVm)f+(
r − V1

2 − Vm
σ2

1m
2

)
z1f + σ1V1ρ11z1B1f + σ1mσmVmρ1mz1Bmf + V1 + σ2

1mVm
2 z2

1f+(
r − V2

2 − Vm
σ2

2m
2

)
z2f + σ2V2ρ22z2B2f + σ2mσmVmρ2mz2Bmf + V2 + σ2

2mVm
2 z2

2f+

σ1mσ2mρ12mVmz1z2f+

κ1(θ1 − V1)B1f + σ2
1

2 V1B
2
1f+

κ2(θ2 − V2)B2f + σ2
2

2 V2B
2
2f+

κm(θm − Vm)Bmf + σ2
m

2 VmB
2
mf

We regroup in the following way
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0 = f

−A′ + r(z1 + z2) + κ1θ1B1 + κ2θ2B2 + κmθmBm︸ ︷︷ ︸
e1

V1

(
−B′1 + σ1ρ11z1B1 + σ2

1
2 B

2
1 − κ1B1 + z2

1
2 −

z1

2

)
︸ ︷︷ ︸

e2

+

V2

(
−B′2 + σ2ρ22z2B2 + σ2

2
2 B

2
2 − κ2B2 + z2

2
2 −

z2

2

)
︸ ︷︷ ︸

e3

+

Vm

(
−B′m + z1

(
σ1mσmρ1mBm −

σ2
1m
2

)
+ z2

(
σ2mσmρ2mz2Bm −

σ2
2m
2

)
+

σ2
1m
2 z2

1 + σ2
2m
2 z2

2 + σ1mσ2mρ12mz1z2 − κmBm + σ2
m

2 B2
m

) =

e1 + e2 + e3 + e4.

We now claim that to obtain A,B1, B2 and Bm we can solve ei = 0 for i = 1, 2, 3, 4
as a system of equations. As in earlier when we justified the ansatz for the moment
generating function. We argued that V1, V2 and Vm could be linearly separated due to
the correlation structure. This then leads to that e2, e3 and e4 can be thought of as,
having nothing to do with each other. Thus, there can never be combination of the three
yielding zero. Since all of those three must individually be zero, logic tells us that e1
must be individually zero.

None of f, V1, V2 and Vm are identically zero thus, we obtain

− A′ + r(z1 + z2) + κ1θ1B1 + κ2θ2B2 + κmθmBm = 0 (26)

−B′1 + σ1ρ11z1B1 + σ2
1

2 B
2
1 − κ1B1 + z2

1
2 −

z1

2 = 0 (27)

−B′2 + σ2ρ22z2B2 + σ2
2

2 B
2
2 − κ2B2 + z2

2
2 −

z2

2 = 0 (28)

−B′m + z1

(
σ1mσmρ1mBm −

σ2
1m
2

)
+ z2

(
σ2mσmρ2mBm −

σ2
2m
2

)
+

σ2
1m
2 z2

1 + σ2
2m
2 z2

2 + σ1mσ2mρ12mz1z2 − κmBm + σ2
m

2 B2
m = 0 (29)

We notice that (27), (28) and (29) are separable differential equations, and we start by
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solving (27).

0 = −B′1 + σ1ρ11z1B1 + σ2
1

2 B
2
1 − κ1B1 + z2

1
2 −

z1

2 =

−B′1 +B1 (σ1ρ11z1 − κ1)︸ ︷︷ ︸
y1

+ σ2
1

2︸︷︷︸
y2

B2
1 + z2

1
2 −

z1

2︸ ︷︷ ︸
y3

⇔

dB1

dτ
= B1y1 + y2B

2
1 + y3 ⇔

dB1

B1y1 + y2B2
1 + y3

= dτ ⇔

2 arctan
(

y1+2y2B1√
4y2y3−y2

1

)
√

4y2y3 − y2
1

= τ + C1 ⇔

B1 = − y1

2y2
+

√
4y2y3 − y2

1

2y2
tan


√

4y2y3 − y2
1(τ + C1)

2

 =

This looks awful, but be patient, set id1 =
√

4y2y3 − y2
1 then

B1(τ) = − y1

2y2
+ id1

2y2
tan

id1τ

2 + id1
arctan

(
y1
id1

)
id1

 =

− y1

2y2
− d1

2y2

sinh(d1τ
2 )− y1

d1
cosh(d1τ

2 )
cosh(d1τ

2 )− y1
d1

sinh(d1τ
2 )

 =
(
1− e−τd1

)
(z2

1 − z1)
(κ1 − σ1ρ11z1) (1− e−τd1) + d1 (1 + e−τd1) ,

d1 =
√

(κ1 − σ1ρ11z1)2 + σ2
1(z1 − z2

1)
Due to the similarities between (27) and (28) the solution to (28) will be the same as
for (27), just changing 1 to 2.

B2(τ) =

(
1− e−τd2

)
(z2

2 − z2)
(κ2 − σ2ρ22z2) (1− e−τd2) + d2 (1 + e−τd2) ,

d2 =
√

(κ2 − σ2ρ22z2)2 + σ2
2(z2 − z2

2)
For (29) we do the following
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−B′m + z1

(
σ1mσmρ1mBm −

σ2
1m
2

)
+ z2

(
σ2mσmρ2mBm −

σ2
2m
2

)
+

σ2
1m
2 z2

1 + σ2
2m
2 z2

2 + σ1mσ2mρ12mz1z2 − κmBm + σ2
m

2 B2
m =

−B′m +Bm (z1σ1mσmρ1m + z2σ2mσmρ2m − κm)︸ ︷︷ ︸
y1

+

σ2
m

2︸︷︷︸
y2

B2
m + σ2

1m
2 (z2

1 − z1) + σ2
2m
2 (z2

2 − z2) + σ1mσ2mρ12mz1z2︸ ︷︷ ︸
y3

Bm = − y1

2y2
+

√
4y2y3 − y2

1

2y2
tan


√

4y2y3 − y2
1(τ + Cm)

2


Setting id3 =

√
4y2y3 − y2

1 we apply the same strategy as before, and hence the solution
becomes

Bm(τ) =
(
1 − e−τdm

) (
σ2

1m(z1 − z2
1) + σ2

2m(z2 − z2
2) − 2σ1mσ2mρ12mz1z2

)
(κm − z1σ1mσmρ1m − z2σ2mσmρ2m) (1 − e−τdm ) + dm (1 + e−τdm ) ,

d3 =
√

(κm − z1σmσ1mρ1m − z2σmσ2mρ2m))2 + σ2
m (σ2

1m(z1 − z2
1) + σ2

2m(z2 − z2
2) − 2σ1mσ2mρ12mz1z2)

Then we can solve for A in

−A′ + r(z1 + z2) + κ1θ1B1 + κ2θ2B2 + κmθmBm = 0⇒

A(τ) = τr(z1 + z2) +
∫ τ

0
κ1θ1B1(γ) + κ2θ2B2(γ) + κmθmBm(γ)dγ

Thus we need to integrate B1, B2 and Bm. For simplicity we rewrite Bi i = 1, 2,m in a
way such that anything which not contains τ will be collected in a constant. Thus we
can write Bi i = 1, 2,m as

Bi(τ) =

(
1− e−τdi

)
2y3,i

−y1,i (1− e−τdi) + di (1 + e−τdi)
Where

∫ τ

0
Bi(γ)dγ =

∫ τ

0

(
1− e−γdi

)
2y3,i

−y1,i (1− e−γdi) + di (1 + e−γdi)dγ =[
−2y3,i(diγ(y1,i − di) + 2di log(y1,i(eγdi − 1)− di(eγdi + 1)))

di(y1,i − di)(y1,i + di)

]τ
0

=

1
σ2
i

(
(−y1,i + di)τ − 2 log

(
−y1,i(eτdi − 1) + di(eτdi + 1)

2di

))
Which then gives us that
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A(τ) = τr(z1 + z2)+
κ1θ1

σ2
2

(
(−σ1ρ11z1 + κ1 + d1)τ − 2 log

(
(−σ1ρ11z1 + κ1)(eτd1 − 1) + d2(eτd1 + 1)

2d1

))
+

κ2θ2

σ2
2

(
(−σ2ρ22z2 + κ2 + d2)τ − 2 log

(
(−σ2ρ22z2 + κ2)(eτd2 − 1) + d2(eτd2 + 1)

2d2

))
+

κmθm
σ2
m

(−z1σ1mσmρ1m − z2σ2mσmρ2m + κm + dm)τ−

2 log
(

(−z1σ1mσmρ1m − z2σ2mσmρ2m + κm)(eτdm − 1) + dm(eτdm + 1)
2dm

)
2.4 Simulation of the Heston model
In the case of the European Call, we presented another method for valuating the value of
the financial contract. Here we wish to do the same, to somewhat have a justification for
our calculations. In the case here, there is no answer sheet to look at the end. Thus, we
will provide a Monte Carlo pricing strategy and compare the answer against our Fourier
Method. We argue that if the value from the Monte Carlo simulation corresponds to
the value with the Fourier method, then we can be convinced that our calculations
are correct. Since the probability that two independent methods would yield the same
incorrect value seems very low.

We wish to simulate the value of the assets S1 and S2. The details of the simulation will
not be presented since, it’s not the main focus of this paper. But the simulation that
will be used is the one presented in [6].

2.5 Simulation scheme
The scheme for the Monte Carlo simulation is presented below.
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Initialization

V̂1,0 = V1(0), V̂2,0 = V2(0), V̂m,0 = Vm(0),

Ŝ1,0 = S1(0), Ŝ2,0 = S2(0), h = T

nsteps

d1 = 4θ1κ1

σ2
1
, λ1 = 4κ1e

−hκ1

σ2
1(1− e−hκ1) , C1 = σ2

1(1− e−hκ1)
4κ1

,

d2 = 4θ2κ2

σ2
2
, λ2 = 4κ2e

−hκ2

σ2
2(1− e−hκ2) , C2 = σ2

2(1− e−hκ2)
4κ2

,

dm = 4θmκm
σ2
m

, λm = 4κ2e
−hκm

σ2
m(1− e−hκm) , Cm = σ2

m(1− e−hκm)
4κm

,

ρ = ρ12m − ρ1mρ2m√
1− ρ2

1m

√
1− ρ2

2m

.
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for k=1 to nsteps do

V̂1,k = C1 × ncx2rnd(d1, V̂1,k−1λ1)(MATLAB’s non-central-χ2 random number)
V̂2,k = C2 × ncx2rnd(d2, V̂2,k−1λ2)
V̂m,k = Cm × ncx2rnd(dm, V̂m,k−1λm)

Ŝ1k = Ŝ1,k−1 exp
(
h

((
r − ρ11κ1θ1

σ1

)
+ V̂1,k + V̂1,k−1

2

(
κ1ρ11

σ1
− 1

2

))

+h
((
−σ1mρ1mκmθm

σm

)
+ V̂m,k + V̂m,k−1

2

(
σ1mκmρ1m

σm
− σ2

1m
2

))

+ρ11

σ1
(V̂1,k − V̂1,k−1) +

√
h
V̂1,k + V̂1,k−1

2 (1− ρ2
11)G1k

+σ1mρ1m

σm
(V̂m,k − V̂m,k−1) + σ1m

√
h
V̂m,k + V̂m,k−1

2 (1− ρ2
1m)G12k


Ŝ2,k = Ŝ2,k−1 exp

(
h

((
r − ρ22κ2θ2

σ2

)
+ V̂2,k + V̂2,k−1

2

(
κ2ρ22

σ2
− 1

2

))

+h
((
−σ2mρ2mκmθm

σm

)
+ V̂m,k + V̂m,k−1

2

(
σ2mκmρ2m

σm
− σ2

2m
2

))

+ρ22

σ2
(V̂2,k − V̂2,k−1) +

√
h
V̂2,k + V̂2,k−1

2 (1− ρ2
22)G2k

+σ2mρ2m

σm
(V̂m,k − V̂m,k−1) + σ2m

√
h
V̂m,k + V̂m,k−1

2 (1− ρ2
2m)G22k



G1k
G2k
G12k
G22k

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 ρ

√
1− ρ2



X1k
X2k
X3k
X4k



end

where {X1k, X2k, X3k, X4k}nk=1 are iid standard Gaussian r.v.

2.6 The value of a spread option according to simulation
The implementation of the scheme was done in a way, that for every time step, a vec-
torized simulation of M number of assets were done. That is, at every step, M numbers
of S1 assets and M number of S2 assets were simulated. This then meant that at the
last step, we had M simulations of S1(T ) and S2(T ). With these two, we were able to
calculate the payoff according to (S1(T ) − S2(T ) − K)+ and then take the mean, dis-
counting the mean and the value was obtained. At this time the standard deviation was
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as well calculated. Thus being able to construct at confidence interval for the discounted
payoff.

After running a few simulations, it was noticed that the variance was higher than wanted.
By adding a control variate, the variance was reduced. Thus, by recalculating the dis-
counted payoff with the same simulations, but with a control variate. We obtained an
approximation for the value of the spread option with lower variance and a narrower
confidence interval.

The following values was used in the simulation:

2.6.1 Correlations and exposure

Table 3: The correlations used in the
simulation of the Heston model

ρ1m = -0.5
ρ2m = -0.6
ρ11 = -0.6
ρ22 = -0.7
ρ12m = 0.7

Table 4: The different exposure constants
used in the Heston model

σ1m = 0.3
σ2m = 0.35
σ1 = 0.2
σ2 = 0.3
σm = 0.25

2.6.2 Kappas and Thetas

Table 5: The constants kappa and theta

κ1 = 2
κ2 = 3
κm = 2.5
θ1 = 0.02
θ2 = 0.01
θm = 0.015
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2.6.3 Initial values, Strike and interest rate

Table 6: Initial values of the assets
and volatilities

Ŝ1,0 = 80
Ŝ2,0 = 60
V̂1,0 = 0.01
V̂2,0 = 0.01
V̂m,0 = 0.01

Table 7: Strike, rate, time to maturity,
starting time, steps, number of assets per
time step

K = 20
r = 0.05
T = 0.5
t = 0
nstep = 1000
M = 105

This lead to a value of 3.302221 for the spread option and a confidence interval [3.2728, 3.3317].
By using a control variate, β = E[e−rτ (S1(T )−S2(T )−K)+e−rτ (S1(T )−S2(T )−K)−(S1(0)−S2(0)−e−rτK)]

E[(e−rτ (S1(T )−S2(T )−K)−S1(0)−S2(0)−e−rτK)2] ,
a value of 3.305545 , a standard deviation of 0.0076 and a confidence interval of [3.2903, 3.3208]
was obtained. Now the idea is that, being confident enough that the simulation is done
correct, if the value of the inverse Fourier transform lies in the confidence interval created
using a control variate. Then we can be confident that the calculations of the inverse
Fourier transform are correct.

The simulation was tested against different kind of strikes K = 10, 15, 20, 25, and the
result is presented in the image below.

Figure 2: A confidence interval of the
value of the spread option for the strike
K = 10. The blue dot represents the
mean.

Figure 3: A confidence interval of the
value of the spread option for the strike
K = 15. The blue dot represents the
mean.
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Figure 4: A confidence interval of the
value of the spread option for the strike
K = 20. The blue dot represents the
mean.

Figure 5: A confidence interval of the
value of the spread option for the strike
K = 25. The blue dot represents the
mean.

2.7 How to choose a and b?
Up until now we have concluded that in order for the Fourier transform to exist we must
choose a and b such that a < 0 and b < 0. In theory, the exact value of (a, b) doesn’t
matter, as long as they fulfill their constraints. However in practice the values of (a, b)
are critical. Just as in section 1.6 there exist optimal values of (a, b), call the optimal
values (amin, bmin), which gives the highest precision of the numerical integration. Going
back to (19) we wish to calculate

e−r(T−t0)
∫
R

∫
R
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2)MX1,X2(z1 + 1 + z2,−z2)︸ ︷︷ ︸

h(a,b)

dw1dw2 = Π

Just as in section 1.6, the numerical integration of h(a, b) will be precise when the
oscillation are low, and they will only be significant when |w1|, |w1| are small. Fur-
thermore the oscillations of h(a, b) are proportional to |h(a, b)|. One also has that
|h(a, b)| ≤ h(a, b)|w1=0,w2=0. From here it makes sense to restrict one self to search
for (amin, bmin) by solving

min
(s,t)∈{R<0×R<0}

h(a, b)|w1=0,w2=0. (30)

2.7.1 Can we find a minima for h(a, b)|w1=0,w2=0?

We wish to find a minima for h(a, b)|w1=0,w2=0. First we note that h(a, b)|w1=0,w2=0 is
defined on the set {(x, y) ∈ R+×R+} which is a convex set. Thus, if we could prove that
h(a, b)|w1=0,w2=0 is convex, it would be sufficient to find a local min for h(a, b)|w1=0,w2=0
which would imply a global min. Lets study the log of h(a, b)|w1=0,w2=0.
Remember that

EQ
[
e−z2 log(S2(T ))+(z1+1+z2) log(S1(T ))

]
= MX1,X2(z1 + 1 + z2,−z2) (31)
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We define
dP∗

dP
= eA(τ)+B1(τ)V1+B2(τ)V2+Bm(τ)Vm where

E∗[X] =
∫

Ω
X(w)dP∗(w)

Then (31) can be rewritten as E∗[e−aX1+bX2 ]. Thus we can rewrite h(a, b)|w1=0,w2=0 as

eka
Γ(−a)Γ(−b)

Γ(−a− b+ 2) E
∗[e−aX1+bX2 ]

Taking the log yields

log (h(a, b)|w1=0,w2=0) =
log(Γ(−a)) + log(Γ(−b))− log(Γ(−a− b+ 2)) + ka+ log

(
E∗
[
e−aX1+bX2

]) (32)

Theorem 2.2. Let MX(t) = E
[
etTX

]
be the moment generating function for X. Then

log(M(t)) is convex.

Proof. Hölders inequality says that
Theorem 2.3. Let (S,Σ, µ) be a measure space and let p, q ∈ [1,∞] with 1/p+1/q = 1.
Then, for all measureable real- or complex-valued functions f and g on S,

‖fg‖1 ≤ ‖f‖p‖g‖q

Put f = e(1−θ)tT0 X , g = eθt
T
1 X , p = 1

1−θ and q = 1
θ

for any 0 < θ < 1. Taking log on both
sides we obtain

log
(
E
[
e((1−θ)tT0 +θtT1 )X

])
≤ (1− θ) log

(
E
[
et
T
0 X
])

+ θ log
(
E
[
et
t
1X
])

By the Bohr-Mollerup theorem the log(Γ(z)) function is convex on the positive reals.
Thus, log (h(a, b)|w1=0,w2=0) is convex which implies that h(a, b)|w1=0,w2=0 is convex!

2.7.2 Can we restrict ourselves to a smaller set when searching for the min?

We concluded that h(a, b)|w1=0,w2=0 is convex and if we can find a local min, we know
that it is a global min. But to search numerically for a local min on the entire positive
reals seems unnecessary, if we can find a smaller set which includes a local min. While
we know that MX1,X2(z1 + 1 + z2,−z2) is well-defined for a < 0, b < 0 we can use
this information to construct our desired smaller set. Actually, in this case, trying to
calculate the set where MX1,X2(z1 + 1 + z2,−z2) is well-defined is to complicated, which
is another reason for why we are pursuing the strategy of constructing another set.
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Focusing at the moment on MX1,X2(z1, z2) and applying the above theorem by Hölder
with q = p

p−1 , one gets

MX1,X2(z1, z2) = E[ez1X1+z2X2 ] ≤
(
E[epz1X1 ]

) 1
p
(
E[e

p
1−p z2X2 ]

) p−1
p =

MX1 (pz1)
1
p ·MX2

(
p

p− 1z2

) p−1
p

Which implies that whenever MX1 and MX2 are well-defined, then
MX1,X2(z1, z2) is well-defined. Now for a moment, imagine MX1 (z1) being well-defined
on (c1, d1), i.e whenever c1 < <(z1) < d1 and MX2 (z2) being well-defined on (c2, d2), i.e
whenever c2 < <(z2) < d2. Below in figure 6 the set of suitable <(z1),<(z2) is visualized.

Figure 6: By making the assumption that MX1 (z1) being well-defined on (c1, d1) and
that MX2 (z2) being well-defined on (c2, d2). Then this is the set of suitable <(z1),<(z2).

Now since MX1 (z1) is defined on (c1, d1) and since p ∈ [1,∞] we have that MX1 is well-
defined on ( c1

p
, d1
p

). By similar argument we have that
MX2 is well-defined on

(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
. Now remember that any p ∈ [1,∞] is

acceptable, which means that for any point in any of the sets
( c1
p
, d1
p

) ×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
we have that MX1,X2(z1, z2) is well-defined. Thus,

the set we are looking for, is the one constructed by taking the unions over all p, i.e
∪p∈[1,∞)( c1

p
, d1
p

) ×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
. The natural question now is, how can we

visualize the set ∪p∈[1,∞)( c1
p
, d1
p

) ×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
? Well, setting p = ∞ gives

us {0}× (c2, d2), below in figure 7 the points included in this set is visualized by a green
line.
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Figure 7: By setting p = ∞ we obtain the set {0} × (c2, d2) which is visualized by the
green line.

Setting p = 1 gives us (c1, d1) × {0} below in figure 8 the points included in this set is
visualized by a blue line.
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Figure 8: By setting p = 1 we obtain the set (c1, d1) × {0} which is visualized by the
blue line.

Going back to ( c1
p
, d1
p

)×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
we can visualize this as rectangle, where

( c1
p
, d1
p

) determines the width and
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
determines the height of the

rectangle. The union of all these rectangles will give use the desired set. Consider an
arbitrary p and we want to consider where the upper left corner of the rectangle will lie.
Well in the expression ( c1

p
, d1
p

) ×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
the upper left corner is given

by
(
c1
p
, c2

(
1− 1

p

))
. But this is exactly a parameterization of a linear curve! And we

already know two points which must lie on this curve, the two points (c1, 0) and (0, d2)
which we obtained with our blue and green lines. Since the parameterization is a linear
curve and we know two points which must lie on the line. We know the upper left corner
for any p. Below in figure 9 a red line visualize all the possible points for which the
upper left corner can lie.
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Figure 9: Visualization of the where the upper left corner of the rectangle can lie for
arbitrary p. Any point on the red line corresponds to a upper left corner of a rectangle
for some p.

This argument can of course be repeated for any corner of the rectangle, and thus we
can obtain three other lines, each for any of the other corners, which is seen in figure 10
below.
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Figure 10: The red lines indicate where any of the four cornes of the rectangle may lie,
for arbirtrary p. The upper left line indicates the upper left corner. Upper right line
indicates upper right corner. Lower right line indicates lower right corner. Lower left
line indicates lower left corner. Any of the rectangles constructed by putting corners on
the line corresponds to some p. Any any of those rectangles is included in the union
∪p∈[1,∞)( c1

p
, d1
p

)×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
.

But this means that we have found our desired set ∪p∈[1,∞)( c1
p
, d1
p

)×
(
c2
(
1− 1

p

)
, d2

(
1− 1

p

))
.

The final image of the entire set can be found below in figure 11.
The set above in 11 is only dependent on the values of the parameters in the Heston
model, the initial volatilities, the correlations and the time to maturity. That is, the
set will be same independent of the initial values of S1, S2 and K. Thus, the result can
reused over and over for valuating the spread option with different initial values on the
assets and the strike.
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Figure 11: The set of all <(z1) and <(z2) where MX1 and MX2 are both well-defined.
Given the assumption that MX1 (z1) being well-defined on (c1, d1) and MX2 (z2) being
defined on (c2, d2).

The above picture can be characterized by the following inequalities

<(z2) ≤ −d2

d1
<(z1) + d2

<(z2) ≤ −d2

c1
<(z1) + d2

<(z2) ≥ −c2

c1
<(z1) + c2

<(z2) ≥ − c2

d1
<(z1) + c2.

This is all in all good, but the set we have constructed is the one in consideration for
MX1,X2(z1, z2), we want the one for MX1,X2(z1 + 1 + z2,−z2). Now we are going to be a
bit clever and put a ∼ on z1 and z2 in MX1,X2(z1, z2) i.e

<(z̃2) ≤ −d2

d1
<(z̃1) + d2

<(z̃2) ≤ −d2

c1
<(z̃1) + d2

<(z̃2) ≥ −c2

c1
<(z̃1) + c2

<(z̃2) ≥ − c2

d1
<(z̃1) + c2.
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Now set z̃1 = z1 + 1 + z2 and z̃2 = −z2, and we obtain

<(−z2) ≤ −d2

d1
<(z1 + 1 + z2) + d2

<(−z2) ≤ −d2

c1
<(z1 + 1 + z2) + d2

<(−z2) ≥ −c2

c1
<(z1 + 1 + z2) + c2

<(−z2) ≥ − c2

d1
<(z1 + 1 + z2) + c2.

We have that <(z1) = −a and <(z2) = −b, which gives us

b ≤ −d2

d1
(−a+ 1− b) + d2

b ≤ −d2

c1
(−a+ 1− b) + d2

b ≥ −c2

c1
(−a+ 1− b) + c2

b ≥ − c2

d1
(−a+ 1− b) + c2.

Remember that we must still guarantee that the Fourier transform to exist, so we must
add −a > 0 and −b > 0, and finally we obtain

D =



−a > 0
−b > 0
b ≤ −d2

d1
− a+ 1− b+ d2

b ≤ −d2
c1
− a+ 1− b+ d2

b ≥ − c2
c1
− a+ 1− b+ c2

b ≥ − c2
d1
− a+ 1− b+ c2.

(33)

Now by going back to (30) our problem is reduced to search for a min in a smaller set,
i.e

min
(s,t)∈D

h(a, b)|w1=0,w2=0

2.7.3 The set where the marginal Moment generating functions are defined
is not arbitrary

Earlier we assumed that MX1(z1) was well-defined on (c1, d1) and MX2(z2) was well-
defined on (c2, d2). These sets are of course not arbitrary, they are unique sets that
we can calculate. Since we know the structure for both assets S1 and S2 (20) and the
correlations (21). Actually we also need to know the time to maturity. The sets are
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obtained by solving a third degree polynomial, obtaining the zeros. Doing that, with
τ = 0.5 (year) and the same values as presented in 3, 4, 8, 6 and 7 we obtain

|MX1(z1)| <∞ ∀<(z1) ∈ {(−25.458563, 61.182879) ∩ <(z1) > 0}
|MX2(z2)| <∞ ∀<(z2) ∈ {(−17.381963, 58.169061) ∩ <(z2) > 0}.

The set D i.e. (33) can thus be rewritten as

D =



−a > 0
−b > 0
0.0518565b ≤ a+ 60.1855
1.43766b ≤ 26.4581− a
0.464558b ≥ a− 26.4569
4.51989b ≥ −a− 60.1827.

(34)

All these inequalities looks messy, and it can actually be simplified. By drawing the set
in GeoGebra, we obtain the following picture.

Figure 12: Here we see the set D, as the red filled in part in the above plane.

Thus, we realize that the set D can be described using only

D =


−a > 0
−b > 0
4.51989b ≥ −a− 60.1827.

(35)

2.7.4 Running an optimizer to find the values of a and b

By using MATLABs built in function fmincon the solution to
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min
(s,t)∈D

h(a, b)|w1=0,w2=0

where
h(a, b)|w1=0,w2=0 = e−ak

Γ(−b)Γ(−a)
Γ(−a− b+ 2)MX1,X2(−a+ 1− b, b)

and

D =


−a > 0
−b > 0
4.51989b ≥ −a− 60.1827.

(36)

In order to improve numerical calculations and reduce the risk for overflow. We are
going to ask MATLAB to minimize the function log (h(a, b)|w1=0,w2=0) instead. Giving
the advantage to use the function gammaln with its clever implementation which directly
calculates the log of the gamma function, instead of first calculating the gamma function,
then taking the log. By finding the values of (a, b) that minimizes log (h(a, b)|w1=0,w2=0)
and using the logic that if x1 < x2 then ex1 < ex2 we obtain the minima.
With the same values of all the constants in our model as in the simulation of the Heston
model, the minima of h(a, b)|w1=0,w2=0 is obtained at
(amin, bmin) = (−3.975063;−9.947600) ∈ D\∂D. It is important that the minima doesn’t
lie on the boundary. Because if it did, we couldn’t be certain that what we had found
actually was a local minima. We have focused on looking for a minima in a smaller set
than the actual set. A potential minima on the boundary could mean that there is a
local minima outside our set but the method can’t find it, since it’s not allowed to search
there. If that were the case, we would have had to find another way to approximate the
complicated set where MX1,X2 is well-defined.

2.8 Valuation of the spread option
Now going all the way back (19) we want to evaluate

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2)MX1,X2(z1 + 1 + z2,−z2)dw1dw2 = Π

This can not be done analytically, so we are going to calculate Π numerically. We know
that the value of Π is real, thus by taking <(Π) wont change anything. Doing this, we

Page 44



A Fourier approach to valuating derivative assets Oskar Rasmusson

will use the following approximation

<
(

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2)MX1,X2(z1 + 1 + z2,−z2)dw1dw2

)
=

1
(2π)2 e

−r(T−t0)
∫
R

∫
R
<
(
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2)MX1,X2(z1 + 1 + z2,−z2)

)
dw1dw2 ≈

e−r(T−t0)

(2π)2

∑
k∈N

∑
j∈N

w
(n)
1,kw

(n)
2,j<

(
e−z1k

Γ(z2)Γ(z1)
Γ(z1 + z2 + 2)MX1,X2(z1 + 1 + z2,−z2)

) ∣∣∣
w1=x(n)

1,k ,w2=x(n)
2,l

+

e−r(T−t0)

(2π)2

∑
k∈N

∑
j∈N

w
(n)
1,kw

(n)
2,j<

(
e−z̄1k

Γ(z2)Γ(z̄1)
Γ(z̄1 + z2 + 2)MX1,X2(z̄1 + 1 + z2,−z2)

) ∣∣∣
w1=x(n)

1,k ,w2=x(n)
2,l

+

e−r(T−t0)

(2π)2

∑
k∈N

∑
j∈N

w
(n)
1,kw

(n)
2,j<

(
e−z1k

Γ(z̄2)Γ(z1)
Γ(z1 + z̄2 + 2)MX1,X2(z1 + 1 + z̄2,−z̄2)

) ∣∣∣
w1=x(n)

1,k ,w2=x(n)
2,l

+

e−r(T−t0)

(2π)2

∑
k∈N

∑
j∈N

w
(n)
1,kw

(n)
2,j<

(
e−z̄1k

Γ(z̄2)Γ(z̄1)
Γ(z̄1 + z̄2 + 2)MX1,X2(z̄1 + 1 + z̄2,−z̄2)

) ∣∣∣
w1=x(n)

1,k ,w2=x(n)
2,l

Using the same values as in the simulation, a value using the Fourier method is obtained
and Π = 3.3175. While valuating the spread option using the Fourier method the
number of weights were varied. Below follows an image showing the convergence as a
function of the number of weights.
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Figure 13: Here we see the convergence of the value of the spread option using the
Fourier method as a function of how many weights were used. The convergence is fast
and remains stable while increasing.

The value of the spread option using the Fourier method was tested against different
strikes, K = 2, 4, 6, 8, . . . , 40, and the result is presented in the image below.
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Figure 14: Here we see the value of the spread option using the Fourier method for
different strikes.

2.9 Monte Carlo vs Fourier Method
Using the values presented in the simulation section all results are presented below.

Table 8: The result for the different methods

Kind of simulation Value Standard deviation Confidence interval
Monte Carlo 3.302221 0.0147 [3.2728, 3.3317]
Monte Carlo with control variate 3.305545 0.0076 [3.2903, 3.3208]
Fourier Method 3.3175

Below follows images showing the value of the spread option according to the Fourier
method and a confidence interval from the Monte Carlo simulation illustrating its per-
formance and accuracy.
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Figure 15: Here we see the confidence
interval of the Monte Carlo simulation
of the spread option for the strike K =
10. The blue dot represents the mean
and the red ’+’ represent the value ac-
cording to the Fourier method.

Figure 16: Here we see the confidence
interval of the Monte Carlo simulation
of the spread option for the strike K =
15. The blue dot represents the mean
and the red ’+’ represent the value ac-
cording to the Fourier method.

Figure 17: Here we see the confidence
interval of the Monte Carlo simulation
of the spread option for the strike K =
20. The blue dot represents the mean
and the red ’+’ represent the value ac-
cording to the Fourier method.

Figure 18: Here we see the confidence
interval of the Monte Carlo simulation
of the spread option for the strike K =
25. The blue dot represents the mean
and the red ’+’ represent the value ac-
cording to the Fourier method.
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We see that the value of the Fourier method lies in the confidence interval which is what
we aimed for. There fore we conclude that the calculations are correct and valuation of
the spread option using the Fourier method is accomplished.
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