

 Master Thesis in Geographical Information Science nr 99

COMPARISON OF GEOSPATIAL

SUPPORT IN RDF STORES:
EVALUATION FOR ICOS CARBON

PORTAL METADATA

Syed Muhammad Amir Raza

2019
Department of
Physical Geography and Ecosystem Science
Centre for Geographical Information Systems
Lund University
Sölvegatan 12
S-223 62 Lund
Sweden

ii

Syed Muhammad Amir Raza (2019). Comparison of geospatial support in RDF

stores: Evaluation for ICOS Carbon Portal metadata.

Master degree thesis, 30/ credits in Master in Geographical Information Science

Department of Physical Geography and Ecosystem Science, Lund University

iii

COMPARISON OF GEOSPATIAL SUPPORT

IN RDF STORES: EVALUATION FOR ICOS

CARBON PORTAL METADATA

Syed Muhammad Amir Raza

Masters thesis, 30 credits in Geographical Information Sciences

Supervisors

Lars Harrie

Dept of Physical Geography and Ecosystem Science

Faculty of Science, Lund University

Weiming Huang

Dept of Physical Geography and Ecosystem Science

Faculty of Science, Lund University

iv

Abstract

The evolution of World Wide Web (WWW) into semantic web is happening with the aid of

standards like Resource Description Framework (RDF), SPARQL and a few others from World

Wide Web Consortium (W3C). Over the years, semantic data management technologies have

been introduced as software platforms commonly known as RDF stores. Lately these RDF stores

have been tested for processing and maintenance of large data sets complying with Linked Data

principles. In order to standardize geographic capabilities in these RDF stores, Open Geospatial

Consortium (OGC) adopted GeoSPARQL as an extension to SPARQL query. Our study aims to

discuss the geospatial capabilities, and the conformance to GeoSPARQL standard, of the five

RDF stores: Eclipse RDF4J 2.4.0, Apache Jena 3.9.0, Openlink Virtuoso 7.2.4, Stardog 6.0.1

and GraphDB 8.8.0. Along with the investigation of features, the performance evaluation of

these RDF stores has also been conducted by measuring the execution times of a set of

GeoSPARQL queries. The evaluation query set consists of non- topological, spatial selection as

well as spatial join queries adopted from a spatial benchmark, Geographica.

The geospatial component of Integrated Carbon Observation System (ICOS) Carbon Portal (CP)

metadata has been used for performance evaluation in order to establish the suitability of the

RDF stores for ICOS-CP requirements. Java Programs have been developed in order to interact

with all the RDF stores for upload of data and execution of benchmark queries. Some result set

disparities amongst the RDF stores as well as variation in performance metrics on different

hardware platforms have also been highlighted in our research.

Keywords: Geography, Geographical Information Systems (GIS), GeoSPARQL, Geospatial

query language, RDF stores, Java Programming, RDF4J, Jena, Virtuoso, Stardog, GraphDB

v

Table of Contents

Abstract .. iv

Table of Contents ... v

List of Figures .. viii

List of Tables ... viii

List of Abbreviations .. viii

List of Products .. x

1. INTRODUCTION... 1

1.1. Background ... 1

1.2. Problem Statement ... 2

1.3. Aim ... 2

1.4. Study Design ... 2

1.5. Disposition .. 4

1.6. Limitations .. 4

2. TECHNICAL BACKGROUND .. 5

2.1. Background of the Semantic Web .. 5

2.2. Semantic Web Technology .. 7

2.2.1. RDF Model ... 7

2.2.2. RDF Vocabulary ... 8

2.2.3. RDF Schema (RDFS) Vocabulary .. 8

2.2.4. Web Ontology Language (OWL) ... 9

2.2.5. SPARQL ... 9

2.3. Linked Data ..10

2.3.1. Linked Data Sets and Repositories ... 11

2.4. Basic Geospatial Concepts ..13

2.4.1. Spatial Representation Standards .. 13

vi

2.4.2. Spatial and Topological Relationships.. 14

2.4.3. Geographic Web Services in Connection to Linked Data 15

2.4.4. Spatial Indexing .. 16

2.5. Geospatial Semantic Web and Metadata ...16

2.6. The GeoSPARQL standard ...18

2.6.1. Core Component ... 18

2.6.2. SPARQL Extension Functions ... 19

2.6.3. Query Re-write Rules ... 19

3. PREVIOUS WORK IN EVALUATION OF RDF STORES 21

4. MATERIALS AND METHODS ... 23

4.1. Integrated Carbon Observation System and the Carbon Portal23

4.1.1. Integrated Carbon Observation System .. 23

4.1.2. The ICOS Carbon Portal ... 23

4.1.3 ICOS Data ... 24

4.1.4 Other Data at ICOS CP ... 24

4.1.5 ICOS Metadata.. 25

4.2. Research Data ...25

4.2.1. Preparation of Research Data.. 26

4.3. Evaluation Technique ...29

4.3.1. Selection of RDF Stores.. 29

4.3.2. Qualitative Study .. 30

4.3.3. Preparation for Quantitative Study ... 30

4.3.4. Quantitative Study .. 31

4.3.5. ICOS-CP Considerations .. 33

4.4. Introduction to Programming with the RDF Stores33

4.4.1. Eclipse RDF4J .. 34

4.4.2. Apache Jena .. 35

4.4.3. Openlink Virtuoso ... 36

4.4.4. Stardog .. 38

4.4.5. Ontotext GraphDB .. 39

vii

5. RESULT... 41

5.1. Eclipse RDF4J ..41

5.1.1. Geospatial Support .. 41

5.1.2. Benchmark Query Performance .. 41

5.2. Apache Jena..42

5.2.1. Geospatial Support .. 42

5.2.2. Benchmark Query Performance .. 43

5.3. Openlink Virtuoso (Universal Server) ..44

5.3.1. Geospatial Support .. 44

5.3.2. Benchmark Query Performance .. 45

5.4. Stardog (knowledge Graph) ..46

5.4.1. Geospatial Support .. 46

5.4.2. Benchmark Query Performance .. 46

5.5. Ontotext GraphDB ..47

5.5.1. Geospatial Support .. 47

5.5.2. Benchmark Query Performance .. 48

5.6 Cross Comparison ..49

5.7. Variation in Result Sets ..51

6. DISCUSSION .. 53

7. CONCLUSION ... 59

Appendix A – Java Source Code .. 61

References ... 63

viii

List of Figures

Figure 2-1 Sematic Web Stack (W3C Semantic Web - XML2000, 2008) 6

Figure 2-2 RDF triples in a graph model .. 7

Figure 2-3 LOD Cloud diagram lod-clod.net ... 12

Figure 2-4 GML 3.2 Geometry Primitives ... 14

Figure 2-5 GeoSPARQL Fundamental class structure ... 18

Figure 4-1 Virtuoso Sesame Stack .. 38

List of Tables

Table 4-1 GeoSPARQL compliant Geographica queries for evaluation of ICOS CP Metadata . 31

Table 5-1 Average time in Milli Seconds for benchmark queries in Eclipse RDF4J 42

Table 5-2 Average time in Milli Seconds for benchmark queries in Apache Jena 44

Table 5-3 Average time in Milli Seconds for benchmark queries in Openlink Virtuoso 45

Table 5-4 Average time in Milli Seconds for benchmark queries in Stardog 47

Table 5-5 Average time in Milli Seconds for benchmark queries in GraphDB 48

Table 5-6 GeoSPARQL Features compliance for five RDF stores .. 49

Table 5-7 Cross Comparison of Benchmark Query Performance on Machine A 49

Table 5-8 Cross Comparison of Benchmark Query Performance on Machine B 50

Table 5-9 Query Results with ICOS Focus on Machine A ... 51

Table 5-10 Query Results with ICOS Focus on Machine B ... 51

Table 6 -1 Benchmark Query Support on Selected Platforms .. 54

Table 6 -2 Q13 repeated performance charts - No. of iterations versus nanoseconds 55

Table 6 -3 Q19 repeated performance charts - No. of iterations versus nanoseconds 56

List of Abbreviations

4-IM - Four Intersection Model

API - Application Programming Interface

ATC - Atmospheric Thematic Centre

BBC - British Broadcasting Corporation

CP - ICOS-CP

DBMS - Database Management System

DE-9IM - Dimensionally Extended Nine Intersection Model

ERIC - European Research Infrastructure Consortium

ESE - Empirical Software Engineering

ETC - Ecosystem Thematic Centre

FG - Facebook Graph

GIS - Geographic Information System

GML - Geography Markup Language

ix

HTML - Hyper Text Markup Language

HTTP - Hyper Text Transfer Protocol

ICOS - Integrated Carbon Observation System

ICOS-CP - Integrated Carbon Observation System Carbon Portal

ICOS-OTC - ICOS Ocean Thematic Center

ICOS-RI - ICOS Research Infrastructure

INSPIRE - Infrastructure for Spatial Information in Europe

IRI - International Resource Identifier

JSON-LD - JavaScript Object Notation for Linked Data

JVM - Java Virtual Machine

KD-tree - K Dimensional Tree

LD - Linked Data

LOD - Linked Open Data

LUBM - Leigh University Benchmark

MBR - Minimum Bounding Rectangle

OGC - Open Geospatial Consortium

OTC - ICOS-OTC

OWL - Web Ontology Language

RCC - Regional Connection Calculus

RDBMS - Relational Database Management System

RDF - Resource Description Framework

RDFa - Resource Description Framework in Attributes

RDFS - Resource Description Framework Schema

RDF/XML - Resource Description Framework Extensible Markup Language

RIF - Rule Interchange Format

SOCAT - Surface Ocean Carbon Dioxide Atlas

SQL - Structured Query Language

URI - Uniform Resource Identifier

USGS - United States Geological Survey

VOS - Voluntary Observing Ships

W3C - World Wide Web Consortium

WCS - Web Coverage Service

WFS - Web Feature Service

WGS84 - World Geodetic System 1984

WKT - Well Known Text

WMS - Web Map Service

WPS - Web Processing Service

WWW - World Wide Web

XML - Extensible Markup Language

x

List of Products

AllegroGraph. https://allegrograph.com/

Franz Inc. 2201 Broadway, Suite 715 Oakland, CA 94612, USA. http://franz.com/

GraphDB. http://graphdb.ontotext.com.

Ontotext USA, Inc.One Evertrust Plaza, Suite 1103 Jersey City, NJ 07302, USA.

https://www.ontotext.com/

Intel Dual Core/Core i5. Intel Corporation. 2200 Mission College Blvd. Santa Clara, CA 95054-

1549 USA. https://www.intel.com/

Jena. https://jena.apache.org/.

The Apache Software Foundation. 401 Edgewater Place, Suite 600 Wakefield, MA

01880 USA. https://www.apache.org/

Oracle Spatial and Graph. Oracle Corporation 500 Parkway, Redwood Shores, CA 94065. USA

https://www.oracle.com/

OWLIM. Obsolete and succeeded by Ontotext GraphDB.

Parliament. http://parliament.semwebcentral.org/.

Raytheon BBN Technologies Raytheon Company 870 Winter Street Waltham, MA

02451-1449 USA https://www.raytheon.com/ourcompany/bbn

PostGIS. PostGIS Project Steering Committee . https://postgis.net/

PostgreSQLPostGIS. The PostgreSQL Global Development Group. https://www.postgresql.org/

RDF4J. http://rdf4j.org/.

Eclipse Foundation, Inc. 102 Centrepointe Drive Ottawa, Ontario, Canada, K2G 6B1.

https://www.eclipse.org/org/

Sesame. OpenRDF Sesame is obsolete and succeeded by Eclipse RDF4J.

Stardog. Stardog Union 2101 Wilson Boulevard, Suite 800 Arlington, VA 22201. USA.

https://www.stardog.com/

Strabon. Department of Informatics and Telecommunications, National and Kapodistrian

University of Athens. Greece. http://www.strabon.di.uoa.gr/

https://allegrograph.com/
http://franz.com/
http://graphdb.ontotext.com/
https://jena.apache.org/
https://www.oracle.com/technetwork/database/options/spatialandgraph/overview/index.html
http://parliament.semwebcentral.org/
https://www.raytheon.com/ourcompany/bbn
https://postgis.net/
https://www.postgresql.org/
http://rdf4j.org/
https://www.eclipse.org/org/
https://www.stardog.com/
http://www.di.uoa.gr/eng
http://www.di.uoa.gr/eng
http://www.strabon.di.uoa.gr/

xi

uSeekM. Open Hub uSeekM. Black Duck Inc. 800 District Ave Burlington, MA 01803. USA

https://www.openhub.net/p/useekm

Virtuoso. https://virtuoso.openlinksw.com/.

OpenLink Software, Inc. 20 Burlington Mall Road, Suite 322, Burlington, MA 01803

U.S.A. https://www.openlinksw.com/

Windows 7. Microsoft Corporation, One Microsoft Way Redmond, WA 98052-6399 USA

https://www.openhub.net/p/useekm
https://virtuoso.openlinksw.com/
https://www.openlinksw.com/

xii

1

1. INTRODUCTION

1.1. Background

The World Wide Web in its basic form is a mesh (web) of inter-connected (hyperlinked)

documents which facilitate information sharing to a human audience. The pledge of semantic

web over the last two decades has been to transform the web of documents to a web of data

(W3C 2001); from a people centric stage to a data centric platform where machines have an

equal chance to digest the web contents (Berners-Lee et al. 2001). The concept of Linked Data

classifies the interconnectedness of data in the semantic web. In the classical web, the knowledge

interpretation from available information sources centered on human beings. The semantic web

is a crossover from data/information model to a knowledge model for machines and software

modules. Berners-Lee et al. (2001) proposes that semantic web can be realized by incorporation

of extensions to the web in the form of standards. HTML is the standard language in document

oriented web; RDF is the standard model in the data oriented web. RDF defines a common

framework for data interchange and linking on the web in a graph model. Within the RDF

framework are serialization standards (data formats i.e. RDF/XML, Turtle, JSON-LD etc.) and

basic vocabularies (RDFS and OWL ontologies). The ontologies are represented in RDF model

itself and hence the provision of writing new vocabularies is inherent in the RDF framework.

SPARQL is the World Wide Web Consortium (W3C) standard query language for the semantic

web (W3C 2013b). SPARQL is a tool for RDF data, in nearly the same manner as SQL is for

relational data (that is based on the concept of tables, rows and columns).

Geographic data requires additional capabilities for storage and query. Over the years these have

been catered by: spatial extensions to RDBMS software, markup extensions for geographic data

(GML, WKT etc.) and geo support in the Big Data engines like Geo Spark and Spatial Hadoop

(Lenka et al. 2016). The progress in web and mobile GIS over the years has empowered the

distribution and visualization of geographic data beyond the mapping and geo-informatics

professionals. An average mobile or a computer user is planning his vacations, booking his

hotels, organizing air and road travel on a map with live weather and traffic congestion visibility

on his device. Geographic data exchange on the web is one key enabler of this upheaval and

there are a number of tools and technologies that are responsible for geographic data on the web.

The semantic web also needs some spatial extensions for geospatial semantic data in the RDF

model for similar requirements.

Battle and Kolas (2012) discuss the efforts undertaken over the years to complement RDF and

SPARQL standards with spatial extensions for processing and integration of geospatial linked

data. GeoSPARQL has been adapted by the OGC for representation and query of geospatial

linked data in RDF model (OGC 2012). GeoSPARQL provides ontology for representation of

geographic data as well as topological relationships and SPARQL extension for geospatial aware

RDF queries and reasoning.

2

Many software products capable of storage, query and reasoning on RDF graphs have been

offered in the market over the years. Usually referred as RDF stores (also called triple or quad

stores), some of these products have incorporated the spatial extensions like GeoSPARQL to

handle the geospatial data.

1.2. Problem Statement

Athanasiou et al. (2013) have identified two challenges to the geospatial semantic web as: (i)

development of standards and (ii) development of technological artifacts (products) conforming

to these standards. A key argument of Athanasiou et al. (2013) is that there is significant

development on the first challenge, but the progress on the second challenge (i.e RDF stores with

GeoSPARQL conformance and support) is overdue. Certain software products have included

geospatial support extensions in their recent releases; however the level of conformance to the

standard varies from one product to the other and is not consistent across the market.

Athanasiou et al. (2013) also presents a market research on the conformance of different RDF

stores to GeoSPARQL standard and performance measurements evaluated in 2013 highlighting

the lack of conformance to any geospatial standard, particularly GeoSPARQL. To our

knowledge, since 2013, a thorough study has not been conducted to evaluate the GeoSPARQL

support across different RDF stores. As the technology has evolved overtime, a fresh assessment

of these objectives is required to establish: the state of the art, the interoperability amongst

different RDF platforms, and for the wider benefit of geospatial community at large.

1.3. Aim

The general aim of this research is to study the geospatial capabilities and performance of RDF

stores on spatial queries. The suitability of an RDF store for maintenance and distribution of

geospatial component of ICOS-CP metadata is also part of the objectives of this study. In

particular the thesis aims to study the geospatial capabilities of five RDF stores : Eclipse RDF4J,

Apache Jena, Openlink Virtuoso, Stardog, and Ontotext GraphDB. Details of these RDF stores

and ICOS-CP are discussed in chapter 4. The specific aim of the study is to answer the following

questions:

1. What are the geospatial support features of the RDF stores?

2. What is the level of conformance to the GeoSPARQL standard provided by the RDF

stores?

3. What is the performance of the RDF stores for the geospatial SPARQL queries?

4. What are the spatial indexing techniques (if any)?

5. What is the suitability of the RDF store for management of ICOS-CP metadata geospatial

component?

1.4. Study Design

This research is an empirical study in software engineering discipline. Empirical Software

Engineering is a body of knowledge of applied software engineering research with a strong

3

empirical component (ESE n.d.). By the start of this century, it was realized that Software

Engineering is a big science and empiricism is a necessary ingredient of this science. Empirical

studies in software engineering, study the software-related artifacts in order to characterize,

understand, evaluate, predict, control, manage and improve them via qualitative and quantitative

analysis (Zhang et al. 2018). The most commonly used empirical studies in SE are controlled

experiments, case studies and survey (Garcia et al. 2007). Zhang et al. (2018) also found that the

interest on empirical methods in software engineering has grown over the years.

This study is undertaken to evaluate the software artifacts and ascertain the geospatial qualitative

and quantitative characteristic of the selected RDF stores. The qualitative portion of the research

studies the architecture, design, and feature support of the RDF stores from the relevant

documentation provided by the vendors of the product. The quantitative perspective of the

research is conducted under controlled experiment methods by execution of same set of

benchmark queries in similar computing resources on the same geospatial data.

ICOS is a Pan-European research framework for collection of carbon flux and greenhouse gas

concentration. The ICOS-CP is the central point for distribution of ICOS research data. The

metadata at ICOS-CP is used by the users to explore and search the required datasets for

download, and it is maintained as LOD. This study utilizes the geospatial subset of ICOS-CP

metadata for evaluation of potential RDF stores with geospatial extension. The ICOS-CP and the

datasets used for the study are discussed in detail in chapter 4.

In the qualitative perspective of this study, the product documentation is consulted to assess what

all software artifacts and configurations are required to use spatial data in an RDF store. This

reveals the methodology of geospatial support as well as identifies the limitations in a particular

system and therefore enables the investigation of our first research question. The software

documentation is also studied to evaluate the conformance to GeoSPARQL standard

specifications, which is required for cross platform compatibility of spatial data. The spatial

subset of ICOS-CP metadata is uploaded in the RDF store to test the documented features and

this methodology helps us investigate the second research question.

The quantitative research starts with execution of GeoSPARQL compliant benchmark query set

on the spatial subset of ICOS-CP metadata. The performance of the query set is evaluated, and

analyzed to draw a cross comparison between different RDF stores to study the third research

question. The benchmark query set is executed in standard as well as optimized environment to

observe the difference of performances in indexed versus un-indexed configurations in each RDF

store (if possible), to investigate the fourth research question.

The final research question relates to ICOS-CP considerations, and this is studied with the focus

on ICOS-CP geospatial metadata requirements. Results obtained in first four research questions;

when analyzed against the ICOS-CP requirements help us establish answer to this last research

question.

4

1.5. Disposition

The report is compiled in seven chapters. A discussion of the technological concepts is

conducted in the start of chapter 2 before introducing the details of the GeoSPARQL standard.

Chapter 3 deals with an overview of the previous related studies. Chapter 4 comprises the

research methodologies and data used for this research. The overview of Geospatial RDF

benchmark selected for the study and the benchmark queries established to measure the

performance of the software artifacts is also included in chapter 4. In chapter 5, the qualitative

and quantities results of the research are presented followed by a discussion on these findings in

chapter 6. The conclusion is drawn at the end in chapter 7. For the interested users, the SPARQL

queries used for the evaluation of each RDF store and custom code developed to interact from

programming environment through the APIs is available at the url

https://github.com/Raza-Amir-Syed/TestGeoRDFStores as well as

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8974835&fileOId=8974841.

1.6. Limitations

This study has been conducted with some known limitations listed below:

 The research is undertaken as an off campus study with a single dedicated research

student. Therefore the available time, human as well as computing resources were

limited. It was not practically possible to test all the available RDF stores and hence a

subset was shortlisted in consultation with ICOS-CP team. The available computing

resources were limited to a personal computer and hence performance tests on high end

machines as well as processing large datasets were also not practical.

 The spatial dataset used for this study is a subset of ICOS-CP metadata. The size of this

dataset is modest because data from all the sensors of ICOS is not yet available. However

it was preferred to use the actual CP metadata instead of a simulated dataset.

 The Semantic Web has a number of associated tools and technologies; discussion on all

of them was not possible. Hence only the toolset considered relevant for the readers of

this research are discussed.

 The inference and reasoning framework in semantic web require a detailed discussion of

complex technologies. Therefore this topic could not be included in the scope of this

study; hence the features of GeoSPARQL dealing with inference and knowledge

reasoning through the ontology are also not discussed in detail.

https://github.com/Raza-Amir-Syed/TestGeoRDFStores

5

2. TECHNICAL BACKGROUND

2.1. Background of the Semantic Web

In the classical version, the atomic unit of the web is an HTML document. HTML focuses on the

presentation of data; hence data would have its meaning only, when it is surrounded by its

associated HTML document. The same data, presented in different documents, can have totally

different connotations. Consider the word “Java” for example. A web document where

programming technologies are listed might use this word in the context of a programming

language “Java”. Another web document relating to tourist destinations might list this word as

the “Java” Island in Indonesia. Unless the context of the document is recognized by rendering the

HTML content to a human viewer, this difference in the meaning of Java as a technology term or

a geographic entity cannot be appreciated.

As discussed above, rendering of HTML document is targeted on human spectators and data

itself does not carry the meaning. Machines and software components cannot appreciate the

meaning (semantics) of the data and therefore processing of the web contents by these agents

from semantic perspective is not possible. As the machines and software are incapable to make

out the meaning of the contents of web documents, the searches over the classical web are

mostly related to words or phrases rather than meaningful questions. In other words, the HTML

oriented web is unable to answer questions where the software components need to extract

information from more than one sources, link them semantically, perform some reasoning and

then generate an answer. For example the answer to the question “What was the population of

USA when Michael Jordan was born?” is not possible until the whole phrase is found in a web

document (Sakr et al. 2018a). Even if it is found, then what happens if the name in the question

is changed to Mohammad Ali?

The semantic Web is an extension of the classic web where structure and meaning are provided

to the data (Berners-Lee et al. 2001). The atomic unit of this web is a meaningful (semantic)

structured data item. In the Semantic Web, the example of “Java” discussed above might have

following implications:

 There are two different data items for Java as an island and Java as a programming

language. Something like: places:Java and tech_terms:Java.

 The semantics are included within the data item itself, hence we can look up the details of

places:Java and tech_terms:Java i.e. they can be de-referenced.

 There is some mechanism that leads the audience (man or machine) to conclude (infer)

that the places:Java lies in a country places:Indonesia.

 The semantic qualifiers are associated with unique locators. For example “places:” might

stand for www.places.net. Similarly the other qualifier “tech_terms” is also associated to

unique locators and identifiers.

http://www.places.net/

6

 The term places:java itself has a globally unique identity preferably known as

International resource Identifier. Similarly places:Indonesia and tech_terms:java have

unique IRIs.

 With the last implication, it can be further implied that: ideally there is only one item on

the web when we are referring to anyone of the “Java” words discussed above.

Berners-Lee et al. (2001) defines the semantic web as an effort to enable the machines and

software agents to: find data, establish relationships amongst data items and process information

automatically. The semantic web is not a replacement of the classic web; rather it complements

the web. In terms of technology, the semantic web is a set of standards (extensions) to the classic

web and it builds upon the existing toolset as shown in the semantic web stack (Figure 2-1). The

middle layer (RDF, RDFS, OWL, RIF and SPARQL) are part of the semantic web enabling

technology and utilizes the lower layers (XML, URI and Unicode) which are already available

from the existing web. The cryptography and trust services depicted in Figure 2-1 are other

technologies (not limited to web) for secure and reliable communication between source and

destination. The user interface shown in the same figure is the topmost layer to provide

convenient access to the users of the semantic web. Some of the web search engines over the

years have adapted to the semantic technology. Therefore the search example discussed earlier

“What was the population of USA when Michael Jordan was born?” fetches some meaningful

results on semantic web search engines. Even if the name is changed to Muhammad Ali, the

search engine is able to bring meaningful results. If the same search is performed over a search

engine that does not yet utilize the semantic technology, then these queries are still unanswered.

A brief introduction of the semantic web technology is discussed in the next few sections.

Figure 2-1 Sematic Web Stack (W3C Semantic Web - XML2000, 2008)

http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html

7

2.2. Semantic Web Technology

The semantic web enabling technology is a set of tools (standards, extension and artifacts) which

enrich the web with semantic context. The semantic web is based on the logic of a graph. This

modeling of web content to a graph is managed by the W3C specifications for RDF. The

grammar and basic terminologies of the semantic web is offered by the RDF and RDFS

vocabularies while the ontologies driven by Web ontology language manages the knowledge

model on the semantic web. SPARQL is the query language for the RDF model. There are some

more tools associated with the semantic web and the RDF; however only the basic technologies

listed above are considered necessary for our reader and are discussed in the next few sections.

2.2.1. RDF Model

RDF is a framework for representation of information on the web (W3C 2014a). The model

adopts that any information can be represented by set of simple sentences; each sentence

composed of three words (a subject, a predicate and an object), known as a triple. Referring back

to our example from section 2.1, the information can be expressed in RDF, as in listing 2-1.

places:Java is Island.

techTerms:Java is progLanguge.

Listing 2-1 RDF Representation of „Java‟

These sentences (triples) are RDF statements which are visualized as simple graphs with two

nodes (subject and object) connected by an arc (the predicate). The graph visualization for the

above two sentence is depicted in Figure 2-2.

Figure 2-2 RDF triples in a graph model

The subject and object graph nodes in RDF model are resources which can be represented as an

IRI or a literal. The object can sometimes be a blank node also. The whole information model is

built by adding more triples i.e. more sub graphs to the model as shown in the listing 2-2.

places:Java is locationType:Island.

places:java inside places:Indonesia

places:Indonesia is locationType:Country

Listing 2-2 Enriched RDF Representation of places:Java

When more and more triples added, the graph grows and the model becomes more informative.

With meaningful relationships (predicates), the model can be used to draw more information

from the existing information model, by concluding more facts from the existing knowledge

graph. It is important to note that RDF provides a conceptual model, but not the syntax (file

format) to express such a model/graph. The syntax used above is just an arbitrary format,

places:java Island is

techTerms:java progLanguage
is

8

deemed easier to read as it appears closer to English language construct. From the semantic web

stack (Figure 2-1) it can be deducted that RDF is a layer above XML. There are number of RDF

serialization formats: Turtle, N-Triples, RDF/XML, JSON-LD, RDFa and a few others.

2.2.2. RDF Vocabulary

Semantic web contents are required to be structured and organized i.e. the graph nodes need

some form of grouping and relationship amongst themselves. The semantic web needs to express

meaningful relationships which require meaningful terminology. More importantly the semantics

of this terminology should be understood in the same meaning across the user domain. This

organization and semantic consistency is expressed by shared vocabularies. The basic vocabulary

in this regards is a set of terms known as RDF vocabulary. It is important to note that RDF

vocabulary should not be confused with RDF model. The latter is a concept while the former is

an actual set of semantic web terminologies. The most important frequently used term, defined in

RDF vocabulary is “type” represented as rdf:type where the prefix “rdf:” refers to

https://www.w3.org/1999/02/22-rdf-syntax-ns#. The term rdf:type is used as a predicate to

associate an instance to its class. In listing 2-3, it is expressed that places:Indonesia is an

instance of a class Country.

places:Java rdf:type Island.

places:Indonesia rdf:type Country.

Listing 2-3 Relationship of instances to their classes with RDF Vocabulary

2.2.3. RDF Schema (RDFS) Vocabulary

RDFS is another standard vocabulary that defines terminologies for defining class structure.

W3C defines RDFS as a semantic extension of RDF; it provides mechanisms for describing

groups of related resources and the relationships between these resources (W3C 2014b). RDFS

provides the set of limited but basic classes, properties and utility properties to express the

relationship amongst different groups and resources. RDFS supplies the fundamental elements

and along with OWL it helps create more complex ontologies and vocabularies which in turn

enable the knowledge inference from the semantic web content. Some important constructs of

RDFS are: rdfs:Resource, rdfs:Class, rdfs:subClassOf, rdfs:domain, rdfs:range and a few more.

The prefix “rdfs:” refers to http://www.w3.org/2000/01/rdf-schema#. Some RDF statements
using RDFS constructs are given in listing 2-4.

Country rdfs:subClassOf PoliticalBounday.

Country rdfs: domain places:GeoLocation

Listing 2-4 RDFS Constructs for class hierarchy

Another statement that can be added in the listing 2-4 to enrich the RDF model with more

information is “places:java inside places:Indonesia”. However, RDF and RDFS do not

provide any construct for “inside”. This is because RDF & RDFS are the basic vocabularies for

RDF statements and they only define the most general and basic constructs that are needed by all

the other data stores or vocabularies built on top of these vocabularies. “inside” is not such a

https://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/TR/rdf11-mt/#semantic-extensions-and-entailment-regimes
http://www.w3.org/2000/01/rdf-schema

9

general construct, however a vocabulary specifically built for geospatial domain might consider

“inside” as a general construct.

2.2.4. Web Ontology Language (OWL)

W3C defines OWL as: a semantic web language designed to represent rich and complex

knowledge about things, groups of things, and relations between things (W3C 2011). OWL

enables the expression of knowledge ontologies which define the basis for reasoning. These

ontologies can comprise of domain specific vocabularies and model for specific area to organize

and structure the data as well as infer (conclude) new knowledge. An ontology model for the

geospatial domain in a vocabulary called “geo” can be created, which defines the constructs

needed to represent the geographic properties as given in listing 2-5.

places:Java geo:hasCoordinates geo:Polygon(X)

places:Indonesia geo:hasCoordinates geo:Polygon(Y)

places:Java geo:inside places:Indonesia

Listing 2-5 RDF Representation with a custom vocabulary

The reasoning capability can lead to inferences from other facts of knowledge already added to

the system. Therefore if a new location is added in the above RDF model and it is specified that

the new location lies inside places:Java, then the reasoning capability enables the system to infer

that the new added location also lies inside places:Indonesia. This can be achieved by adding a

logic rule to the ontology that states if there is a statement “places:y geo:inside places:x” and

the model also has a statement “places:z geo:inside places:y” then it can be inferred that

“places:z geo:inside places:x”. Therefore this third statement is automatically added to the

model by the inference engine.

Reasoning can be based on simple rules with a rule engine or it can be based on ontology

(classification based). There could be forward chaining or backward chaining reasoning and

there are a number of rule definition languages (Rattanasawad et al. 2018). W3C has

recommended Rule Interchange Format specification as a standard to exchange rules between the

different rule systems in particular among the web rule engines (W3C 2013). The reasoning

framework in semantic web is a vast and complex topic requiring a detailed discussion which is

considered beyond the scope of this study.

2.2.5. SPARQL

SPARQL is the W3C standard Query language for RDF data (W3C 2008). SPARQL is a tool to

query an RDF graph by specifying graph patterns, as a triple matching criteria to shortlist the

sub-graphs from the data set. SPARQL is the de-facto standard for RDF data in the same sense

that SQL is for the relational data. While SQL returns the result set in tabular (relation) format

only, SPARQL can return the result as: a graph itself, in tabular form, or as a true/false value.

SPARQL 1.1 also extends the functionality to update existing data in the graph. A typical

SPARQL query consists of the following clauses:

10

 A SELECT or CONSTRUCT or DESCRIB or ASK clause expresses the notion of how the
result is to be returned from the query. A SELECT returns a tabular result set, a

CONSTRUCT or DESCRIBE returns a graph while an ASK returns a true/false value.

 An optional FROM clause specifies the named graph which is to be queried from.

 A WHERE clause contains the graph pattern to filter the sub graphs to be included in the
result. Variables, expressions and algebra operators are included here. A variable in the

query is identified by a prefix “?” or “$”.

 At the start of the query, there can be some PREFIX clauses for aliases to some

namespaces representing different vocabularies.

A sample query to retrieve all locations in the country Indonesia could be written as something

given in listing 2-6. Note that the absence of FROM clause implies that the data is to be fetched

from the default graph in the dataset.

PREFIX places: <http://places.com/names#>

PREFIX geo: <http://www.gis.geo/ont/geo#>

SELECT ?vPlaces

WHERE {

? vPlaces geo:inside places:Indonesia

}

Listing 2-6 Sample SPARQL query for places inside Indonesia

The query in listing 2-6 can successfully return those places inside Indonesia, which have been

explicitly specified as inside Indonesia with a predicate “inside”. However if it is intended to find

places that are inside Indonesia from spatial algebra perspective, and not necessarily specified by

an RDF statement, then it is required that the framework offers geospatial support. In geospatial

enabled search and query frameworks, a set of topological relationship extension functions are

made available. For example with such a support, the above query can be re-written

(transformed) to find the actual places spatially inside a polygon as listing 2-7.

PREFIX places: <http://places.com/names#>

PREFIX geo: <http://www.gis.geo/ont/geo#>

SELECT ?vPlaces

WHERE {

places:Indonesia geo:hasCoordinates ?polygonIndonesia.

?vPlaces geo:hasCoordinates ?polygonPlaces.

FILTER(geo:isWithin(?polygonPlaces,?polygonIndonesia)).

}

Listing 2-7 Revised SPARQL query for places inside Indonesia

2.3. Linked Data

Berners-Lee (2006) highlighted that the success of the semantic web not only depends on the

tools and technologies, but the technology must be supplemented with the availability of

interlinked data on the web. Therefore the standards devised for the semantic web is just one

http://www.gis.geo/ont/geo

11

piece of the puzzle, while the other lies in the availability of data sets which are semantically

interoperable. Linked Data allows meaningful links to be created between pieces of data on the

web while promoting a decentralized structure. HTML hyperlinks can link documents; however

these links do not express any meaning to the underlying hyperlink. LD focuses on the semantic

linking of data on the web. It aims to transform the web from linking documents, into a universal

space where pieces of data from different domains are semantically linked and integrated to

create a global web of data (Heath and Bizer 2011). Bizer et al. (2009) highlighted four

principles of LD which were outlined by (Berners-Lee 2006) as follows:

 Use of Uniform Resource Identifier (URI) as name for things.

 Use of HTTP URIs so that the names can be looked up.

 A look up on the URI should provide meaningful information using the RDF and

SPARQL standards.

 Use HTTP URIs for names of all other things so that it can be looked up and interlinked.

 2.3.1. Linked Data Sets and Repositories

In order to have interlinked datasets, the concept of Linked Open Data has been introduced. In

simple terms, LOD is the linked data that is open for use from licensing perspective. Although it

may never be possible to have all linked data as open or all open data as linked, the LOD

movement has certainly received attention. The linked data web has grown rapidly in last few

years and it was estimated that by 2014 the number of interlinked RDF datasets crossed the

10,000 figure with an estimated RDF statements numbering up to 150 billion (Sakr et al. 2018b).

DBpeida (DBpedia – Wikki n.d.) is an example of LD data set; a large-scale multi-language

knowledge base extracted from Wikipedia which represents information in RDF model

(Lehmann et al. 2015). There are estimated 3 billion triples in DBPeida and the dataset describes

around 4.58 million entities with 50 million links to other RDF datasets (DBpedia – About n.d.).

Amongst the other industries, television and broadcasting industry has also embraced the LD

concept. BBC is amongst the largest broadcasting corporations in the world. BBC Programmes

was launched in 2007 to provide machine readable feeds (RDF/XML, JSON-LD & XML) for

every program that BBC broadcasts. BBC has developed its own ontologies (BBC – Ontologies

n.d.) to organize and structure its broadcast concepts used in the BBC stores.

GeoNames (GeoNames – Database n.d.) is a spatial LOD dataset containing 25 million

geographic names; about 11 million unique features categorized into different classes and

subclasses like location names, postal codes addresses etc. GeoNames maintains its ontology

(GeoNames – Ontology n.d.) to structure and organize the semantic data. Linked data has also

empowered the search engines as well as the social networking industry. Google Knowledge

Graph is another example of linked data set that started assisting the search engine since 2012. It

is estimated that by 2016 the graph held over 70 billion facts (Enterprise Scale Knowledge

Graph-ISWC 2018). It is now possible to ask Google some meaningful questions as discussed in

section 2.1.

https://wiki.dbpedia.org/about

12

Another familiar example is Facebook Graph and the supporting API, which have been assisting

the development and social networking community since 2013. Facebook encourages developers

of the social applications to use the API framework for generating RDF triples in order to capture

important user actions. The data from FG is vital for targeted campaigns, including

advertisement or even political opinion making (Fruchter et al. 2018).

Linked Open Data Cloud (LOD Cloud n.d.) is a project that maintains the diagram of datasets in

the cloud of linked open data (Figure 2-3).

Figure 2-3 LOD Cloud diagram lod-clod.net

https://internetpolicy.mit.edu/team/nathaniel-fruchter/
https://lod-cloud.net/

13

As of June 2018, the cloud contains more than 1200 datasets that have been published in linked

data format. The LOD cloud diagram depicts the scale, size and heterogeneity of the data. Each

circle in the diagram shows a linked dataset where the color of the circle depicts the domain of

the data as shown in the diagram legend. The lines between datasets reflect the RDF links within

individual datasets i.e. where one datasets refers to another through the IRIs. The whole diagram

appears as a cloud of interlinked circles and each dataset conforms to linked open data principles.

The project requires that a dataset depicted in the cloud as a circle has at least one thousand RDF

statements, has RDF links to at least 50 other datasets within the diagram, and is accessible via a

SPARQL endpoint, or by RDF crawling, or through an RDF dump.

As the size of the LD datasets has been constantly growing, the capacity of RDF stores to handle

large amount of data has been put to test over the recent years.Leigh University Benchmark is a

method for benchmarking and evaluation of semantic web datasets (Guo et al. 2005). A result set

known as LUBM 4400K is known for upload, inference and query of 1.08 trillion triples about

universities and their departments on Oracle Spatial and Graph platform using LUBM in 2014

(W3C 2018). The first report of a trillion RDF statements upload was made by Franz (Franz

Inc) in 2011 on an AllegroGraph platform. Multibilion RDF statement uploads have been

reported in the state of the art RDF stores like Stardog, Openlink Virtuoso and others (Boncz et

al. 2014).

2.4. Basic Geospatial Concepts

Geographic Information Systems deal with storage, analysis and presentation of geographic

information (Nalepa and Furmanska 2009). In order to achieve this, GIS needs to address several

specific problems, including: efficient and optimal storage, optimized analysis as well as

effective visualization. With the advent of the Web GIS, the map applications like Google Maps

have gained a wide acceptance and popularity and a new generation of clearinghouse networks

have been developed. A spatial data clearinghouse network is a distributed network that links

geospatial data producers, managers, and users electronically (Mansourian et al. 2010). Spatial

aware software agents on a smartphone have taken the GIS usage into daily life. Some important

tools, technologies and associated terminologies in this context are briefly described in the next

sections.

2.4.1. Spatial Representation Standards

Standards are an efficient way to address the issues of interoperability across all domains.

Likewise the geospatial domain has also resorted to standards for data interchange and exchange.

With the progress of web GIS technology over the years, simple and efficient geographic

representation has received special attention due to their less overhead on the communication

channels. The OGC Abstract Specifications, models the world in terms of Features (OGC 2003).

A feature represents the abstract model of a real world phenomenon and it can represent a

physical entity. Features can have spatial as well as non-spatial attributes. The features having

spatial attributes are associated to a geometry object which in turn represents a real world object

14

along with its spatial specifications. Point, line, polygon and other constructs represent different

types of geometry.

A textual representation of geometric objects and spatial reference system is provided by the

OGC standard Well Known Text. WKT can represent the geometry objects: Geometry, Point,

MutiPoint, LineString, MultiLineString, Polygon, Multipolygon, Triangle, CircularString, Curve,

MultiCurve, CompoundCurve, CurvePolygon, Surface, MultiSurface, PolyhedralSurface, TIN

(Triangulated irregular network) and GeometryCollection. WKT is a widely used format and it

can represent coordinates in 2D, 3D and 4D space. A few simple examples of WKT

representation of geometries in 2D are given in listing 2-8.

POINT(5 7)

LINESTRING(5 7,10 12, 11 15)

POLYGON((3 10,4 40, 2 40, 3 10))

Listing 2-8 Sample WKT representation of geometries

Geography Markup Language is an XML grammar and OGC standard for representation and

exchange of geographic information including the spatial and non-spatial properties. GML is

based on OGC Abstract Specifications; hence it models the world in terms of features and

geometries. The geometry primitives that make up the GML geometry model (Zhang et al. 2015)

are given in Figure 2-4.

Figure 2-4 GML 3.2 Geometry Primitives

2.4.2. Spatial and Topological Relationships

Spatial entities are related to each other in some form of relationship within the reference space.

An island is inside a country, a road crosses an urban area, and a highway intersects another

highway. These real-world relations can be modeled as relationships between geometry objects.

How far a school lies from a particular road is a spatial relationship but not a topological one. A

school lies inside a specific urban unit is a spatial relationships as well as topological

relationship. Topological relationships are a subset of spatial relationship with the characteristic

that the relationship holds if the size or shape of the geometry changes. Spatial relationships have

received distinctive attention in GIS, with special focus on topological relationships.

https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Polyhedron
https://en.wikipedia.org/wiki/Triangulated_irregular_network

15

There are a few widely used topological relationship models. The 4-IM (Egenhofer et al. 1993)

and DE-9IM are based on point-set topology while the Regional Connection Calculus based

RCC-5 and RCC-8 are models of another category (Baode. and Dong-Qi 2016). Both 4-IM and

RCC-8 can represent 8 types of topological relations and they can be translated to each other.

The mathematics behind these models is beyond the scope of this thesis.

The OGC simple feature access common architecture builds on the DE-9IM and offers the

relationships: Equals, Disjoint, Intersects, Touches, Crosses, Within, Contains, Overlaps and

Relate. The associated functions/predicates for these relationships take two geometry objects as

input parameters and return a boolean value to indicate if the relationship between the geometries

holds or not. Relate takes the third argument as the pattern to test and returns a boolean value.

In addition to the above described relationships, some other spatial non-topological utility

functions are included in the state of the art GIS software like: Buffer, ConvexHull, Boundary,

Envelope, Intersection, Union, Difference and Symmetric difference. These functions accept

geometry objects as input and return a geometry object after performing the desired operation.

Another utility function Distance could take two geometries as input and return the distance

between them as a double value. In some implementations, the Distance function could take a

third parameter which is the unit of measurement for the returned value (i.e. meter, kilometer,

mile etc.). The Distance function can be used to check if an object lies within certain vicinity

(within buffer) of another geometric object, or nearby another object.

2.4.3. Geographic Web Services in Connection to Linked Data

OGC has also recommended specifications for interoperability on the web, like Web Map

Service, Web Feature Service, Web Coverage Service, Web Processing Service and few more.

WFS is an implementation specification (OGC 2005), which allows a client to retrieve, query,

and manipulate feature-level geospatial data encoded in GML from multiple sources (Zhang at

al. 2015). WMS (OGC 2006) is capable of creating and displaying maps in standard image

format that come simultaneously from multiple heterogeneous sources (Zhang et al. 2015).

These standards have been utilized for syntactic interoperability of different geographic datasets

and have been vital in the advancement of web GIS services. These technologies enable the

interoperability of heterogeneous geographic datasets as well as heterogeneous frameworks.

Although, these standards are not directly used for semantic interoperability of geospatial data;

there has been some progress in utilization of these services along with the semantic web stack

technology. Tschirner et al. (2011) introduced a SPARQL web service with a WFS services as

the back end data source, in place of a RDF store. The SPARQL queries received at SPARQL

web service are converted to WFS queries for processing. The results received from WFS are

transformed back to RDF using a mapping between GML and OWL ontology. Jones et al. (2014)

used a reverse implementation by providing WFS to access the geographic linked dataset (RDF

store). The queries received by the WFS are translated to SPARQL queries which are processed

by an RDF engine. The results generated from this engine are transformed back to WFS XML

documents which are returned by the WFS to the caller client.

16

Earlier implementation of linked data services on existing heterogeneous databases needed a

transformation and replication of the complete dataset to the RDF graph model. The data needed

to be constantly replicated as the new updates were committed to the source database. By using

WFS as the source of linked data services it is not needed to transform the whole data upfront.

Hietanen et al. (2016) demonstrated this with a prototype framework that is capable to transform

GML to RDF on the fly and offer linked data services on top of a WFS source. Only the

object/group URIs are required to be generated upfront, while the remaining data is acquired

with query and results transformation at run time. The client interacts with a linked data service

while the transformed query is redirected to WFS and updated results are seamlessly fetched

from the WFS resource. These results are then transformed back to desired RDF serialization

format to be presented to the client.

2.4.4. Spatial Indexing

Unless the complete data in a database is to be processed, most other operations require locating

and fetching an entity or a set of entities and then process them. Indexing is a frequently used

technique to optimize search and lookup of the specific entities in software systems. The

objective of indexing is to reduce the time needed to find and fetch a particular entity. The

essence of an index is generally the sort order. Spatial indexing is tricky as there is no sort order

in a 2-D space (Samet 2015). For example, a sorting order established on distances computed

from point x to all other points, can be void if the reference point changes from x to y. Therefore

systems in spatial domain require more sophisticated techniques for search and query

optimization. It is obvious that the search and query performance gets a boost from indexing, but

this also leverages considerable overhead cost for other operations like data load, update and

delete as indices also need to be updated with these operations.

Spatial trees, is a methodology to partition the data or space by structuring the data or space in a

sorted hierarchical tree structure (Samet 2015). This enables to discard a specific group of

partitions (sub-tree) if it does not match the criteria at search/query time. An R-tree splits the

spatial data (point or rectangular representation of geometry) in N rectangular boxes with equal

points (Simon 2018). Then each rectangle is recursively further split into more rectangles until

there are only N points left in the final boxes. The rectangles at different levels are the tree nodes

and this is the most common type of sorted spatial data structure. The main concept behind R-

tree is the MBR. KD-tree is similar to R-tree, used for point data; however instead of generating

„N‟ boxes, data is sorted into two rectangles around the median point which generates disjoint

decomposition of space. R+ tree is a compromise between R-tree and a KD-tree. Quad trees are

also used for 2D space where each node has exactly four children. While trees are a data driven

structure, a space driven spatial indexing can also be conducted in Grid-based spatial index.

2.5. Geospatial Semantic Web and Metadata

Data interoperability amongst different tools and technologies has been an issue since the advent

of the web. The schematic and syntactic interoperability is managed by different web standards

like markup languages such as GML or XML and mapping service standards like WMS, WCS

17

etc. (Zhang et al. 2015). The semantic interoperability cannot be managed with these standards

because the semantic data is generally lying in the meta tags which do not provide a well-

organized structure. The interlinking amongst different geospatial datasets can be well managed

if the metadata can be handled better at the semantic level. RDF is the cornerstone technology of

semantic web that enables us to represent information about resources. A resource can be a

document, an entity or more widely, it can be anything that is identifiable on the web. Hence

RDF represents metadata about the web resources. The semantic web can therefore harness the

knowledge linking, inference and reasoning capabilities in the geospatial metadata domain, if

suitable geospatial extensions are attached to the semantic web toolset. The geospatial datasets

are primarily used for these functions:

 Storage of geographic data in a consolidated and consistent manner. The data might include

topology information and constraints.

 Search optimization in order to find relevant and required data efficiently. The search might

be based on spatial ranges as well as other complex geometric calculation to find the

appropriate data from the repository.

 Download the data for desired analysis.

In order to annotate underlying data for the purpose of search and analysis, metadata is needed

and it plays important role in building practical applications of GIS (Nalepa and Furmanska

2009). Semantic web technologies provide methods to create and represent structured data that

can server as metadata and answer the semantic interchange and exchange queries. The linked

data enables the unique and linked references to the desired entities; improving upon the

consistency of the datasets. The semantic characterization of metadata through RDF and linked

data principles are increasingly adopted in recent years and studies have shown that the the

linked data approach for geospatial is also on the rise in recent years.

Goodwin et al. (2009) produced an RDF dataset for administrative geography of Great Britain

from the data of National Mapping Agency (Ordnance Survey). A custom ontology was devised

to represent regions at different levels and their spatial topological association with each other.

Another effort to create spatial linked data sets is LinkedGeoData, an RDF representation of

OpenStreetMap data (Stadler et al. 2012). It represents all kinds of spatial features, such as roads

or boundaries and is interlinked with DBpedia and GeoNames. Brink et al. (2014) produced

transformations of structured spatial data from GML to RDF statements. In addition to geometry

coding, the study also presented a transformation of information model from underlying UML to

web ontology.

Gore (1999) envisaged the Digital Earth as a multi-resolution, three-dimensional representation

of the planet. To address the mechanism of semantic integration of geospatial information from

heterogeneous sources for Digital Earth, Vilches-Blázquez et al. (2014) presented a technique to

publish linked data for Spanish Nation data-sets related to INSPIRE themes. These datasets were

drawn from four diverse domains i.e. administrative units, Hydrology, statistical units and

18

meteorology; the study also recommended to use geospatial extension for RDF data i.e.

GeoSPARQL. Cheatham et al. (2018) created a unified knowledge graph “GeoLink” to

seamlessly query and reason over the metadata of prominent geoscience repositories of USA,

using the linked data principles. Huang et al. (2018) presented a technique based on relative

positioning using linked data to resolve a spatial visualization problem of unsynchronized

geometries between thematic and base map objects in the map mashups.

2.6. The GeoSPARQL standard

GeoSPARQL defines a spatial extension to SPARQL query language for geographic information

(OGC 2012). There were some other earlier initiatives to incorporate geographic extensions to

SPARQL but those were limited to a particular project or an organization. OGC has adopted

GeoSPARQL in order to standardize the use of geographic data in the realm of the semantic web

and linked data. GeoSPARQL provides the following features:

 a core component (RDFS/OWL vocabulary)

 a set of SPARQL extension functions for spatial computations

 a set of query rewrite rules

2.6.1. Core Component

The RDFS/OWL vocabulary is used for representation of spatial data in a consistent simple

feature model. Core RDFS/OWL classes and RDF properties for representation and assertion

models are defined here. GeoSPARQL defines a limited vocabulary and expects more domain

specific vocabularies to be built upon this base. Both RDFS and OWL have been used in order

to enable the systems reasoning capability to benefit from the GeoSPARQL. The basic classes

are ogc:SpatialObject and ogc:Feature which may have a geometry. The geometry component is

represented by the class geo:Geometry which represents the spatial properties of any feature

(Figure 2-5). A feature can have several geometry objects, each associated with the property

geo:hasGeometry. The geo:hasDefaultGeomtry is used to link the feature to the default geometry

amongst the number of different associated geometries.

Figure 2-5 GeoSPARQL Fundamental class structure

GeoSPARQL supports two literal formats (serialization) for the spatial representation of

geometry: WKT and GML. The geometry object is associated to the literal by the respective

predicates, geo:asWKT or geo:asGML. The sf:WktLiteral and sf:gmlLiteral are defined in order

to represent the data type of the literals. An example of a WKT representation in RDF is given in

hasGeometry

SpatialObject

Feature Geometry

19

listing 2-9. The URI for the coordinate reference system can be included within the literal; if not

provided then the default is assumed as WGS84.

ex:anXYZSquare rdf:type geo:Feature.

ex:anXYZSquare geo:hasGeometry ex:geom1 .

ex:geom1 rdf:type sf:Point.

ex:geom1 geo:asWKT "POINT(-77.03524 38.889468)"^^geo:wktLiteral.

Listing 2-9 Sample WKT representation of geometries

2.6.2. SPARQL Extension Functions

The following spatial methods are included in the GeoSPARQL specifications:

 Non-topological spatial functions: These functions return a geometry object after
performing the relevant spatial operation: geof:distance, geof:buffer, geof:convexHull,

geof:intersection, geof:union, geof:difference, geof:symDifference, geof:envelope,

geof:boundary, and geof:getsrid.

 Geometry topological relationship functions: There are four categories of functions and

they all return a boolean value as follows:

 The functions consistent with DE-9IM simple features specifications are: geof:sfEquals,
geof:sfDisjoint,geof:sfIntersects, geof:sfTouches, geof:sfCrosses, geof:sfWithin,

geof:sfContains, geof:sfOverlaps.

 A function geof:relate is a common query function to check a topological relation
between two geometries.

 The functions consistent with RCC-8 specifications are: geof:rcc8eq, geof:rcc8dc,

geof:rcc8ec, geof:rcc8po, geof:rcc8tppi, geof:rcc8tpp, geof:rcc8ntpp, geof:rcc8ntppi.

 The functions consistent with Egenhofer model are: geof:ehEquals, geof:ehDisjoint,
geof:ehMeet, geof:ehOverlap, geof:ehCovers, geof:ehCoveredBy, geof:ehInside,

geof:ehContains.

2.6.3. Query Re-write Rules

Query re-writes rules are included in the GeoSPARQL specifications. This facilitates the usage

of spatial predicates in the SPARQL query pattern. The spatial relation can be used like a

predicate in the query where clause, but seamlessly, a spatial function is used when the query

executes. For example, one way to check if a geometry (geom1), lies inside another geometry

(geom2), is by using the GeoSPARQL extension function in SPARQL query as follows:

FILTER(geof:sfWithin(?geom1,?geom2))

Listing 2-10 Sample WKT representation of geometries

If the query re-write is configured than the same clause can be written in predicate form as:

?geom1 geof:inside ?geom2

Listing 2-11 Sample WKT representation of geometries

This is supported because the query re-write, automatically transforms (re-writes) the query

clause of listing 2-11 to that of listing 2-10. However this transformation is internal for the RDF

20

store and it is seamless to the users. Another feature of the query re-write is that parameters to

the spatial and topological functions are not necessarily required to be concrete WKT or GML

literals; because these re-rewrite rules enable the parameters to be geometry or feature objects.

The re-write enables the query processor to find the underlying geometry literals from the feature

or geometry objects and re-write the function accordingly during the transformation stage.

21

3. PREVIOUS WORK IN EVALUATION OF RDF STORES

As the semantic web starts evolving into mainstream web supplemented by the growth of online

linked data repositories, the RDF stores have been scrutinized for their capabilities to manage the

growing industry requirements. Liu and Hu (2005) evaluated seven RDF stores from load and

query performance perspective with LUBM datasets. Rohloff et al. (2007) evaluated the triple

dataset with LUBM datasets in hybrid RDF stores. Bizer and Schultz (2008) investigated RDF

Stores with Berlin SPARQL Benchmark against the load and query times. Morsey et al. (2011)

adopted a different approach to evaluate four RDF stores using the DBPedia SPARQL

Benchmark and generating interesting QpS(Queries per second) and QMpH (Query mixes per

hour) metrics. Cheng et al. (2012) have contested to evaluate three RDF stores (Jena, Sesame and

RDF-3x) by investigating each of the query parsing, planning and execution phases. However

none of these studies have considered the geospatial standards as part of the evaluation criteria.

Battle and Kolas (2012) conducted a research on enabling of geospatial semantic web with

Parliament RDF store and GeoSPARQL. The study builds upon the evolution of GeoSPARQL as

the OGC standard and highlights how the conformance to GeoSPARQL across the linked data

domain could enable a standard geospatial semantic web. The spatial RDMS have performed

reasonably well in geospatial calculations and indexing; however the relational model is unable

to handle scenarios where inferences, cross entity joins and variable properties are involved.

Parliament is an implementation of RDF store based on GeoSPARQL standard. It builds spatial

indexes based on R-trees. The goal in spatial indexing is to split the query in multiple parts for

query optimization. A model of linked data from GeoNames and USGS in Parliament was tested

for GeoSPARQL conformance and implementation by Battle and Kolas (212).

Garbis et al. (2013) present a benchmark, “Geographica” for evaluation of geospatial RDF

stores with two spatial extensions: GeoSPARQL and stSPARQL. Geographica utilizes both

synthetically generated as well as real world workloads. The Mirco benchmark within

Geographica aims the evaluation of spatial functions like spatial selection, joins, topological

relationships and aggregate functions with 29 geospatial SPARQL queries. In the Macro

benchmark, Geographica aims at testing 11 application scenarios like reverse geocoding, map

search and browsing etc. Evaluation on synthetic data as well as real world data is conducted on

RDF stores: Strabon, uSeekM and Parliament in that study.

The most thorough evaluation of RDF stores with reference to GeoSPARQL conformance has

been conducted in a GeoKnow project (Athanasiou et al. 2013). RDF stores: Virtuoso,

Parliament, OWLIM, uSeekM and Strabon were evaluated along with spatial DBMS: Oracle

Spatial and PostgreSQL/PostGIS. The study also included AllegroGraph 4.10, however due to

cumbersome conversion of geometric data to custom format required by the platform; it was

excluded in the quantitative evaluation of the study.

Athanasiou et al. (2013) evaluation found that Virtuoso 7.0 only supported two dimensional

point data from the pos: namespace prefix with properties pos:lat and pos:long. There was no

22

support for other geometries like line string or polygons and the support for geometry literals

conforming WKT or GML was also not available. The topological relationships available in

Virtuoso 7.0 were extended through three functions from the bif: namespace prefix with relations

bif:ST_intersects, bif:ST_contains and bif:ST_within in addition to some spatial utility/analysis

functions. The same study also evaluated OWLIM standards edition which is predecessor of

GraphDB. OWLIM support was also restricted to two dimensional point geometries only, from

pos: namespace prefix. Geospatial support required geospatial indexing and the topological

relationships were available from the namespace prefix omgeo: as omgeo:nearby and

omgeo:within.

According to Athanasiou et al. (2013), virtuoso 7.0 and OWLIM-SE 5.3 were categorized of as

having severely limited geospatial support, while uSeekM 1.2 and Parliament 2.7 were rated as

better at spatial support as well as GeoSPARQL compliance. Amongst the RDF stores examined

in that study, uSeekM 1.2, Parliament 2.7, Strabon 3.2 and Oracle RDF 11gR2 supported WKT

geometry encoding while Virtuso 7.0, OWLIM-SE 5.3 and Allegrograph 4.10 did not support

any of WKT or GML standards. A critical observation recorded in that study was that amongst

the tested, no two RDF stores had identical geometry representations. Even if some of these

supported the WKT, the namespace prefixes were not the same for related vocabularies.

Geometry transformation was consistently required during the data upload and query testing.

Regarding spatial indexes, R-tree was most popular technique amongst the examined products.

Athanasiou et al. (2013) could not completely evaluate Virtuoso and OWLIM-SE because these

RDF stores only supported point geometries. In comparison, the other platforms had to load and

index complex geometries; hence a fair assessment was not possible. An overall assessment

reveals that in terms of spatial operations, the geospatial DBMS based systems quite easily

outperform their RDF competitors. On the other hand, the support for interlinking spatial

features is provided by RDF stores which appear totally out of scope for any sort of DBMS

based systems. It was concluded that conformance to GeoSPARQL lags consistently and none of

the RDF stores offered complete conformance. Amongst the evaluated platforms, Parliament

provides comparatively better coverage of the GeoSPARQL standards.

23

4. MATERIALS AND METHODS

4.1. Integrated Carbon Observation System and the Carbon Portal

The tests in this study are performed on ICOS-CP metadata. ICOS is a research infrastructure

established for long term research of greenhouse gasses. The ICOS datasets are freely distributed

through the CP and the metadata at the carbon portal plays a vital role in identification of exact

datasets required to the users. One of the aims of this study is to identify the suitable RDF stores

for efficient management of spatial component of this metadata. Brief introduction to ICOS, the

ICOS-CP, ICOS data and metadata is discussed in next few sections.

4.1.1. Integrated Carbon Observation System

ICOS is a Pan-European Research Infrastructure of 12 member countries founded in 2008 (ICOS

– About n.d.). ICOS-RI is coordinated and integrated by the ICOS European Research

Infrastructure Consortium which was established in 2015. It consists of a network of European

observation systems operated at member state level. The ICOS-RI provides high-precision

scientific data on carbon cycle and greenhouse gas concentrations. ICOS is coordinating and

taking part in several of the European Union‟s Horizon 2020 research and innovation projects.

ICOS-RI was created to establish a sustained greenhouse gas observation system and enable high

quality climate change research and increase usability of the research data. The mission of ICOS-

RI is to enable research to: track carbon fluxes in Europe and adjacent regions, to provide long-

term observations, and to monitor and assess the effectiveness of reduction in greenhouse gases

emission on global atmospheric composition levels (ICOS – Mission n.d.). ICOS has over 130

greenhouse gases measuring stations, three thematic centers (ocean, atmosphere and ecosystem),

a head office, a carbon portal facility and a central analytical laboratory.

4.1.2. The ICOS Carbon Portal

ICOS-CP is part of ICOS ERIC and is hosted by the Department of Physical Geography and

Ecosystem Science at Lund University, Sweden, with contribution from Wageningen University

Netherlands (ICOS-CP – Introduction n.d.). ICOS data is openly available at the carbon portal, a

one-stop shop for all ICOS data products. The carbon portal provides free and open access to the

high quality ICOS data. It is the gateway to all observational data, derived services and products

from ICOS-RI to inform and assist its users. The portal enables access to raw, near real time and

final quality-controlled data, supplemented with elaborated (model) data and analyses. It is

expected that by the end of 2019 all stations are in full operation and deliver ICOS data through

this portal. The services offered at the portal (ICOS-CP – Introduction n.d.) are:

 discovery, preview and download of quality-controlled observational data

 advanced visualizations such as animated flux maps

 popular-scientific products for policy makers, authorities, teachers and students.

https://www.icos-ri.eu/

24

The carbon portal is expected to be always changing, in order to constantly develop services and

fulfill needs of the users (ICOS-CP – About n.d.). ICOS-CP is involved in several international

projects, one of which is ENVRI-FAIR, i.e. Environmental Research Infrastructure and Findable,

Accessible, interoperable and Re-usable. FAIR is a set of principles to put specific emphasis on

enhancing the ability of machines to automatically find and use the data, in addition to

supporting its reuse by individuals (Wilkinson et al. 2016). FAIR is the data approach of the

carbon portal for interoperability of data (ICOS-CP – FAIR n.d.). The basic design principle of

the portal for metadata is to use linked open data, semantic web ontology, scalable and

containerized services, all based on open source software and sharing.

4.1.3 ICOS Data

ICOS-RI builds on three domains: ecosystem, atmosphere and ocean; each domain consisting of

its own network of stations i.e. research sites or platforms (ICOS-CP – About n.d.). Each domain

has an associated thematic center: Ecosystem Thematic Centre, Atmospheric Thematic Centre

and Oceanic Thematic Centre. The raw data from the field stations is uploaded to a central data

center for safe custody within 24 hours of data collection. The same data is also sent to relevant

thematic center for processing and quality control. The processed data from the thematic centers

is delivered to the CP where the data is organized into structured datasets with identifiers for

tracking and archiving. These datasets are committed in the central data center and users can

access this data from the CP.

The ICOS-RI produces around 25 to 30 TB of sensor data annually, with around 1 GB of

processed data products and around 5 to 20 TB elaborated data. Each station in ICOS

infrastructure can consist of several sensors. The ocean domain of ICOS consists of a network of

marine and coastal stations including Fixed Ocean Stations, Marine Flux Towers and Voluntary

Observing Ships. VOS measures the CO2 on the ocean surface as well as temperature and

pressure. The VOSs are usually commercial ships as well as cargo and research vessels operating

regularly repeated routes. ICOS marine segment focuses on the North Atlantic and adjacent seas.

The linear coverage of ship tracks is integrated with satellite based observations. Interpolation

between ship passages as well as extrapolation is used to model the spatial coverage of relevant

data objects (OTC – Strategy n.d.).

4.1.4 Other Data at ICOS CP

As the carbon portal started evolving into an efficient data distribution platform, few other

related data producers have shown keen interest in delivery of their data through the ICOS-CP.

Therefore, in addition to official ICOS data, the ICOS-CP also harvests data from other sources

including the Surface Ocean CO2 Atlas.

SOCAT is a synthesis activity for quality-controlled, surface ocean fCO (fugacity of carbon

dioxide) observations by the international marine carbon research community with more than

one hundred contributors (SOCAT – Info n.d.). SOCAT data is publicly available, discoverable

and citable and the SOCAT community exists since 2007. SOCAT datasets are released

https://www.icos-cp.eu/about-icos-data

25

biannually starting from 2011, and an annual public releases is also issued. In version 6 of

SOCAT released in June 2018, 23.4 million observations from 1957 to 2017 for the global

oceans and coastal seas covering 10 countries has been published. SOCAT welcomes new data

submission for inclusion in the next releases. The research team at ICOS-OTC heavily

contributes the creation of the SOCAT. ICOS-CP also maintains SOCAT datasets for

distribution.

4.1.5 ICOS Metadata

The ICOS data is generated at many different levels and variety of sources including but not

limited to: sensors, semi processed data, intermediate data, and structure datasets for end users.

The datasets generated from ICOS artifacts are expected to grow manifolds in next few years to

come. In order to enable the users to efficiently find the desired data as well as keeping the data

download to focused area, the correct identification of the desired data is important. It is required

to have the capability to track and archive data artifacts at all levels. This is managed by multi-

level metadata generated at different stages of data collection and processing. The ICOS-CP

users need access to a certain amount of this metadata for their required search and download.

Therefore the metadata requirements of ICOS are devised as follows:

Metadata store at ICOS-CP should be fast and efficient, mostly open to the public. It should be

scalable and serviceable 24/7. The metadata services follow FAIR data principle. Any portal

should be able to link to ICOS metadata and vice versa i.e. data should be discoverable. This

means that there should be an access point for human and machine access to the metadata

(SPARQL endpoint). Hence data should be in linked open data form. This requires an RDF

database. All data artifacts should have unique IDs preferably IRIs which could be de-referenced

with a landing page. Hence metadata should be ontology driven and accessible through http(s),

via SPARQL .The ICOS research data and the collection platforms have geographic features and

characteristics, hence the metadata services should be spatial aware.

ICOS-CP maintains the ICOS metadata as linked open data and users (human and software

agents) can query from this dataset through the SPARQL endpoint at the carbon portal (ICOS-

CP – SPARQL End Point n.d.). The ICOS CP ontology can be accessed at (ICOS-CP – Ontology

n.d.). The basic name spaces represented by ICOS CP metadata is http://meta.icos-

cp.eu/ontologies/cpmeta/ defined as “cpmeta:”. All stations in the metadata have geographic

characteristics as point data, however the data objects and stations relating to VOS platforms

have spatial coverage as well, which is represented as GeoJSON string of line and polygon data.

This data is used for our study as discussed in the next section.

4.2. Research Data

The data set used for this research was extracted from the subset of ICOS-CP metadata, relating

to SOCAT datasets. The data was downloaded as an RDF/XML file from https://meta.icos-

cp.eu/resources/socat/ on October 30, 2018. The downloaded metadata covers all the geographic

http://meta.icos-cp.eu/ontologies/cpmeta/
http://meta.icos-cp.eu/ontologies/cpmeta/
https://meta.icos-cp.eu/resources/socat/
https://meta.icos-cp.eu/resources/socat/

26

data available in ICOS-CP metadata on that date. The geospatial data in the downloaded dataset

relates to the following facts:

Polygon and Line String Data. The polygon and line string data represents the spatial coverage

of the associated data object. The spatial coverage of the data object is the trajectory of the

underlying VOS platforms. The simple ship trajectories are coded as line strings while the

complex trajectories have been simplified as polygons. For each data object having a spatial

coverage, there is an RDF statement that connects it to the spatial coverage object with the

predicate cpmeta:hasSpatialCoverage. The spatial coverage object is then associated to its

geographic literal with the predicate cpmeta:asGeoJSON. The geometry in the source data is

coded as a GeoJSON string literals. There are 88 polygons and 853 line strings as spatial

coverage objects in GeoJSON format in the downloaded data. Listing 4-1 depicts the RDF

statements (in Turtle format) for a sample data from the downloaded data set.

PREFIX obj: <http://meta.icos-cp.eu/ objects />

PREFIX res: http://meta.icos-cp.eu/resources/

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/>

obj:obj1 rdf:type cpmeta1:DataObject

obj:obj1 cpmeta1:hasSpatialCoverage res:spcov_obj1

res:spcov_obj1 rdf:type cpmeta1:SpatialCoverage

res:spcov_obj1 cpmeta1:asGeoJSON {"type": "Polygon", "coordinates":

[[[11.195, 54.047522], [14.45336, 55.079674], [18.387972],

[11.195, 54.406729], [11.195, 54.047522]]]}

Listing 4-1 Sample ICOS CP SOCAT metatdata statements for polygon data

Point Data. The point data in our downloaded metadata are the longitude and latitude of the

ICOS Stations. The RDF statements for this data has the Station Id as subject and

cpmeta:hasLatitude or cpmeta:hasLongitude as predicates. The objects in these statements are

the double literal values. There are 127 stations with these two predicates in the downloaded

dataset. A sample data extracted from the data is given in listing 4-2.

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/>

stations:OS_11SS rdf:type cpmeta1:OS

stations:OS_11SS cpmeta1:hasLatitude 51.226774

stations:OS_11SS cpmeta1:hasLongitude 2.934924

Listing 4-2 Sample ICOS-CP metatdata statements for point data

4.2.1. Preparation of Research Data

The total number of spatial objects in the dataset is 1068 (88 polygons + 853 line strings +127

points). As mentioned earlier in section 2.5.1, GeoSPARQL supports two literal formats

(serialization) for the spatial representation of geometry: WKT and GML. GeoSPARQL however

has no support for GeoJSON literals or the cpmeta:hasLatitude and cpmeta:hasLongitude

predicates. Therefore in order to use the spatial data from the downloaded data set, a

http://meta.icos-cp.eu/%20objects%20/
http://meta.icos-cp.eu/resources/
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttps%3A%2F%2Fmeta.icos-cp.eu%2Fobjects%2F-8m8Q4cXf0ONCgUZB-7vjLFE%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3ADataObject
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttps%3A%2F%2Fmeta.icos-cp.eu%2Fobjects%2F-8m8Q4cXf0ONCgUZB-7vjLFE%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AhasSpatialCoverage
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttp%3A%2F%2Fmeta.icos-cp.eu%2Fresources%2Fspcov_17X7ZTAE8CfIp6r8yW7OvJEu%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttp%3A%2F%2Fmeta.icos-cp.eu%2Fresources%2Fspcov_17X7ZTAE8CfIp6r8yW7OvJEu%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3ASpatialCoverage
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%3Chttp%3A%2F%2Fmeta.icos-cp.eu%2Fresources%2Fspcov_17X7ZTAE8CfIp6r8yW7OvJEu%3E
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AasGeoJSON
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=stations%3AOS_11SS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AOS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=stations%3AOS_11SS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AhasLatitude
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%2251.226774%22%5E%5Exsd%3Adouble
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=stations%3AOS_11SS
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=cpmeta1%3AhasLongitude
http://localhost:8080/rdf4j-workbench/repositories/SOCAT/explore?resource=%222.934924%22%5E%5Exsd%3Adouble

27

transformation to the GeoSPARQL compliant format is required. This transformation was

achieved with SPARQL Construct statements as depicted in listings 4-3 to listing 4-5.

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX sf: <http://www.opengis.net/ont/sf#>

CONSTRUCT {?obj a geo:Feature;

 geo:hasGeometry [

 a sf:Polygon;

 geo:asWKT ?wkt] }

 WHERE{

 ?obj cpmeta1:asGeoJSON ?geoJSON

 BIND(REPLACE(REPLACE(REPLACE(REPLACE(?geoJSON," \"",""),"\t",""),"\n","")," ","") AS

?v1).

 BIND(REPLACE(REPLACE(REPLACE(?v1,"type:",""),"coordinates:",""),"],\\[","@") AS ?v2).

 BIND(REPLACE(REPLACE(?v2,","," "),"@",",") AS ?v3).

 BIND(REPLACE(REPLACE(REPLACE(?v3," \\[\\[\\[","(("),"\\[\\[","("),"\\[","") AS ?v4).

 BIND(REPLACE(REPLACE(REPLACE(?v4,"]]]","))"),"]]",")"),"]","") AS ?v5).

 BIND(UCASE(REPLACE(REPLACE(?v5," \\{",""),"}","")) AS ?v6).
 BIND(CONCAT(?v6,"^^geo:wktLiteral") AS ?wkt).

 FILTER(CONTAINS(UCASE(?wkt),"POLYGON")).

}

Listing 4-3 SPARQL Query to construct GeoSPARQL compliant RDF for polygon data

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX sf: <http://www.opengis.net/ont/sf#>

CONSTRUCT {?obj a geo:Feature;

 geo:hasGeometry [

 a sf:LineString;

 geo:asWKT ?wkt

] }

 WHERE{

 ?obj cpmeta1:asGeoJSON ?geoJSON

 BIND(REPLACE(REPLACE(REPLACE(REPLACE(?geoJSON,"\"","")," \t",""),"\n","")," ","") AS

?v1).

 BIND(REPLACE(REPLACE(REPLACE(?v1,"type:",""),"coordinates:",""),"], \\[","@") AS ?v2).

 BIND(REPLACE(REPLACE(?v2,","," "),"@",",") AS ?v3).

 BIND(REPLACE(REPLACE(REPLACE(?v3," \\[\\[\\[","(("),"\\[\\[","("),"\\[","") AS ?v4).

 BIND(REPLACE(REPLACE(REPLACE(?v4,"]]]","))"),"]]",")"),"]","") AS ?v5).

 BIND(UCASE(REPLACE(REPLACE(?v5,"\\{",""),"}","")) AS ?v6).

 BIND(CONCAT(?v6,"^^geo:wktLiteral") AS ?wkt).

 FILTER(CONTAINS(UCASE(?wkt),"LINESTRING")).

}

Listing 4-4 SPARQL Query to construct GeoSPARQL compliant RDF for line string data

PREFIX cpmeta1: <http://meta.icos-cp.eu/ontologies/cpmeta/>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

28

PREFIX sf: <http://www.opengis.net/ont/sf#>

CONSTRUCT {?obj a geo:Feature;

 geo:hasGeometry [

 a sf:Point;

 geo:asWKT ?wkt

] }

 WHERE{

 ?obj cpmeta1:hasLatitude ?Lat;

 cpmeta1:hasLongitude ?Lon.

 BIND(CONCAT("Point(",STR(?Lon)," ",STR(?Lat),")","^^geo:wktLiteral") as ?WKT).

}

Listing 4-5 SPARQL Query to construct GeoSPARQL compliant RDF for point data

These queries construct sub-graphs against each spatial object in the downloaded dataset. The

total spatial objects in our data are 1068 and the SPARQL constructs for data transformation

generate four RDF statements for each object. Therefore our generated geospatial dataset for the

research has 4272 RDF statements. A sample of RDF statements relating to a point, a line string

and a polygon are shown in listing 4-6. The geometry object identifiers have been replaced

(_:genid-123, _:genid-456 and _:genid-789) in listing 4-6 to avoid complexity, because the

actual identifiers are 60 characters long. This spatial dataset of 4272 statements is used in the

evaluation of SPARQL queries for all the selected RDF stores as discussed in the next sections.

PREFIX station: <http://meta.icos-cp.eu/resources/stations/>

PREFIX sf: <http://www.opengis.net/ont/sf#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

PREFIX res: <http://meta.icos-cp.eu/resources/>

station: OS_11BE rdf:type geo:Feature

station: OS_11BE geo:hasGeometry _:genid-123

_:genid-123 rdf:type sf:Point

_:genid-123 geo:asWKT "POINT(3.113968 51.360925)"^^geo:wktLiteral

res: spcov_-8m8Q4cXf0ONCgUZB-7vjLFE rdf:type geo:Feature

res: spcov_-8m8Q4cXf0ONCgUZB-7vjLFE geo:hasGeometry _:genid-456

_:genid-456 rdf:type sf:Polygon

_:genid-456 geo:asWKT "POLYGON ((18.591 54.945998,18.808718 54.280256,21.759

59.062,24.959511 59.814679,25.196764 60.108495,21.731027

59.344977,17.209978 57.398751,13.004 54.845,13.032

54.843,13.032019 54.843287,13.858343 54.79279,18.632254

56.861101,18.30532 55.076225,14.6811 54.661957,13.198002

54.830021,13.034 54.843,13.022 54.841,12.810975

54.861532,11.342376 54.198734,11.932917 54.079201,18.591

54.945998))"^^geo:wktLiteral

res: spcov_8ilDZu8ZSuBc4WEJ8n41mLoF rdf:type geo:Feature

res: spcov_8ilDZu8ZSuBc4WEJ8n41mLoF geo:hasGeometry _:genid-789

_:genid-789 rdf:type sf:LineString

http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AFeature
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AhasGeometry
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=sf%3APoint
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AasWKT
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AFeature
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AhasGeometry
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AasWKT
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=%22POLYGON%20((18.591%2054.945998%2C18.808718%2054.280256%2C21.759%2059.062%2C24.959511%2059.814679%2C25.196764%2060.108495%2C21.731027%2059.344977%2C17.209978%2057.398751%2C13.004%2054.845%2C13.032%2054.843%2C13.032019%2054.843287%2C13.858343%2054.79279%2C18.632254%2056.861101%2C18.30532%2055.076225%2C14.6811%2054.661957%2C13.198002%2054.830021%2C13.034%2054.843%2C13.022%2054.841%2C12.810975%2054.861532%2C11.342376%2054.198734%2C11.932917%2054.079201%2C18.591%2054.945998))%22%5E%5Egeo%3AwktLiteral
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AFeature
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AhasGeometry
http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=rdf%3Atype

29

_:genid-789 geo:asWKT "LINESTRING (-0.60175 49.685,-1.9754 50.068,-2.9287 49.978,-

5.0234 49.581,-7.8892 48.464,-12.148 46.701,-16.986 44.59,-

22.019 42.325,-28.109 39.467,-29.475 38.704,-31.989 37.033,-

36.201 34.146,-40.738 30.868,-47.031 26.176,-49.015 24.663,-

51.22 20.732,-52.722 18.371,-55.709 16.155,-60.59 14.459,-

60.591 14.459)"^^geo:wktLiteral

Listing 4-6 RDF Statements for point, line string and polygon geometry from study dataset

4.3. Evaluation Technique

Software engineering has experienced a turn towards empiricism as it shifted from design

oriented discipline to an insight-driven and theory-centric discipline over the years (Fernandez

and Passoth 2018). This study is planned as an empirical software engineering study to evaluate

the software artifacts of selected RDF stores. The endeavor of this study during the cross

comparison of the selected five RDF stores is to conduct the evaluation of each store in a

controlled experiment method. For this purpose, during the quantitative portion of the study

(where the statistics of software performance are gathered), same set of environment (i.e.

hardware resources and operating environments) is maintained. Each RDF store is tested on two

different machines, both having different set of hardware resources but similar operating

environments. Henceforth we define two machines as follows:

 Machine A is a computing machine with Intel Dual core processor (2.3 G Hz) and 2 GB of

main memory.

 Machine B is a dedicated virtual machine with an Intel Corei5 (3.4 G Hz) processor with

04 GB memory.

The operating environment on both machines is uniform which includes Microsoft Windows 7

ultimate 64 bit with Eclipse IDE for Java Developers version 4.9.0 for source code development

and compilation. Java version 1.8.201 is used for all the tests on these machines. At any time

only one of the RDF stores are running on the machine.

4.3.1. Selection of RDF Stores

The management and maintenance of ICOS-CP metadata requires an efficient data store which

supports the linked open data and has a suitable spatial component as well. Additionally the

ICOS data is growing at a rapid rate and that would implicate a growing size as well. The RDF

stores to be evaluated for suitability of this data are required to be capable to handle large

datasets and also offer the geospatial support conforming to an established standard

(GeoSPARQL).

There are quite many RDF stores that could have been potential candidate for this study.

However, the study has limited timelines and other resources, as well as ICOS-CP preferences.

Therefore in consultation with the architecture and design team at ICOS-CP, following criterion

has been established for shortlisting the RDF stores to be studied:

http://localhost:8080/rdf4j-workbench/repositories/cpmeta/explore?resource=geo%3AasWKT

30

 The RDF store should be actively supported.

 The RDF store should support W3C standards like SPARQL 1.1, and also semantic

reasoning, including ontological and rule-based reasoning.

 The RDF store should have advanced geospatial capacity.

 The RDF store should preferably support GeoSPARQL.

 The RDF store should preferably be open-source.

Based upon the criteria listed above, following RDF stores were selected for this evaluation:

 Eclipse RDF4J

 Apache Jena

 OpenLink Virtuoso

 Ontotext GraphDB

 Stardog

RDF4J (formerly known as Sesame) and Jena are selected because these open source products

are commonly used as libraries or underlying framework component by a wide range of other

RDF stores. A number of RDF databases and stores support Java APIs conforming to RDF4J and

Jena interfaces. Openlink Virtuoso also offers an open source edition and it also extends

reasonable geospatial support and indexing. GraphDB offers a free edition and it provides a

strong GeoSPARQL support. Stardog also extends considerable geospatial support and it offers a

few months trial for testing purposes.

4.3.2. Qualitative Study

The software components and the background building blocks incorporated in each of the RDF

stores to manage the geospatial linked data were investigated from the official documentation of

each of the RDF stores. The documentation is consulted primarily for the study of following

qualitative features:

 software components, architecture, deployment and licensing

 built in applications and interface utilities for data upload, query and management

 utilization of other software components (from open source community)

 available support for access to the RDF store from programming environment (APIs)

 geospatial support and capabilities

 conformance to GeoSPARQL

 extended spatial operations and topological relationships

 geospatial query optimization and spatial indexing techniques.

4.3.3. Preparation for Quantitative Study

After these features are studied, the software is downloaded for installation and testing. All the

selected RDF stores provide some sort of command line or web interface which has been used to

upload the research data and run a few basic SPARQL queries to validate the software is

31

configured and executed smoothly. Geospatial support/indexing was also enabled for validating

the documented features. The basic execution of software artifacts is tested here to confirm the

smooth (error free) operations, but no quantitative measurements were recorded at this stage.

4.3.4. Quantitative Study

The quantitative portion of the study focuses on performance metrics against a set of geospatial

queries. The GeoSPARQL compliant query set was derived from the geospatial SPARQL

benchmark, Geographica (Garbis et al. 2013). The set of queries derived from the micro

benchmark of Geographica against real world datasets are considered in this study.

Geographica was developed to evaluate the GeoSPARQL as well as stSPARQL compliance and

there are 29 queries in the micro benchmark divided in three categories: non-topological,

topological and spatial join queries. Queries Q6, Q28 and Q29 are evaded for not being

GeoSPARQL compliant. Q14 required a function call from within another function and this was

not supported by most of the under study RDF stores, hence it was also eliminated from the

benchmark queries. Geographica uses three different datasets for evaluation, each set having

different types of geometries. However in this study, all the three types of geometries (point,

lines and polygon) reside in a single dataset; hence the queries are slightly modified to use self

joins without violating the original spatial intent of the queries as shown in Table 4-1.

Table 4-1 GeoSPARQL compliant Geographica queries for

evaluation of ICOS CP Metadata

S# Ref Operation Geographica Benchmark Query

(on 03 spatial datasets)

Query for this study

(on ICOS metadata spatial data set)

Non topological functions

1 Q1 Boundary Construct Boundary of all polygons of

one dataset

Construct Boundary of all polygons in

the dataset

2 Q2 Envelope Construct Envelope of all polygons of

one dataset

Construct Envelope of all polygons in

the dataset

3 Q3 Convex

Hull

Construct Convex Hull of all polygons

of one dataset

Construct Convex Hull of all polygons

in the dataset

4 Q4 Buffer Construct Buffer of all lines of one

dataset

Construct Buffer of all line strings of

in the dataset

5 Q5 Buffer Construct Buffer of all Polygons of one

dataset

Construct Buffer of all polygons in the

dataset

 Q6 Area Construct Area of all Polygons Non GeoSPARQL compliant function.

Spatial Selection

6 Q7 Equals Find all lines of one dataset that are

spatially equal to a given line.

Find all line strings that are spatially

equal to a given line string.

7 Q8 Equals Find all polygons of one dataset that are

spatially equal to a given polygon

Find all polygons that are spatially

equal to a given polygon.

8 Q9 Intersect Find all lines of one dataset that

intersect a given polygon

Find all line strings that intersect a

given Polygon.

9 Q10 Intersect Find all polygons of one dataset that

intersect a given line

Find all polygons that intersect a given

line string.

32

10 Q11 Overlaps Find all polygons of one dataset that

spatially Overlaps a given polygon

Find all polygons that spatially

Overlaps a given polygon

11 Q12 Crosses Find all lines of one dataset that

spatially cross a given line

Find all line strings that spatially cross

a given line string

12 Q13 Within

Polygon

Find all points of one dataset that are

contained in a given polygon
Find all points of ICOS metadata that

are spatially within a given polygon

 Q14 Within

Buffer

Find all points of one dataset that are

within the buffer of a given point

Find all points that are within the buffer

of a given point

13 Q15 Near a

Point

Find all points of one dataset that are

within fixed distance of a given point

Find all points that are within a fixed

distance to a given point.

14 Q16 Disjoint Find all points of one dataset that are

spatially disjoint of a given polygon

Find all points that are disjoint to a

given polygon.

15 Q17 Disjoint Find all lines of one dataset that are

spatially disjoint of a given polygon

Find all line strings that are spatially

disjoint with a given polygon.

Spatial Joins

16 Q18 Equals Find all points of a dataset which are

equal to a point in another dataset

Find point to point equality of all ICOS

metadata points.

17 Q19 Intersects Find all points of one dataset that

intersect a line of another dataset

Find all points that intersect any line

string in the dataset.

18 Q20 Intersects Find all points of one dataset that

intersect a polygon of another dataset

Find all points that intersect any

polygon in the dataset.

19 Q21 Intersects Find all lines of one dataset that

intersect a polygon of another dataset

Find all line strings that intersect any

polygon in the dataset

20 Q22 Within Find all points of one dataset that are

within a polygon of another dataset

Find all point and polygons where the

point lies inside the polygon.

21 Q23 Within Find all lines of one dataset that are

within a polygon of another dataset

Find all line strings that lie within any

polygon in the dataset

22 Q24 Within Find all polygons of one dataset that are

within a polygon of another set.

Find all polygons which are completely

within any other polygon in the dataset.

23 Q25 Crosses Find all lines of one dataset that cross a

polygon of another dataset

Find all line strings that cross a

polygon in the dataset.

24 Q26 Touches Find all polygons of a dataset that touch

other polygons

Find all polygons that touch any other

polygon in the dataset

25 Q27 Overlaps Find all polygons of one dataset that

overlap polygons of another dataset

Find all polygons that overlap any

other polygon in the dataset.

Aggregate Functions

 Q28 Extension Construct the Extension of all polygons

of a dataset
Non GeoSPARQL compliant

 Q29 Union Construct Union of All Polygons of a

dataset

Amongst the five selected RDF stores, some have limited or no GeoSPARQL compliance. In

such cases, only those queries from Table 4-1 are evaluated which are available in that RDF

store. The only leverage allowed in such tests, is to change the query from an object to a box

query (if applicable). Hence, if an RDF store does not support a within or intersect topological

relationship between two arbitrary objects, but rather offers the functionality to test the same

operations between one object and a rectangle (box), then this change is accommodated for

processing the query. These exceptions are highlighted in the result sections.

33

For this study each RDF store has been tested through the available programming APIs and

custom java code has been developed to test each of the stores. The built in applications or

command line tools are therefore not used in the quantitative evaluation. When the evaluation

code for an individual RDF store is executed on the designated machine, the necessary

initializations are conducted before proceeding to execute the benchmark queries. The

initialization code creates storage structures on the machine (repositories or datasets or database)

along with necessary spatial parameters (if required). The research data is then loaded in the

local disk based storage structures and the whole query set is executed in a loop for 100 times. A

complete query set (set of benchmark queries) is executed in each iteration, followed by next

iteration and so on for one hundred times. This means that the query set executes 100 times in

one configuration for each RDF store separately on both machine A and machine B. Therefore

100 different query times are recorded for each query. The first 20 iterations are not used for

calculation of performance measurements. The statistics are computed against each query for the

average of last 80 iterations (iteration number 21 to 100) in order to balance out any spikes

within individual iterations. More detailed discussion on this topic is conducted in chapter 6.

If the RDF store supports geospatial capabilities in both indexed and un-indexed configurations,

then separate performance of each query in both modes is recorded and statistics are computed

accordingly. For reference and larger benefit of the geospatial community, the developed source

code as well as the compiled program have been uploaded to an online source code repository at

url https://github.com/Raza-Amir-Syed/TestGeoRDFStores as well as as well as

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8974835&fileOId=8974841.

4.3.5. ICOS-CP Considerations

In consultation with ICOS-CP team it has been established that the main capability for any

potential RDF store to be utilized at ICOS-CP, is that the support of sophisticated spatial queries

is a compulsion. This should be augmented with a support of spatial index to accommodate the

future data growth perspective. In terms of spatial relationships, the overlap and within

functionality to identify data elements that have overlapping geometric boundaries or completely

covered by other geometry are considered to be of prime interest. The crossing of ship

trajectories and equality amongst spatial objects could also be topological relationships of

interest in the near future. This entails that from the established set of benchmark spatial queries:

Q11, Q13, Q22, Q23, Q24, and Q27 are of prime interest from ICOS perspective. Q7, Q8, Q12,

and Q25 also hold an element of interest for any potential RDF store to be considered fulfilling

the ICOS-CP requirements in near future.

4.4. Introduction to Programming with the RDF Stores

A brief introduction to the technical details of the selected RDF stores and usage of these from

programming environment is given in the next few sections.

https://github.com/Raza-Amir-Syed/TestGeoRDFStores

34

4.4.1. Eclipse RDF4J

Eclipse RDF4J is an open source Java framework for storage, parsing, inference and query of

RDF data. Formerly known as OpenRDF Sesame, it was created by the Dutch software solutions

company Aduna before moving to Eclipse foundation in 2016. Eclipse RDF4J can either be used

as a Java library to process RDF data internally or as a standalone RDF database. RDF4J offers

Java API to connect to other RDF stores as well as SPARQL endpoints offering transparent

access to remote RDF repositories and thereby enabling developers to build powerful linked data

and semantic web applications. The framework supports all of the mainstream RDF serialization

formats including RDF/XML, Turtle, N-Triples, N-Quads, JSON-LD and few others.

Primarily, RDF4J offers two types of transactional RDF databases: an in-memory store and a

native store. The RDF4J Memory store is an RDF store residing completely in memory with an

optional synchronization to the disk. This is a high performance RDF store for small datasets

scaling to the amount of main memory available. The RDF4J Native store uses direct disk for

persistence. The native store has a smaller memory footprint; is more scalable solution with

better consistency and durability; has default indexing on different subject, predicate, and object

combination; and is considered suitable for medium sized datasets around 100 million triples.

RDF4J supports a stacked architecture enabling software components to be stacked on top of the

others to extend the functionalities like: RDFS inference, rule based reasoning, full text search as

well as geospatial indexing. The abstraction provided by the RDF4J architecture and its vendor

neutral APIs have received a considerable attention in the RDF databases community, and many

RDF stores use RDF4J framework APIs.

During this study, the RDF4J 2.4.0 was used. The downloaded work package (Eclipse RDF4J –

Downloads n.d.) contains: an RDF4J server (the RDF store) to manage RDF data as RDF4J

repositories; a workbench web application to connect, query and interface the RDF4J

repositories through the RDF4J server; a console application to directly parse, process and query

an RDF file; and a set of java libraries. It is also possible to download only the java libraries and

use these APIs (JAR files) for internally using RDF4J framework from a java program. For our

study, this technique was used and a java project was created as a driver to use the RDF4J java

libraries. Version 2.4.0 of RDF4J requires Java 8 host JVM. The wide acceptance of RDF4J

framework in the RDF database community is driven from the RDF4J core APIs. Key

components of the relevant APIs are discussed in the following sections.

Storage and Interface Layer (SAIL) is an interface for RDF to store statements and evaluate

queries over them. Statements can be grouped in named contexts or in the null context. The

RDF4J SAIL API (org.eclipse.rdf4j.repository.sail) is a collection of interfaces designed for low

level transaction access to RDF data. SAIL API enables the decoupling between the database

implementation and functional modules like parsers, query engines, end-user API access etc. At

the low level, the SAIL operates on query algebra which is an object representation of a

SPARQL query. The SAIL provides the StackableSail interface, which allows SAIL

35

implementations to be stacked on top of each other. This provides a chain of responsibility where

each underlying SAIL object in the stack implements a specific feature like reasoning, access

control, data filtering, query expansion, spatial indexing, persistence etc. At the bottom of the

stack, the last implementation in the stack is a sail which cannot be stacked on top of any other.

Programmatically, this has been achieved with the interface StackableSail. The bottom sail does

not implement this interface therefore it cannot appear on top of others, and has to be the bottom

layer in the stack. This bottom SAIL object is responsible for the persistence of data. One of the

RDF4J stores (native or memory) is this SAIL, while the others which can be stacked above,

include: ForwardChainingRDFSInferencer (inferenceing layer), LuceneSAIL (full-text indexing

layer), and a few more.

The central point of access for RDF4J compatible RDF stores as well as SPARQL endpoints is

the Repository API (org.eclipse.rdf4j.repository). The repository framework provides a

transparent access to the underlying RDF database with consistent interfaces for storage, query

and processing. Eclipse RDF4J itself provides three implementations of these interfaces.

SailRepository operates on top of a stack of SAIL objects and is used when creating an Eclipse

RDF4J local repository. The constructor for SailRepository class requires a SAIL object as

parameter. HTTPRepository acts as a proxy to an RDF4J server repository accessible through

HTTP. SPARQLRepository is a proxy to a SPARQL endpoint (which is not necessarily

implemented with RDF4J). Other than these three, the third party implementation can be

provided by anyone interested to extend their database as an RDF4J repository. The RDF4J

compatible RDF stores (Openlink Virtuoso, Stardog, Ontotext GraphDB and others) have

provided their custom implementation of repository API to expose their platforms in consistence

with RDF4J framework.

The core of RDF4J framework is the Model API (org.eclipse.rdf4j.model) which defines the

building blocks of RDF processing. Some of the important interfaces in this API include:

Statement, Resource, Literal, Value, IRI, BNode and more. The Model API provides pre-defined

IRIs for well-known vocabularies like RDF, RDFS, OWL, Dublin Core (DC), and Friend of a

Friend (FOAF) in the package org.eclipse.rdf4j.model.vocabulary. The RDF model is a logical

collection of RDF statements. RDF4J Model interface is implemented as an extension of Java

collection class java.util.Set<statement> enabling the use of Model as any other java collection.

The parsing toolkit in RDF4J is Rio consisting of many modules for each of the specific syntax.

The java code developed in this research for RDF4J tests is available online at

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/RDF4JDriver.

4.4.2. Apache Jena

Apache Jena is an open source java framework for building semantic web applications. It

provides extensive Java libraries to facilitate developers to handle RDF, RDFS, RDFa, OWL and

SPARQL as well as rule based inference and reasoning along with a variety of storage strategies

for RDF stores. Jena was originally developed in HP labs UK in 2000 before moving to Apache

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/RDF4JDriver

36

software foundation in 2010. The Jena work package for version 3.9.0 used for this study

includes following artifacts:

 TDB is a high performance persistence store supporting full range of Jena APIs. A TDB is a
Jena RDF store that can be directly accessed from a single machine. TDB supports

transaction and protected against corruption. There are command line scripts as well as Jena

APIs for management of TDB.

 Fuseki is a SPARQL server component that can use TDB as underlying persistent storage
and also enable the access from multiple applications. Fuseki can be launched as a

standalone server, a web application or an operating system service and it exposes

management interface for server monitoring and administration.

 ARQ is a SPARQL query processing engine for Jena. It supports SPARQL 1.1 as well as

SPARQL graph store protocol.

 RDF API consists of core packages and interfaces used for RDF data storage and processing
in Jena. For our study, this API was used for development of a driver program to conduct

SPARQL benchmark tests for query performance.

 The work package also contains Ontology API as well as Inference API to add custom
semantics as well as inference and reasoning on the RDF data.

In Jena APIs, the Model class denotes an RDF graph and it contains the collection of RDF

triples. It is an abstraction over different ways to store the graph like memory structures, disk-

based persistent stores and inference engines etc. At lower levels, Jena uses another interface

Graph for simpler abstraction and lower level interaction. The required methods and interfaces to

manage the RDF data can be acquired from the Model object for processing an RDF graph.

An RDF Dataset has one or more graphs with one designated as a default graph. In Jena, the

Dataset class represents an RDF Dataset which contains Models, one of which is the default

Model. Each Dataset has an associated file location (a folder) where the data is stored. TDB

datasets can be created from the static methods in TDBFactory class. The java code developed

in this research for Jena tests is available online at https://github.com/Raza-Amir-

Syed/TestGeoRDFStores/tree/master/JenaRDFDriver.

4.4.3. Openlink Virtuoso

Openlink Virtuoso is a cross platform web server, a file server, and a database server in a single

multithreaded server process. Therefore it is more suitably defined as a universal data access

middleware. Virtuoso offers a high performance virtual database engine on an underlying

distributed architecture. On their homepage, the Openlink community defines virtuoso as a “Data

Junction Box that drives enterprise and individual agility by deriving a Semantic Web of Linked

Data from existing data silos”. In contemporary information era, data processing requires

traversal over heterogeneous data sources spread over many different platforms. Virtuoso offers

a cost-effective platform for projection of data from many different sources. Virtuoso offers both

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/JenaRDFDriver
https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/JenaRDFDriver

37

commercial and open source editions. For this study, the open source edition of Openlink

Virtuoso version 7.2.4 is used.

The Virtuoso quad store (RDF store) is built on top of an RDBMS. From version 5.0.7 Virtuoso

can be used as an RDF store. The RDF processing middleware manages the RDF data in

RDBMS tables and different database types are used (IRI_ID, RDF_BOX etc.) for management

of RDF statements on an RDBMS platform. The main tables for RDF statements include

RDF_QUAD, RDF_PREFIX, RDF_OBJ and a few more. Virtuoso also supports R2RML

expression language for mapping of relational databases to RDF datasets.

The RDF capability includes built-in support for SPARQL and SPARUL. Starting from Virtuoso

version 4.5, a SPARQL query can be used in place of any SQL query by appending a key word

“SPARQL” followed by a space in front of the query text. Such queries are sent to SPARQL

query processor. A linked data middleware Sponger is also integrated into the SPARQL

processor for URI de-referencing within SPARQL query patterns. Openlink Virtuoso does not

support Unicode in SPARQL and comments inside SPARQL are also not supported, however

some other extension are made available.

Virtuoso offers a number of APIs and data access connection methods on different platforms like

Java, .Net and others. To establish a client connection with Virtuoso server, the options include

ODBC, JDBC as well as OLEDB. In this study the JDBC connection was used. For JDBC client

connections, the Java.sql package can be used in consistence with any other JDBC technology.

A JDBC connection to the virtuoso server is obtained through the DriverManager class by

providing the host, port, user and password parameters. This connection can then be used for

creating statement objects and executing query on these statements. The queries can be SQL or

SPARQL, differentiated by the first key word “SPARQL” in front of the query.

For direct RDF store processing, Openlink Virtuoso has provided Data Access Providers.

Virtuoso 7.2.4 supports three drivers in this regards: Virtuosos Jena Provide, Virtuoso

Sesame/RDF4J Provider as well as Virtuoso Redlands provider. For this study Virtuoso Sesame

provider is used as shown in figure 5-1 (Virtuoso – Sesame Provider n.d.).

The Virtuoso Sesame provider leverages the Sesame/RDF4J framework to process the Virtuoso

RDF store using Java language. Therefore, while the underlying data management and

processing is being conducted by the Virtuoso server, the RDF4J java framework can be used in

programming environment for RDF4J friendly java code. For this purpose Virtuoso has provided

a java library which exposes a VirtuosoRepository class which is consistent with the RDF4J

Repository API. It is however important to note that the Virtuoso Sesame/RDF4J provider also

uses underlying JDBC for client connection to the virtuoso server. The java code developed in

this research for Virtuoso tests is available online at https://github.com/Raza-Amir-

Syed/TestGeoRDFStores/tree/master/VirtuosoDriver.

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/VirtuosoDriver
https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/VirtuosoDriver

38

Figure 4-1 Virtuoso Sesame Stack

4.4.4. Stardog

Stardog defines itself as an Enterprise Knowledge Graph platform capable to manage the

enterprise data in full generality, which is scale-able and connected from many diverse,

distributed and heterogeneous data sources as unification platform. Stardog claims to make the

transformation of enterprise data into knowledge at a faster pace. Stardog prefers to call itself a

Knowled Graph (a graph database with knowledge toolkit). Stardog whitepapers also suggest

that the proper way of managing the data silos in an enterprise is a knowledge graph and that is

why graph is the model for next 20 years.

Stardog data model is an RDF graph and it supports SPARQL query as well as other basic graph

data support like inference and reasoning etc. While graph is the data model for Stardog, it also

supports property graph model and Gremlin graph traversal language. Stardog also supports

Virtual graphs by re-writing SPARQL queries to SQL and transforming the tabular results back

to RDF. A number of RDBMS are supported in this manner. Stardog version 6.0.1 Enterprise

Edition (60 days trial) has been used for this study. Stardog server runs in a java container. The

stardog-admin.bat script can be used to start or stop the server as well as other functions like

creating a database, running a query etc. from the command window. The Stardog management

studio (a web application) can also be accessed at http://localhost:5820.

Stardog supports programming interfaces from Java, over HTTP, Javascript, Clojure, Groovy,

Spring and .Net. Stardog recommends SNARL API as native and preferred method of

programming. Other than SNARL, Stardog also supports interface with Sesame/RDF4J and Jena

frameworks through APIs. For network connections, the SPARQL HTTP protocol from Stardog

is default for client connections. Stardog also supported another network protocol, “SNARL‟ in

the earlier version but it has been depreciated since Stardog 4.2. It is important to mention here

that SNARL network protocol and SNARL Java API are two different artifacts. The SNARL

39

network protocol is depreciated, while SNARL Java API is still the preffered way of

programming from Java. For this study both the SNARL API and the Sesame/RDF4J API have

been used separately to test the SPARQL benchmark queries.

When programming from Java, one way to connect the Stardog server is from HTTP. The server

can reside on the same machine or it can be a remote Stardog server instance available over

HTTP. The other method is to run a Stardog server instance within the same JVM as the Java

program. This is known as an embedded server and it helps avoid some of the HTTP overhead

when there is a local server. The SNARL API exposes methods to obtain connection to the

embedded server and use the connection for subsequent database creation; data upload as well as

run SPARL queries through these local connections. Stardog Sesame/RDF4J API exposes a

StardogRepository class which can connect to an embedded server or to a remote Stardog server

over HTTP. This class is in compliance with RDF4J Repository class and therefore the

RDF4J/Sesame Java framework can be used with this repository object for subsequent RDF

operations. The java code developed in this research for Stardog tests is available online at

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/StardogDriver.

4.4.5. Ontotext GraphDB

GraphDB is a robust and scalable graph/RDF database capable to balance the use of linked data

cloud datasets as well as local resources. GraphDB implements RDF4J interfaces and supports

W3C SPARQL 1.1 protocol specifications as well as RDF serialization formats. GraphDB can

perform semantic inference at scale allowing users to derive new semantic facts from existing

facts. GraphDB offers three editions: Free, Standard and Enterprise. Our evaluation uses the free

edition of version 8.8.0. It is important to highlight that Free version is free for use but not

licensed as open source. The GraphDB server runs in a Java container and it also includes a

workbench web application for managing the database and other administration tasks. The

workbench also offers tools to explore data as well as class relationships and properties from the

vocabularies and ontologies used in the data.

GraphDB is packaged as a Storage and Inference Layer (SAIL) for RDF4J and makes extensive

use of the RDF4J framework features. GraphDB implements the SAIL API interface so that it

can be integrated with the rest of the RDF4J framework. A user application can be designed to

use GraphDB directly through the RDF4J SAIL API or via the higher-level functional interfaces.

When a GraphDB repository is exposed using the RDF4J HTTP Server, users can manage the

repository through the GraphDB embedded Workbench, or the RDF4J Workbench, or other tools

integrated with RDF4J. The java code developed in this research for GraphDB tests is available

online at https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/GraphDBDriver.

https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/StardogDriver
http://graphdb.ontotext.com/documentation/free/introduction-to-semantic-web.html#introduction-to-semantic-web-reasoning-strategies
https://github.com/Raza-Amir-Syed/TestGeoRDFStores/tree/master/GraphDBDriver

40

41

5. RESULT

5.1. Eclipse RDF4J

5.1.1. Geospatial Support

The GeoSPARQL spatial support is enabled in RDF4J by inclusion of rdf4j-queryalgebra-

geosparql library in the server class path. The WKT serialization format is supported for

representation of geographic data and the spatial support is provided in all types of stores.

However, for optimization of spatial queries, the spatial indexing is only available in repositories

created with LuceneSail or its derivatives (SolrSail and ElasticSearchSail). Although Lucene is

basically a full text indexing framework, however the lucene-spatial-extras module handles the

spatial indexing of geometries. By default, LuceneSail spatially indexes only the fields

represented by the predicate http://www.opengis.net/ont/geosparql#asWKT using R-tree.

Additional fields for indexing can be specified through the LuceneSail.WKT_FIELDS parameter.

Spatial4J library is used for conversion to and from WKT and shape objects while the spatial

algebra is handled by the JTS library. RDF4J supports a rich set of topological and non-

topological GeoSPARQL compliant spatial functions which are available both in indexed as well

as non-indexed configuration as listed below:

 Non-toplogical functions include geof:distance, geof:boundary, geof:buffer,

geof:convexHull, geof:difference, geof:envelope, geof:intersection, geof:getSRID,

geof:symDifference, geof:union, and geof:relate.

 Simple feature topology functions include geof:sfEquals, geof:sfDisjoint, geof:sfIntersects,

geof:sfTouches, geof:sfCrosses, geof:sfWithin, geof:sfContains, and geof:sfOverlaps.

 Eigenhofer topology functions include geof:ehEquals, geof:ehDisjoint, geof:ehMeet,

geof:ehOverlap, geof:ehCovers, geof:ehCoveredBy , geof:ehInside, and geof:ehContains.

 RCC8 topology functions include geof:rcc8eq, geof:rcc8dc, geof:rcc8ec, geof:rcc8po,
geof:rcc8tppi, geof:rcc8tpp, geof:rcc8ntpp, and geof:rcc8ntppi.

5.1.2. Benchmark Query Performance

Eclipse RDF4J supports spatial search and query in both indexed as well as non-indexed spatial

configurations. However during the tests, it was found that LucenSail is not responding properly

for spatial indexing and instead of improved performance, the spatial queries became nearly un-

responsive in LuceneSail configuration. The matter was reported to RDF4J development team,

and an issue was created at Github (https://github.com/eclipse/rdf4j/issues/1160). At the time of

this writing, the issue is not yet resolved; hence the tests are only performed on an RDF4J Native

store without spatial indexing. Another error in RDF4J 2.4.0 was found in the buffer function

and the issue was already reported (https://github.com/eclipse/rdf4j/issues/1128). Later on, the

buffer function issue has been rectified in 2.4.1, however Q4 and Q5 in our tests were not

http://www.opengis.net/ont/geosparql#asWKT
https://github.com/eclipse/rdf4j/issues/1160

42

executed because the latest software artifacts downloaded when this study was initiated pertains

to version 2.4.0. The results for benchmark queries are given in Table 5-1. Some queries

perform a little better on machine A, while others have performed considerably better on

machine B. The overall performance gain on machine B compared to machine A is nearly 65

times faster.

Table 5-1 Average time in Milli Seconds for benchmark queries in Eclipse RDF4J

Benchmark Query
Machine A

Intel Dual Core

2 GB memory

Machine B

Intel Core i5

4 GB memory
Non topological functions

Q1 Boundary 1.01 1.42

Q2 Envelope 0.98 2.44

Q3 Convex

Hull

0.86 0.62

Q4 Buffer Bug in the buffer function
Q5 Buffer

Spatial Selection

Q7 Equals 48.11 3.57

Q8 Equals 3.49 3.22

Q9 Intersect 8.65 5.53

Q10 Intersect 1.25 3.50

Q11 Overlaps 1.13 4.55

Q12 Crosses 1.24 2.59

Q13 Within 16.95 5.07

Q15 Near a Point 1.59 2.62

Q16 Disjoint 1.05 5.21

Q17 Disjoint 1.03 2.60

Spatial Joins

Q18 Equals 11.86 11.22

Q19 Intersects 7110.93 8.57

Q20 Intersects 17.75 9.38

Q21 Intersects 8.38 9.60

Q22 Within 10.58 7.97

Q23 Within 434.45 7.45

Q24 Within 41.44 8.39

Q25 Crosses 7.86 8.79

Q26 Touches 1620.35 9.92

Q27 Overlaps 1.59 12.68

5.2. Apache Jena

5.2.1. Geospatial Support

Spatial query in Jena is supported by the spatial extension since version 2.11.0. It has lately been

notified on the Apache Jena website that Jena spatial query is planned to retire (Jena – Spatial

43

Query n.d.), in favor of geosparql-jena. For our study however, the Jena spatial query extension

was used, because the study artifacts were downloaded in October 2018, few months before the

notification was stated.

In Jena spatial query extension, the spatial search and query is enabled with the creation of a

spatial index. There can be two types of indices: Apache Lucene for same machine or Apache

Solr for large scale enterprise level search. The advantage of using Lucene Spatial is that Jena

already uses Lucene for text indexing, so the same system is used for spatial indexing as well.

The SpatialDatasetFactory class contains static methods to create datasets with Lucene spatial

index. A spatial enabled dataset can be created from these methods on top of a TDB as the base

dataset. When a spatially indexed dataset is created, than any changes to the dataset triggers the

spatial indexing, if the relevant predicates are found in the updated data. By default Jena

supports two predicates for geometry literals. The first one is a pair of latitude and longitude:

http://www.w3.org/2003/01/geo/wgs84_pos#lat, http://www.w3.org/2003/01/geo/wgs84_pos#lon. The

second one is http://www.opengis.net/ont/geosparql#asWKT . Custom geo predicates can also be

added in Jena spatial, however geometry support is for WKT literals only. In terms of spatial and

topological relationships, Jena spatial query has a limited support for GeoSPARQL. The spatial

relationships available in the Jena spatial query extension are:

 spatial:nearby(lat, lon, radius)

 spatial:withinCircle(lat, lon, radius)

 spatial:withinBox (lat_min, lon_min,lat_max, lon_max)

 spatial:intersectBox(lat_min, lon_min,lat_max, lon_max)

 spatial:north (lat, lon)

 spatial:south (lat, lon)

 spatial:west (lat, lon)

 spatial:east (lat, lon)

5.2.2. Benchmark Query Performance

Amongst the tested RDF stores, Jena covers the minimum number of benchmark queries. The

benchmark queries Q1, Q2, Q3, Q4, Q5 and Q6 were not executed because no related utility

spatial functions for Boundary, Envelope, ConvexHull and Buffer of geometries are available in

Jena. The spatial selection queries Q7, Q8, Q11, Q12, Q16 and Q17 were also not executed

because Jena spatial extension has no equivalent spatial relations for: Equals, Overlap, Cross and

Buffer. Although Q9 and Q10 queries were evaluated, but the second parameter to the related

intersects function is a box represented by two latitude and longitude pairs. In the other evaluated

RDF stores, the second parameter of corresponding relations can be a geometry literal or a

geometry variable as well. The spatial join queries Q18 to Q27 are not available in Jena because

a join requires the second parameter of topological functions to be geometry variables. As the

spatial search in Jena is not available without the spatial index, the comparison between indexed

http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01/geo/wgs84_pos#lon
http://www.opengis.net/ont/geosparql/asWKT

44

and un-indexed configurations could not be drawn. Furthermore, all queries performance (Table

5-2) deteriorated on machine B with an overall performance decrease of 5 times.

Table 5-2 Average time in Milli Seconds for benchmark queries in Apache Jena

Benchmark Query

Machine A

Intel Dual Core

2 GB memory

Machine B

Intel Core i5

4 GB memory

Non topological functions

Q1, Q2,Q3, Q4, Q5, Q6 Not Supported

Spatial Selection

Q7, Q8 Not Supported

Q9 Intersect 3.63 5.98

Q10 Intersect 3.74 5.74

Q11, Q12 Not Supported

Q13 Within 3.78 9.14

Q15 Near a Point 7.73 69.76

Q16, Q17 Not Supported

Spatial Joins

Q18, Q19, Q20, Q21, Q22,

Q23, Q24, Q25, Q26, Q27
Not Supported

5.3. Openlink Virtuoso (Universal Server)

5.3.1. Geospatial Support

Openlink Virtuoso version 6.01.3126 onward has supported geospatial capabilities which are

focused specifically for spatial data in RDF but can also be used in SQL. Virtuoso 7.1 onwards

support the WKT literal representation for geometries with a few exceptions for some shapes.

Another supported geometry literal is BOX with two pairs of longitude and latitude. Virtuoso

assigns a special internal type virtrdf:Geometry, for managing geometry. All WKT literals are

converted to this type and such literals are automatically indexed in a two dimensional R-tree

containing all distinct geometries occurring in any quad of any graph under any predicate.

The default reference system is WGS-84 with coordinates in degrees longitude and latitude. The

ST_Transform function is provided for coordinate transformation but it requires the v7proj4

plugin, while ST_SetSRID is used for altering SRID without altering coordinates. There are some

other utility functions as well. The spatial and topological relationship functions are:

 bif:st_intersects is used for checking if two shapes intersect.

 bif:st_within is used for checking if a shape lies completely inside another shape.

 bif:st_contains is used for checking if a shape completely bounds another shape.

 bif:st_distance is used to find distance between two shapes.

45

5.3.2. Benchmark Query Performance

The tests for Openlink virtuoso have been conducted from two different environments: one with

a simple JDBC connection and the other with RDF4J provider. Both of these configurations

have been used on two different hardware machines, and the results are presented in Table 5-3.

The benchmark query Q1 has been evaluated with the function bif: ST_ExteriorRing, while Q2

has been executed with the bif:st_get_bounding_box function. There are no functions for

ConvexHull, Buffer and Equal, therefore Q4, Q5, Q7 and Q8 are not covered. Similarly Q11,

Q12, Q16, Q17 and Q18 are not covered because of no equivalent relationships for Overlap,

Cross, Disjoint and Equal. Spatial join queries Q25, Q26 and Q27 were also not executed

because of missing support of equivalent relationship.

Virtuoso does not extend any Nearby relationship extension function, however Q15 has been

executed using the bif:st_distance function. All queries have better performance results on

Machine B in both environments. The overall performance Machine B is around two time faster

than Machine A in both configurations.

Table 5-3 Average time in Milli Seconds for benchmark queries in Openlink Virtuoso

Benchmark Query

Machine A

Intel Dual Core

2 GB memory

Machine B

Intel Core i5

4 GB memory

JDBC
RDF4J

Provider
JDBC

RDF4J

Provider

Non topological functions

Q1 Boundary 5.18 5.59 4.26 2.82

Q2 Envelope 2.40 2.46 1.67 1.34

Q3, Q4, Q5 Not Supported

Spatial Selection

Q7, Q8

Q9 Intersect 2.93 3.18 1.32 1.39

Q10 Intersect 5.29 5.66 2.06 2.16

Q11, Q12 Not Supported

Q13 Within 2.01 1.41 0.74 0.75

Q15 Near a Point 2.76 2.71 0.92 1.08

Q16, Q17 Not Supported

Spatial Joins

Q18 Not Supported

Q19 Intersects 12.19 13.10 5.62 5.57

Q20 Intersects 23.99 27.13 12.18 11.80

Q21 Intersects 28.96 30.61 15.00 14.81

Q22 Within 25.70 30.53 13.03 12.57

Q23 Within 31.14 35.15 15.66 15.27

Q24 Within 29.79 38.11 15.55 14.72

Q25, Q26, Q27 Not Supported

46

5.4. Stardog (knowledge Graph)

5.4.1. Geospatial Support

In order to enable geospatial support and spatial query, spatial indexing needs to be enabled. The

related option is to be specified at the time of creation of the database (listing 5-1). Stardog

supports geometry data in WKT format, however to use all the shapes in WKT standard, the JTS

library has to be included in the Java class path (listing 5-1).

AdminConnection.newDatabase(dbName).set(GeospatialOptions.SPATIAL_ENABLED, true).create();

Stardog.builder().set(GeospatialOptions.USE_JTS,true).create();

Listing 5-1 Enable Stardog geospatial and JTS support

When the spatial support is enabled, the data commit triggers Stardog to index all features from

relevant vocabularies. The point data can be encoded with the lat, lon predicates of WGS84

vocabulary or as a WKT point literal. Stardog offers five spatial and topological operators,

geof:within, geof: nearby, geof:distance, geof:area and geof:relate as follows :

 geof:within relationship can be used to check if a geometry is inside another geometry.

 geof:nearby can be used to check if some object is within a certain distance to a point.

 geof:area is a non-spatial utility function for area computation.

 geof:relate can be used to test 05 relationships amongst two geometries. The 05 relationships
are geo:contains, geo:within, geo:intersects, geo:equals, and geo:disjoint. The geof:relate

can be used in two forms. The first form is to make a boolean check to test a relationship i.e.

FILTER(geof:relate(?geom1,?geom2,relationship)). The second form is to find out which

one of the 05 relationship holds i.e. ?rel geof:relate (?geom1 ?geom2)

5.4.2. Benchmark Query Performance

 Query performance in Stardog has been conducted with SNARL API as well as with the RDF4J

API. The benchmark queries Q1, Q2, Q3, Q4 and Q5 were not executed because of no equivalent

extension functions for Boundary, Envelope, ConvexHull and Buffer. Q11, Q12, Q25, Q26 and

Q27 were also not executed because no relationships for Overlap, Cross and Touch are provided

by Stardog.

It is interesting to note that within relationship in Stardog can be tested with two methods. One

uses the syntax “?geom1 geof:within ?geom2” and the other method is from inside the relate

functions as “geof:relate(?goem1, ?geom2, geo:within)”. For this evaluation the second method

i.e. goef:relate is used. The benchmark query set performance is given in Table 5-4. All queries

have performed better on the higher specification Machine B, around 3 times faster than

Machine A in both configurations.

47

Table 5-4 Average time in Milli Seconds for benchmark queries in Stardog

Benchmark Query

Machine A

Intel Dual Core

2 GB memory

Machine B

Intel Core i5

4 GB memory

SNARL RDF4J SNARL RDF4J

Non topological functions

Q1, Q2, Q3, Q4, Q5 Not Supported

Spatial Selection

Q7 Equals 109.58 79.91 26.12 26.18

Q8 Equals 15.41 7.63 2.43 2.33

Q9 Intersect 14.13 9.28 2.80 2.67

Q10 Intersect 10.76 7.68 1.81 1.42

Q11, Q12 Not Supported

Q13 Within 16.60 11.73 3.31 2.75

Q15 Near a Point 19.06 6.28 1.31 1.10

Q16 Disjoint 17.79 58.44 1.76 1.43

Q17 Disjoint 27.23 9.34 1.79 1.53

Spatial Joins

Q18 Equals 141.80 84.86 18.38 18.49

Q19 Intersects 10329.48 10323.93 3768.82 3772.82

Q20 Intersects 864.51 850.89 254.17 256.48

Q21 Intersects 17.63 13.63 4.98 3.37

Q22 Within 22.81 28.18 4.29 4.16

Q23 Within 307.29 335.19 103.07 101.53

Q24 Within 223.24 242.99 68.51 68.27

Q25, Q26, Q27 Not Supported

5.5. Ontotext GraphDB

5.5.1. Geospatial Support

GraphDB has the framework of plugins; one of these is GeoSPARQL. It is however important to

note that geospatial data, search and query is supported even when the GeoSPARQL plugin is

not enabled. When the GeoSPARQL plugin is enabled, the spatial data is indexed and it offers

optimized query. GraphDB supports both WKT as well as GML geometry literals in

conformance with the GeoSPARQL specification. Each set of spatial functions is provided in

two formats: one for the non-indexed query and other for query under spatial indexing. The

functions conforming to non-indexed query are always available, while the indexed version of

functions is only available when the geospatial index has been enabled. The GeoSPARQL

plugin supports two indexes: quad prefix tree and geohash prefix tree.

GraphDB offers each spatial relationship with either a geof: namespace or a geo: namespace.

The relationships in geof: namespace are available all the time and they perform search and

query without using spatial indexing. The other set of similar relationships with the geo:

48

namespace are only available when spatial indexing is available. Both examples are given in

listing 5-2 and 5-3.

geof:sfOverlaps(?geoLiteral1,?geoLiteral2)

geof:sfWithin(?geoLiteral1,?geoLiteral2)

Listing 5-2 Example of non-indexed functions

?geom1 geo:sfOverlaps ?geom2

?geom1 geo:sfwithin ?geom2

Listing 5-3 Example of indexed functions

Graph DB also offers geospatial extension for specialized indexing on 2-D geospatial data

conforming to WGS84 Geo positioning RDF vocabulary. The extension enables efficient query

against this data.

5.5.2. Benchmark Query Performance

GraphDB is the only RDF store in our study which has allowed the evaluation of all the

benchmark queries. It also supports the queries in both indexed as well as spatially un-indexed

configurations as shown in Table 5-5.

Table 5-5 Average time in Milli Seconds for benchmark queries in GraphDB

Benchmark Query
Machine A

Intel Dual Core

2 GB memory

Machine B

Intel Core i5

4 GB memory

Non

Indexed

Indexed Non

Indexed

Indexed

Non topological functions

Q1 Boundary 29.74 5.86 1.08 3.37

Q2 Envelope 18.43 4.78 1.30 4.04

Q3 Convex

Hull

6.34 2.99 1.04 1.10

Q4 Buffer 17.51 2.74 1.79 0.60

Q5 Buffer 10.69 3.30 4.70 2.93

Spatial Selection

Q7 Equals 484.35 6.29 274.97 6.57

Q8 Equals 31.45 6.91 7.33 10.16

Q9 Intersect 62.85 6.48 20.60 14.98

Q10 Intersect 7.94 17.34 2.44 8.16

Q11 Overlaps 9.00 11.49 2.83 15.08

Q12 Crosses 34.68 15.71 3.76 6.81

Q13 Within 79.96 11.56 31.21 15.72

Q15 Near a Point 59.88 8.39 5.39 5.73

Q16 Disjoint 15.55 9.18 3.36 11.12

Q17 Disjoint 8.71 11.95 3.46 6.44

Spatial Joins

Q18 Equals 31169.61 24.46 3445.23 25.33

Q19 Intersects 54119.74 16.56 33033.93 21.01

Q20 Intersects 96.28 23.24 38.94 16.45

Q21 Intersects 43.95 25.24 19.14 19.02

Q22 Within 82.44 22.11 39.14 20.83

Q23 Within 1796.98 17.69 1008.27 23.68

Q24 Within 313.13 22.81 141.65 24.23

Q25 Crosses 58.20 15.81 28.82 18.17

Q26 Touches 7725.28 24.46 4517.61 20.01

Q27 Overlaps 36.81 17.86 11.10 21.16

49

Most of the queries in both indexed as well as un-indexed configurations have performed better

on higher specifications Machine B. The overall performance of indexed query is around 300

times and 150 times faster than un-indexed configuration on both machines A and B

respectively.

5.6 Cross Comparison

Feature wise comparison of RDF stores, drawn during the qualitative study is summarized in the

Table 5-6. The results collected in the quantitative portion relates to tests conducted on two

different machines: Machine A and Machine B. The cross comparison of these results are

depicted in Tables 5-7 and 5-8 on respective machines.

Table 5-6 GeoSPARQL Features compliance for five RDF stores

GeoSPARQL Feature Support RDF4J

2.4.0

Jena

3.9.0

Virtuoso

7.2.4

Stardog

6.0.1

GraphDB

8.8.0

Storage Custom Custom RDBMS Custom Custom

Geometry literals support WKT WKT WKT WKT WKT,GML

Spatial analysis GeoSPARQL

support

Strong No Limited Limited Strong

Topological relationships

GeoSPARQL support

Strong Very limited Limited Limited Strong

Spatial relationships syntax

conforming to GeoSPARQL

Yes No No Partially Yes

Spatial query without index Yes No No No Yes

Spatial Index Technique Lucene

Spatial

Lucene

Spatial,

Solr

R-tree Lucene

Spatial

Quad-prefix

tree,

Geohash

Table 5-7 Cross Comparison of Benchmark Query Performance on Machine A

(Intel Dual Core, 2 GB memory)

Benchmark Query

Eclipse

RDF4J

Virtuoso Apache

Jena

Stardog GraphDB

RDF4J JDBC SNARL RDF4J No

Index

Index

 Non-topological queries

Q1 Boundary 1.01 5.59 5.18

29.74 5.86

Q2 Envelope 0.98 2.46 2.40

18.43 4.78

Q3 Convex

Hull

0.86

6.34 2.99

Q4 Buffer

17.51 2.74

Q5 Buffer

10.69 3.30

 Spatial Selection queries

Q7 Equals 48.11

109.58 79.91 484.35 6.29

Q8 Equals 3.49

15.41 7.63 31.45 6.91

Q9 Intersect 8.65 3.18 2.93 3.63 14.13 9.28 62.85 6.48

Q10 Intersect 1.25 5.66 5.29 3.74 10.76 7.68 7.94 17.34

Q11 Overlaps 1.13

9.00 11.49

Q12 Crosses 1.24

34.68 15.71

Q13 Within 16.95 1.41 2.01 3.78 16.60 11.73 79.96 11.56

Q15 Near a Point 1.59 2.71 2.76 7.73 19.06 6.28 59.88 8.39

Q16 Disjoint 1.05

17.79 58.44 15.55 9.18

50

Q17 Disjoint 1.03

27.23 9.34 8.71 11.95

 Spatial Join queries

Q18 Equals 11.86

141.80 84.86 31169.61 24.46

Q19 Intersects 7110.93 13.10 12.19

10329.48 10323.93 54119.74 16.56

Q20 Intersects 17.75 27.13 23.99

864.51 850.89 96.28 23.24

Q21 Intersects 8.38 30.61 28.96

17.63 13.63 43.95 25.24

Q22 Within 10.58 30.53 25.70

22.81 28.18 82.44 22.11

Q23 Within 434.45 35.15 31.14

307.29 335.19 1796.98 17.69

Q24 Within 41.44 38.11 29.79

223.24 242.99 313.13 22.81

Q25 Crosses 7.86

58.20 15.81

Q26 Touches 1620.35

7725.28 24.46

Q27 Overlaps 1.5875

36.81 17.86

Table 5-8 Cross Comparison of Benchmark Query Performance on Machine B

(Intel Core i5, 4 GB memory)

Benchmark Query
 Eclipse

RDF4J

Virtuoso Apache

Jena

Stardog GraphDB

RDF4J JDBC SNARL RDF4J No Index Index

 Non-topological queries

Q1 Boundary 1.42 2.82 4.26 1.08 3.37

Q2 Envelope 2.44 1.34 1.67 1.30 4.04

Q3 Convex

Hull

0.62 1.04 1.10

Q4 Buffer 1.79 0.60

Q5 Buffer 4.70 2.93

 Spatial Selection queries

Q7 Equals 3.57 26.12 26.18 274.97 6.57

Q8 Equals 3.22 2.43 2.33 7.33 10.16

Q9 Intersect 5.53 1.39 1.32 5.98 2.80 2.67 20.60 14.98

Q10 Intersect 3.50 2.16 2.06 5.74 1.81 1.42 2.44 8.16

Q11 Overlaps 4.55 2.83 15.08

Q12 Crosses 2.59 3.76 6.81

Q13 Within 5.07 0.75 0.74 9.14 3.31 2.75 31.21 15.72

Q15 Near a Point 2.62 1.08 0.92 69.76 1.31 1.10 5.39 5.73

Q16 Disjoint 5.21 1.76 1.43 3.36 11.12

Q17 Disjoint 2.60 1.79 1.53 3.46 6.44

 Spatial Join queries

Q18 Equals 11.22 18.38 18.49 3445.23 25.33

Q19 Intersects 8.57 5.57 5.62 3768.82 3772.82 33033.93 21.01

Q20 Intersects 9.38 11.80 12.18 254.17 256.48 38.94 16.45

Q21 Intersects 9.60 14.81 15.00 4.98 3.37 19.14 19.02

Q22 Within 7.97 12.57 13.03 4.29 4.16 39.14 20.83

Q23 Within 7.45 15.27 15.66 103.07 101.53 1008.27 23.68

Q24 Within 8.39 14.72 15.55 68.51 68.27 141.65 24.23

Q25 Crosses 8.79 28.82 18.17

Q26 Touches 9.92 4517.61 20.01

Q27 Overlaps 12.68 11.10 21.16

51

Table 5-9 and 5-10 highlight the cross comparison with the focus on benchmark queries of

interest to ICOS-CP metadata management as given in section 4.3.4. The cells highlighted in

background color in table 5-9 and 5-10, represent the best performing platform for each

individual query (represented in each row).

Table 5-9 Query Results with ICOS Focus on Machine A

Query Virtuoso
Jena

Stardog GraphDB

No. Operation RDF4J RDF4J
JDBC

SNARL RDF4J No Index Index

 Prime Focus

Q11 Overlaps 1.13

9.00 11.49

Q13 Within 16.95 1.41 2.01 3.78 16.60 11.73 79.96 11.56

Q22 Within 10.58 30.53 25.70

22.81 28.18 82.44 22.11

Q23 Within 434.45 35.15 31.14 307.29 335.19 1796.98 17.69

Q24 Within 41.44 38.11 29.79 223.24 242.99 313.13 22.81

Q27 Overlaps 1.5875 36.81 17.86

 Potential Future requirements

Q7 Equals 48.11

109.58 79.91 484.35 6.29

Q8 Equals 3.49 15.41 7.63 31.45 6.91

Q12 Crosses 1.24 34.68 15.71

Q25 Crosses 7.86 58.20 15.81

Table 5-10 Query Results with ICOS Focus on Machine B

Query Virtuoso
Jena

Stardog GraphDB

No. Operation RDF4J RDF4J JDBC SNARL RDF4J No Index Index

 Prime Focus

Q11 Overlaps 4.55

2.83 15.08

Q13 Within 5.07 0.75 0.74 9.14 3.31 2.75 31.21 15.72

Q22 Within 7.97 12.57 13.03

4.29 4.16 39.14 20.83

Q23 Within 7.45 15.27 15.66 103.07 101.53 1008.27 23.68

Q24 Within 8.39 14.72 15.55 68.51 68.27 141.65 24.23

Q27 Overlaps 12.68

11.10 21.16

 Potential Future requirements

Q7 Equals 3.57

26.12 26.18 274.97 6.57

Q8 Equals 3.22 2.43 2.33 7.33 10.16

Q12 Crosses 2.59

3.76 6.81

Q25 Crosses 8.79 28.82 18.17

5.7. Variation in Result Sets

Performance of queries in terms of time consumed during query processing is an aim of this

study; however the analysis of result sets returned from each query is not a focus of this study.

None the less few broad observations are recorded about the result sets returned from different

queries and these are briefly highlighted in the next few paragraphs.

52

The data sets returned from spatial selection and join queries for Eclipse RDF4J and GraphDB

are consistent with each other. Apache Jena only supported four queries from our set of

benchmark queries, but data sets returned as query output for these queries are also found to be

consistent with Eclipse RDF4J and Graph DB. An important observation is this manner is that

for the benchmark queries Q9, Q10 and Q13, the second parameter in RDF4J and GraphDB is

polygon geometry, while in case of Jena it is a box. But the data sets returned from these queries

in Jena are also consistent with RDF4J. On the contrary the data sets returned from quite a few

queries in Virtuoso and Stardog contain considerable mismatches amongst themselves as well as

with the other three RDF stores. Also it is found that the result set of queries Q21 and Q25 for

GraphDB without indexing are slightly different than the result set of the same queries in

indexed configuration. The underlying reasons for such mismatches in result sets could include

different logic in execution of the relevant topological operations or the precision of calculation,

but a thorough investigation on this subject is required to establish the exact causes.

One more important reflection in this regards is when the result set of spatial join queries were

observed. In Eclipse RDF4J and GraphDB the result set of a within operation is found as a subset

of the result set of intersect operation. However, when the same operations were observed for

Stardog, it was noted that the result sets returned from within operation are not included in the

result set of intersect operations. Therefore, for Stardog the results of intersect and within

operations are disjoint. The investigation of exact reasons for these differences in query results

returned in different RDF stores for similar operations, require a more focused study on this

subject, which was beyond the aims of our study.

53

6. DISCUSSION

All the five tested RDF stores provide geospatial support. Other than Jena, the rest of the four

platforms have a reasonable set of functionality in their respective spatial extensions. With

regards to GeoSPARQL however, GraphDB and RDF4J offer the strongest compliance. Jena is

least compliant in the tested products, while Virtuoso is also assessed as weak in terms of

GeoSPARQL compliance. Stardog support to GeoSPARQL is better than Virtuoso, however it is

also not be categorized in the strong GeoSPARQL compliant category. Furthermore, while this

study was near the conclusion stages, GeoSPARQL extensions for newer version of both Jena

and Virtuoso have been announced. This requires a re-investigation of Jena as well as Virtuoso

with these new extensions.

With respect to query performances, logically it is assumed that performance of all RDF stores

on machine B (higher computing power) should be better in comparison to performance on

machine A. The query performance results for RDF4J, Virtuoso, Stardog and GraphDB (both

indexed and un-indexed) conform to this assumption and a reasonable gain in performance for all

or most queries on machine B is observed in these four platforms. In case of Jena however, the

performance comparison is a surprise, as the performance of all four queries was inferior on

machine B by 5 times (500%) compared to machine A. The reasons for Jena performance

deteriorating on a machine with higher specifications could not be established in this study. With

regards to optimization, the only RDF store where indexed versus un-indexed contrast could be

drawn was GraphDB, and it reflected a 300 times faster query in indexed configuration on

machine A while the performance gain with indexing on machine B is around 150 times.

In terms of stating the RDF store that could be rated as best with regards to overall query

performance, the conclusion is tricky. For the 25 established benchmark queries, only GraphDB

and RDF4J supported all the queries while rest of the RDF stores only supported a subset of

these as depicted in table 6-1. It is evident from the table that the actual comparison on the query

performances is practical for RDF stores which support all queries i.e. GraphDB and RDF4J

only. Insight into this performance comparison is depicted in Tables 5-7 and 5-8 for machine A

and machine B respectively. On machine A, most of the queries individually perform better on

the RDF4J platform, however for few spatial join queries like Q23 and Q26 along with one

spatial selection query Q19, GraphDB with indexing has a massive performance difference. Due

to this huge difference in these three queries, the overall performance indicator on machine A is

in the favor of GraphDB with indexing. On machine B however, RDF4J clearly performs best.

This behavior depicts that with the change in hardware resources, the performance indicators for

the RDF stores change.

54

Table 6 -1 Benchmark Query Support on Selected Platforms

Benchmark query Coverage

Q9

All Five RDF Stores
Q10

Q13

Q15

Q7

Four RDF Stores

RDF4J, Virtuoso, Stardog, GraphDB

Q8

Q19

Q20

Q21

Q22

Q23

Q24

Q1 Three RDF Stores

RDF4J, Virtuoso, GraphDB Q2

Q16
Three RDF Stores

RDF4J, Stardog, GraphDB
Q17

Q18

Q3

Two RDF Stores

RDF4J, GraphDB

Q11

Q12

Q25

Q26

Q27

Q4 Supported by two Stores (RDF4J & Stardog)

Executed on one Store (GraphDB) Q5

The variation in RDF store performance can also be associated with the size of the data set under

processing. The issues relating to variations in performance on different hardware could be

related to a few factors like: in memory processing, caching or other implementation details.

However official documentation of the tested RDF stores does not provide much insight about

such behavior.

In order to explain the methodology of query performance measurement in this study, Table 6-2

and 6-3 consisting of two query performance charts are presented.

55

Table 6 -2 Q13 repeated performance charts - No. of iterations versus nanoseconds

0

10000000

20000000

30000000

1 8 15222936435057647178859299

RDF4J

0

10000000

20000000

30000000

1 8 15222936435057647178859299

Jena

0

1000000

2000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Virtuoso-RDF4J

0

2000000

4000000

6000000

1 8 15222936435057647178859299

Virtuoso-JDBC

0

5000000

10000000

1 8 15222936435057647178859299

Stardog-SNARL

0

2000000

4000000

6000000

1 8 15222936435057647178859299

Stardog-RDF4J

0

50000000

100000000

1 8 15222936435057647178859299

GraphDB-Un Indexed

0

50000000

100000000

1 9 17 25 33 41 49 57 65 73 81 89 97

GraphDB-Indexed

56

Table 6 -3 Q19 repeated performance charts - No. of iterations versus nanoseconds

Q-19 not supported in Jena

During the study, when the query set was executed for more than one times, it was observed that

each iteration yielded a different query time for the same query. Many times these query times

differed considerably. Hence, the decision of which iteration to be taken as the standard query

performance is important and can implicate our performance analysis seriously. Table 6-2

presents the graphical depiction of benchmark query Q13 performance on each platform when

executed repeatedly. The x-axis represents the iteration number and y-axis shows the query time

in Nano seconds, for each iteration. Table 6-3 presents the same statistics for Q19. The graphs

0

50000000

100000000

1 8 15222936435057647178859299

RDF4J

0

5000000

10000000

15000000

1 8 15222936435057647178859299

Virtuoso-RDF4J

0

5000000

10000000

15000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Virtuoso-JDBC

3.5E+09

4E+09

4.5E+09

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Stardog-SNARL

3.4E+09

3.6E+09

3.8E+09

4E+09

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Stardog-RDF4J

0

2E+10

4E+10

6E+10

1 7 131925 313743495561677379 859197

GraphDB-Un Indexed

0

50000000

100000000

1 9 17 25 33 41 49 57 65 73 81 89 97

GraphDB-Indexed

57

for only two queries are shown here, one query from spatial selection group and one from spatial

join group. However the patterns discussed for these two, is generally applicable to all other

queries as well.

In different query processors, it is normal that the first time the query is submitted, the query

processor negotiates an execution plan; hence the first time a specific query is executed, it is

expected to take more time compared to the next execution of the same query, as the next

iteration could find an execution plan already established. However in our tests it was observed

that the first iteration was not necessarily the one with the highest query time as evident in many

of the charts given in Table 6-2 and 6-3. Furthermore it can also be observed from these charts

that query times are not stable in each iteration and at random iterations the query times could be

high, and at others times these can be low, with considerable differences. The documentation

available from the developers of tested RDF stores did not offer details of such behavior or any

associated implication like caching, query plans etc. It was therefore established that instead of

taking any single run as the value for a specific query performance, an average over a repeated

execution may be considered as the standard unbiased execution time and it could balance out

the random spikes as visible in the graphs in Table 6-2 and 6-3. In addition to average over a

number of iterations, it was also considered that the JVM requires necessary memory allocations

as well as other initializations actions. Some queries also depict more random behavior in the

few initial iterations. In light of these, following methodology was devised for query

performance statistics:

 The complete benchmark query set is executed for one hundred times on each RDF store.

 Therefore for each query, one hundred different query times are recorded.

 From these one hundred, the starting twenty iterations are considered as initialization, warm
up and stabilizing the query processor activity.

 The next eighty iterations are averaged, and this average is considered the standard query
times for an individual query for the sake of result statistics.

The product manuals and related documentation from the product vendors did not cover the

mechanics behind the query processors that could be responsible for different query performance

over repeated executions. A more focused study targeting the insight into the query processing

could be conducted to establish these factors. For our study the average over a number of runs

was used only to balance out the bias in different runs.

In chapter 3, the state of affairs with respect to previous studies was highlighted and it was noted

from (Athanasiou et al. 2013) that the data to be uploaded for test queries, required to be

transformed to each of the RDF stores native type before. For our study however, the same

datasets has been used in all RDF stores without any transformations. This has been possible

because all the five RDF stores tested in our study are found to be supporting the WKT geometry

literals with the same namespace prefix and other syntax. While the study in 2013 evaluated that

Virtuoso and GraphDB (OWLIM) only supported point geometries at that time, the support for

58

different geometry shapes is covered in all the five RDF stores that we have tested in this study.

Therefore all five RDF stores were able to process the point, line string and polygon data. The

GML literals however are only supported by GraphDB at this time.

GraphDB has considerably advanced in terms of GeoSPARQL support as compared to its

predecessor OWLIM since 2013. While it supported only point geometry with handful of

topological and spatial relationship not conforming to GeoSPARQL in 2013, the platform is now

providing the broadest coverage of GeoSPARQL standards amongst the five tested in this study.

For GraphDB and RDF4J our devised benchmark SPARQL queries did not require any

transformation, as the topological relationship functions extended by both of these platforms are

consistent with GeoSPARQL syntax. For rest of the three RDF stores (Virtuoso, Stardog and

Jena), all queries needed to be amended for each platform because the GeoSPARQL

conformance in this regards is not present in these platforms.

An important utilization of this study is to evaluate the suitability of the selected RDF stores for

the geometric part of the ICOS-CP metadata to be exposed as linked open data. Table 5-9 and

5-10 in the results chapter provide an insight in this regards. The ICOS-CP search and query

requirements appear to be fulfilled completely by GraphDB and RDF4J. Stardog and Virtuoso

can also be utilized as they offer all Within and Equals queries; however Overlap and Crosses

operations are not supported in these platforms. In terms of query performance, Jena appears to

be not fulfilling any level of requirements and therefore could not be a potential choice from any

practical implementation. If we study the best query performance for each query in table 5-9, and

5-10, (colored background cells), RDF4J and GraphDB columns collectively dominate the

tables.

59

7. CONCLUSION

In this thesis geospatial capabilities of five RDF stores have been evaluated with a special focus

on GeoSPARQL compliance as well as utilization for metadata management at ICOS-CP. It is

concluded that all the five RDF stores offer varying levels of geospatial support features. RDF4J

and GraphDB offer strongest compliance to GeoSPARQL and they also appear to be most

suitable platforms for ICOS-CP requirements in our evaluation. Jena has the weakest

GeoSPARQL compliance and is also not suitable for ICOS-CP while Virtuoso and Stardog have

partial compliance to GeoSPARQL as well as partial suitability for ICOS-CP requirements.

In terms of query performances, the quantitative indicators also favor the GraphDB and RDF4J.

All RDF stores offer spatial indexing and Lucene Spatial appears to be the most popular

indexing technique in the evaluated platforms. Considerable optimization is observed in

platforms where indexed performance was comparable versus un-indexed spatial query. With

regards to state of the art on the progress relating to GeoSPARQL compliance in RDF stores, the

progress appears to be still on the lower side. The dissimilarity in the result sets returned by

similar operations in different RDF stores has also been highlighted which could be thoroughly

investigated in future studies.

The testing code developed during this research (Java programs) can be executed on different

platforms and have been made available online. The performance metrics appear to change

considerably when tested on larger data sets as well as on better computing resources. Both the

dataset size as well as host machines resources available for this study were modest, and

therefore it is recommended that these tests may be conducted on machines with better

computing resources as well as on larger geospatial datasets to evaluate more realistic suitability

for ICOS-CP requirements.

60

61

Appendix A – Java Source Code

1. The complete source code developed during this study along with listing of java libraries (jars)

used in the java projects is available in LUP as zip file at:

https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8974835&fileOId=8974841.

2. The source code along with library files (jars) used in the study also available at:

https://github.com/Raza-Amir-Syed/TestGeoRDFStores.

https://github.com/Raza-Amir-Syed/TestGeoRDFStores

62

63

References

Athanasiou, S., L. Bezati, G. Giannopoulos, K. Patroumpas, and D. Skoutaset. 2013. Market and

Research Overview: Report on Geospatial RDF Stores – Where do we stand. EU Geknow

Project. Accessed 01 January 2019,
<http://svn.aksw.org/projects/GeoKnow/Public/D2.1.1_Market_and_Research_Overview.pdf>

Baode, J., and W. Dong-Qi. 2016. An Intersection Model of RCC-5 for Spatial Relationships and

its Application – Science Alert Responsive Version. In Journal of Software Engineering

Volume 11 (1): 102-108. DOI: 10.3923/jse.2017.102.108

Battle, R., and D. Kolas. 2012. Enabling the geospatial Semantic Web with Parliament and

GeoSPARQL. In Semantic Web Journal 3(4):355-370. DOI: 10.3233/SW-2012-0065.

University of California: IOS press.

BBC – Ontologies. n.d. Accessed 20 March 2019, <https://www.bbc.co.uk/ontologies>

Berners-Lee, T., J. Hendler, and O. Lassila. 2001. The Semantic Web. In Scientific American,

284(5):34-43.

Berners-Lee, T. 2006. Linked Data - Design Issues. Retrieved 01 January 2019, from

https://www.w3.org/DesignIssues/LinkedData.html

Bizer, C., and A. Schultz. 2008. Benchmarking the Performance of Storage Systems that expose

SPARQL Endpoint. In 4th International Workshop on Scalable Semantic Web knowledge

Base Systems.

Bizer, C., T. Heath, T. Berners-Lee. 2009 Linked Data - The story so far. In International

Journal on Semantic Web and Information Systems, 5 (3), 1-

22. DOI:10.4018/jswis.2009081901.

Brink , L. V. D., P. Janssen , W. Quak, and J. Stoter. 2014. Linking spatial data: semi-automated

conversion of geoinformation models and GML data to RDF. In International Journal of
Spatial Data Infrastructures Research 9(2014), pp.59-85.

Boncz, P., O. Erling, and M. Pham. (2014). Advances in Large-Scale RDF Data Management.

In Linked Open Data – Creating Knowledge Out of Interlinked Data, Results of the LOD2

Project. S. Auer, V. Bryl, S. Tramp (Eds.). pp 21-44. LNCS 8861. Springer Book. DOI:

10.1007/978-3-319-09846-3.

Cheng, L., S. Kotoulas, T. Ward, and G. Theodoropoulos. 2012. Runtime Characterisation of

Triple Stores: An Initial Investigation. In 15th IEEE International Conference on

Computational Science and Engineering. University of Ireland 2012. DOI:

10.1109/ICCSE.2012.19.

https://www.bbc.co.uk/ontologies
https://www.w3.org/DesignIssues/LinkedData.html

64

Cheatham, M., A. Krisnadhi, R. Amini, P. Hitzler, K. Janowicz, A. Shepherd, T. Narock, M.

Jones, et al. 2018. The GeoLink knowledge graph. In Big Earth Data, 2:2, 131-

143. DOI: 10.1080/20964471.2018.1469291

DBPedia – Wikki. n.d. Accessed 20 March 2019, <https://wiki.dbpedia.org/>.

DBPedia – About. n.d. Accessed 20 March 2019, <https://wiki.dbpedia.org/about>.

Eclipse RDF4J – Downloads. n.d. Accessed 20 March 2019, <http://rdf4j.org/download/>

Egenhofer, M. J., J. Sharma, and D. M. Mark. 1993. A critical comparison of the 4-intersection

and 9-intersection models for spatial relations: Formal Analysis. In R. McMaster and M.

Armstrong (Eds.) Autocarta 11, Minneapolis, MN, pp.1-11.

Enterprise Scale Knowledge Graph-ISWC. 2018. In International Semantic Web Conference,

October 2018. Monterey Canada. Acessed 01 Januray 2019,

<http://iswc2018.semanticweb.org/wp-content/uploads/2018/10/Panel-all.pdf/>

ESE. n.d. Journal of Empirical Software Engineering. 1996-2018. Accessed 01 Januray 2019,

<https://www.springer.com/computer/swe/journal/10664>

Franz Inc. 2201 Broadway, Suite 715 Oakland, California 94612. Accessed 20 March 2019

<http://www.franz.com/>

Fernandez, D. M., and J. Passoth. 2018. Empirical Software Engineering: From Discipline to

Interdiscipline. Cornell University. DOI: 10.1016/j.jss.2018.11.019

Fruchter, N., M. Specter, and B. Yuan. 2018. Facebook/Cambridge Analytica: Privacy lessons

and a way forward. Internet Policy Research Initiative Massachusetts Institute of

Technology. Accessed 13 February 2019, <https://internetpolicy.mit.edu/blog-2018-fb-

cambridgeanalytica/>

Garbis, G., K. Kyzirakos, and M. Koubarakis. 2013. Geographica: A Benchmark for Geospatial

RDF Stores *. In Alani H. et al. (eds) The Semantic Web – ISWC 2013. Lecture Notes in

Computer Science, vol 8219. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-

41338-4_22

Garcia, F., M. Serrano, J. A. Cruz-Lemus, M. Generao, C. Calero, and M. Piattini, 2007.

Empirical Studties in Software Engineering Courses: Some Pedagogical Experiences*. In

International Journal of Engineering Education 24(4).

GeoNames – Database. n.d. Accessed 20 March 2019, <http://www.geonames.org>

GeoNames – Ontology. n.d. Accessed 20 March 2019, <http://www.geonames.org/ontology/>

https://doi.org/10.1080/20964471.2018.1469291
https://wiki.dbpedia.org/
https://wiki.dbpedia.org/
http://rdf4j.org/download/
http://iswc2018.semanticweb.org/wp-content/uploads/2018/10/Panel-all.pdf/
https://www.springer.com/computer/swe/journal/10664
http://www.franz.com/
https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1016%252Fj.jss.2018.11.019&v=f59711aa
https://internetpolicy.mit.edu/team/nathaniel-fruchter/
https://internetpolicy.mit.edu/team/mike-specter/
https://internetpolicy.mit.edu/team/ben-yuan/
https://internetpolicy.mit.edu/blog-2018-fb-cambridgeanalytica/
https://internetpolicy.mit.edu/blog-2018-fb-cambridgeanalytica/
http://www.geonames.org/
http://www.geonames.org/ontology/

65

Goodwin, J., C. Dolbear, and G. Hart. 2009. Geographical linked data: The administrative

geography of Great Britain on the semantic web. In Transactions in GIS, 12, pp.19-30.

DOI: 10.1111/j.1467-9671.2008.01133.x

Gore, A. 1999. The Digital Earth: Understanding Our Planet in the 21st Century. In

Photogrammetric Engineering and Remote Sensing 65 (5): 528. In Australian Surveyor

43(2) . DOI: 10.1080/00050348.1998.10558728.

Guo, Y., Z. X. Pan, and J. Heflin. 2005. LUBM: A benchmark for OWL knowledge base

systems. In Journal of Web Semantics, vol. 3, pp. 158- 182. DOI:

10.1016/j.websem.2005.06.005

Heath, T., and C. Bizer. 2011. Linked Data: Evolving the Web into a Global Data Space. In

Synthesis Lectures on the Semantic Web: Theory and Technology, 1st edn. Morgan and

Claypool, San Rafael. DOI: 10.2200/S00334ED1V01Y201102WBE001.

Hietanen, E., L. Lehto, and P. Latvala. 2016. Providing Geographic Datasets as Linked Data in

SDI. In The International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, Volume XLI-B2, 2016 XXIII ISPRS Congress, 12–19 July 2016,

Prague, Czech Republic

Huang, W., A. Mansourian, E. Abdolmajidi, H. Xu, and L. Harrie. 2018. Synchronising

geometric representations for map mashups using relative positioning and Linked Data. In

International Journal of Geographical Information Science, 32:6, 1117-

1137. DOI: 10.1080/13658816.2018.1441416

ICOS – About. n.d. Accessed 20 March 2019, <https://www.icos-ri.eu/about-us>.

ICOS – Mission. n.d. Accessed 20 March 2019, <https://www.icos-ri.eu/our-mission>.

ICOS-CP – Introduction. n.d. Accessed 20 March 2019, https://www.icos-cp.eu/.

ICOS-CP – About. n.d. Accessed 20 March 2019, <https://www.icos-cp.eu/about-carbon-portal>

ICOS-CP – FAIR. n.d. Accessed 20 March 2019, <https://www.icos-cp.eu/fair_use>

ICOS-CP – SPARQL Endpoint. n.d. Accessed 20 March 2019, <https://meta.icos-
cp.eu/sparqlclient/>

ICOS-CP – Ontology. n.d. Accessed 20 March 2019, <https://github.com/ICOS-Carbon-

Portal/meta/tree/master/src/main/resources/owl>

Jena – Spatial Query. n.d. Accessed 20 March 2019,

<https://jena.apache.org/documentation/query/spatial-query.html>

https://doi.org/10.1111/j.1467-9671.2008.01133.x
https://doi.org/10.1080/00050348.1998.10558728
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1080/13658816.2018.1441416
https://www.icos-ri.eu/about-us
https://www.icos-ri.eu/our-mission
https://www.icos-cp.eu/
https://www.icos-cp.eu/about-carbon-portal
https://www.icos-cp.eu/fair_use
https://meta.icos-cp.eu/sparqlclient/
https://meta.icos-cp.eu/sparqlclient/
https://github.com/ICOS-Carbon-Portal/meta/tree/master/src/main/resources/owl
https://github.com/ICOS-Carbon-Portal/meta/tree/master/src/main/resources/owl
https://jena.apache.org/documentation/query/spatial-query.html

66

Jones, J., W. Kuhn, C. Keßler, and S. Scheider. Making the web of data available via web feature

services. 2014. In Connecting a Digital Europe through Location and Place. pp. 341–361.

Springer International Publishing. Accessed 15 March 2019, <http://carsten.io/jones-kuhn-

kessler-scheider-agile2014.pdf>.

Lehmann, J., R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. P.

Morsey, et al. 2015. DBpedia A large-scale, multilingual knowledge base extracted from

wikipedia. In Semantic Web 1 (2012) 1–5 1 IOS Press. DOI: 10.3233/SW-140134.

Lenka, R. K., R. K. Barik, N. Gupta, and S. M. Ali. 2016. Comparative analysis of Spatial

Hadoop and GeoSpark for Geospatial Big Data Analytics. 2016. In 2nd International

Conference on Contemporary Computing and Informatics (IC3I), Noida, 2016, pp. 484-

488. DOI: 10.1109/IC3I.2016.7918013.

LOD Cloud. n.d. Accessed 20 March 2019 <https://lod-cloud.net/>

Liu, B., and B. Hu. 2005. An Evaluation of RDF Storage Systems for Large Data Applications.

In First International Conference on Semantics, Knowledge and Grid, Beijing, 2005, pp.

59-59. DOI: 10.1109/SKG.2005.37.

Mansourian, A., E. Omidi, A. Toomanian, L. Harrie. 2010. Expert system to enhance the

functionality of clearinghouse services. In ELSEVIER. Computers, Environment and

Urban Systems Volume 35, Issue 2, March 2011, Pages 159-172. DOI:

10.1016/j.compenvurbsys.2010.06.003

Morsey, M., J. Lehmann, S. Auer, and N. N. Axel-Cyrile. 2011. DBpedia SPARQL Benchmark

– Performance Assessment with Real Queries on Real Data. In International Semantic Web

conference ISWC-2011 pp 454-469. DOI: 10.1007/978-3-642-25073-6_29.

Nalepa, G. J., and W. T. Furmanska. 2009. Review of semantic web technologies for GIS.

Department of Automatics, AGH University of Science and Technology, Krakow, Poland.

EU ICT Project INDECT.

OGC. 2003. Abstract Specifications. Open Geospatial Consortium. Accessed 01 January 2019,

<https://www.opengeospatial.org/docs/as>

OGC. 2005. Web Feature Service (WFS) Implementation Specification. Ref No OGC 04-094.

Accessed 01 January 2019, <http://portal.opengeospatial.org/files/?artifact_id=8339>

OGC. 2006. Web Map Service (WMS) Implementation Specification. Ref No OGC 06-042.

Accessed 01 January 2019, <http://portal.opengeospatial.org/files/?artifact_id=14416>

OGC. 2012. GeoSPARQL - A Geographic Query Language for RDF Data. Accessed 01 January

2019, <http://www.opengis.net/doc/IS/geosparql/1.0>

OTC – Strategy. n.d. Accessed 01 January 2019, <https://otc.icos-cp.eu/strategy-and-coverage>

https://doi.org/10.3233/SW-140134
https://lod-cloud.net/
https://www.sciencedirect.com/science/journal/01989715
https://www.sciencedirect.com/science/journal/01989715
https://www.sciencedirect.com/science/journal/01989715/35/2
https://doi.org/10.1016/j.compenvurbsys.2010.06.003
https://www.opengeospatial.org/docs/as
http://portal.opengeospatial.org/files/?artifact_id=8339
http://portal.opengeospatial.org/files/?artifact_id=8339
http://www.opengis.net/doc/IS/geosparql/1.0
https://otc.icos-cp.eu/strategy-and-coverage

67

Rattanasawad, T., M. Buranarach, K. R. Saikaew, and T. Sunpnithi. 2018. A Comparative Study

of Rule-Based Inference Engines for the Semantic Web. In IIEICE Transactions on

Information and Systems 2018 Volume E101.D Issue 1 Pages 82-89. DOI:

10.1587/transinf.2017SWP0004.

Rohloff, K., M. Dean, I. Emmons, D. Ryder, and J. Sumner. 2007. An Evaluation of Triple-

Store Technologies for Large Data Stores. In Meersman R., Tari Z., Herrero P. (eds) On

the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops. Lecture Notes in

Computer Science, vol 4806. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-540-

76890-6_38.

Sakr, S., M. Wylot, R. Mutharaju, D. L. Phuoc, and I. Fundulaki. 2018a. Introduction to Linked

Data. In Linked Data Storing, Querying and Reasoning. Springer Book. Springer

Internation Publishing 2018 pp 1-8. DOI: 10.1007/978-3-319-73515-3

Sakr, S., M. Wylot, R. Mutharaju, D. L. Phuoc, and I. Fundulaki. 2018b. Distributed Reasoning

of RDF Data. In Linked Data Storing, Querying and Reasoning. Springer Book. Springer

Internation Publishing 2018 pp 109. DOI: 10.1007/978-3-319-73515-3

Samet, H. 2015. Sorting Spatial Data. In International Encyclopedia of Geography, D.

Richardson, ed., Wiley and Sons, Oxford, UK, 2016.

Schmachtenberg, M., C. Bizer, and H. Paulheim. 2014. Adoption of the linked data best

practices in different topical domains. In The Semantic Web. In: Mika P. et al. (eds) The

Semantic Web – ISWC 2014. Lecture Notes in Computer Science, vol 8796. Springer,

Cham. DOI: 10.1007/978-3-319-11964-9_16

Simon, G. 2018. An Introduction to Geo Indexes and their performance characteristics: Part I.

Accessed 25 December 2018, <https://www.arangodb.com/2018/01/introduction-geo-

indexes-performance-characteristics-part-1/>

SOCAT – Info. n.d. Accessed 01 January 2019, <www.socat.info>

Stadler, C., J. Lehmann, K. Höffner, and Sören Auer. 2012. LinkedGeoData: A Core for a Web

of Spatial Open Data. In Semantic Web 3 (4), 333-354. DOI: 10.3233/SW-2011-0052

Tschirner, S., A. Scherp, and S. Staab. 2011. Semantic access to INSPIRE How to publish and

query advanced GML data. In Proceedings of the Terra Cognita Workshop on

Foundations, Technologies and Applications of the Geospatial Web 798. pp. 75–87.

Vilches-Blázquez, L. M., B. Villazón-Terrazas, O. Corcho, and A. Gómez-Pérez, A. 2014.

Integrating geographical information in the Linked Digital Earth. In International Journal

of Digital Earth, 7(7), pp.554-575. DOI: 10.1080/17538947.2013.783127

https://doi.org/10.1587/transinf.2017SWP0004
https://www.arangodb.com/2018/01/introduction-geo-indexes-performance-characteristics-part-1/
https://www.arangodb.com/2018/01/introduction-geo-indexes-performance-characteristics-part-1/
http://www.socat.info/
https://doi.org/10.1080/17538947.2013.783127

68

Virtuoso – Sesame Provider. n.d. Accessed 01 January 2019,

<http://docs.openlinksw.com/virtuoso/rdfnativestorageproviderssesame/>

W3C. 2001. Semantic Web Standards. World Wide Web Consortium Recommendation Accessed

01 January 2019, <https://www.w3.org/2001/sw/wiki/Main_Page>

 W3C. 2008. SPARQL Query Language for RDF. World Wide Web Consortium

Recommendation. Accessed 01 January 2019, <https://www.w3.org/TR/rdf-sparql-query/>

W3C. 2011. Web Ontology Language. World Wide Web Consortium Recommendation. Accessed

01 January 2019, <https://www.w3.org/OWL/>

W3C. 2013a. RIF Overview (2nd Edition). World Wide Web Consortium Recommendation.

Accessed 01 January 2019, <https://www.w3.org/standards/techs/rif>

W3C. 2013b. SPARQL 1.1 Query Language for RDF. World Wide Web Consortium

Recommendation. Accessed 01 January 2019, <https://www.w3.org/TR/sparql11-query/>

W3C. 2014a. RDF 1.1 Concepts and Abstract Syntax. World Wide Web Consortium

Recommendation. Accessed 01 January 2019, <https://www.w3.org/TR/rdf11-concepts/>

W3C. 2014b. RDFS Schema 1.1. World Wide Web Consortium Recommendation.

Accessed 01 January 2019, <https://www.w3.org/TR/rdf-schema/>

W3C. 2018. Large Triple Stores. World Wide Web Consortium. Accessed 01 January 2019,

<https://www.w3.org/wiki/LargeTripleStores>

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N.

Blomberg, J. Boiten, et al. 2016. The FAIR Guiding Principles for scientific data

management and stewardship. In Scientific Data volume3, Article number: 160018

(2016). DOI: 10.1038/sdata.2016.18.

Zhang, C., T. Zhao, and W. Li. 2015. Geospatial Semantic Web. Springer Books. Springer Cham

Heidelberg New York. DOI 10.1007/978-3-319-17801-1

Zhang, L., T. Jia-Hao, J. Jiang, Y Liu, M. Pu, and T. Yue. 2018. Empirical Research in Software

Engineering - A Literature Survey. In Journal of Computer Science and Technology Volume

33, Issue 5, pp 876–899. DOI: 10.1007/s11390-018-1864-x.

https://en.wikipedia.org/wiki/W3C
https://www.w3.org/2001/sw/wiki/Main_Page
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
https://en.wikipedia.org/wiki/W3C
https://en.wikipedia.org/wiki/W3C
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/OWL/
https://www.w3.org/standards/techs/rif
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
https://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide10-0.html
https://en.wikipedia.org/wiki/W3C
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/wiki/LargeTripleStores%3e
https://doi.org/10.1038/sdata.2016.18
https://link.springer.com/journal/11390
https://link.springer.com/journal/11390/33/5/page/1
https://doi.org/10.1007/s11390-018-1864-x

69

Series from Lund University

Department of Physical Geography and Ecosystem Science

Master Thesis in Geographical Information Science

1. Anthony Lawther: The application of GIS-based binary logistic regression for

slope failure susceptibility mapping in the Western Grampian Mountains,

Scotland (2008).

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France.

Applied GIS methods in time geographical research (2008).

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using

GIS and Remote Sensing (2009).

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems

as an analytical and visualization tool for mass real estate valuation: a case

study of Fontibon District, Bogota, Columbia (2009).

5. Siri Oestreich Waage: a case study of route solving for oversized transport:

The use of GIS functionalities in transport of transformers, as part of
maintaining a reliable power infrastructure (2010).

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation

(2010).

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding

sites using aerial photographs (2010).

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome

of the programme of rehabilitation measures for the river Rhine in the

Netherlands (2010).

9. Samira Muhammad: Development and implementation of air quality data mart

for Ontario, Canada: A case study of air quality in Ontario using OLAP tool.

(2010).

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and

temporal relationships between photosynthetic productivity of vegetation and

malaria transmission intensities in selected parts of Africa (2011).

11. Svajunas Plunge: Advanced decision support methods for solving diffuse

water pollution problems (2011).

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study

using GIS to monitor the urban growth of Lagos 1990 - 2008 and produce

future growth prospects for the city (2011).

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for

Android (2011).

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color

infrared imagery (2011).

15. Andrew Farina: Exploring the relationship between land surface temperature

and vegetation abundance for urban heat island mitigation in Seville, Spain

(2011).

16. David Kanyari: Nairobi City Journey Planner: An online and a Mobile

Application (2011).

70

17. Laura V. Drews: Multi-criteria GIS analysis for siting of small wind power

plants - A case study from Berlin (2012).

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi

criteria evaluation of ArRiyadh City (2012).

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building

rooftop integration analysis tool for GIS for Dokki District, Cairo, Egypt

(2012).

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via

Site Suitability and Spatially Explicit Carrying Capacity Modeling in

Virginia‟s Chesapeake Bay (2013).

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing

Manchester‟s Cultural Heritage „gold mine‟ (2013).

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley

(2013).

23. Monika Ogden: Land use impact on water quality in two river systems in

South Africa (2013).

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake

Flaten in Salem, Sweden (2013).

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200

years. How can we predict past landscape pattern scenario and the impact on

habitat diversity? (2013).

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity

models to predict weed species presence (2014).

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014).

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a

GIS analysis within the Greater London Authority area (2014).

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote

sensing and GIS - A Case Study for Kjósarhreppur (2014).

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of

agricultural droughts in the southern Ukraine between the years 2000-2012

(2014).

31. Sarah Tressel: Recommendations for a polar Earth science portal

in the context of Arctic Spatial Data Infrastructure (2014).

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral

Formosat-2 Imagery for Precision Agriculture Applications (2014).

33. Salem Jamal-Uddeen: Using GeoTools to implement the multi-criteria

evaluation analysis - weighted linear combination model (2014).

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway

network at the Swedish Transport Administration (2014).

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information

System and analytical hierarchy process: case study Dhaka City (2014).

36. Alexia Chang-Wailing Spitteler: Development of a web application based on

MCDA and GIS for the decision support of river and floodplain rehabilitation

projects (2014).

71

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of

potential changes to the public transportation system in the City of Milan

(2014).

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using

Controlled Burn in Australia. Case Study: Logan City, QLD (2015).

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica;

Geographical Distribution, Spatial Analysis and Non-traditional Risk Factors

(2015).

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary,
Jamaica (2015).

41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for

agricultural purposes: A preliminary assessment (2015).

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services

using GIS (2015).

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and Accessibility as

Indicators of Urban Sprawl in Hamilton, New Zealand (2015).

44. Stefan Arvidsson: Relationship between tree species composition and

phenology extracted from satellite data in Swedish forests (2015).

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in rural

Kenya (2016).

46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices in

LPJ-GUESS improve the spatial representation of environmental variables?
(2016).

47. Anna Lundgren: Development of a method for mapping the highest coastline

in Sweden using breaklines extracted from high resolution digital elevation

models (2016).

48. Oluwatomi Esther Adejoro: Does location also matter? A spatial analysis of

social achievements of young South Australians (2016).

49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the Middle

East for the period 1982 - 2010 (2016).

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities

A GIS Multi Criteria Evaluation based on an MSF Humanitarian Mission in

Cameroon (2016).

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of

Desertification in Ethiopia using Remote Sensing and GIS (2016).

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times in

Southeastern British Columbia. (2016).

53. Lars Ole Grottenberg: Assessing the ability to share spatial data between

emergency management organisations in the High North (2016).

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize the

Net Benefits from Urban Forests (2016).

55. Irshad Jamal: Multi-Criteria GIS Analysis for School Site Selection in Gorno-

Badakhshan Autonomous Oblast, Tajikistan (2016).

56. Fulgencio Sanmartín: Wisdom-volkano: A novel tool based on open GIS and

time-series visualization to analyse and share volcanic data (2016).

72

57. Nezha Acil: Remote sensing-based monitoring of snow cover dynamics and its

influence on vegetation growth in the Middle Atlas Mountains (2016).

58. Julia Hjalmarsson: A Weighty Issue: Estimation of Fire Size with

Geographically Weighted Logistic Regression (2016).

59. Mathewos Tamiru Amato: Using multi-criteria evaluation and GIS for chronic

food and nutrition insecurity indicators analysis in Ethiopia (2016).

60. Karim Alaa El Din Mohamed Soliman El Attar: Bicycling Suitability in

Downtown, Cairo, Egypt (2016).

61. Gilbert Akol Echelai: Asset Management: Integrating GIS as a Decision

Support Tool in Meter Management in National Water and Sewerage

Corporation (2016).

62. Terje Slinning: Analytic comparison of multibeam echo soundings (2016).

63. Gréta Hlín Sveinsdóttir: GIS-based MCDA for decision support: A framework

for wind farm siting in Iceland (2017).

64. Jonas Sjögren: Consequences of a flood in Kristianstad, Sweden: A GIS-based

analysis of impacts on important societal functions (2017).

65. Nadine Raska: 3D geologic subsurface modelling within the Mackenzie Plain,

Northwest Territories, Canada (2017).

66. Panagiotis Symeonidis: Study of spatial and temporal variation of atmospheric

optical parameters and their relation with PM 2.5 concentration over Europe

using GIS technologies (2017).

67. Michaela Bobeck: A GIS-based Multi-Criteria Decision Analysis of Wind

Farm Site Suitability in New South Wales, Australia, from a Sustainable

Development Perspective (2017).

68. Raghdaa Eissa: Developing a GIS Model for the Assessment of Outdoor

Recreational Facilities in New Cities Case Study: Tenth of Ramadan City,

Egypt (2017).

69. Zahra Khais Shahid: Biofuel plantations and isoprene emissions in Svea and

Götaland (2017).

70. Mirza Amir Liaquat Baig: Using geographical information systems in

epidemiology: Mapping and analyzing occurrence of diarrhea in urban -

residential area of Islamabad, Pakistan (2017).

71. Joakim Jörwall: Quantitative model of Present and Future well-being in the

EU-28: A spatial Multi-Criteria Evaluation of socioeconomic and climatic

comfort factors (2017).

72. Elin Haettner: Energy Poverty in the Dublin Region: Modelling Geographies

of Risk (2017).

73. Harry Eriksson: Geochemistry of stream plants and its statistical relations to

soil- and bedrock geology, slope directions and till geochemistry. A GIS-

analysis of small catchments in northern Sweden (2017).

74. Daniel Gardevärn: PPGIS and Public meetings – An evaluation of public

participation methods for urban planning (2017).

75. Kim Friberg: Sensitivity Analysis and Calibration of Multi Energy Balance

Land Surface Model Parameters (2017).

76. Viktor Svanerud: Taking the bus to the park? A study of accessibility to green

areas in Gothenburg through different modes of transport (2017).

73

77. Lisa-Gaye Greene: Deadly Designs: The Impact of Road Design on Road

Crash Patterns along Jamaica‟s North Coast Highway (2017).

78. Katarina Jemec Parker: Spatial and temporal analysis of fecal indicator

bacteria concentrations in beach water in San Diego, California (2017).

79. Angela Kabiru: An Exploratory Study of Middle Stone Age and Later Stone

Age Site Locations in Kenya‟s Central Rift Valley Using Landscape Analysis:

A GIS Approach (2017).

80. Kristean Björkmann: Subjective Well-Being and Environment: A GIS-Based

Analysis (2018).

81. Williams Erhunmonmen Ojo: Measuring spatial accessibility to healthcare for

people living with HIV-AIDS in southern Nigeria (2018).

82. Daniel Assefa: Developing Data Extraction and Dynamic Data Visualization

(Styling) Modules for Web GIS Risk Assessment System (WGRAS). (2018).

83. Adela Nistora: Inundation scenarios in a changing climate: assessing potential

impacts of sea-level rise on the coast of South-East England (2018).

84. Marc Seliger: Thirsty landscapes - Investigating growing irrigation water

consumption and potential conservation measures within Utah‟s largest

master-planned community: Daybreak (2018).

85. Luka Jovičić: Spatial Data Harmonisation in Regional Context in Accordance

with INSPIRE Implementing Rules (2018).

86. Christina Kourdounouli: Analysis of Urban Ecosystem Condition Indicators

for the Large Urban Zones and City Cores in EU (2018).

87. Jeremy Azzopardi: Effect of distance measures and feature representations on

distance-based accessibility measures (2018).

88. Patrick Kabatha: An open source web GIS tool for analysis and visualization

of elephant GPS telemetry data, alongside environmental and anthropogenic

variables (2018).

89. Richard Alphonce Giliba: Effects of Climate Change on Potential

Geographical Distribution of Prunus africana (African cherry) in the Eastern

Arc Mountain Forests of Tanzania (2018).

90. Eiður Kristinn Eiðsson: Transformation and linking of authoritative multi-

scale geodata for the Semantic Web: A case study of Swedish national building

data sets (2018).

91. Niamh Harty: HOP!: a PGIS and citizen science approach to monitoring the

condition of upland paths (2018).

92. José Estuardo Jara Alvear: Solar photovoltaic potential to complement

hydropower in Ecuador: A GIS-based framework of analysis (2018).

93. Brendan O‟Neill: Multicriteria Site Suitability for Algal Biofuel Production

Facilities (2018).

94. Roman Spataru: Spatial-temporal GIS analysis in public health – a case study

of polio disease (2018).

95. Alicja Miodońska: Assessing evolution of ice caps in Suðurland, Iceland, in

years 1986 - 2014, using multispectral satellite imagery (2019).

96. Dennis Lindell Schettini: A Spatial Analysis of Homicide Crime‟s Distribution

and Association with Deprivation in Stockholm Between 2010-2017 (2019).

74

97. Damiano Vesentini: The Po Delta Biosphere Reserve: Management challenges

and priorities deriving from anthropogenic pressure and sea level rise (2019).

98. Emilie Arnesten: Impacts of future sea level rise and high water on roads,

railways and environmental objects: a GIS analysis of the potential effects of

increasing sea levels and highest projected high water in Scania, Sweden

(2019).

99. Syed Muhammad Amir Raza: Comparison of geospatial support in RDF stores:

Evaluation for ICOS Carbon Portal metadata (2019).

