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Abstract 
 

The evolution of World Wide Web (WWW) into semantic web is happening with the aid of 

standards like Resource Description Framework (RDF), SPARQL and a few others from World 

Wide Web Consortium (W3C). Over the years, semantic data management technologies have 

been introduced as software platforms commonly known as RDF stores. Lately these RDF stores 

have been tested for processing and maintenance of large data sets complying with Linked Data 

principles. In order to standardize geographic capabilities in these RDF stores, Open Geospatial 

Consortium (OGC) adopted GeoSPARQL as an extension to SPARQL query. Our study aims to 

discuss the geospatial capabilities, and the conformance to GeoSPARQL standard, of the five 

RDF stores: Eclipse RDF4J 2.4.0, Apache Jena 3.9.0,  Openlink Virtuoso 7.2.4, Stardog 6.0.1 

and GraphDB 8.8.0. Along with the investigation of features, the performance evaluation of 

these RDF stores has also been conducted by measuring the execution times of a set of 

GeoSPARQL queries. The evaluation query set consists of non- topological, spatial selection as 

well as spatial join queries adopted from a spatial benchmark, Geographica.  

The geospatial component of Integrated Carbon Observation System (ICOS) Carbon Portal (CP) 

metadata has been used for performance evaluation in order to establish the suitability of the 

RDF stores for ICOS-CP requirements. Java Programs have been developed in order to interact 

with all the RDF stores for upload of data and execution of benchmark queries. Some result set 

disparities amongst the RDF stores as well as variation in performance metrics on different 

hardware platforms have also been highlighted in our research. 

 

Keywords: Geography, Geographical Information Systems (GIS), GeoSPARQL, Geospatial 

query language, RDF stores, Java Programming, RDF4J, Jena, Virtuoso, Stardog, GraphDB 
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1.  INTRODUCTION 

1.1. Background 

The World Wide Web in its basic form is a mesh (web) of inter-connected (hyperlinked) 

documents which facilitate information sharing to a human audience.  The pledge of semantic 

web over the last two decades has been to transform the web of documents to a web of data 

(W3C 2001); from a people centric stage to a data centric platform where machines have an 

equal chance to digest the web contents (Berners-Lee et al. 2001). The concept of Linked Data 

classifies the interconnectedness of data in the semantic web. In the classical web, the knowledge 

interpretation from available information sources centered on human beings. The semantic web 

is a crossover from data/information model to a knowledge model for machines and software 

modules. Berners-Lee et al. (2001) proposes that semantic web can be realized by incorporation 

of extensions to the web in the form of standards. HTML is the standard language in document 

oriented web; RDF is the standard model in the data oriented web. RDF defines a common 

framework for data interchange and linking on the web in a graph model. Within the RDF 

framework are serialization standards (data formats i.e. RDF/XML, Turtle, JSON-LD etc.) and 

basic vocabularies (RDFS and OWL ontologies). The ontologies are represented in RDF model 

itself and hence the provision of writing new vocabularies is inherent in the RDF framework. 

SPARQL is the World Wide Web Consortium (W3C) standard query language for the semantic 

web (W3C 2013b). SPARQL is a tool for RDF data, in nearly the same manner as SQL is for 

relational data (that is based on the concept of tables, rows and columns).  

Geographic data requires additional capabilities for storage and query. Over the years these have 

been catered by: spatial extensions to RDBMS software, markup extensions for geographic data 

(GML, WKT etc.) and geo support in the Big Data engines like Geo Spark and Spatial Hadoop 

(Lenka et al. 2016).  The progress in web and mobile GIS over the years has empowered the 

distribution and visualization of geographic data beyond the mapping and geo-informatics 

professionals.  An average mobile or a computer user is planning his vacations, booking his 

hotels, organizing air and road travel on a map with live weather and traffic congestion visibility 

on his device. Geographic data exchange on the web is one key enabler of this upheaval and 

there are a number of tools and technologies that are responsible for geographic data on the web. 

The semantic web also needs some spatial extensions for geospatial semantic data in the RDF 

model for similar requirements. 

Battle and Kolas (2012) discuss the efforts undertaken over the years to complement RDF and 

SPARQL standards with spatial extensions for processing and integration of geospatial linked 

data. GeoSPARQL has been adapted by the OGC for representation and query of geospatial 

linked data in RDF model (OGC 2012). GeoSPARQL provides ontology for representation of 

geographic data as well as topological relationships and SPARQL extension for geospatial aware 

RDF queries and reasoning.  
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Many software products capable of storage, query and reasoning on RDF graphs have been 

offered in the market over the years. Usually referred as RDF stores (also called triple or quad 

stores), some of these products have incorporated the spatial extensions like GeoSPARQL to 

handle the geospatial data.  

1.2. Problem Statement 

Athanasiou et al. (2013) have identified two challenges to the geospatial semantic web as: (i) 

development of standards and (ii) development of technological artifacts (products) conforming 

to these standards. A key argument of Athanasiou et al. (2013) is that there is significant 

development on the first challenge, but the progress on the second challenge (i.e RDF stores with 

GeoSPARQL conformance and support) is overdue. Certain software products have included 

geospatial support extensions in their recent releases; however the level of conformance to the 

standard varies from one product to the other and is not consistent across the market.  

Athanasiou et al. (2013) also presents a market research on the conformance of different RDF 

stores to GeoSPARQL standard and performance measurements evaluated in 2013 highlighting 

the lack of conformance to any geospatial standard, particularly GeoSPARQL. To our 

knowledge, since 2013, a thorough study has not been conducted to evaluate the GeoSPARQL 

support across different RDF stores. As the technology has evolved overtime, a fresh assessment 

of these objectives is required to establish: the state of the art, the interoperability amongst 

different RDF platforms, and for the wider benefit of geospatial community at large. 

1.3. Aim 

The general aim of this research is to study the geospatial capabilities and performance of RDF 

stores on spatial queries.  The suitability of an RDF store for maintenance and distribution of 

geospatial component of ICOS-CP metadata is also part of the objectives of this study. In 

particular the thesis aims to study the geospatial capabilities of five RDF stores : Eclipse RDF4J, 

Apache Jena, Openlink Virtuoso, Stardog, and Ontotext GraphDB. Details of these RDF stores 

and ICOS-CP are discussed in chapter 4. The specific aim of the study is to answer the following 

questions: 

1. What are the geospatial support features of the RDF stores? 

2. What is the level of conformance to the GeoSPARQL standard provided by the RDF 

stores?  

3. What is the performance of the RDF stores for the geospatial SPARQL queries?  

4. What are the spatial indexing techniques (if any)?  

5. What is the suitability of the RDF store for management of ICOS-CP metadata geospatial 

component? 

1.4. Study Design 

This research is an empirical study in software engineering discipline.  Empirical Software 

Engineering is a body of knowledge of applied software engineering research with a strong 
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empirical component (ESE n.d.). By the start of this century, it was realized that Software 

Engineering is a big science and empiricism is a necessary ingredient of this science. Empirical 

studies in software engineering, study the software-related artifacts in order to characterize, 

understand, evaluate, predict, control, manage and improve them via qualitative and quantitative 

analysis (Zhang et al. 2018). The most commonly used empirical studies in SE are controlled 

experiments, case studies and survey (Garcia et al. 2007). Zhang et al. (2018) also found that the 

interest on empirical methods in software engineering has grown over the years. 

This study is undertaken to evaluate the software artifacts and ascertain the geospatial qualitative 

and quantitative characteristic of the selected RDF stores. The qualitative portion of the research 

studies the architecture, design, and feature support of the RDF stores from the relevant 

documentation provided by the vendors of the product. The quantitative perspective of the 

research is conducted under controlled experiment methods by execution of same set of 

benchmark queries in similar computing resources on the same geospatial data. 

ICOS is a Pan-European research framework for collection of carbon flux and greenhouse gas 

concentration. The ICOS-CP is the central point for distribution of ICOS research data. The 

metadata at ICOS-CP is used by the users to explore and search the required datasets for 

download, and it is maintained as LOD. This study utilizes the geospatial subset of ICOS-CP 

metadata for evaluation of potential RDF stores with geospatial extension. The ICOS-CP and the 

datasets used for the study are discussed in detail in chapter 4. 

In the qualitative perspective of this study, the product documentation is consulted to assess what 

all software artifacts and configurations are required to use spatial data in an RDF store. This 

reveals the methodology of geospatial support as well as identifies the limitations in a particular 

system and therefore enables the investigation of our first research question.  The software 

documentation is also studied to evaluate the conformance to GeoSPARQL standard 

specifications, which is required for cross platform compatibility of spatial data. The spatial 

subset of ICOS-CP metadata is uploaded in the RDF store to test the documented features and 

this methodology helps us investigate the second research question.  

The quantitative research starts with execution of GeoSPARQL compliant benchmark query set 

on the spatial subset of ICOS-CP metadata. The performance of the query set is evaluated, and 

analyzed to draw a cross comparison between different RDF stores to study the third research 

question. The benchmark query set is executed in standard as well as optimized environment to 

observe the difference of performances in indexed versus un-indexed configurations in each RDF 

store (if possible), to investigate the fourth research question. 

The final research question relates to ICOS-CP considerations, and this is studied with the focus 

on ICOS-CP geospatial metadata requirements. Results obtained in first four research questions; 

when analyzed against the ICOS-CP requirements help us establish answer to this last research 

question. 
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1.5. Disposition 

The report is compiled in seven chapters. A discussion of the technological concepts is 

conducted in the start of chapter 2 before introducing the details of the GeoSPARQL standard. 

Chapter 3 deals with an overview of the previous related studies. Chapter 4 comprises the 

research methodologies and data used for this research. The overview of Geospatial RDF 

benchmark selected for the study and the benchmark queries established to measure the 

performance of the software artifacts is also included in chapter 4. In chapter 5, the qualitative 

and quantities results of the research are presented followed by a discussion on these findings in 

chapter 6. The conclusion is drawn at the end in chapter 7. For the interested users, the SPARQL 

queries used for the evaluation of each RDF store and custom code developed to interact from 

programming environment through the APIs is available at the url  

https://github.com/Raza-Amir-Syed/TestGeoRDFStores as well as 

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8974835&fileOId=8974841.  

1.6. Limitations 

This study has been conducted with some known limitations listed below: 

 The research is undertaken as an off campus study with a single dedicated research 

student. Therefore the available time, human as well as computing resources were 

limited. It was not practically possible to test all the available RDF stores and hence a 

subset was shortlisted in consultation with ICOS-CP team. The available computing 

resources were limited to a personal computer and hence performance tests on high end 

machines as well as processing large datasets were also not practical. 

 The spatial dataset used for this study is a subset of ICOS-CP metadata. The size of this 

dataset is modest because data from all the sensors of ICOS is not yet available. However 

it was preferred to use the actual CP metadata instead of a simulated dataset.  

 The Semantic Web has a number of associated tools and technologies; discussion on all 

of them was not possible. Hence only the toolset considered relevant for the readers of 

this research are discussed. 

 The inference and reasoning framework in semantic web require a detailed discussion of 

complex technologies. Therefore this topic could not be included in the scope of this 

study; hence the features of GeoSPARQL dealing with inference and knowledge 

reasoning through the ontology are also not discussed in detail. 

  

https://github.com/Raza-Amir-Syed/TestGeoRDFStores


5 
 

2.  TECHNICAL BACKGROUND 

2.1. Background of the Semantic Web 

In the classical version, the atomic unit of the web is an HTML document. HTML focuses on the 

presentation of data; hence data would have its meaning only, when it is surrounded by its 

associated HTML document. The same data, presented in different documents, can have totally 

different connotations. Consider the word “Java” for example. A web document where 

programming technologies are listed might use this word in the context of a programming 

language “Java”. Another web document relating to tourist destinations might list this word as 

the “Java” Island in Indonesia. Unless the context of the document is recognized by rendering the 

HTML content to a human viewer, this difference in the meaning of Java as a technology term or 

a geographic entity cannot be appreciated.    

As discussed above, rendering of HTML document is targeted on human spectators and data 

itself does not carry the meaning.  Machines and software components cannot appreciate the 

meaning (semantics) of the data and therefore processing of the web contents by these agents 

from semantic perspective is not possible. As the machines and software are incapable to make 

out the meaning of the contents of web documents, the searches over the classical web are 

mostly related to words or phrases rather than meaningful questions. In other words, the HTML 

oriented web is unable to answer questions where the software components need to extract 

information from more than one sources, link them semantically, perform some reasoning and 

then generate an answer.  For example the answer to the question “What was the population of 

USA when Michael Jordan was born?” is not possible until the whole phrase is found in a web 

document (Sakr et al. 2018a).  Even if it is found, then what happens if the name in the question 

is changed to Mohammad Ali? 

The semantic Web is an extension of the classic web where structure and meaning are provided 

to the data (Berners-Lee et al. 2001). The atomic unit of this web is a meaningful (semantic) 

structured data item. In the Semantic Web, the example of “Java” discussed above might have 

following implications: 

 There are two different data items for Java as an island and Java as a programming 

language. Something like: places:Java and tech_terms:Java. 

 The semantics are included within the data item itself, hence we can look up the details of 

places:Java and tech_terms:Java i.e. they can be de-referenced. 

 There is some mechanism that leads the audience (man or machine) to conclude (infer) 

that the places:Java lies in a country places:Indonesia. 

 The semantic qualifiers are associated with unique locators. For example “places:” might 

stand for www.places.net. Similarly the other qualifier “tech_terms” is also associated to 

unique locators and identifiers. 

http://www.places.net/
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 The term places:java itself has a globally unique identity preferably known as 

International resource Identifier. Similarly places:Indonesia and tech_terms:java have 

unique IRIs. 

 With the last implication, it can be further implied that: ideally there is only one item on 

the web when we are referring to anyone of the “Java” words discussed above. 

Berners-Lee et al. (2001) defines the semantic web as an effort to enable the machines and 

software agents to: find data, establish relationships amongst data items and process information 

automatically. The semantic web is not a replacement of the classic web; rather it complements 

the web. In terms of technology, the semantic web is a set of standards (extensions) to the classic 

web and it builds upon the existing toolset as shown in the semantic web stack (Figure 2-1). The 

middle layer (RDF, RDFS, OWL, RIF and SPARQL) are part of the semantic web enabling 

technology and utilizes the lower layers (XML, URI and Unicode) which are already available 

from the existing web. The cryptography and trust services depicted in Figure 2-1 are other 

technologies (not limited to web) for secure and reliable communication between source and 

destination. The user interface shown in the same figure is the topmost layer to provide 

convenient access to the users of the semantic web. Some of the web search engines over the 

years have adapted to the semantic technology. Therefore the search example discussed earlier 

“What was the population of USA when Michael Jordan was born?” fetches some meaningful 

results on semantic web search engines. Even if the name is changed to Muhammad Ali, the 

search engine is able to bring meaningful results. If the same search is performed over a search 

engine that does not yet utilize the semantic technology, then these queries are still unanswered. 

A brief introduction of the semantic web technology is discussed in the next few sections. 

 

Figure 2-1 Sematic Web Stack (W3C Semantic Web - XML2000, 2008) 

 

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
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2.2. Semantic Web Technology 

The semantic web enabling technology is a set of tools (standards, extension and artifacts) which 

enrich the web with semantic context. The semantic web is based on the logic of a graph. This 

modeling of web content to a graph is managed by the W3C specifications for RDF. The 

grammar and basic terminologies of the semantic web is offered by the RDF and RDFS 

vocabularies while the ontologies driven by Web ontology language manages the knowledge 

model on the semantic web. SPARQL is the query language for the RDF model. There are some 

more tools associated with the semantic web and the RDF; however only the basic technologies 

listed above are considered necessary for our reader and are discussed in the next few sections. 

2.2.1. RDF Model 

RDF is a framework for representation of information on the web (W3C 2014a). The model 

adopts that any information can be represented by set of simple sentences; each sentence 

composed of three words (a subject, a predicate and an object), known as a triple. Referring back 

to our example from section 2.1, the information can be expressed in RDF, as in listing 2-1. 

places:Java is Island. 

techTerms:Java is progLanguge. 

Listing 2-1 RDF Representation of „Java‟ 

These sentences (triples) are RDF statements which are visualized as simple graphs with two 

nodes (subject and object) connected by an arc (the predicate). The graph visualization for the 

above two sentence is depicted in Figure 2-2.  

 

 

 

 

 

Figure 2-2 RDF triples in a graph model 

The subject and object graph nodes in RDF model are resources which can be represented as an 

IRI or a literal. The object can sometimes be a blank node also.  The whole information model is 

built by adding more triples i.e. more sub graphs to the model as shown in the listing 2-2. 

places:Java   is   locationType:Island. 

places:java   inside   places:Indonesia  

places:Indonesia   is   locationType:Country 

Listing 2-2 Enriched RDF Representation of places:Java 

When more and more triples added, the graph grows and the model becomes more informative. 

With meaningful relationships (predicates), the model can be used to draw more information 

from the existing information model, by concluding more facts from the existing knowledge 

graph. It is important to note that RDF provides a conceptual model, but not the syntax (file 

format) to express such a model/graph. The syntax used above is just an arbitrary format, 

places:java Island is 

techTerms:java progLanguage 
is 
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deemed easier to read as it appears closer to English language construct. From the semantic web 

stack (Figure 2-1) it can be deducted that RDF is a layer above XML. There are number of RDF 

serialization formats:  Turtle, N-Triples, RDF/XML, JSON-LD, RDFa and a few others.  

2.2.2. RDF Vocabulary 

Semantic web contents are required to be structured and organized i.e. the graph nodes need 

some form of grouping and relationship amongst themselves. The semantic web needs to express 

meaningful relationships which require meaningful terminology. More importantly the semantics 

of this terminology should be understood in the same meaning across the user domain. This 

organization and semantic consistency is expressed by shared vocabularies. The basic vocabulary 

in this regards is a set of terms known as RDF vocabulary. It is important to note that RDF 

vocabulary should not be confused with RDF model. The latter is a concept while the former is 

an actual set of semantic web terminologies. The most important frequently used term, defined in 

RDF vocabulary is “type” represented as rdf:type where the prefix “rdf:” refers to 

https://www.w3.org/1999/02/22-rdf-syntax-ns#. The term rdf:type is used as a predicate to 

associate an instance to its class. In listing 2-3, it is expressed that places:Indonesia is an 

instance of a class Country.  

places:Java     rdf:type    Island. 

places:Indonesia    rdf:type     Country. 

Listing 2-3 Relationship of instances to their classes with RDF Vocabulary 
 

2.2.3. RDF Schema (RDFS) Vocabulary 

RDFS is another standard vocabulary that defines terminologies for defining class structure. 

W3C defines RDFS as a semantic extension of RDF; it provides mechanisms for describing 

groups of related resources and the relationships between these resources (W3C 2014b).  RDFS 

provides the set of limited but basic classes, properties and utility properties to express the 

relationship amongst different groups and resources. RDFS supplies the fundamental elements 

and along with OWL it helps create more complex ontologies and vocabularies which in turn 

enable the knowledge inference from the semantic web content. Some important constructs of 

RDFS are: rdfs:Resource, rdfs:Class, rdfs:subClassOf, rdfs:domain, rdfs:range and a few more. 

The prefix “rdfs:” refers to http://www.w3.org/2000/01/rdf-schema#. Some RDF statements 
using RDFS constructs are given in listing 2-4. 

Country   rdfs:subClassOf  PoliticalBounday. 

Country    rdfs: domain     places:GeoLocation 

Listing 2-4 RDFS Constructs for class hierarchy  

Another statement that can be added in the listing 2-4 to enrich the RDF model with more 

information is “places:java   inside   places:Indonesia”. However, RDF and RDFS do not 

provide any construct for “inside”. This is because RDF & RDFS are the basic vocabularies for 

RDF statements and they only define the most general and basic constructs that are needed by all 

the other data stores or vocabularies built on top of these vocabularies. “inside” is not such a 

https://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/TR/rdf11-mt/#semantic-extensions-and-entailment-regimes
http://www.w3.org/2000/01/rdf-schema
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general construct,  however a vocabulary specifically built for geospatial domain might consider 

“inside” as a general construct. 

2.2.4. Web Ontology Language (OWL) 

W3C defines OWL as: a semantic web language designed to represent rich and complex 

knowledge about things, groups of things, and relations between things (W3C 2011). OWL 

enables the expression of knowledge ontologies which define the basis for reasoning. These 

ontologies can comprise of domain specific vocabularies and model for specific area to organize 

and structure the data as well as infer (conclude) new knowledge.  An ontology model for the 

geospatial domain in a vocabulary called “geo” can be created, which defines the constructs 

needed to represent the geographic properties as given in listing 2-5. 

places:Java         geo:hasCoordinates geo:Polygon(X) 

places:Indonesia      geo:hasCoordinates geo:Polygon(Y) 

places:Java         geo:inside  places:Indonesia 

Listing 2-5 RDF Representation with a custom vocabulary 

The reasoning capability can lead to inferences from other facts of knowledge already added to 

the system. Therefore if a new location is added in the above RDF model and it is specified that 

the new location lies inside places:Java, then the reasoning capability enables the system to infer 

that the new added location also lies inside places:Indonesia. This can be achieved by adding a 

logic rule to the ontology that states if there is a statement “places:y geo:inside  places:x”  and 

the model also has a statement “places:z  geo:inside  places:y” then it can be inferred that  

“places:z  geo:inside  places:x”. Therefore this third statement is automatically added to the 

model by the inference engine.  

Reasoning can be based on simple rules with a rule engine or it can be based on ontology 

(classification based). There could be forward chaining or backward chaining reasoning and 

there are a number of rule definition languages (Rattanasawad et al. 2018). W3C has 

recommended Rule Interchange Format specification as a standard to exchange rules between the 

different rule systems in particular among the web rule engines (W3C 2013). The reasoning 

framework in semantic web is a vast and complex topic requiring a detailed discussion which is 

considered beyond the scope of this study.  

2.2.5. SPARQL 

SPARQL is the W3C standard Query language for RDF data (W3C 2008). SPARQL is a tool to 

query an RDF graph by specifying graph patterns, as a triple matching criteria to shortlist the 

sub-graphs from the data set. SPARQL is the de-facto standard for RDF data in the same sense 

that SQL is for the relational data. While SQL returns the result set in tabular (relation) format 

only, SPARQL can return the result as: a graph itself, in tabular form, or as a true/false value.  

SPARQL 1.1 also extends the functionality to update existing data in the graph.  A typical 

SPARQL query consists of the following clauses: 
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 A SELECT or CONSTRUCT or DESCRIB or ASK clause expresses the notion of how the 
result is to be returned from the query. A SELECT returns a tabular result set, a 

CONSTRUCT or DESCRIBE returns a graph while an ASK returns a true/false value. 

 An optional FROM clause specifies the named graph which is to be queried from.  

 A WHERE clause contains the graph pattern to filter the sub graphs to be included in the 
result. Variables, expressions and algebra operators are included here. A variable in the 

query is identified by a prefix “?” or “$”. 

 At the start of the query, there can be some PREFIX clauses for aliases to some 

namespaces representing different vocabularies. 

A sample query to retrieve all locations in the country Indonesia could be written as something 

given in listing 2-6. Note that the absence of FROM clause implies that the data is to be fetched 

from the default graph in the dataset. 

PREFIX places: <http://places.com/names#> 

PREFIX geo: <http://www.gis.geo/ont/geo#> 

 

SELECT ?vPlaces 

WHERE {  

? vPlaces  geo:inside  places:Indonesia 

} 

Listing 2-6 Sample SPARQL query for places inside Indonesia 

The query in listing 2-6 can successfully return those places inside Indonesia, which have been 

explicitly specified as inside Indonesia with a predicate “inside”. However if it is intended to find 

places that are inside Indonesia from spatial algebra perspective, and not necessarily specified by 

an RDF statement, then it is required that the framework offers geospatial support. In geospatial 

enabled search and query frameworks, a set of topological relationship extension functions are 

made available. For example with such a support, the above query can be re-written 

(transformed) to find the actual places spatially inside a polygon as listing 2-7. 

PREFIX places: <http://places.com/names#> 

PREFIX geo: <http://www.gis.geo/ont/geo#> 

 

SELECT ?vPlaces 

WHERE {  

places:Indonesia   geo:hasCoordinates   ?polygonIndonesia. 

?vPlaces       geo:hasCoordinates  ?polygonPlaces. 

FILTER(geo:isWithin(?polygonPlaces,?polygonIndonesia)).   

} 

Listing 2-7 Revised SPARQL query for places inside Indonesia 

2.3. Linked Data 

Berners-Lee (2006) highlighted that the success of the semantic web not only depends on the 

tools and technologies, but the technology must be supplemented with the availability of 

interlinked data on the web. Therefore the standards devised for the semantic web is just one 

http://www.gis.geo/ont/geo
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piece of the puzzle, while the other lies in the availability of data sets which are semantically 

interoperable. Linked Data allows meaningful links to be created between pieces of data on the 

web while promoting a decentralized structure. HTML hyperlinks can link documents; however 

these links do not express any meaning to the underlying hyperlink. LD focuses on the semantic 

linking of data on the web. It aims to transform the web from linking documents, into a universal 

space where pieces of data from different domains are semantically linked and integrated to 

create a global web of data (Heath and Bizer 2011).  Bizer et al. (2009) highlighted four 

principles of LD which were outlined by (Berners-Lee 2006) as follows: 

 Use of Uniform Resource Identifier (URI) as name for things. 

 Use of HTTP URIs so that the names can be looked up. 

 A look up on the URI should provide meaningful information using the RDF and 

SPARQL standards. 

 Use HTTP URIs for names of all other things so that it can be looked up and interlinked. 

 2.3.1. Linked Data Sets and Repositories 

In order to have interlinked datasets, the concept of Linked Open Data has been introduced. In 

simple terms, LOD is the linked data that is open for use from licensing perspective. Although it 

may never be possible to have all linked data as open or all open data as linked, the LOD 

movement has certainly received attention. The linked data web has grown rapidly in last few 

years and it was estimated that by 2014 the number of interlinked RDF datasets crossed the 

10,000 figure with an estimated RDF statements numbering up to 150 billion (Sakr et al. 2018b). 

DBpeida (DBpedia – Wikki n.d.) is an example of LD data set; a large-scale multi-language 

knowledge base extracted from Wikipedia which represents information in RDF model 

(Lehmann et al. 2015). There are estimated 3 billion triples in DBPeida and the dataset describes 

around 4.58 million entities with 50 million links to other RDF datasets (DBpedia – About n.d.). 

Amongst the other industries, television and broadcasting industry has also embraced the LD 

concept. BBC is amongst the largest broadcasting corporations in the world. BBC Programmes 

was launched in 2007 to provide machine readable feeds (RDF/XML, JSON-LD & XML) for 

every program that BBC broadcasts. BBC has developed its own ontologies (BBC – Ontologies 

n.d.) to organize and structure its broadcast concepts used in the BBC stores. 

GeoNames (GeoNames – Database n.d.) is a spatial LOD dataset containing 25 million 

geographic names; about 11 million unique features categorized into different classes and 

subclasses like location names, postal codes addresses etc. GeoNames maintains its ontology 

(GeoNames – Ontology n.d.) to structure and organize the semantic data. Linked data has also 

empowered the search engines as well as the social networking industry. Google Knowledge 

Graph is another example of linked data set that started assisting the search engine since 2012. It 

is estimated that by 2016 the graph held over 70 billion facts (Enterprise Scale Knowledge 

Graph-ISWC 2018). It is now possible to ask Google some meaningful questions as discussed in 

section 2.1.  

https://wiki.dbpedia.org/about
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Another familiar example is Facebook Graph and the supporting API, which have been assisting 

the development and social networking community since 2013. Facebook encourages developers 

of the social applications to use the API framework for generating RDF triples in order to capture 

important user actions. The data from FG is vital for targeted campaigns, including 

advertisement or even political opinion making (Fruchter et al. 2018). 

Linked Open Data Cloud (LOD Cloud n.d.) is a project that maintains the diagram of datasets in 

the cloud of linked open data (Figure 2-3).  

 

Figure 2-3 LOD Cloud diagram lod-clod.net 

https://internetpolicy.mit.edu/team/nathaniel-fruchter/
https://lod-cloud.net/
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As of June 2018, the cloud contains more than 1200 datasets that have been published in linked 

data format.  The LOD cloud diagram depicts the scale, size and heterogeneity of the data. Each 

circle in the diagram shows a linked dataset where the color of the circle depicts the domain of 

the data as shown in the diagram legend. The lines between datasets reflect the RDF links within 

individual datasets i.e. where one datasets refers to another through the IRIs. The whole diagram 

appears as a cloud of interlinked circles and each dataset conforms to linked open data principles. 

The project requires that a dataset depicted in the cloud as a circle has at least one thousand RDF 

statements, has RDF links to at least 50 other datasets within the diagram, and is accessible via a 

SPARQL endpoint, or by RDF crawling, or through an RDF dump. 

As the size of the LD datasets has been constantly growing, the capacity of RDF stores to handle 

large amount of data has been put to test over the recent years.Leigh University Benchmark is a 

method for benchmarking and evaluation of semantic web datasets (Guo et al. 2005). A result set 

known as LUBM 4400K is known for upload, inference and query of 1.08 trillion triples about 

universities and their departments on Oracle Spatial and Graph platform using LUBM in 2014 

(W3C 2018).  The first report of a trillion RDF statements upload was made by Franz  (Franz 

Inc) in 2011 on an AllegroGraph platform. Multibilion RDF statement uploads have been 

reported in the state of the art RDF stores like Stardog, Openlink Virtuoso and others (Boncz et 

al. 2014). 

2.4. Basic Geospatial Concepts 

Geographic Information Systems deal with storage, analysis and presentation of geographic 

information (Nalepa and Furmanska 2009). In order to achieve this, GIS needs to address several 

specific problems, including: efficient and optimal storage, optimized analysis as well as 

effective visualization. With the advent of the Web GIS, the map applications like Google Maps 

have gained a wide acceptance and popularity and a new generation of clearinghouse networks 

have been developed. A spatial data clearinghouse network is a distributed network that links 

geospatial data producers, managers, and users electronically (Mansourian et al. 2010). Spatial 

aware software agents on a smartphone have taken the GIS usage into daily life. Some important 

tools, technologies and associated terminologies in this context are briefly described in the next 

sections. 

2.4.1. Spatial Representation Standards 

Standards are an efficient way to address the issues of interoperability across all domains.  

Likewise the geospatial domain has also resorted to standards for data interchange and exchange. 

With the progress of web GIS technology over the years, simple and efficient geographic 

representation has received special attention due to their less overhead on the communication 

channels. The OGC Abstract Specifications, models the world in terms of Features (OGC 2003). 

A feature represents the abstract model of a real world phenomenon and it can represent a 

physical entity. Features can have spatial as well as non-spatial attributes. The features having 

spatial attributes are associated to a geometry object which in turn represents a real world object 
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along with its spatial specifications. Point, line, polygon and other constructs represent different 

types of geometry. 

A textual representation of geometric objects and spatial reference system is provided by the 

OGC standard Well Known Text. WKT can represent the geometry objects: Geometry, Point, 

MutiPoint, LineString, MultiLineString, Polygon, Multipolygon, Triangle, CircularString, Curve, 

MultiCurve, CompoundCurve, CurvePolygon, Surface, MultiSurface, PolyhedralSurface, TIN 

(Triangulated irregular network) and GeometryCollection. WKT is a widely used format and it 

can represent coordinates in 2D, 3D and 4D space. A few simple examples of WKT 

representation of geometries in 2D are given in listing 2-8. 

POINT(5  7) 

LINESTRING(5  7,10  12,  11 15) 

POLYGON((3  10,4  40, 2  40, 3  10)) 

Listing 2-8 Sample WKT representation of geometries 

Geography Markup Language is an XML grammar and OGC standard for representation and 

exchange of geographic information including the spatial and non-spatial properties. GML is 

based on OGC Abstract Specifications; hence it models the world in terms of features and 

geometries. The geometry primitives that make up the GML geometry model (Zhang et al. 2015) 

are given in Figure 2-4.  

 

Figure 2-4 GML 3.2 Geometry Primitives 

2.4.2. Spatial and Topological Relationships  

Spatial entities are related to each other in some form of relationship within the reference space. 

An island is inside a country, a road crosses an urban area, and a highway intersects another 

highway. These real-world relations can be modeled as relationships between geometry objects. 

How far a school lies from a particular road is a spatial relationship but not a topological one. A 

school lies inside a specific urban unit is a spatial relationships as well as topological 

relationship. Topological relationships are a subset of spatial relationship with the characteristic 

that the relationship holds if the size or shape of the geometry changes. Spatial relationships have 

received distinctive attention in GIS, with special focus on topological relationships.  

https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Polyhedron
https://en.wikipedia.org/wiki/Triangulated_irregular_network
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There are a few widely used topological relationship models. The 4-IM (Egenhofer et al. 1993) 

and DE-9IM are based on point-set topology while the Regional Connection Calculus based 

RCC-5 and RCC-8 are models of another category (Baode. and Dong-Qi 2016). Both 4-IM and 

RCC-8 can represent 8 types of topological relations and they can be translated to each other. 

The mathematics behind these models is beyond the scope of this thesis.  

The OGC simple feature access common architecture builds on the DE-9IM and offers the 

relationships: Equals, Disjoint, Intersects, Touches, Crosses, Within, Contains, Overlaps and 

Relate. The associated functions/predicates for these relationships take two geometry objects as 

input parameters and return a boolean value to indicate if the relationship between the geometries 

holds or not. Relate takes the third argument as the pattern to test and returns a boolean value. 

In addition to the above described relationships, some other spatial non-topological utility 

functions are included in the state of the art GIS software like: Buffer, ConvexHull, Boundary, 

Envelope, Intersection, Union, Difference and Symmetric difference. These functions accept 

geometry objects as input and return a geometry object after performing the desired operation. 

Another utility function Distance could take two geometries as input and return the distance 

between them as a double value. In some implementations, the Distance function could take a 

third parameter which is the unit of measurement for the returned value (i.e. meter, kilometer, 

mile etc.). The Distance function can be used to check if an object lies within certain vicinity 

(within buffer) of another geometric object, or nearby another object. 

2.4.3. Geographic Web Services in Connection to Linked Data 

OGC has also recommended specifications for interoperability on the web, like Web Map 

Service, Web Feature Service, Web Coverage Service, Web Processing Service and few more. 

WFS is an implementation specification (OGC 2005), which allows a client to retrieve, query, 

and manipulate feature-level geospatial data encoded in GML from multiple sources (Zhang at 

al. 2015). WMS (OGC 2006) is capable of creating and displaying maps in standard image 

format that come simultaneously from multiple heterogeneous sources (Zhang et al. 2015).   

These standards have been utilized for syntactic interoperability of different geographic datasets 

and have been vital in the advancement of web GIS services. These technologies enable the 

interoperability of heterogeneous geographic datasets as well as heterogeneous frameworks. 

Although, these standards are not directly used for semantic interoperability of geospatial data; 

there has been some progress in utilization of these services along with the semantic web stack 

technology. Tschirner et al. (2011) introduced a SPARQL web service with a WFS services as 

the back end data source, in place of a RDF store. The SPARQL queries received at SPARQL 

web service are converted to WFS queries for processing. The results received from WFS are 

transformed back to RDF using a mapping between GML and OWL ontology. Jones et al. (2014) 

used a reverse implementation by providing WFS to access the geographic linked dataset (RDF 

store). The queries received by the WFS are translated to SPARQL queries which are processed 

by an RDF engine. The results generated from this engine are transformed back to WFS XML 

documents which are returned by the WFS to the caller client. 
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Earlier implementation of linked data services on existing heterogeneous databases needed a 

transformation and replication of the complete dataset to the RDF graph model. The data needed 

to be constantly replicated as the new updates were committed to the source database. By using 

WFS as the source of linked data services it is not needed to transform the whole data upfront.  

Hietanen et al. (2016) demonstrated this with a prototype framework that is capable to transform 

GML to RDF on the fly and offer linked data services on top of a WFS source. Only the 

object/group URIs are required to be generated upfront, while the remaining data is acquired 

with query and results transformation at run time.  The client interacts with a linked data service 

while the transformed query is redirected to WFS and updated results are seamlessly fetched 

from the WFS resource. These results are then transformed back to desired RDF serialization 

format to be presented to the client.   

2.4.4. Spatial Indexing 

Unless the complete data in a database is to be processed, most other operations require locating 

and fetching an entity or a set of entities and then process them. Indexing is a frequently used 

technique to optimize search and lookup of the specific entities in software systems. The 

objective of indexing is to reduce the time needed to find and fetch a particular entity. The 

essence of an index is generally the sort order. Spatial indexing is tricky as there is no sort order 

in a 2-D space (Samet 2015).  For example, a sorting order established on distances computed 

from point x to all other points, can be void if the reference point changes from x to y. Therefore 

systems in spatial domain require more sophisticated techniques for search and query 

optimization. It is obvious that the search and query performance gets a boost from indexing, but 

this also leverages considerable overhead cost for other operations like data load, update and 

delete as indices also need to be updated with these operations.  

Spatial trees, is a methodology to partition the data or space by structuring the data or space in a 

sorted hierarchical tree structure (Samet 2015).  This enables to discard a specific group of 

partitions (sub-tree) if it does not match the criteria at search/query time. An R-tree splits the 

spatial data (point or rectangular representation of geometry) in N rectangular boxes with equal 

points (Simon 2018). Then each rectangle is recursively further split into more rectangles until 

there are only N points left in the final boxes. The rectangles at different levels are the tree nodes 

and this is the most common type of sorted spatial data structure. The main concept behind R-

tree is the MBR. KD-tree is similar to R-tree, used for point data; however instead of generating 

„N‟ boxes, data is sorted into two rectangles around the median point which generates disjoint 

decomposition of space. R+ tree is a compromise between R-tree and a KD-tree. Quad trees are 

also used for 2D space where each node has exactly four children. While trees are a data driven 

structure, a space driven spatial indexing can also be conducted in Grid-based spatial index. 

2.5. Geospatial Semantic Web and Metadata 

Data interoperability amongst different tools and technologies has been an issue since the advent 

of the web. The schematic and syntactic interoperability is managed by different web standards 

like markup languages such as GML or XML and mapping service standards like WMS, WCS 
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etc. (Zhang et al. 2015). The semantic interoperability cannot be managed with these standards 

because the semantic data is generally lying in the meta tags which do not provide a well-

organized structure. The interlinking amongst different geospatial datasets can be well managed 

if the metadata can be handled better at the semantic level. RDF is the cornerstone technology of 

semantic web that enables us to represent information about resources. A resource can be a 

document, an entity or more widely, it can be anything that is identifiable on the web. Hence 

RDF represents metadata about the web resources. The semantic web can therefore harness the 

knowledge linking, inference and reasoning capabilities in the geospatial metadata domain, if 

suitable geospatial extensions are attached to the semantic web toolset. The geospatial datasets 

are primarily used for these functions: 

 Storage of geographic data in a consolidated and consistent manner. The data might include 

topology information and constraints. 

 Search optimization in order to find relevant and required data efficiently. The search might 

be based on spatial ranges as well as other complex geometric calculation to find the 

appropriate data from the repository. 

 Download the data for desired analysis. 

 

In order to annotate underlying data for the purpose of search and analysis, metadata is needed 

and it plays important role in building practical applications of GIS (Nalepa and Furmanska 

2009).  Semantic web technologies provide methods to create and represent structured data that 

can server as metadata and answer the semantic interchange and exchange queries. The linked 

data enables the unique and linked references to the desired entities; improving upon the 

consistency of the datasets. The semantic characterization of metadata through RDF and linked 

data principles are increasingly adopted in recent years and studies have shown that the the 

linked data approach for geospatial is also on the rise in recent years.  

Goodwin et al. (2009) produced an RDF dataset for administrative geography of Great Britain 

from the data of National Mapping Agency (Ordnance Survey). A custom ontology was devised 

to represent regions at different levels and their spatial topological association with each other. 

Another effort to create spatial linked data sets is LinkedGeoData, an RDF representation of 

OpenStreetMap data (Stadler et al. 2012). It represents all kinds of spatial features, such as roads 

or boundaries and is interlinked with DBpedia and GeoNames. Brink et al. (2014) produced 

transformations of structured spatial data from GML to RDF statements.  In addition to geometry 

coding, the study also presented a transformation of information model from underlying UML to 

web ontology.  

Gore (1999) envisaged the Digital Earth as a multi-resolution, three-dimensional representation 

of the planet. To address the mechanism of semantic integration of geospatial information from 

heterogeneous sources for Digital Earth, Vilches-Blázquez et al. (2014) presented a technique to 

publish linked data for Spanish Nation data-sets related to INSPIRE themes. These datasets were 

drawn from four diverse domains i.e. administrative units, Hydrology, statistical units and 
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meteorology; the study also recommended to use geospatial extension for RDF data i.e. 

GeoSPARQL. Cheatham et al. (2018) created a unified knowledge graph “GeoLink” to 

seamlessly query and reason over the metadata of prominent geoscience repositories of USA, 

using the linked data principles.  Huang et al. (2018) presented a technique based on relative 

positioning using linked data to resolve a spatial visualization problem of unsynchronized 

geometries between thematic and base map objects in the map mashups.  

2.6. The GeoSPARQL standard 

GeoSPARQL defines a spatial extension to SPARQL query language for geographic information 

(OGC 2012). There were some other earlier initiatives to incorporate geographic extensions to 

SPARQL but those were limited to a particular project or an organization. OGC has adopted 

GeoSPARQL in order to standardize the use of geographic data in the realm of the semantic web 

and linked data. GeoSPARQL provides the following features: 
 

 a core component (RDFS/OWL vocabulary) 

 a set of SPARQL extension functions for spatial computations 

 a set of query rewrite rules 

2.6.1. Core Component  

The RDFS/OWL vocabulary is used for representation of spatial data in a consistent simple 

feature model. Core RDFS/OWL classes and RDF properties for representation and assertion 

models are defined here. GeoSPARQL defines a limited vocabulary and expects more domain 

specific vocabularies to be built upon this base.  Both RDFS and OWL have been used in order 

to enable the systems reasoning capability to benefit from the GeoSPARQL. The basic classes 

are ogc:SpatialObject and ogc:Feature which may have a geometry. The geometry component is 

represented by the class geo:Geometry which represents the spatial properties of any feature 

(Figure 2-5). A feature can have several geometry objects, each associated with the property 

geo:hasGeometry. The geo:hasDefaultGeomtry is used to link the feature to the default geometry 

amongst the number of different associated geometries.   

 

 

 

 

 

 

 

Figure 2-5 GeoSPARQL Fundamental class structure 

GeoSPARQL supports two literal formats (serialization) for the spatial representation of 

geometry: WKT and GML. The geometry object is associated to the literal by the respective 

predicates, geo:asWKT or geo:asGML. The sf:WktLiteral and sf:gmlLiteral are defined in order 

to represent the data type of the literals. An example of a WKT representation in RDF is given in 

hasGeometry 

 

SpatialObject 

Feature Geometry 
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listing 2-9. The URI for the coordinate reference system can be included within the literal; if not 

provided then the default is assumed as WGS84. 

ex:anXYZSquare  rdf:type   geo:Feature. 

ex:anXYZSquare  geo:hasGeometry  ex:geom1 . 

ex:geom1  rdf:type  sf:Point. 

ex:geom1  geo:asWKT   "POINT(-77.03524 38.889468)"^^geo:wktLiteral. 

Listing 2-9 Sample WKT representation of geometries 

2.6.2. SPARQL Extension Functions 

The following spatial methods are included in the GeoSPARQL specifications: 

 Non-topological spatial  functions: These functions return a geometry object after 
performing the relevant spatial operation:  geof:distance, geof:buffer, geof:convexHull, 

geof:intersection, geof:union, geof:difference, geof:symDifference, geof:envelope, 

geof:boundary, and geof:getsrid. 

 Geometry topological relationship functions:  There are four categories of functions and 

they all return a boolean value as follows: 

 The functions consistent with DE-9IM simple features specifications are: geof:sfEquals, 
geof:sfDisjoint,geof:sfIntersects, geof:sfTouches, geof:sfCrosses, geof:sfWithin, 

geof:sfContains, geof:sfOverlaps.  

 A function geof:relate is a common query function to check a topological relation 
between two geometries. 

 The functions consistent with RCC-8 specifications are: geof:rcc8eq, geof:rcc8dc, 

geof:rcc8ec, geof:rcc8po, geof:rcc8tppi, geof:rcc8tpp, geof:rcc8ntpp, geof:rcc8ntppi. 

 The functions consistent with Egenhofer model are: geof:ehEquals, geof:ehDisjoint, 
geof:ehMeet, geof:ehOverlap, geof:ehCovers, geof:ehCoveredBy, geof:ehInside, 

geof:ehContains.  

 

2.6.3. Query Re-write Rules 

Query re-writes rules are included in the GeoSPARQL specifications. This facilitates the usage 

of spatial predicates in the SPARQL query pattern.  The spatial relation can be used like a 

predicate in the query where clause, but seamlessly, a spatial function is used when the query 

executes. For example, one way to check if a geometry (geom1), lies inside another geometry 

(geom2), is by using the GeoSPARQL extension function in SPARQL query as follows: 

FILTER(geof:sfWithin(?geom1,?geom2))  

Listing 2-10 Sample WKT representation of geometries 

If the query re-write is configured than the same clause can be written in predicate form as: 

?geom1  geof:inside  ?geom2 

Listing 2-11 Sample WKT representation of geometries 

This is supported because the query re-write, automatically transforms (re-writes) the query 

clause of listing 2-11 to that of listing 2-10. However this transformation is internal for the RDF 
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store and it is seamless to the users. Another feature of the query re-write is that parameters to 

the spatial and topological functions are not necessarily required to be concrete WKT or GML 

literals; because these re-rewrite rules enable the parameters to be geometry or feature objects. 

The re-write enables the query processor to find the underlying geometry literals from the feature 

or geometry objects and re-write the function accordingly during the transformation stage. 
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3.  PREVIOUS WORK IN EVALUATION OF RDF STORES 

As the semantic web starts evolving into mainstream web supplemented by the growth of online 

linked data repositories, the RDF stores have been scrutinized for their capabilities to manage the 

growing industry requirements. Liu and Hu (2005) evaluated seven RDF stores from load and 

query performance perspective with LUBM datasets.  Rohloff et al. (2007) evaluated the triple 

dataset with LUBM datasets in hybrid RDF stores. Bizer and Schultz (2008) investigated RDF 

Stores with Berlin SPARQL Benchmark against the load and query times. Morsey  et al. (2011) 

adopted a different approach to evaluate four RDF stores using the DBPedia SPARQL 

Benchmark and generating interesting QpS(Queries per second) and QMpH (Query mixes per 

hour) metrics. Cheng et al. (2012) have contested to evaluate three RDF stores (Jena, Sesame and 

RDF-3x) by investigating each of the query parsing, planning and execution phases. However 

none of these studies have considered the geospatial standards as part of the evaluation criteria. 

Battle and Kolas (2012) conducted a research on enabling of geospatial semantic web with 

Parliament RDF store and GeoSPARQL. The study builds upon the evolution of GeoSPARQL as 

the OGC standard and highlights how the conformance to GeoSPARQL across the linked data 

domain could enable a standard geospatial semantic web.  The spatial RDMS have performed 

reasonably well in geospatial calculations and indexing; however the relational model is unable 

to handle scenarios where inferences, cross entity joins and variable properties are involved.  

Parliament is an implementation of RDF store based on GeoSPARQL standard. It builds spatial 

indexes based on R-trees. The goal in spatial indexing is to split the query in multiple parts for 

query optimization. A model of linked data from GeoNames and USGS in Parliament was tested 

for GeoSPARQL conformance and implementation by Battle and Kolas (212).   

Garbis  et al. (2013) present a benchmark, “Geographica” for evaluation of geospatial RDF 

stores with two spatial extensions: GeoSPARQL and stSPARQL. Geographica utilizes both 

synthetically generated as well as real world workloads. The Mirco benchmark within 

Geographica aims the evaluation of spatial functions like spatial selection, joins, topological 

relationships and aggregate functions with 29 geospatial SPARQL queries. In the Macro 

benchmark, Geographica aims at testing 11 application scenarios like reverse geocoding, map 

search and browsing etc. Evaluation on synthetic data as well as real world data is conducted on 

RDF stores: Strabon, uSeekM and Parliament in that study. 

The most thorough evaluation of RDF stores with reference to GeoSPARQL conformance has 

been conducted in a GeoKnow project (Athanasiou et al. 2013). RDF stores: Virtuoso, 

Parliament, OWLIM, uSeekM and Strabon were evaluated along with spatial DBMS: Oracle 

Spatial and PostgreSQL/PostGIS. The study also included AllegroGraph 4.10, however due to 

cumbersome conversion of geometric data to custom format required by the platform; it was 

excluded in the quantitative evaluation of the study.   

Athanasiou et al. (2013) evaluation found that Virtuoso 7.0 only supported two dimensional 

point data from the pos: namespace prefix with properties pos:lat and pos:long. There was no 
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support for other geometries like line string or polygons and the support for geometry literals 

conforming WKT or GML was also not available. The topological relationships available in 

Virtuoso 7.0 were extended through three functions from the bif: namespace prefix with relations 

bif:ST_intersects, bif:ST_contains and bif:ST_within in addition to some spatial utility/analysis 

functions. The same study also evaluated OWLIM standards edition which is predecessor of 

GraphDB. OWLIM support was also restricted to two dimensional point geometries only, from 

pos: namespace prefix. Geospatial support required geospatial indexing and the topological 

relationships were available from the namespace prefix omgeo: as omgeo:nearby and 

omgeo:within. 

According to Athanasiou et al. (2013), virtuoso 7.0 and OWLIM-SE 5.3 were categorized of as 

having severely limited geospatial support, while uSeekM 1.2 and Parliament 2.7 were rated as 

better at spatial support as well as GeoSPARQL compliance. Amongst the RDF stores examined 

in that study,  uSeekM 1.2, Parliament 2.7, Strabon 3.2 and Oracle RDF 11gR2 supported WKT 

geometry encoding while Virtuso 7.0, OWLIM-SE 5.3 and Allegrograph 4.10 did not support 

any of WKT or GML standards. A critical observation recorded in that study was that amongst 

the tested, no two RDF stores had identical geometry representations. Even if some of these 

supported the WKT, the namespace prefixes were not the same for related vocabularies. 

Geometry transformation was consistently required during the data upload and query testing. 

Regarding spatial indexes, R-tree was most popular technique amongst the examined products. 

Athanasiou et al. (2013) could not completely evaluate Virtuoso and OWLIM-SE because these 

RDF stores only supported point geometries. In comparison, the other platforms had to load and 

index complex geometries; hence a fair assessment was not possible. An overall assessment 

reveals that in terms of spatial operations, the geospatial DBMS based systems quite easily 

outperform their RDF competitors. On the other hand, the support for interlinking spatial 

features is provided by RDF stores which appear totally out of scope for any sort of DBMS 

based systems. It was concluded that conformance to GeoSPARQL lags consistently and none of 

the RDF stores offered complete conformance. Amongst the evaluated platforms, Parliament 

provides comparatively better coverage of the GeoSPARQL standards. 
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4.  MATERIALS AND METHODS 

4.1. Integrated Carbon Observation System and the Carbon Portal 

The tests in this study are performed on ICOS-CP metadata. ICOS is a research infrastructure 

established for long term research of greenhouse gasses. The ICOS datasets are freely distributed 

through the CP and the metadata at the carbon portal plays a vital role in identification of exact 

datasets required to the users. One of the aims of this study is to identify the suitable RDF stores 

for efficient management of spatial component of this metadata. Brief introduction to ICOS, the 

ICOS-CP, ICOS data and metadata is discussed in next few sections. 

4.1.1. Integrated Carbon Observation System  

ICOS is a Pan-European Research Infrastructure of 12 member countries founded in 2008 (ICOS 

– About n.d.). ICOS-RI is coordinated and integrated by the ICOS European Research 

Infrastructure Consortium which was established in 2015. It consists of a network of European 

observation systems operated at member state level. The ICOS-RI provides high-precision 

scientific data on carbon cycle and greenhouse gas concentrations. ICOS is coordinating and 

taking part in several of the European Union‟s Horizon 2020 research and innovation projects.  

ICOS-RI was created to establish a sustained greenhouse gas observation system and enable high 

quality climate change research and increase usability of the research data. The mission of ICOS-

RI is to enable research to: track carbon fluxes in Europe and adjacent regions, to provide long-

term observations, and to monitor and assess the effectiveness of reduction in greenhouse gases 

emission on global atmospheric composition levels (ICOS – Mission n.d.). ICOS has over 130 

greenhouse gases measuring stations, three thematic centers (ocean, atmosphere and ecosystem), 

a head office, a carbon portal facility and a central analytical laboratory.   

4.1.2. The ICOS Carbon Portal  

ICOS-CP is part of ICOS ERIC and is hosted by the Department of Physical Geography and 

Ecosystem Science at Lund University, Sweden, with contribution from Wageningen University 

Netherlands (ICOS-CP – Introduction n.d.). ICOS data is openly available at the carbon portal, a 

one-stop shop for all ICOS data products. The carbon portal provides free and open access to the 

high quality ICOS data. It is the gateway to all observational data, derived services and products 

from ICOS-RI to inform and assist its users. The portal enables access to raw, near real time and 

final quality-controlled data, supplemented with elaborated (model) data and analyses. It is 

expected that by the end of 2019 all stations are in full operation and deliver ICOS data through 

this portal. The services offered at the portal (ICOS-CP – Introduction n.d.) are: 

 discovery, preview and download of quality-controlled observational data 

 advanced visualizations such as animated flux maps 

 popular-scientific products for policy makers, authorities, teachers and students. 

https://www.icos-ri.eu/
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The carbon portal is expected to be always changing, in order to constantly develop services and 

fulfill needs of the users (ICOS-CP – About n.d.). ICOS-CP is involved in several international 

projects, one of which is ENVRI-FAIR, i.e. Environmental Research Infrastructure and Findable, 

Accessible, interoperable and Re-usable. FAIR is a set of principles to put specific emphasis on 

enhancing the ability of machines to automatically find and use the data, in addition to 

supporting its reuse by individuals (Wilkinson et al. 2016). FAIR is the data approach of the 

carbon portal for interoperability of data (ICOS-CP – FAIR n.d.). The basic design principle of 

the portal for metadata is to use linked open data, semantic web ontology, scalable and 

containerized services, all based on open source software and sharing.  

4.1.3 ICOS Data 

ICOS-RI builds on three domains: ecosystem, atmosphere and ocean; each domain consisting of 

its own network of stations i.e. research sites or platforms (ICOS-CP – About n.d.). Each domain 

has an associated thematic center:  Ecosystem Thematic Centre, Atmospheric Thematic Centre 

and Oceanic Thematic Centre.  The raw data from the field stations is uploaded to a central data 

center for safe custody within 24 hours of data collection. The same data is also sent to relevant 

thematic center for processing and quality control. The processed data from the thematic centers 

is delivered to the CP where the data is organized into structured datasets with identifiers for 

tracking and archiving. These datasets are committed in the central data center and users can 

access this data from the CP. 

The ICOS-RI produces around 25 to 30 TB of sensor data annually, with around 1 GB of 

processed data products and around 5 to 20 TB elaborated data. Each station in ICOS 

infrastructure can consist of several sensors. The ocean domain of ICOS consists of a network of 

marine and coastal stations including Fixed Ocean Stations, Marine Flux Towers and Voluntary 

Observing Ships. VOS measures the CO2 on the ocean surface as well as temperature and 

pressure. The VOSs are usually commercial ships as well as cargo and research vessels operating 

regularly repeated routes. ICOS marine segment focuses on the North Atlantic and adjacent seas. 

The linear coverage of ship tracks is integrated with satellite based observations. Interpolation 

between ship passages as well as extrapolation is used to model the spatial coverage of relevant 

data objects (OTC – Strategy n.d.).   

4.1.4 Other Data at ICOS CP 

As the carbon portal started evolving into an efficient data distribution platform, few other 

related data producers have shown keen interest in delivery of their data through the ICOS-CP. 

Therefore, in addition to official ICOS data, the ICOS-CP also harvests data from other sources 

including the Surface Ocean CO2 Atlas. 

SOCAT is a synthesis activity for quality-controlled, surface ocean fCO (fugacity of carbon 

dioxide) observations by the international marine carbon research community with more than 

one hundred contributors (SOCAT – Info n.d.).  SOCAT data is publicly available, discoverable 

and citable and the SOCAT community exists since 2007.  SOCAT datasets are released 

https://www.icos-cp.eu/about-icos-data
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biannually starting from 2011, and an annual public releases is also issued. In version 6 of 

SOCAT released in June 2018, 23.4 million observations from 1957 to 2017 for the global 

oceans and coastal seas covering 10 countries has been published. SOCAT welcomes new data 

submission for inclusion in the next releases. The research team at ICOS-OTC heavily 

contributes the creation of the SOCAT. ICOS-CP also maintains SOCAT datasets for 

distribution. 

4.1.5 ICOS Metadata 

The ICOS data is generated at many different levels and variety of sources including but not 

limited to: sensors, semi processed data, intermediate data, and structure datasets for end users. 

The datasets generated from ICOS artifacts are expected to grow manifolds in next few years to 

come. In order to enable the users to efficiently find the desired data as well as keeping the data 

download to focused area, the correct identification of the desired data is important. It is required 

to have the capability to track and archive data artifacts at all levels. This is managed by multi-

level metadata generated at different stages of data collection and processing. The ICOS-CP 

users need access to a certain amount of this metadata for their required search and download. 

Therefore the metadata requirements of ICOS are devised as follows: 

Metadata store at ICOS-CP should be fast and efficient, mostly open to the public. It should be 

scalable and serviceable 24/7. The metadata services follow FAIR data principle. Any portal 

should be able to link to ICOS metadata and vice versa i.e. data should be discoverable. This 

means that there should be an access point for human and machine access to the metadata 

(SPARQL endpoint). Hence data should be in linked open data form. This requires an RDF 

database. All data artifacts should have unique IDs preferably IRIs which could be de-referenced 

with a landing page. Hence metadata should be ontology driven and accessible through http(s), 

via SPARQL .The ICOS research data and the collection platforms have geographic features and 

characteristics, hence the metadata services should be spatial aware.  

ICOS-CP maintains the ICOS metadata as linked open data and users (human and software 

agents) can query from this dataset through the SPARQL endpoint at the carbon portal (ICOS-

CP – SPARQL End Point n.d.). The ICOS CP ontology can be accessed at (ICOS-CP – Ontology 

n.d.). The basic name spaces represented by ICOS CP metadata is http://meta.icos-

cp.eu/ontologies/cpmeta/ defined as “cpmeta:”. All stations in the metadata have geographic 

characteristics as point data, however the data objects and stations relating to VOS platforms 

have spatial coverage as well, which is represented as GeoJSON string of line and polygon data. 

This data is used for our study as discussed in the next section. 

4.2. Research Data 

The data set used for this research was extracted from the subset of ICOS-CP metadata, relating 

to SOCAT datasets. The data was downloaded as an RDF/XML file from https://meta.icos-

cp.eu/resources/socat/  on October 30, 2018. The downloaded metadata covers all the geographic 

http://meta.icos-cp.eu/ontologies/cpmeta/
http://meta.icos-cp.eu/ontologies/cpmeta/
https://meta.icos-cp.eu/resources/socat/
https://meta.icos-cp.eu/resources/socat/
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data available in ICOS-CP metadata on that date. The geospatial data in the downloaded dataset 

relates to the following facts: 

Polygon and Line String Data. The polygon and line string data represents the spatial coverage 

of the associated data object. The spatial coverage of the data object is the trajectory of the 

underlying VOS platforms. The simple ship trajectories are coded as line strings while the 

complex trajectories have been simplified as polygons.  For each data object having a spatial 

coverage, there is an RDF statement that connects it to the spatial coverage object with the 

predicate cpmeta:hasSpatialCoverage. The spatial coverage object is then associated to its 

geographic literal with the predicate cpmeta:asGeoJSON. The geometry in the source data is 

coded as a GeoJSON string literals. There are 88 polygons and 853 line strings as spatial 

coverage objects in GeoJSON format in the downloaded data. Listing 4-1 depicts the RDF 

statements (in Turtle format) for a sample data from the downloaded data set. 

PREFIX  obj: <http://meta.icos-cp.eu/ objects /> 

PREFIX  res: http://meta.icos-cp.eu/resources/ 

PREFIX  cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/> 

 

obj:obj1    rdf:type    cpmeta1:DataObject 

obj:obj1    cpmeta1:hasSpatialCoverage  res:spcov_obj1 

res:spcov_obj1  rdf:type  cpmeta1:SpatialCoverage 

res:spcov_obj1  cpmeta1:asGeoJSON  {"type": "Polygon", "coordinates":  

[[[11.195, 54.047522], [14.45336, 55.079674], [18.387972],                  

[11.195, 54.406729], [11.195, 54.047522]]]} 

Listing 4-1 Sample ICOS CP SOCAT metatdata statements for polygon data 

Point Data. The point data in our downloaded metadata are the longitude and latitude of the 

ICOS Stations. The RDF statements for this data has the Station Id as subject and 

cpmeta:hasLatitude or cpmeta:hasLongitude as predicates. The objects in these statements are 

the double literal values. There are 127 stations with these two predicates in the downloaded 

dataset. A sample data extracted from the data is given in listing 4-2. 

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/> 

 
stations:OS_11SS   rdf:type  cpmeta1:OS 

stations:OS_11SS   cpmeta1:hasLatitude    51.226774 

stations:OS_11SS   cpmeta1:hasLongitude   2.934924 

Listing 4-2 Sample ICOS-CP metatdata statements for point data 

4.2.1. Preparation of Research Data 

The total number of spatial objects in the dataset is 1068 (88 polygons + 853 line strings +127 

points). As mentioned earlier in section 2.5.1, GeoSPARQL supports two literal formats 

(serialization) for the spatial representation of geometry: WKT and GML. GeoSPARQL however 

has no support for GeoJSON literals or the cpmeta:hasLatitude and cpmeta:hasLongitude 

predicates. Therefore in order to use the spatial data from the downloaded data set, a 

http://meta.icos-cp.eu/%20objects%20/
http://meta.icos-cp.eu/resources/
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttps%3A%2F%2Fmeta.icos-cp.eu%2Fobjects%2F-8m8Q4cXf0ONCgUZB-7vjLFE%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3ADataObject
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttps%3A%2F%2Fmeta.icos-cp.eu%2Fobjects%2F-8m8Q4cXf0ONCgUZB-7vjLFE%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AhasSpatialCoverage
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttp%3A%2F%2Fmeta.icos-cp.eu%2Fresources%2Fspcov_17X7ZTAE8CfIp6r8yW7OvJEu%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttp%3A%2F%2Fmeta.icos-cp.eu%2Fresources%2Fspcov_17X7ZTAE8CfIp6r8yW7OvJEu%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3ASpatialCoverage
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttp%3A%2F%2Fmeta.icos-cp.eu%2Fresources%2Fspcov_17X7ZTAE8CfIp6r8yW7OvJEu%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AasGeoJSON
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=stations%3AOS_11SS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AOS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=stations%3AOS_11SS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AhasLatitude
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%2251.226774%22%5E%5Exsd%3Adouble
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=stations%3AOS_11SS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AhasLongitude
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%222.934924%22%5E%5Exsd%3Adouble
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transformation to the GeoSPARQL compliant format is required. This transformation was 

achieved with SPARQL Construct statements as depicted in listings 4-3 to listing 4-5. 

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX sf: <http://www.opengis.net/ont/sf#>  
 

CONSTRUCT {?obj a geo:Feature; 

                geo:hasGeometry [  

                    a sf:Polygon; 

                    geo:asWKT ?wkt                 ] } 

  WHERE{ 

 ?obj cpmeta1:asGeoJSON ?geoJSON 

 BIND(REPLACE(REPLACE(REPLACE(REPLACE(?geoJSON," \"",""),"\t",""),"\n","")," ","") AS 

?v1). 

 BIND(REPLACE(REPLACE(REPLACE(?v1,"type:",""),"coordinates:",""),"],\\[","@") AS ?v2). 

 BIND(REPLACE(REPLACE(?v2,","," "),"@",",") AS ?v3). 

 BIND(REPLACE(REPLACE(REPLACE(?v3," \\[\\[\\[","(("),"\\[\\[","("),"\\[","") AS ?v4). 

 BIND(REPLACE(REPLACE(REPLACE(?v4,"]]]","))"),"]]",")"),"]","") AS ?v5). 

 BIND(UCASE(REPLACE(REPLACE(?v5," \\{",""),"}","")) AS ?v6). 
 BIND(CONCAT(?v6,"^^geo:wktLiteral") AS ?wkt). 

 FILTER(CONTAINS(UCASE(?wkt),"POLYGON")). 

} 

Listing  4-3 SPARQL Query to construct GeoSPARQL compliant RDF for polygon data 

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX sf: <http://www.opengis.net/ont/sf#>  

 

CONSTRUCT {?obj a geo:Feature; 

                geo:hasGeometry [  

                    a sf:LineString; 

                    geo:asWKT ?wkt 

                ] } 

  WHERE{ 

 ?obj cpmeta1:asGeoJSON ?geoJSON 

 BIND(REPLACE(REPLACE(REPLACE(REPLACE(?geoJSON,"\"","")," \t",""),"\n","")," ","") AS 

?v1). 

 BIND(REPLACE(REPLACE(REPLACE(?v1,"type:",""),"coordinates:",""),"], \\[","@") AS ?v2). 

 BIND(REPLACE(REPLACE(?v2,","," "),"@",",") AS ?v3). 

 BIND(REPLACE(REPLACE(REPLACE(?v3," \\[\\[\\[","(("),"\\[\\[","("),"\\[","") AS ?v4). 

 BIND(REPLACE(REPLACE(REPLACE(?v4,"]]]","))"),"]]",")"),"]","") AS ?v5). 

 BIND(UCASE(REPLACE(REPLACE(?v5,"\\{",""),"}","")) AS ?v6). 

 BIND(CONCAT(?v6,"^^geo:wktLiteral") AS ?wkt). 

 FILTER(CONTAINS(UCASE(?wkt),"LINESTRING")). 

} 

Listing 4-4 SPARQL Query to construct GeoSPARQL compliant RDF for line string data 

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 
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PREFIX sf: <http://www.opengis.net/ont/sf#>  
 

CONSTRUCT {?obj a geo:Feature; 

                geo:hasGeometry [  

                    a sf:Point; 

                    geo:asWKT ?wkt 

                ] } 

  WHERE{ 

 ?obj cpmeta1:hasLatitude ?Lat; 

  cpmeta1:hasLongitude ?Lon. 

  BIND(CONCAT("Point(",STR(?Lon)," ",STR(?Lat),")","^^geo:wktLiteral") as ?WKT).  

} 

Listing 4-5 SPARQL Query to construct GeoSPARQL compliant RDF for point data 

These queries construct sub-graphs against each spatial object in the downloaded dataset. The 

total spatial objects in our data are 1068 and the SPARQL constructs for data transformation 

generate four RDF statements for each object. Therefore our generated geospatial dataset for the 

research has 4272 RDF statements. A sample of RDF statements relating to a point, a line string 

and a polygon are shown in listing 4-6. The geometry object identifiers have been replaced 

(_:genid-123, _:genid-456 and _:genid-789) in listing 4-6 to avoid complexity, because the 

actual identifiers are 60 characters long. This spatial dataset of 4272 statements is used in the 

evaluation of SPARQL queries for all the selected RDF stores as discussed in the next sections. 

PREFIX station: <http://meta.icos-cp.eu/resources/stations/> 

PREFIX sf: <http://www.opengis.net/ont/sf#> 

PREFIX geo: <http://www.opengis.net/ont/geosparql#> 

PREFIX res: <http://meta.icos-cp.eu/resources/> 

 

station: OS_11BE   rdf:type geo:Feature 

station: OS_11BE   geo:hasGeometry    _:genid-123 

_:genid-123    rdf:type  sf:Point 

_:genid-123    geo:asWKT  "POINT(3.113968 51.360925)"^^geo:wktLiteral 

 

res: spcov_-8m8Q4cXf0ONCgUZB-7vjLFE   rdf:type geo:Feature 

res: spcov_-8m8Q4cXf0ONCgUZB-7vjLFE   geo:hasGeometry  _:genid-456 

_:genid-456  rdf:type   sf:Polygon 

_:genid-456  geo:asWKT  "POLYGON ((18.591 54.945998,18.808718 54.280256,21.759 

59.062,24.959511 59.814679,25.196764 60.108495,21.731027 

59.344977,17.209978 57.398751,13.004 54.845,13.032 

54.843,13.032019 54.843287,13.858343 54.79279,18.632254 

56.861101,18.30532 55.076225,14.6811 54.661957,13.198002 

54.830021,13.034 54.843,13.022 54.841,12.810975 

54.861532,11.342376 54.198734,11.932917 54.079201,18.591 

54.945998))"^^geo:wktLiteral 

 

res: spcov_8ilDZu8ZSuBc4WEJ8n41mLoF   rdf:type geo:Feature 

res: spcov_8ilDZu8ZSuBc4WEJ8n41mLoF   geo:hasGeometry  _:genid-789 

_:genid-789  rdf:type   sf:LineString 

http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AFeature
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AhasGeometry
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=sf%3APoint
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AasWKT
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AFeature
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AhasGeometry
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AasWKT
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AFeature
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AhasGeometry
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
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_:genid-789  geo:asWKT  "LINESTRING (-0.60175 49.685,-1.9754 50.068,-2.9287 49.978,-

5.0234 49.581,-7.8892 48.464,-12.148 46.701,-16.986 44.59,-

22.019 42.325,-28.109 39.467,-29.475 38.704,-31.989 37.033,-

36.201 34.146,-40.738 30.868,-47.031 26.176,-49.015 24.663,-

51.22 20.732,-52.722 18.371,-55.709 16.155,-60.59 14.459,-

60.591 14.459)"^^geo:wktLiteral 

Listing 4-6 RDF Statements for point, line string and polygon geometry from study dataset 

4.3. Evaluation Technique 

Software engineering has experienced a turn towards empiricism as it shifted from design 

oriented discipline to an insight-driven and theory-centric discipline over the years (Fernandez 

and Passoth 2018). This study is planned as an empirical software engineering study to evaluate 

the software artifacts of selected RDF stores. The endeavor of this study during the cross 

comparison of the selected five RDF stores is to conduct the evaluation of each store in a 

controlled experiment method. For this purpose, during the quantitative portion of the study 

(where the statistics of software performance are gathered), same set of environment (i.e. 

hardware resources and operating environments) is maintained. Each RDF store is tested on two 

different machines, both having different set of hardware resources but similar operating 

environments. Henceforth we define two machines as follows: 

 Machine A is a computing machine with Intel Dual core processor (2.3 G Hz) and 2 GB of 

main memory.  

 Machine B is a dedicated virtual machine with an Intel Corei5 (3.4 G Hz) processor with 

04 GB memory.  

The operating environment on both machines is uniform which includes Microsoft Windows 7 

ultimate 64 bit with Eclipse IDE for Java Developers version 4.9.0 for source code development 

and compilation.  Java version 1.8.201 is used for all the tests on these machines. At any time 

only one of the RDF stores are running on the machine.  

4.3.1. Selection of RDF Stores 

The management and maintenance of ICOS-CP metadata requires an efficient data store which 

supports the linked open data and has a suitable spatial component as well. Additionally the 

ICOS data is growing at a rapid rate and that would implicate a growing size as well. The RDF 

stores to be evaluated for suitability of this data are required to be capable to handle large 

datasets and also offer the geospatial support conforming to an established standard 

(GeoSPARQL).   

There are quite many RDF stores that could have been potential candidate for this study. 

However, the study has limited timelines and other resources, as well as ICOS-CP preferences. 

Therefore in consultation with the architecture and design team at ICOS-CP, following criterion 

has been established for shortlisting the RDF stores to be studied: 

http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AasWKT
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 The RDF store should be actively supported. 

 The RDF store should support W3C standards like SPARQL 1.1, and also semantic 

reasoning, including ontological and rule-based reasoning. 

 The RDF store should have advanced geospatial capacity. 

 The RDF store should preferably support GeoSPARQL. 

 The RDF store should preferably be open-source. 

Based upon the criteria listed above, following RDF stores were selected for this evaluation:  

 Eclipse RDF4J 

 Apache Jena 

 OpenLink Virtuoso  

 Ontotext GraphDB 

 Stardog 

RDF4J (formerly known as Sesame) and Jena are selected because these open source products 

are commonly used as libraries or underlying framework component by a wide range of other 

RDF stores. A number of RDF databases and stores support Java APIs conforming to RDF4J and 

Jena interfaces. Openlink Virtuoso also offers an open source edition and it also extends 

reasonable geospatial support and indexing. GraphDB offers a free edition and it provides a 

strong GeoSPARQL support. Stardog also extends considerable geospatial support and it offers a 

few months trial for testing purposes.   

4.3.2. Qualitative Study 

The software components and the background building blocks incorporated in each of the RDF 

stores to manage the geospatial linked data were investigated from the official documentation of 

each of the RDF stores. The documentation is consulted primarily for the study of following 

qualitative features: 

 software components, architecture, deployment and licensing 

 built in applications and interface utilities for data upload, query and management 

 utilization of other software components (from open source community) 

 available support for access to the RDF store from programming environment (APIs) 

 geospatial support and capabilities 

 conformance to GeoSPARQL 

 extended spatial operations and topological relationships 

 geospatial query optimization and spatial indexing techniques. 

4.3.3. Preparation for Quantitative Study 

After these features are studied, the software is downloaded for installation and testing.  All the 

selected RDF stores provide some sort of command line or web interface which has been used to 

upload the research data and run a few basic SPARQL queries to validate the software is 



31 
 

configured and executed smoothly. Geospatial support/indexing was also enabled for validating 

the documented features. The basic execution of software artifacts is tested here to confirm the 

smooth (error free) operations, but no quantitative measurements were recorded at this stage.  

4.3.4. Quantitative Study 

The quantitative portion of the study focuses on performance metrics against a set of geospatial 

queries. The GeoSPARQL compliant query set was derived from the geospatial SPARQL 

benchmark, Geographica (Garbis et al. 2013). The set of queries derived from the micro 

benchmark of Geographica against real world datasets are considered in this study.  

Geographica was developed to evaluate the GeoSPARQL as well as stSPARQL compliance and 

there are 29 queries in the micro benchmark divided in three categories: non-topological, 

topological and spatial join queries. Queries Q6, Q28 and Q29 are evaded for not being 

GeoSPARQL compliant. Q14 required a function call from within another function and this was 

not supported by most of the under study RDF stores, hence it was also eliminated from the 

benchmark queries. Geographica uses three different datasets for evaluation, each set having 

different types of geometries. However in this study, all the three types of geometries (point, 

lines and polygon) reside in a single dataset; hence the queries are slightly modified to use self 

joins without violating the original spatial intent of the queries as shown in Table 4-1.  

Table 4-1 GeoSPARQL compliant Geographica queries for  

evaluation of ICOS CP Metadata 

S# Ref  Operation Geographica Benchmark Query 

(on 03 spatial datasets) 

Query for this study 

(on ICOS metadata spatial data set) 

Non topological functions 

1 Q1 Boundary Construct Boundary of all polygons of 

one dataset 

Construct Boundary of all polygons in 

the dataset 

2 Q2 Envelope Construct Envelope of all polygons of 

one dataset 

Construct Envelope of all polygons in 

the dataset 

3 Q3 Convex  

Hull 

Construct Convex Hull of all polygons 

of one dataset 

Construct Convex Hull of all polygons 

in the dataset 

4 Q4 Buffer Construct Buffer of all lines of one 

dataset 

Construct Buffer of all line strings of  

in the dataset 

5 Q5 Buffer Construct Buffer of all Polygons of one 

dataset 

Construct Buffer of all polygons in the 

dataset 

 Q6 Area Construct Area of all Polygons Non GeoSPARQL compliant function. 

  

Spatial Selection 

6 Q7 Equals Find all lines of one dataset that are 

spatially equal to a given line. 

Find all line strings that are spatially 

equal to a given line string. 

7 Q8 Equals Find all polygons of one dataset that are 

spatially equal to a given polygon 

Find all polygons that are spatially 

equal to a given polygon. 

8 Q9 Intersect Find all lines of one dataset that 

intersect a given polygon 

Find all line strings that intersect a 

given Polygon. 

9 Q10 Intersect Find all polygons of one dataset that 

intersect a given line 

Find all polygons that intersect a given 

line string. 
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10 Q11 Overlaps Find all polygons of one dataset that 

spatially Overlaps a given polygon 

Find all polygons that spatially 

Overlaps a given polygon 

11 Q12 Crosses Find all lines of one dataset that 

spatially cross a given line 

Find all line strings that spatially cross 

a given line string 

12 Q13 Within 

Polygon 

Find all points of one dataset that are 

contained in a given polygon 
Find all points of ICOS metadata that 

are spatially within a given polygon 

 Q14 Within 

Buffer 

Find all points of one dataset that are 

within the buffer of a given point 

Find all points that are within the buffer 

of a given point 

13 Q15 Near a 

Point 

Find all points of one dataset that are 

within fixed distance of a given point 

Find all points that are within a fixed 

distance to a given point. 

14 Q16 Disjoint Find all points of one dataset that are 

spatially disjoint of a given polygon 

Find all points that are disjoint to a 

given polygon. 

15 Q17 Disjoint Find all lines of one dataset that are 

spatially disjoint of a given polygon 

Find all line strings that are spatially 

disjoint with a given polygon. 

Spatial Joins 

16 Q18 Equals Find all points of a dataset which are 

equal to a point in another dataset 

Find point to point equality of all ICOS 

metadata points. 

17 Q19 Intersects Find all points of one dataset that 

intersect a line of another dataset  

Find all points that intersect any line 

string in the dataset. 

18 Q20 Intersects Find all points of one dataset that 

intersect a polygon of another dataset 

Find all points that intersect any 

polygon in the dataset. 

19 Q21 Intersects Find all lines of one dataset that 

intersect a polygon of another dataset 

Find all line strings that intersect any 

polygon in the dataset 

20 Q22 Within Find all points of one dataset that are 

within a polygon of another dataset 

Find all point and polygons where the 

point lies inside the polygon. 

21 Q23 Within Find all lines of one dataset that are 

within a polygon of another dataset 

Find all line strings that lie within any 

polygon in the dataset 

22 Q24 Within Find all polygons of one dataset that are 

within a polygon of another set. 

Find all polygons which are completely 

within any other polygon in the dataset. 

23 Q25 Crosses Find all lines of one dataset that cross a 

polygon of another dataset 

Find all line strings that cross a 

polygon in the dataset. 

24 Q26 Touches Find all polygons of a dataset that touch 

other polygons  

Find all polygons that touch any other 

polygon in the dataset 

25 Q27 Overlaps Find all polygons of one dataset that 

overlap polygons of another dataset 

Find all polygons that overlap any 

other polygon in the dataset. 

Aggregate Functions 

 Q28 Extension Construct the Extension of all polygons 

of a dataset  
Non GeoSPARQL compliant 

 Q29 Union Construct Union of All Polygons of a 

dataset 

Amongst the five selected RDF stores, some have limited or no GeoSPARQL compliance. In 

such cases, only those queries from Table 4-1 are evaluated which are available in that RDF 

store. The only leverage allowed in such tests, is to change the query from an object to a box 

query (if applicable). Hence, if an RDF store does not support a within or intersect topological 

relationship between two arbitrary objects, but rather offers the functionality to test the same 

operations between one object and a rectangle (box), then this change is accommodated for 

processing the query. These exceptions are highlighted in the result sections.  



33 
 

For this study each RDF store has been tested through the available programming APIs and 

custom java code has been developed to test each of the stores. The built in applications or 

command line tools are therefore not used in the quantitative evaluation. When the evaluation 

code for an individual RDF store is executed on the designated machine, the necessary 

initializations are conducted before proceeding to execute the benchmark queries. The 

initialization code creates storage structures on the machine (repositories or datasets or database) 

along with necessary spatial parameters (if required). The research data is then loaded in the 

local disk based storage structures and the whole query set is executed in a loop for 100 times.  A 

complete query set (set of benchmark queries) is executed in each iteration, followed by next 

iteration and so on for one hundred times. This means that the query set executes 100 times in 

one configuration for each RDF store separately on both machine A and machine B. Therefore 

100 different query times are recorded for each query. The first 20 iterations are not used for 

calculation of performance measurements. The statistics are computed against each query for the 

average of last 80 iterations (iteration number 21 to 100) in order to balance out any spikes 

within individual iterations. More detailed discussion on this topic is conducted in chapter 6.  

If the RDF store supports geospatial capabilities in both indexed and un-indexed configurations, 

then separate performance of each query in both modes is recorded and statistics are computed 

accordingly. For reference and larger benefit of the geospatial community, the developed source 

code as well as the compiled program have been uploaded to an online source code repository at 

url https://github.com/Raza-Amir-Syed/TestGeoRDFStores as well as as well as 

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8974835&fileOId=8974841. 

4.3.5. ICOS-CP Considerations 

In consultation with ICOS-CP team it has been established that the main capability for any 

potential RDF store to be utilized at ICOS-CP, is that the support of sophisticated spatial queries 

is a compulsion. This should be augmented with a support of spatial index to accommodate the 

future data growth perspective. In terms of spatial relationships, the overlap and within 

functionality to identify data elements that have overlapping geometric boundaries or completely 

covered by other geometry are considered to be of prime interest. The crossing of ship 

trajectories and equality amongst spatial objects could also be topological relationships of 

interest in the near future. This entails that from the established set of benchmark spatial queries: 

Q11, Q13, Q22, Q23, Q24, and Q27 are of prime interest from ICOS perspective. Q7, Q8, Q12, 

and Q25 also hold an element of interest for any potential RDF store to be considered fulfilling 

the ICOS-CP requirements in near future. 

4.4. Introduction to Programming with the RDF Stores   

A brief introduction to the technical details of the selected RDF stores and usage of these from 

programming environment is given in the next few sections. 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores
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4.4.1. Eclipse RDF4J  

Eclipse RDF4J is an open source Java framework for storage, parsing, inference and query of 

RDF data. Formerly known as OpenRDF Sesame, it was created by the Dutch software solutions 

company Aduna before moving to Eclipse foundation in 2016. Eclipse RDF4J can either be used 

as a Java library to process RDF data internally or as a standalone RDF database. RDF4J offers 

Java API to connect to other RDF stores as well as SPARQL endpoints offering transparent 

access to remote RDF repositories and thereby enabling developers to build powerful linked data 

and semantic web applications. The framework supports all of the mainstream RDF serialization 

formats including RDF/XML, Turtle, N-Triples, N-Quads, JSON-LD and few others.   

Primarily, RDF4J offers two types of transactional RDF databases: an in-memory store and a 

native store. The RDF4J Memory store is an RDF store residing completely in memory with an 

optional synchronization to the disk. This is a high performance RDF store for small datasets 

scaling to the amount of main memory available. The RDF4J Native store uses direct disk for 

persistence. The native store has a smaller memory footprint; is more scalable solution with 

better consistency and durability; has default indexing on different subject, predicate, and object 

combination; and is considered suitable for medium sized datasets around 100 million triples.   

RDF4J supports a stacked architecture enabling software components to be stacked on top of the 

others to extend the functionalities like: RDFS inference, rule based reasoning, full text search as 

well as geospatial indexing. The abstraction provided by the RDF4J architecture and its vendor 

neutral APIs have received a considerable attention in the RDF databases community, and many 

RDF stores use RDF4J framework APIs.  

During this study, the RDF4J 2.4.0 was used. The downloaded work package (Eclipse RDF4J – 

Downloads n.d.) contains: an RDF4J server (the RDF store) to manage RDF data as RDF4J 

repositories; a workbench web application to connect, query and interface the RDF4J 

repositories through the RDF4J server; a console application to directly parse, process and query 

an RDF file; and a set of java libraries. It is also possible to download only the java libraries and 

use these APIs (JAR files) for internally using RDF4J framework from a java program. For our 

study, this technique was used and a java project was created as a driver to use the RDF4J java 

libraries. Version 2.4.0 of RDF4J requires Java 8 host JVM. The wide acceptance of RDF4J 

framework in the RDF database community is driven from the RDF4J core APIs. Key 

components of the relevant APIs are discussed in the following sections. 

Storage and Interface Layer (SAIL) is an interface for RDF to store statements and evaluate 

queries over them. Statements can be grouped in named contexts or in the null context. The 

RDF4J SAIL API (org.eclipse.rdf4j.repository.sail) is a collection of interfaces designed for low 

level transaction access to RDF data. SAIL API enables the decoupling between the database 

implementation and functional modules like parsers, query engines, end-user API access etc. At 

the low level, the SAIL operates on query algebra which is an object representation of a 

SPARQL query. The SAIL provides the StackableSail interface, which allows SAIL 
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implementations to be stacked on top of each other. This provides a chain of responsibility where 

each underlying SAIL object in the stack implements a specific feature like reasoning, access 

control, data filtering, query expansion, spatial indexing, persistence etc. At the bottom of the 

stack, the last implementation in the stack is a sail which cannot be stacked on top of any other. 

Programmatically, this has been achieved with the interface StackableSail. The bottom sail does 

not implement this interface therefore it cannot appear on top of others, and has to be the bottom 

layer in the stack. This bottom SAIL object is responsible for the persistence of data. One of the 

RDF4J stores (native or memory) is this SAIL, while the others which can be stacked above, 

include: ForwardChainingRDFSInferencer (inferenceing layer), LuceneSAIL (full-text indexing 

layer), and a few more. 

The central point of access for RDF4J compatible RDF stores as well as SPARQL endpoints is 

the Repository API (org.eclipse.rdf4j.repository). The repository framework provides a 

transparent access to the underlying RDF database with consistent interfaces for storage, query 

and processing. Eclipse RDF4J itself provides three implementations of these interfaces. 

SailRepository operates on top of a stack of SAIL objects and is used when creating an Eclipse 

RDF4J local repository. The constructor for SailRepository class requires a SAIL object as 

parameter.  HTTPRepository acts as a proxy to an RDF4J server repository accessible through 

HTTP. SPARQLRepository is a proxy to a SPARQL endpoint (which is not necessarily 

implemented with RDF4J). Other than these three, the third party implementation can be 

provided by anyone interested to extend their database as an RDF4J repository. The RDF4J 

compatible RDF stores (Openlink Virtuoso, Stardog, Ontotext GraphDB and others) have 

provided their custom implementation of repository API to expose their platforms in consistence 

with RDF4J framework. 

The core of RDF4J framework is the Model API (org.eclipse.rdf4j.model) which defines the 

building blocks of RDF processing. Some of the important interfaces in this API include: 

Statement, Resource, Literal, Value, IRI, BNode and more. The Model API provides pre-defined 

IRIs for well-known vocabularies like RDF, RDFS, OWL, Dublin Core (DC), and Friend of a 

Friend (FOAF) in the package org.eclipse.rdf4j.model.vocabulary. The RDF model is a logical 

collection of RDF statements. RDF4J Model interface is implemented as an extension of Java 

collection class java.util.Set<statement> enabling the use of Model as any other java collection. 

The parsing toolkit in RDF4J is Rio consisting of many modules for each of the specific syntax. 

The java code developed in this research for RDF4J tests is available online at 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/RDF4JDriver. 

4.4.2. Apache Jena  

Apache Jena is an open source java framework for building semantic web applications. It 

provides extensive Java libraries to facilitate developers to handle RDF, RDFS, RDFa, OWL and 

SPARQL as well as rule based inference and reasoning along with a variety of storage strategies 

for RDF stores.  Jena was originally developed in HP labs UK in 2000 before moving to Apache 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/RDF4JDriver
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software foundation in 2010. The Jena work package for version 3.9.0 used for this study 

includes following artifacts: 

 TDB is a high performance persistence store supporting full range of Jena APIs. A TDB is a 
Jena RDF store that can be directly accessed from a single machine. TDB supports 

transaction and protected against corruption. There are command line scripts as well as Jena 

APIs for management of TDB. 

 Fuseki is a SPARQL server component that can use TDB as underlying persistent storage 
and also enable the access from multiple applications. Fuseki can be launched as a 

standalone server, a web application or an operating system service and it exposes 

management interface for server monitoring and administration. 

 ARQ is a SPARQL query processing engine for Jena. It supports SPARQL 1.1 as well as 

SPARQL graph store protocol. 

 RDF API consists of core packages and interfaces used for RDF data storage and processing 
in Jena. For our study, this API was used for development of a driver program to conduct 

SPARQL benchmark tests for query performance. 

 The work package also contains Ontology API as well as Inference API to add custom 
semantics as well as inference and reasoning on the RDF data.  

 

In Jena APIs, the Model class denotes an RDF graph and it contains the collection of RDF 

triples. It is an abstraction over different ways to store the graph like memory structures, disk-

based persistent stores and inference engines etc. At lower levels, Jena uses another interface 

Graph for simpler abstraction and lower level interaction. The required methods and interfaces to 

manage the RDF data can be acquired from the Model object for processing an RDF graph. 

An RDF Dataset has one or more graphs with one designated as a default graph. In Jena, the 

Dataset class represents an RDF Dataset which contains Models, one of which is the default 

Model. Each Dataset has an associated file location (a folder) where the data is stored. TDB 

datasets can be created from the static methods in TDBFactory class.  The java code developed 

in this research for Jena tests is available online at https://github.com/Raza-Amir-

Syed/TestGeoRDFStores/tree/master/JenaRDFDriver. 

4.4.3. Openlink Virtuoso  

Openlink Virtuoso is a cross platform web server, a file server, and a database server in a single 

multithreaded server process. Therefore it is more suitably defined as a universal data access 

middleware. Virtuoso offers a high performance virtual database engine on an underlying 

distributed architecture. On their homepage, the Openlink community defines virtuoso as a “Data 

Junction Box that drives enterprise and individual agility by deriving a Semantic Web of Linked 

Data from existing data silos”. In contemporary information era, data processing requires 

traversal over heterogeneous data sources spread over many different platforms. Virtuoso offers 

a cost-effective platform for projection of data from many different sources. Virtuoso offers both 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/JenaRDFDriver
https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/JenaRDFDriver
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commercial and open source editions. For this study, the open source edition of Openlink 

Virtuoso version 7.2.4 is used. 

The Virtuoso quad store (RDF store) is built on top of an RDBMS. From version 5.0.7 Virtuoso 

can be used as an RDF store. The RDF processing middleware manages the RDF data in 

RDBMS tables and different database types are used (IRI_ID, RDF_BOX etc.) for management 

of RDF statements on an RDBMS platform. The main tables for RDF statements include 

RDF_QUAD, RDF_PREFIX, RDF_OBJ and a few more. Virtuoso also supports R2RML 

expression language for mapping of relational databases to RDF datasets.  

The RDF capability includes built-in support for SPARQL and SPARUL. Starting from Virtuoso 

version 4.5, a SPARQL query can be used in place of any SQL query by appending a key word 

“SPARQL” followed by a space in front of the query text. Such queries are sent to SPARQL 

query processor. A linked data middleware Sponger is also integrated into the SPARQL 

processor for URI de-referencing within SPARQL query patterns. Openlink Virtuoso does not 

support Unicode in SPARQL and comments inside SPARQL are also not supported, however 

some other extension are made available.  

Virtuoso offers a number of APIs and data access connection methods on different platforms like 

Java, .Net and others. To establish a client connection with Virtuoso server, the options include 

ODBC, JDBC as well as OLEDB. In this study the JDBC connection was used. For JDBC client 

connections, the Java.sql package can be used in consistence with any other JDBC technology. 

A JDBC connection to the virtuoso server is obtained through the DriverManager class by 

providing the host, port, user and password parameters. This connection can then be used for 

creating statement objects and executing query on these statements. The queries can be SQL or 

SPARQL, differentiated by the first key word “SPARQL” in front of the query.  

For direct RDF store processing, Openlink Virtuoso has provided Data Access Providers. 

Virtuoso 7.2.4 supports three drivers in this regards: Virtuosos Jena Provide, Virtuoso 

Sesame/RDF4J Provider as well as Virtuoso Redlands provider. For this study Virtuoso Sesame 

provider is used as shown in figure 5-1 (Virtuoso – Sesame Provider n.d.).  

The Virtuoso Sesame provider leverages the Sesame/RDF4J framework to process the Virtuoso 

RDF store using Java language. Therefore, while the underlying data management and 

processing is being conducted by the Virtuoso server, the RDF4J java framework can be used in 

programming environment for RDF4J friendly java code. For this purpose Virtuoso has provided 

a java library which exposes a VirtuosoRepository class which is consistent with the RDF4J 

Repository API. It is however important to note that the Virtuoso Sesame/RDF4J provider also 

uses underlying JDBC for client connection to the virtuoso server. The java code developed in 

this research for Virtuoso tests is available online at https://github.com/Raza-Amir-

Syed/TestGeoRDFStores/tree/master/VirtuosoDriver. 

 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/VirtuosoDriver
https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/VirtuosoDriver
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Figure 4-1 Virtuoso Sesame Stack 

4.4.4. Stardog  

Stardog defines itself as an Enterprise Knowledge Graph platform capable to manage the 

enterprise data in full generality, which is scale-able and connected from many diverse, 

distributed and heterogeneous data sources as unification platform. Stardog claims to make the 

transformation of enterprise data into knowledge at a faster pace. Stardog prefers to call itself a 

Knowled Graph (a graph database with knowledge toolkit). Stardog whitepapers also suggest 

that the proper way of managing the data silos in an enterprise is a knowledge graph and that is 

why graph is the model for next 20 years.   

Stardog data model is an RDF graph and it supports SPARQL query as well as other basic graph 

data support like inference and reasoning etc. While graph is the data model for Stardog, it also 

supports property graph model and Gremlin graph traversal language. Stardog also supports 

Virtual graphs by re-writing SPARQL queries to SQL and transforming the tabular results back 

to RDF. A number of RDBMS are supported in this manner. Stardog version 6.0.1 Enterprise 

Edition (60 days trial) has been used for this study. Stardog server runs in a java container. The 

stardog-admin.bat script can be used to start or stop the server as well as other functions like 

creating a database, running a query etc. from the command window. The Stardog management 

studio (a web application) can also be accessed at http://localhost:5820. 

Stardog supports programming interfaces from Java, over HTTP, Javascript, Clojure, Groovy, 

Spring and .Net. Stardog recommends SNARL API as native and preferred method of 

programming. Other than SNARL, Stardog also supports interface with Sesame/RDF4J and Jena 

frameworks through APIs. For network connections, the SPARQL HTTP protocol from Stardog 

is default for client connections. Stardog also supported another network protocol, “SNARL‟ in 

the earlier version but it has been depreciated since Stardog 4.2. It is important to mention here 

that SNARL network protocol and SNARL Java API are two different artifacts. The SNARL 
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network protocol is depreciated, while SNARL Java API is still the preffered way of 

programming from Java. For this study both the SNARL API and the Sesame/RDF4J API have 

been used separately to test the SPARQL benchmark queries. 

When programming from Java, one way to connect the Stardog server is from HTTP. The server 

can reside on the same machine or it can be a remote Stardog server instance available over 

HTTP. The other method is to run a Stardog server instance within the same JVM as the Java 

program. This is known as an embedded server and it helps avoid some of the HTTP overhead 

when there is a local server. The SNARL API exposes methods to obtain connection to the 

embedded server and use the connection for subsequent database creation; data upload as well as 

run SPARL queries through these local connections. Stardog Sesame/RDF4J API exposes a 

StardogRepository class which can connect to an embedded server or to a remote Stardog server 

over HTTP. This class is in compliance with RDF4J Repository class and therefore the 

RDF4J/Sesame Java framework can be used with this repository object for subsequent RDF 

operations. The java code developed in this research for Stardog tests is available online at 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/StardogDriver. 

4.4.5. Ontotext GraphDB  

GraphDB is a robust and scalable graph/RDF database capable to balance the use of linked data 

cloud datasets as well as local resources. GraphDB implements RDF4J interfaces and supports 

W3C SPARQL 1.1 protocol specifications as well as RDF serialization formats.  GraphDB can 

perform semantic inference at scale allowing users to derive new semantic facts from existing 

facts. GraphDB offers three editions: Free, Standard and Enterprise. Our evaluation uses the free 

edition of version 8.8.0. It is important to highlight that Free version is free for use but not 

licensed as open source. The GraphDB server runs in a Java container and it also includes a 

workbench web application for managing the database and other administration tasks. The 

workbench also offers tools to explore data as well as class relationships and properties from the 

vocabularies and ontologies used in the data.   

GraphDB is packaged as a Storage and Inference Layer (SAIL) for RDF4J and makes extensive 

use of the RDF4J framework features. GraphDB implements the SAIL API interface so that it 

can be integrated with the rest of the RDF4J framework. A user application can be designed to 

use GraphDB directly through the RDF4J SAIL API or via the higher-level functional interfaces. 

When a GraphDB repository is exposed using the RDF4J HTTP Server, users can manage the 

repository through the GraphDB embedded Workbench, or the RDF4J Workbench, or other tools 

integrated with RDF4J. The java code developed in this research for GraphDB tests is available 

online at https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/GraphDBDriver. 

 

  

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/StardogDriver
http://graphdb.ontotext.com/documentation/free/introduction-to-semantic-web.html#introduction-to-semantic-web-reasoning-strategies
https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/GraphDBDriver
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5.  RESULT 

5.1. Eclipse RDF4J 

5.1.1. Geospatial Support 

The GeoSPARQL spatial support is enabled in RDF4J by inclusion of rdf4j-queryalgebra-

geosparql library in the server class path. The WKT serialization format is supported for 

representation of geographic data and the spatial support is provided in all types of stores. 

However, for optimization of spatial queries, the spatial indexing is only available in repositories 

created with LuceneSail or its derivatives (SolrSail and ElasticSearchSail). Although Lucene is 

basically a full text indexing framework, however the lucene-spatial-extras module handles the 

spatial indexing of geometries. By default, LuceneSail spatially indexes only the fields 

represented by the predicate http://www.opengis.net/ont/geosparql#asWKT using R-tree. 

Additional fields for indexing can be specified through the LuceneSail.WKT_FIELDS parameter. 

Spatial4J library is used for conversion to and from WKT and shape objects while the spatial 

algebra is handled by the JTS library. RDF4J supports a rich set of topological and non-

topological GeoSPARQL compliant spatial functions which are available both in indexed as well 

as non-indexed configuration as listed below: 

 Non-toplogical functions include geof:distance, geof:boundary, geof:buffer, 

geof:convexHull, geof:difference, geof:envelope, geof:intersection, geof:getSRID, 

geof:symDifference, geof:union, and geof:relate. 
 

 Simple feature topology functions include geof:sfEquals, geof:sfDisjoint, geof:sfIntersects, 

geof:sfTouches, geof:sfCrosses, geof:sfWithin, geof:sfContains, and geof:sfOverlaps. 

 

 Eigenhofer topology functions include geof:ehEquals, geof:ehDisjoint, geof:ehMeet, 

geof:ehOverlap, geof:ehCovers, geof:ehCoveredBy , geof:ehInside, and geof:ehContains. 

 

 RCC8 topology functions include geof:rcc8eq, geof:rcc8dc, geof:rcc8ec, geof:rcc8po, 
geof:rcc8tppi, geof:rcc8tpp, geof:rcc8ntpp, and geof:rcc8ntppi. 

 

5.1.2. Benchmark Query Performance 

Eclipse RDF4J supports spatial search and query in both indexed as well as non-indexed spatial 

configurations. However during the tests, it was found that LucenSail is not responding properly 

for spatial indexing and instead of improved performance, the spatial queries became nearly un-

responsive in LuceneSail configuration. The matter was reported to RDF4J development team, 

and an issue was created at Github (https://github.com/eclipse/rdf4j/issues/1160). At the time of 

this writing, the issue is not yet resolved; hence the tests are only performed on an RDF4J Native 

store without spatial indexing. Another error in RDF4J 2.4.0 was found in the buffer function 

and the issue was already reported (https://github.com/eclipse/rdf4j/issues/1128). Later on, the 

buffer function issue has been rectified in 2.4.1, however Q4 and Q5 in our tests were not 

http://www.opengis.net/ont/geosparql#asWKT
https://github.com/eclipse/rdf4j/issues/1160
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executed because the latest software artifacts downloaded when this study was initiated pertains 

to version 2.4.0. The results for benchmark queries are given in Table 5-1.  Some queries 

perform a little better on machine A, while others have performed considerably better on 

machine B. The overall performance gain on machine B compared to machine A is nearly 65 

times faster.  

Table 5-1 Average time in Milli Seconds for benchmark queries in Eclipse RDF4J   

Benchmark Query 
Machine A 

Intel Dual Core 

2 GB memory 

Machine B 

Intel Core i5 

4 GB memory 
Non topological functions 

Q1  Boundary 1.01 1.42 

Q2  Envelope 0.98 2.44 

Q3  Convex  

Hull 

0.86 0.62 

Q4  Buffer Bug in the buffer function 
Q5  Buffer 

Spatial Selection 

Q7  Equals 48.11 3.57 

Q8  Equals 3.49 3.22 

Q9 Intersect 8.65 5.53 

Q10 Intersect 1.25 3.50 

Q11  Overlaps 1.13 4.55 

Q12  Crosses 1.24 2.59 

Q13 Within  16.95 5.07 

Q15  Near a Point 1.59 2.62 

Q16  Disjoint 1.05 5.21 

Q17  Disjoint 1.03 2.60 

Spatial Joins 

Q18  Equals 11.86 11.22 

Q19  Intersects 7110.93 8.57 

Q20  Intersects 17.75 9.38 

Q21  Intersects 8.38 9.60 

Q22  Within 10.58 7.97 

Q23  Within 434.45 7.45 

Q24  Within 41.44 8.39 

Q25  Crosses 7.86 8.79 

Q26  Touches 1620.35 9.92 

Q27  Overlaps 1.59 12.68 

 

5.2. Apache Jena 

5.2.1. Geospatial Support 

Spatial query in Jena is supported by the spatial extension since version 2.11.0. It has lately been 

notified on the Apache Jena website that Jena spatial query is planned to retire (Jena – Spatial 
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Query n.d.), in favor of geosparql-jena. For our study however, the Jena spatial query extension 

was used, because the study artifacts were downloaded in October 2018, few months before the 

notification was stated.  

In Jena spatial query extension, the spatial search and query is enabled with the creation of a 

spatial index. There can be two types of indices: Apache Lucene for same machine or Apache 

Solr for large scale enterprise level search. The advantage of using Lucene Spatial is that Jena 

already uses Lucene for text indexing, so the same system is used for spatial indexing as well.  

The SpatialDatasetFactory class contains static methods to create datasets with Lucene spatial 

index. A spatial enabled dataset can be created from these methods on top of a TDB as the base 

dataset. When a spatially indexed dataset is created, than any changes to the dataset triggers the 

spatial indexing, if the relevant predicates are found in the updated data.  By default Jena 

supports two predicates for geometry literals. The first one is a pair of latitude and longitude: 

http://www.w3.org/2003/01/geo/wgs84_pos#lat, http://www.w3.org/2003/01/geo/wgs84_pos#lon. The 

second one is http://www.opengis.net/ont/geosparql#asWKT . Custom geo predicates can also be 

added in Jena spatial, however geometry support is for WKT literals only. In terms of spatial and 

topological relationships, Jena spatial query has a limited support for GeoSPARQL. The spatial 

relationships available in the Jena spatial query extension are: 

  spatial:nearby(lat, lon, radius) 

 spatial:withinCircle(lat, lon, radius) 

 spatial:withinBox (lat_min, lon_min,lat_max, lon_max) 

 spatial:intersectBox(lat_min, lon_min,lat_max, lon_max) 

 spatial:north (lat, lon) 

 spatial:south (lat, lon) 

 spatial:west (lat, lon) 

 spatial:east (lat, lon) 
 

5.2.2. Benchmark Query Performance 

Amongst the tested RDF stores, Jena covers the minimum number of benchmark queries. The 

benchmark queries Q1, Q2, Q3, Q4, Q5 and Q6 were not executed because no related utility 

spatial functions for Boundary, Envelope, ConvexHull and Buffer of geometries are available in 

Jena. The spatial selection queries Q7, Q8, Q11, Q12, Q16 and Q17 were also not executed 

because Jena spatial extension has no equivalent spatial relations for: Equals, Overlap, Cross and 

Buffer.  Although Q9 and Q10 queries were evaluated, but the second parameter to the related 

intersects function is a box represented by two latitude and longitude pairs. In the other evaluated 

RDF stores, the second parameter of corresponding relations can be a geometry literal or a 

geometry variable as well. The spatial join queries Q18 to Q27 are not available in Jena because 

a join requires the second parameter of topological functions to be geometry variables.  As the 

spatial search in Jena is not available without the spatial index, the comparison between indexed 

http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01/geo/wgs84_pos#lon
http://www.opengis.net/ont/geosparql/asWKT
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and un-indexed configurations could not be drawn. Furthermore, all queries performance (Table 

5-2) deteriorated on machine B with an overall performance decrease of 5 times.  

Table 5-2 Average time in Milli Seconds for benchmark queries in Apache Jena 

Benchmark Query 

Machine A 

Intel Dual Core 

2 GB memory 

Machine B 

Intel Core i5 

4 GB memory 

Non topological functions 

Q1, Q2,Q3, Q4, Q5, Q6 Not Supported 

Spatial Selection 

Q7, Q8 Not Supported 

Q9 Intersect 3.63 5.98 

Q10 Intersect 3.74 5.74 

Q11, Q12  Not Supported 

Q13 Within  3.78 9.14 

Q15  Near a Point 7.73 69.76 

Q16, Q17 Not Supported 

Spatial Joins 

Q18, Q19, Q20, Q21, Q22,  

Q23, Q24, Q25, Q26, Q27  
Not Supported 

 

5.3. Openlink Virtuoso (Universal Server) 

5.3.1. Geospatial Support 

Openlink Virtuoso version 6.01.3126 onward has supported geospatial capabilities which are 

focused specifically for spatial data in RDF but can also be used in SQL. Virtuoso 7.1 onwards 

support the WKT literal representation for geometries with a few exceptions for some shapes. 

Another supported geometry literal is BOX with two pairs of longitude and latitude.  Virtuoso 

assigns a special internal type virtrdf:Geometry, for managing geometry. All WKT literals are 

converted to this type and such literals are automatically indexed in a two dimensional R-tree 

containing all distinct geometries occurring in any quad of any graph under any predicate. 

The default reference system is WGS-84 with coordinates in degrees longitude and latitude. The 

ST_Transform function is provided for coordinate transformation but it requires the v7proj4 

plugin, while ST_SetSRID is used for altering SRID without altering coordinates. There are some 

other utility functions as well. The spatial and topological relationship functions are:  

 bif:st_intersects is used for checking if two shapes intersect.  

 bif:st_within is used for checking if a shape lies completely inside another shape.  

 bif:st_contains is used for checking if a shape completely bounds another shape.  

 bif:st_distance is used to find distance between two shapes. 
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5.3.2. Benchmark Query Performance 

The tests for Openlink virtuoso have been conducted from two different environments: one with 

a simple JDBC connection and the other with RDF4J provider.  Both of these configurations 

have been used on two different hardware machines, and the results are presented in Table 5-3. 

The benchmark query Q1 has been evaluated with the function bif: ST_ExteriorRing, while Q2 

has been executed with the bif:st_get_bounding_box function. There are no functions for 

ConvexHull, Buffer and Equal, therefore Q4, Q5, Q7 and Q8 are not covered.  Similarly Q11, 

Q12, Q16, Q17 and Q18 are not covered because of no equivalent relationships for Overlap, 

Cross, Disjoint and Equal. Spatial join queries Q25, Q26 and Q27 were also not executed 

because of missing support of equivalent relationship. 

Virtuoso does not extend any Nearby relationship extension function, however Q15 has been 

executed using the bif:st_distance function. All queries have better performance results on 

Machine B in both environments. The overall performance Machine B is around two time faster 

than Machine A in both configurations.  

Table 5-3 Average time in Milli Seconds for benchmark queries in Openlink Virtuoso 

Benchmark Query 

Machine A 

Intel Dual Core 

2 GB memory 

Machine B 

Intel Core i5 

4 GB memory 

JDBC  
RDF4J 

Provider 
JDBC  

RDF4J 

Provider 

Non topological functions 

Q1  Boundary 5.18 5.59 4.26 2.82 

Q2  Envelope 2.40 2.46 1.67 1.34 

Q3, Q4, Q5 Not Supported 

Spatial Selection 

Q7, Q8       

Q9 Intersect 2.93 3.18 1.32 1.39 

Q10 Intersect 5.29 5.66 2.06 2.16 

Q11, Q12  Not Supported 

Q13 Within  2.01 1.41 0.74 0.75 

Q15  Near a Point 2.76 2.71 0.92 1.08 

Q16, Q17  Not Supported 

Spatial Joins 

Q18 Not Supported 

Q19  Intersects 12.19 13.10 5.62 5.57 

Q20  Intersects 23.99 27.13 12.18 11.80 

Q21  Intersects 28.96 30.61 15.00 14.81 

Q22  Within 25.70 30.53 13.03 12.57 

Q23  Within 31.14 35.15 15.66 15.27 

Q24  Within 29.79 38.11 15.55 14.72 

Q25, Q26, Q27  Not Supported 
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5.4. Stardog (knowledge Graph) 

5.4.1. Geospatial Support 

In order to enable geospatial support and spatial query, spatial indexing needs to be enabled. The 

related option is to be specified at the time of creation of the database (listing 5-1). Stardog 

supports geometry data in WKT format, however to use all the shapes in WKT standard, the JTS 

library has to be included in the Java class path (listing 5-1). 

AdminConnection.newDatabase(dbName).set(GeospatialOptions.SPATIAL_ENABLED, true).create();    

Stardog.builder().set(GeospatialOptions.USE_JTS,true).create(); 

Listing 5-1 Enable Stardog geospatial and JTS support 

When the spatial support is enabled, the data commit triggers Stardog to index all features from 

relevant vocabularies. The point data can be encoded with the lat, lon predicates of WGS84 

vocabulary or as a WKT point literal. Stardog offers five spatial and topological operators, 

geof:within, geof: nearby, geof:distance, geof:area and geof:relate as follows :   

 geof:within relationship can be used to check if a  geometry is inside another geometry. 

 geof:nearby can be used to check if some object is within a certain distance to a point. 

 geof:area is a non-spatial utility function for area computation.  

 geof:relate can be used to test 05 relationships amongst two geometries. The 05 relationships 
are  geo:contains, geo:within, geo:intersects, geo:equals, and geo:disjoint. The geof:relate 

can be used  in two forms. The first form is to make a boolean check to test a relationship i.e. 

FILTER(geof:relate(?geom1,?geom2,relationship)). The second form is to find out which 

one of the 05 relationship holds i.e. ?rel geof:relate (?geom1  ?geom2)  

 

5.4.2. Benchmark Query Performance 

 Query performance in Stardog has been conducted with SNARL API as well as with the RDF4J 

API. The benchmark queries Q1, Q2, Q3, Q4 and Q5 were not executed because of no equivalent 

extension functions for Boundary, Envelope,  ConvexHull and Buffer. Q11, Q12, Q25, Q26 and 

Q27 were also not executed because no relationships for Overlap, Cross and Touch are provided 

by Stardog.  

It is interesting to note that within relationship in Stardog can be tested with two methods. One 

uses the syntax “?geom1  geof:within  ?geom2” and the other method is from inside the relate 

functions as “geof:relate(?goem1, ?geom2, geo:within)”. For this evaluation the second method 

i.e. goef:relate is used.  The benchmark query set performance is given in Table 5-4. All queries 

have performed better on the higher specification Machine B, around 3 times faster than 

Machine A in both configurations. 
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Table 5-4 Average time in Milli Seconds for benchmark queries in Stardog 

Benchmark Query 

Machine A 

Intel Dual Core 

2 GB memory 

Machine B 

Intel Core i5 

4 GB memory 

SNARL  RDF4J  SNARL  RDF4J  

Non topological functions 

Q1, Q2, Q3, Q4, Q5  Not Supported 

Spatial Selection 

Q7  Equals 109.58 79.91 26.12 26.18 

Q8  Equals 15.41 7.63 2.43 2.33 

Q9 Intersect 14.13 9.28 2.80 2.67 

Q10 Intersect 10.76 7.68 1.81 1.42 

Q11, Q12  Not Supported 

Q13 Within  16.60 11.73 3.31 2.75 

Q15  Near a Point 19.06 6.28 1.31 1.10 

Q16  Disjoint 17.79 58.44 1.76 1.43 

Q17  Disjoint 27.23 9.34 1.79 1.53 

Spatial Joins 

Q18  Equals 141.80 84.86 18.38 18.49 

Q19  Intersects 10329.48 10323.93 3768.82 3772.82 

Q20  Intersects 864.51 850.89 254.17 256.48 

Q21  Intersects 17.63 13.63 4.98 3.37 

Q22  Within 22.81 28.18 4.29 4.16 

Q23  Within 307.29 335.19 103.07 101.53 

Q24  Within 223.24 242.99 68.51 68.27 

Q25, Q26, Q27  Not Supported 
 

5.5. Ontotext GraphDB  

5.5.1. Geospatial Support 

GraphDB has the framework of plugins; one of these is GeoSPARQL. It is however important to 

note that geospatial data, search and query is supported even when the GeoSPARQL plugin is 

not enabled. When the GeoSPARQL plugin is enabled, the spatial data is indexed and it offers 

optimized query. GraphDB supports both WKT as well as GML geometry literals in 

conformance with the GeoSPARQL specification. Each set of spatial functions is provided in 

two formats: one for the non-indexed query and other for query under spatial indexing. The 

functions conforming to non-indexed query are always available, while the indexed version of 

functions is only available when the geospatial index has been enabled.  The GeoSPARQL 

plugin supports two indexes: quad prefix tree and geohash prefix tree.  

GraphDB offers each spatial relationship with either a geof: namespace or a geo: namespace. 

The relationships in geof: namespace are available all the time and they perform search and 

query without using spatial indexing. The other set of similar relationships with the geo: 
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namespace are only available when spatial indexing is available. Both examples are given in 

listing 5-2 and 5-3.  

geof:sfOverlaps(?geoLiteral1,?geoLiteral2) 

geof:sfWithin(?geoLiteral1,?geoLiteral2) 

Listing 5-2  Example of non-indexed functions 

?geom1  geo:sfOverlaps  ?geom2 

?geom1  geo:sfwithin  ?geom2 

Listing 5-3  Example of indexed functions 
 

Graph DB also offers geospatial extension for specialized indexing on 2-D geospatial data 

conforming to WGS84 Geo positioning RDF vocabulary. The extension enables efficient query 

against this data. 

5.5.2. Benchmark Query Performance 

GraphDB is the only RDF store in our study which has allowed the evaluation of all the 

benchmark queries. It also supports the queries in both indexed as well as spatially un-indexed 

configurations as shown in Table 5-5.  

Table 5-5 Average time in Milli Seconds for benchmark queries in GraphDB 

Benchmark Query 
Machine A 

Intel Dual Core 

2 GB memory 

Machine B 

Intel Core i5 

4 GB memory 

Non 

Indexed 

Indexed Non 

Indexed 

Indexed 

Non topological functions 

Q1  Boundary 29.74 5.86 1.08 3.37 

Q2  Envelope 18.43 4.78 1.30 4.04 

Q3  Convex  

Hull 

6.34 2.99 1.04 1.10 

Q4  Buffer 17.51 2.74 1.79 0.60 

Q5  Buffer 10.69 3.30 4.70 2.93 

Spatial Selection 

Q7  Equals 484.35 6.29 274.97 6.57 

Q8  Equals 31.45 6.91 7.33 10.16 

Q9 Intersect 62.85 6.48 20.60 14.98 

Q10 Intersect 7.94 17.34 2.44 8.16 

Q11  Overlaps 9.00 11.49 2.83 15.08 

Q12  Crosses 34.68 15.71 3.76 6.81 

Q13 Within  79.96 11.56 31.21 15.72 

Q15  Near a Point 59.88 8.39 5.39 5.73 

Q16  Disjoint 15.55 9.18 3.36 11.12 

Q17  Disjoint 8.71 11.95 3.46 6.44 

Spatial Joins 

Q18  Equals 31169.61 24.46 3445.23 25.33 

Q19  Intersects 54119.74 16.56 33033.93 21.01 

Q20  Intersects 96.28 23.24 38.94 16.45 

Q21  Intersects 43.95 25.24 19.14 19.02 

Q22  Within 82.44 22.11 39.14 20.83 

Q23  Within 1796.98 17.69 1008.27 23.68 

Q24  Within 313.13 22.81 141.65 24.23 

Q25  Crosses 58.20 15.81 28.82 18.17 

Q26  Touches 7725.28 24.46 4517.61 20.01 

Q27 Overlaps 36.81 17.86 11.10 21.16 
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Most of the queries in both indexed as well as un-indexed configurations have performed better 

on higher specifications Machine B. The overall performance of indexed query is around 300 

times and 150 times faster than un-indexed configuration on both machines A and B 

respectively.  

5.6 Cross Comparison 

Feature wise comparison of RDF stores, drawn during the qualitative study is summarized in the 

Table 5-6. The results collected in the quantitative portion relates to tests conducted on two 

different machines: Machine A and Machine B. The cross comparison of these results are 

depicted in Tables 5-7 and 5-8 on respective machines. 

Table 5-6 GeoSPARQL Features compliance for five RDF stores 

GeoSPARQL Feature Support RDF4J 

2.4.0 

Jena 

3.9.0 

Virtuoso 

7.2.4 

Stardog 

6.0.1 

GraphDB 

8.8.0 

Storage Custom Custom RDBMS Custom Custom 

Geometry literals support WKT WKT WKT WKT WKT,GML 

Spatial analysis GeoSPARQL 

support 

Strong No Limited Limited Strong 

Topological relationships 

GeoSPARQL support 

Strong Very limited Limited Limited Strong 

Spatial relationships syntax 

conforming to GeoSPARQL 

Yes No No Partially Yes 

Spatial query without index Yes No No No Yes 

Spatial Index Technique Lucene 

Spatial 

Lucene 

Spatial, 

Solr 

R-tree Lucene 

Spatial 

Quad-prefix 

tree, 

Geohash 
 

Table 5-7 Cross Comparison of Benchmark Query Performance on Machine A  

(Intel Dual Core, 2 GB memory) 

Benchmark Query  

Eclipse 

RDF4J 

Virtuoso Apache  

Jena 

Stardog GraphDB 

RDF4J JDBC SNARL RDF4J No 

Index 

Index 

    Non-topological queries 

Q1  Boundary 1.01 5.59 5.18 

   

29.74 5.86 

Q2 Envelope 0.98 2.46 2.40 
   

18.43 4.78 

Q3 Convex  

Hull 

0.86 
     

6.34 2.99 

Q4 Buffer 
      

17.51 2.74 

Q5  Buffer 

      

10.69 3.30 

     Spatial Selection queries 

Q7  Equals 48.11 
   

109.58 79.91 484.35 6.29 

Q8 Equals 3.49 
   

15.41 7.63 31.45 6.91 

Q9 Intersect 8.65 3.18 2.93 3.63 14.13 9.28 62.85 6.48 

Q10 Intersect 1.25 5.66 5.29 3.74 10.76 7.68 7.94 17.34 

Q11 Overlaps 1.13 
     

9.00 11.49 

Q12 Crosses 1.24 
     

34.68 15.71 

Q13 Within  16.95 1.41 2.01 3.78 16.60 11.73 79.96 11.56 

Q15 Near a Point 1.59 2.71 2.76 7.73 19.06 6.28 59.88 8.39 

Q16 Disjoint 1.05 
   

17.79 58.44 15.55 9.18 



50 
 

Q17 Disjoint 1.03 
   

27.23 9.34 8.71 11.95 

    Spatial Join queries 

Q18 Equals 11.86 
   

141.80 84.86 31169.61 24.46 

Q19 Intersects 7110.93 13.10 12.19 
 

10329.48 10323.93 54119.74 16.56 

Q20 Intersects 17.75 27.13 23.99 

 

864.51 850.89 96.28 23.24 

Q21 Intersects 8.38 30.61 28.96 
 

17.63 13.63 43.95 25.24 

Q22 Within 10.58 30.53 25.70 
 

22.81 28.18 82.44 22.11 

Q23 Within 434.45 35.15 31.14 
 

307.29 335.19 1796.98 17.69 

Q24 Within 41.44 38.11 29.79 

 

223.24 242.99 313.13 22.81 

Q25 Crosses 7.86 
     

58.20 15.81 

Q26 Touches 1620.35 
     

7725.28 24.46 

Q27 Overlaps 1.5875 
     

36.81 17.86 

 

Table 5-8 Cross Comparison of Benchmark Query Performance on Machine B  

(Intel Core i5, 4 GB memory) 

Benchmark Query 
 Eclipse 

RDF4J 

Virtuoso Apache  

Jena 

Stardog GraphDB 

RDF4J  JDBC SNARL RDF4J No Index Index 

    Non-topological queries 

Q1  Boundary 1.42 2.82 4.26       1.08 3.37 

Q2 Envelope 2.44 1.34 1.67       1.30 4.04 

Q3 Convex  

Hull 

0.62           1.04 1.10 

Q4 Buffer             1.79 0.60 

Q5  Buffer             4.70 2.93 

     Spatial Selection queries 

Q7  Equals 3.57       26.12 26.18 274.97 6.57 

Q8 Equals 3.22       2.43 2.33 7.33 10.16 

Q9 Intersect 5.53 1.39 1.32 5.98 2.80 2.67 20.60 14.98 

Q10 Intersect 3.50 2.16 2.06 5.74 1.81 1.42 2.44 8.16 

Q11 Overlaps 4.55           2.83 15.08 

Q12 Crosses 2.59           3.76 6.81 

Q13 Within  5.07 0.75 0.74 9.14 3.31 2.75 31.21 15.72 

Q15 Near a Point 2.62 1.08 0.92 69.76 1.31 1.10 5.39 5.73 

Q16 Disjoint 5.21       1.76 1.43 3.36 11.12 

Q17 Disjoint 2.60       1.79 1.53 3.46 6.44 

    Spatial Join queries 

Q18 Equals 11.22       18.38 18.49 3445.23 25.33 

Q19 Intersects 8.57 5.57 5.62   3768.82 3772.82 33033.93 21.01 

Q20 Intersects 9.38 11.80 12.18   254.17 256.48 38.94 16.45 

Q21 Intersects 9.60 14.81 15.00   4.98 3.37 19.14 19.02 

Q22 Within 7.97 12.57 13.03   4.29 4.16 39.14 20.83 

Q23 Within 7.45 15.27 15.66   103.07 101.53 1008.27 23.68 

Q24 Within 8.39 14.72 15.55   68.51 68.27 141.65 24.23 

Q25 Crosses 8.79           28.82 18.17 

Q26 Touches 9.92           4517.61 20.01 

Q27 Overlaps 12.68           11.10 21.16 
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Table 5-9 and 5-10 highlight the cross comparison with the focus on benchmark queries of 

interest to ICOS-CP metadata management as given in section 4.3.4. The cells highlighted in 

background color in table 5-9 and 5-10, represent the best performing platform for each 

individual query (represented in each row). 

Table 5-9 Query Results with ICOS Focus on Machine A 

Query   Virtuoso   
Jena 

Stardog GraphDB 

No. Operation RDF4J RDF4J  
JDBC 

SNARL RDF4J No Index Index 

     Prime Focus 

Q11 Overlaps 1.13 

 

9.00 11.49 

Q13 Within  16.95 1.41 2.01 3.78 16.60 11.73 79.96 11.56 

Q22 Within 10.58 30.53 25.70 

 

22.81 28.18 82.44 22.11 

Q23 Within 434.45 35.15 31.14 307.29 335.19 1796.98 17.69 

Q24 Within 41.44 38.11 29.79 223.24 242.99 313.13 22.81 

Q27 Overlaps 1.5875  36.81 17.86 

    Potential Future requirements 

Q7  Equals 48.11 

 

109.58 79.91 484.35 6.29 

Q8 Equals 3.49 15.41 7.63 31.45 6.91 

Q12 Crosses 1.24  34.68 15.71 

Q25 Crosses 7.86 58.20 15.81 

 

Table 5-10 Query Results with ICOS Focus on Machine B 

Query   Virtuoso   
Jena 

Stardog GraphDB 

No. Operation RDF4J RDF4J  JDBC SNARL RDF4J No Index Index 

     Prime Focus 

Q11 Overlaps 4.55   

  

  

  

  

2.83 15.08 

Q13 Within  5.07 0.75 0.74 9.14 3.31 2.75 31.21 15.72 

Q22 Within 7.97 12.57 13.03   

  

  

4.29 4.16 39.14 20.83 

Q23 Within 7.45 15.27 15.66 103.07 101.53 1008.27 23.68 

Q24 Within 8.39 14.72 15.55 68.51 68.27 141.65 24.23 

Q27 Overlaps 12.68   

  

  

  

  

11.10 21.16 

    Potential Future requirements 

Q7  Equals 3.57   

  

  

  

  

  

  

  

  

  

26.12 26.18 274.97 6.57 

Q8 Equals 3.22 2.43 2.33 7.33 10.16 

Q12 Crosses 2.59   

  

  

  

3.76 6.81 

Q25 Crosses 8.79 28.82 18.17 

 

5.7. Variation in Result Sets 

Performance of queries in terms of time consumed during query processing is an aim of this 

study; however the analysis of result sets returned from each query is not a focus of this study. 

None the less few broad observations are recorded about the result sets returned from different 

queries and these are briefly highlighted in the next few paragraphs. 
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The data sets returned from spatial selection and join queries for Eclipse RDF4J and GraphDB 

are consistent with each other. Apache Jena only supported four queries from our set of 

benchmark queries, but data sets returned as query output for these queries are also found to be 

consistent with Eclipse RDF4J and Graph DB. An important observation is this manner is that 

for the benchmark queries Q9, Q10 and Q13, the second parameter in RDF4J and GraphDB is 

polygon geometry, while in case of Jena it is a box. But the data sets returned from these queries 

in Jena are also consistent with RDF4J. On the contrary the data sets returned from quite a few 

queries in Virtuoso and Stardog contain considerable mismatches amongst themselves as well as 

with the other three RDF stores. Also it is found that the result set of queries Q21 and Q25 for 

GraphDB without indexing are slightly different than the result set of the same queries in 

indexed configuration. The underlying reasons for such mismatches in result sets could include 

different logic in execution of the relevant topological operations or the precision of calculation, 

but a thorough investigation on this subject is required to establish the exact causes.  

One more important reflection in this regards is when the result set of spatial join queries were 

observed. In Eclipse RDF4J and GraphDB the result set of a within operation is found as a subset 

of the result set of intersect operation. However, when the same operations were observed for 

Stardog, it was noted that the result sets returned from within operation are not included in the 

result set of intersect operations. Therefore, for Stardog the results of intersect and within 

operations are disjoint. The investigation of exact reasons for these differences in query results 

returned in different RDF stores for similar operations, require a more focused study on this 

subject, which was beyond the aims of our study. 
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6.  DISCUSSION 

All the five tested RDF stores provide geospatial support. Other than Jena, the rest of the four 

platforms have a reasonable set of functionality in their respective spatial extensions. With 

regards to GeoSPARQL however, GraphDB and RDF4J offer the strongest compliance. Jena is 

least compliant in the tested products, while Virtuoso is also assessed as weak in terms of 

GeoSPARQL compliance. Stardog support to GeoSPARQL is better than Virtuoso, however it is 

also not be categorized in the strong GeoSPARQL compliant category. Furthermore, while this 

study was near the conclusion stages, GeoSPARQL extensions for newer version of both Jena 

and Virtuoso have been announced. This requires a re-investigation of Jena as well as Virtuoso 

with these new extensions.   

With respect to query performances, logically it is assumed that performance of all RDF stores 

on machine B (higher computing power) should be better in comparison to performance on 

machine A. The query performance results for RDF4J, Virtuoso, Stardog and GraphDB (both 

indexed and un-indexed) conform to this assumption and a reasonable gain in performance for all 

or most queries on machine B is observed in these four platforms. In case of Jena however, the 

performance comparison is a surprise, as the performance of all four queries was inferior on 

machine B by 5 times (500%) compared to machine A. The reasons for Jena performance 

deteriorating on a machine with higher specifications could not be established in this study. With 

regards to optimization, the only RDF store where indexed versus un-indexed contrast could be 

drawn was GraphDB, and it reflected a 300 times faster query in indexed configuration on 

machine A while the performance gain with indexing on machine B is around 150 times.  

In terms of stating the RDF store that could be rated as best with regards to overall query 

performance, the conclusion is tricky. For the 25 established benchmark queries, only GraphDB 

and RDF4J supported all the queries while rest of the RDF stores only supported a subset of 

these as depicted in table 6-1. It is evident from the table that the actual comparison on the query 

performances is practical for RDF stores which support all queries i.e. GraphDB and RDF4J 

only. Insight into this performance comparison is depicted in Tables 5-7 and 5-8 for machine A 

and machine B respectively. On machine A, most of the queries individually perform better on 

the RDF4J platform, however for few spatial join queries like Q23 and Q26 along with one 

spatial selection query Q19, GraphDB with indexing has a massive performance difference.  Due 

to this huge difference in these three queries, the overall performance indicator on machine A is 

in the favor of GraphDB with indexing. On machine B however, RDF4J clearly performs best. 

This behavior depicts that with the change in hardware resources, the performance indicators for 

the RDF stores change. 
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Table 6 -1 Benchmark Query Support on Selected Platforms 

Benchmark query Coverage 

Q9 

All Five RDF Stores 
Q10 

Q13 

Q15 

Q7 

Four RDF Stores 

RDF4J, Virtuoso, Stardog, GraphDB 

Q8 

Q19 

Q20 

Q21 

Q22 

Q23 

Q24 

Q1 Three RDF Stores 

RDF4J, Virtuoso, GraphDB Q2 

Q16 
Three RDF Stores 

RDF4J, Stardog, GraphDB 
Q17 

Q18 

Q3 

Two RDF Stores 

RDF4J, GraphDB 

Q11 

Q12 

Q25 

Q26 

Q27 

Q4 Supported by two Stores (RDF4J & Stardog) 

Executed on one Store (GraphDB) Q5 

 
The variation in RDF store performance can also be associated with the size of the data set under 

processing. The issues relating to variations in performance on different hardware could be 

related to a few factors like: in memory processing, caching or other implementation details. 

However official documentation of the tested RDF stores does not provide much insight about 

such behavior.  

In order to explain the methodology of query performance measurement in this study, Table 6-2 

and 6-3 consisting of two query performance charts are presented.  
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Table 6 -2 Q13 repeated performance charts - No. of iterations versus nanoseconds 
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Table 6 -3 Q19 repeated performance charts - No. of iterations versus nanoseconds  

 

Q-19 not supported in Jena 

  

  
  

  
 

During the study, when the query set was executed for more than one times, it was observed that 

each iteration yielded a different query time for the same query. Many times these query times 

differed considerably. Hence, the decision of which iteration to be taken as the standard query 

performance is important and can implicate our performance analysis seriously.  Table 6-2 

presents the graphical depiction of benchmark query Q13 performance on each platform when 

executed repeatedly. The x-axis represents the iteration number and y-axis shows the query time 

in Nano seconds, for each iteration. Table 6-3 presents the same statistics for Q19. The graphs 

0

50000000

100000000

1 8 15222936435057647178859299

RDF4J 

0

5000000

10000000

15000000

1 8 15222936435057647178859299

Virtuoso-RDF4J 

0

5000000

10000000

15000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Virtuoso-JDBC 

3.5E+09

4E+09

4.5E+09

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Stardog-SNARL 

3.4E+09

3.6E+09

3.8E+09

4E+09

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Stardog-RDF4J 

0

2E+10

4E+10

6E+10

1 7 131925 313743495561677379 859197

GraphDB-Un Indexed 

0

50000000

100000000

1 9 17 25 33 41 49 57 65 73 81 89 97

GraphDB-Indexed 



57 
 

for only two queries are shown here, one query from spatial selection group and one from spatial 

join group. However the patterns discussed for these two, is generally applicable to all other 

queries as well.  

 

In different query processors, it is normal that the first time the query is submitted, the query 

processor negotiates an execution plan; hence the first time a specific query is executed, it is 

expected to take more time compared to the next execution of the same query, as the next 

iteration could find an execution plan already established. However in our tests it was observed 

that the first iteration was not necessarily the one with the highest query time as evident in many 

of the charts given in Table 6-2 and 6-3. Furthermore it can also be observed from these charts 

that query times are not stable in each iteration and at random iterations the query times could be 

high, and at others times these can be low, with considerable differences. The documentation 

available from the developers of tested RDF stores did not offer details of such behavior or any 

associated implication like caching, query plans etc. It was therefore established that instead of 

taking any single run as the value for a specific query performance, an average over a repeated 

execution may be considered as the standard unbiased execution time and it could balance out 

the random spikes as visible in the graphs in Table 6-2 and 6-3. In addition to average over a 

number of iterations, it was also considered that the JVM requires necessary memory allocations 

as well as other initializations actions. Some queries also depict more random behavior in the 

few initial iterations. In light of these, following methodology was devised for query 

performance statistics: 

 The complete benchmark query set is executed for one hundred times on each RDF store. 

 Therefore for each query, one hundred different query times are recorded. 

 From these one hundred, the starting twenty iterations are considered as initialization, warm 
up and stabilizing the query processor activity. 

 The next eighty iterations are averaged, and this average is considered the standard query 
times for an individual query for the sake of result statistics. 

 

The product manuals and related documentation from the product vendors did not cover the 

mechanics behind the query processors that could be responsible for different query performance 

over repeated executions. A more focused study targeting the insight into the query processing 

could be conducted to establish these factors. For our study the average over a number of runs 

was used only to balance out the bias in different runs. 

In chapter 3, the state of affairs with respect to previous studies was highlighted and it was noted 

from (Athanasiou et al. 2013) that the data to be uploaded for test queries, required to be 

transformed to each of the RDF stores native type before. For our study however, the same 

datasets has been used in all RDF stores without any transformations. This has been possible 

because all the five RDF stores tested in our study are found to be supporting the WKT geometry 

literals with the same namespace prefix and other syntax. While the study in 2013 evaluated that 

Virtuoso and GraphDB (OWLIM) only supported point geometries at that time, the support for 
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different geometry shapes is covered in all the five RDF stores that we have tested in this study. 

Therefore all five RDF stores were able to process the point, line string and polygon data.  The 

GML literals however are only supported by GraphDB at this time.  

GraphDB has considerably advanced in terms of GeoSPARQL support as compared to its 

predecessor OWLIM since 2013. While it supported only point geometry with handful of 

topological and spatial relationship not conforming to GeoSPARQL in 2013, the platform is now 

providing the broadest coverage of GeoSPARQL standards amongst the five tested in this study. 

For GraphDB and RDF4J our devised benchmark SPARQL queries did not require any 

transformation, as the topological relationship functions extended by both of these platforms are 

consistent with GeoSPARQL syntax. For rest of the three RDF stores (Virtuoso, Stardog and 

Jena), all queries needed to be amended for each platform because the GeoSPARQL 

conformance in this regards is not present in these platforms.  

An important utilization of this study is to evaluate the suitability of the selected RDF stores for 

the geometric part of the ICOS-CP metadata to be exposed as linked open data. Table 5-9 and 

5-10 in the results chapter provide an insight in this regards. The ICOS-CP search and query 

requirements appear to be fulfilled completely by GraphDB and RDF4J. Stardog and Virtuoso 

can also be utilized as they offer all Within and Equals queries; however Overlap and Crosses 

operations are not supported in these platforms. In terms of query performance, Jena appears to 

be not fulfilling any level of requirements and therefore could not be a potential choice from any 

practical implementation. If we study the best query performance for each query in table 5-9, and 

5-10, (colored background cells), RDF4J and GraphDB columns collectively dominate the 

tables.    
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7.  CONCLUSION 

In this thesis geospatial capabilities of five RDF stores have been evaluated with a special focus 

on GeoSPARQL compliance as well as utilization for metadata management at ICOS-CP. It is 

concluded that all the five RDF stores offer varying levels of geospatial support features. RDF4J 

and GraphDB offer strongest compliance to GeoSPARQL and they also appear to be most 

suitable platforms for ICOS-CP requirements in our evaluation. Jena has the weakest 

GeoSPARQL compliance and is also not suitable for ICOS-CP while Virtuoso and Stardog have 

partial compliance to GeoSPARQL as well as partial suitability for ICOS-CP requirements.  

In terms of query performances, the quantitative indicators also favor the GraphDB and RDF4J. 

All RDF stores offer spatial indexing and Lucene Spatial appears to be the most popular 

indexing technique in the evaluated platforms. Considerable optimization is observed in 

platforms where indexed performance was comparable versus un-indexed spatial query. With 

regards to state of the art on the progress relating to GeoSPARQL compliance in RDF stores, the 

progress appears to be still on the lower side. The dissimilarity in the result sets returned by 

similar operations in different RDF stores has also been highlighted which could be thoroughly 

investigated in future studies. 

The testing code developed during this research (Java programs) can be executed on different 

platforms and have been made available online. The performance metrics appear to change 

considerably when tested on larger data sets as well as on better computing resources. Both the 

dataset size as well as host machines resources available for this study were modest, and 

therefore it is recommended that these tests may be conducted on machines with better 

computing resources as well as on larger geospatial datasets to evaluate  more realistic suitability 

for ICOS-CP requirements.  
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Appendix A – Java Source Code 

1. The complete source code developed during this study along with listing of java libraries (jars) 

used in the java projects is available in LUP as zip file at: 

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8974835&fileOId=8974841. 

2.  The source code along with library files (jars) used in the study also available at: 

https://github.com/Raza-Amir-Syed/TestGeoRDFStores.  

https://github.com/Raza-Amir-Syed/TestGeoRDFStores
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