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Abstract 

Cycling has been identified as a central element of the solutions to some of the most pressing challenges for 

today’s cities, such as poor air quality, rising CO2-levels due to emissions from motorised traffic, traffic 

congestions, and sedentary lifestyles. A high-quality, safe, and widespread network of cycling infrastructure 

is a key part in the quest to encourage more people to choose the bicycle over the car. There is however a 

lack of methodologically sound, quantifiable, and consistent methods for evaluating networks of cycling 

infrastructure, partially due to issues with data availability and quality, inconsistent categorisations, and the 

fact that cycling as a means of transportation historically has received much less attention and funding, 

compared to other modes of transport. Meanwhile, there is a rich tradition of using network analysis within 

e.g. geography and transportation studies to describe, analyse, and model spatial networks. 

The purpose of this thesis is to examine how a spatial network analysis can be applied to describe and evaluate 

a network of cycling infrastructure, specifically the network in Copenhagen, Denmark. The analysis is centred 

on a range of traditional network metrics used for evaluating connectivity and accessibility, primarily based 

on the computation of shortest paths in a weighted graph, and applying mostly open source technologies 

such as PostgreSQL/PostGIS, Python, and NetworkX. From this analysis, it is evident that, despite its status 

as one of the world’s best cities for cycling, there are substantial variations in connectivity and access within 

the Copenhagen network of cycling infrastructure. The analysis moreover shows that using different 

weighted graphs to model the network, with weights based on both geographical distance and other factors 

influencing the cycling experience, can give a fuller and more nuanced picture of how accessibility and 

connectivity vary throughout the city. Combined with data about e.g. demographics and the socio-economic 

status in the city’s neighbourhoods, a network analysis of cycling infrastructure can thus highlight issues with 

areas with a disproportionately high or low network connectivity, identify overloaded network segments, and 

suggest where it might be beneficial to extend and strengthen the network. 
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Glossary 

Alpha: The alpha index α measures the actual number of cycles in a network, compared to the theoretical 

maximum number of cycles for that network.  

Adjacency Matrix: A matrix used to store information about which edges connect to the same vertices. 

Average Path Length: The average path length between vertices in a graph. 

Beta: The beta index β describes the ratio between the number of edges to the number of vertices. 

Connected Network: A graph is considered connected if there is a path from every vertex to every other 

vertex. 

Connected Node Ratio: The number of intersections divided by the number of intersections plus the 

number of dangling vertices in a graph 

Closeness Centrality: A measurement of reachability based on the average distance from a vertex to all 

other vertices in the graph. 

Cycle Superhighway: A regional bike lane between Copenhagen and the neighbouring municipalities to 

facilitate longer distance trips and bicycle commuting. 

Dangling vertex: A vertex which only is connected to one edge. 

Directed network: A network in which some or all edges only allow movement in one direction. 

Dual approach: A way of modelling networks in which e.g. street segments are transformed to vertices and 

edges are created between them if the street segments are connected. 

Edge (link): The line features connecting the vertices in a graph. 

Gamma: A measure based on the ratio between the number of actual, observed edges in a graph compared 

to the maximum possible number of edges. 
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Green Cycle Route: Bike routes with a focus on recreational values rather than speed and efficiency. 

Incidence Matrix: A matrix for storing information about which vertices the edges in a graph connect to. 

Intersection Density: The number of intersections between network segments per area unit. 

Modifiable Areal Unit Problem: The problem that arises when the division of a geographical area into 

specific area units alter the results of the analysis and exaggerate or disguise the actual distribution of the 

studied phenomenon. 

Network Efficiency: A measurement of how effectively movements through a network are. 

Network Statistics: Statistical measurements that describe fundamental properties of a network. 

Primal approach (L-Space): A way of modelling networks in which e.g. streets are represented by edges 

and street intersections and start/end points are represented by vertices. 

Planar network: A planar graph is a graph where no edges intersect without having a vertex at the 

intersection. 

Shortest Path: The shortest or cheapest way to move through the graph between a start and an end 

vertex. 

Straightness Centrality: A measurement based on a comparison between the length of the shortest paths 

in the network and the Euclidian distance between the same vertex pairs measured as a straight line. 

Street Density: The length of the edges in the network per area unit. 

Stress Centrality: The number of shortest paths that passes through a network element. 

Vertex Degree: The number of edges connected to a vertex. 

Vertex (node): The point features comprising intersections and start and end points for edges in a graph. 
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Alpha measures the actual number of cycles in a network, compared to the theoretical maximum 

number of cycles 

β Beta describes the ratio between the number of edges and the number of vertices in the graph 
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Gamma measures the number of actual number of edges compared to the maximum possible number of 

edges 

Ci Clustering coefficient for a vertex 
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1. Introduction 

In an increasingly urbanized world, cycling is often brought out as a solution to issues ranging from congested 

roads, air and noise pollution, sedentary lifestyles, lacking mobility for those who cannot drive a car, as well 

as the looming problem of rising CO2-levels. Copenhagen, Denmark is often lauded as one of the biking 

capitals of the world due to its extensive network of bike lanes and the fact that more than half of its 

population choose the bike for their daily commute (Kirschbaum, 2019; Colville-Andersen, 2017; City of 

Copenhagen, 2019a). In a city that is growing every year, both in size and population (Ekeroth, 2019), the 

current cycling infrastructure is however not sufficient, especially not since the city hope to have even more 

people biking in the future, in its attempt to become CO2-neutral by 2025 (City of Copenhagen, 2016a). 

Moreover, Copenhagen has not always been a bike-friendly city and the current conditions should thus not 

be taken for granted (Henderson and Gulsrud, 2019). 

 

The planning and prioritisation of cycling infrastructure in Copenhagen is today relying on a wide variety of 

factors and inputs, ranging from the city planner’s background knowledge and experience of the city, traffic 

counts, citizen inputs, and political prioritisations (Henderson and Gulsrud, 2019, City of Copenhagen, 

2017a). To ensure that no area is overlooked, and that funding is spent where most needed, it is however 

necessary with a comprehensive overview of the cycling network. The use of network analysis in relation to 

cycling infrastructure is often overlooked and underutilised. It does nevertheless have a large potential for 

improving the knowledge and quality of the network of bike lanes, since traditional metrics from network 

analysis, such as network density and connectivity, are important factors for the number of people choosing 

to bike (Schoner and Levinson, 2014). Cycling infrastructure in cities, which to a large extent simply consist 

of cycle lanes and paths, can however be hard to study, since they often are treated as an addition or extension 

to the road network, rather than a network in its own right. There are therefore often issues with data quality, 

missing links, and unconnected segments – both in the datasets and in the actual infrastructure (Topjian, 

2019). Although the past years have witnessed a growing body of research into the application of network 

analysis on cycling infrastructure (Schoner and Levinson, 2014; Boisjoly and El-Geneidy, 2016; Kent and 

Karner, 2019), a knowledge gap still exists when it comes to adapting transportation research and network 

analysis to the context of cycling. There is thus not yet a sufficient understanding of how to approach cycling 

infrastructure as a system of interdependent parts, rather than as bike lanes evaluated on an individual basis. 
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Aim & Research Question 

My aim with this thesis is to conduct an evaluation of the network of bike lanes in Copenhagen in order to 

firstly, examine the state of the current network, and secondly, to explore how GIS1 and spatial analysis can 

be used to evaluate networks of cycling infrastructure. The evaluation will be based on a network analysis of 

the cycling infrastructure in Copenhagen, with a focus on determining network density and connectivity, as 

well as measuring the importance and centrality of individual network segments. The goal is to demonstrate 

how a network analysis can be used to, for example, identify areas that are not sufficiently connected to or 

covered by the existing network, compared to e.g. the city average or other cities, and in this way help close 

the knowledge gap on how to think more systematically about cycling infrastructure. To do this, the analysis 

will primarily make use of data describing the location and type of cycling infrastructure in Copenhagen. 

 

A cyclist’s experience of the quality and connectivity of a network of bike lanes is however not only 

influenced by simple network measures such as distance or network density. The analysis will therefore be 

conducted as an extended network analysis, which not only looks at traditional network metrics, but also 

attempts to take other factors into account, and evaluate the network based on the local context. This for 

example entails including indicators of the quality of the bike lanes and the biking experience in the analysis, 

to get a more comprehensive view of the network quality at both a local and city-wide level. As part of this, 

I will examine how various categorisations of network segments can be incorporated into a network analysis, 

to take into account that not all segments of a network are ‘created equal’ but rather have different 

characteristics. In this specific example, this for example includes the categorisation of the different types of 

bike lanes and routes in Copenhagen (see p.6-8) combined with various methods for ranking network 

elements, depending on how safe or stressful they are for cyclists (see p.10). To achieve this part, data on the 

road network, car traffic, and land use in Copenhagen will be used. 

 

The analysis will finally correlate and compare potential variations in the network quality across the city with 

the differences in neighbourhood characteristics such as population density and average income, to look for 

any patterns in where the network of cycling infrastructure has a particularly high or low connectivity. This 

correlation will be tied to a wider discussion of how GIS and specifically network analysis can be applied 

 

1 GIS is in this context simply referring to a type computer software which can be used for storing, processing, analysing, and 
visualising geodata (Harrie, 2014). 
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within the planning of cycling infrastructure. The goal is accordingly to both outline new knowledge and 

ideas about how a network analysis can be performed and to produce applicable knowledge of the current 

state of the Copenhagen cycling infrastructure. 

 

The overall research question, which this thesis attempts to answer is: 

 

• How can a GIS-based network analysis be utilised to evaluate cycling infrastructure? 

 

This question will be answered through the following secondary research questions:  

o What can the use of measures of connectivity and centrality reveal about a network of cycling 

infrastructure? 

o How can the computation of shortest paths be used to evaluate a network of bike lanes? 

o How and to what extent can characteristics and qualities beyond connectivity and distance 

be incorporated into a network analysis? 

o In what way can a network analysis of transportation infrastructure be used to inform urban 

planning efforts? 

 

The hypothesis is that different metrics not only will affect how a network is perceived in terms of 

accessibility, network density, etc., but that the incorporation of additional variables also will enable a closer 

examination of variations across the network, compared to an analysis solely based on metric distance. 
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Outline 

In the upcoming second chapter I will describe the study area and context for the research question, 

particularly the historical background and current conditions behind Copenhagen’s status as a cycling city. 

While the knowledge presented here is not directly part of the analysis, it forms the necessary background 

and framework for the interpretation of the results. Chapter three will cover all the theoretical and analytical 

concepts used for the analysis, such as how to analyse transportation networks and the conceptualisation and 

study of networks based on graph theory. Both chapter two and three are based on a multidisciplinary 

literature study of materials from the fields of GIS, mathematics and graph theory, computer science, and 

urban planning. Chapter four will describe the methodology, including the tools applied throughout the 

analysis, the datasets which the analysis is based on, how data have been obtained and prepared, as well as 

the overall analytical approach. The outline of the analysis will be followed by a fifth chapter in which the 

results of the analysis will be presented. Finally, chapter six is dedicated to a discussion of what the results 

suggests about the state of the cycling network in Copenhagen, whether any differences in accessibility might 

be correlated to the characteristics of different areas, how the method might be applied within transportation 

and urban planning, methodological limitations, and ideas for future research. 
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2. Study Area 

Copenhagen 

Copenhagen is the capital of Denmark and has an urban population of approximately 736,000 inhabitants 

(Statistics Denmark, 2020a), a number which however has been steadily increasing for the past decades (City 

of Copenhagen, 2018a). Copenhagen has a population density of around 6,000 people per square kilometre, 

although the population density varies greatly within the city (The City of Copenhagen, 2016b). The city is 

divided into two separate municipalities, The City of Copenhagen and Frederiksberg Municipality, a legacy from the 

municipal reform from 1901. The vast majority of the city is part of the City of Copenhagen municipality, 

which complete encloses Frederiksberg. Combined, the two municipalities represent 12 neighbourhoods (see 

Figure 1), covering approximately 100 square kilometres (Statistics Denmark, 2020b).  

Functionally, Copenhagen is closely 

integrated with the surrounding suburbs, 

which nevertheless are separated on the 

administrative level. The entire urban 

area is usually referred to as Copenhagen 

metropolitan area, with a population around 

1.3 million inhabitants (Statistics 

Denmark, 2020c). 

 

Copenhagen can trace its history back to 

around year 900. The city is located on 

the eastern coast of Denmark, towards 

Sweden, and has since its start as a small 

fishing town grown both inland, towards 

west, as well as adding entire new areas of 

land claimed from the sea, a practice which continues today2. The location by the water has thus been 

formative for the growth and shape of Copenhagen, with a large part of the city only accessible from a small 

 

2 See for example the new project ‘Lynetteholmen’, which is an entirely new island constructed in the Copenhagen harbour: 
https://www.lynetteholmen.com/ 

Figure 1. Neighbourhoods in the City of Copenhagen and Frederiksberg 

https://www.lynetteholmen.com/
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number of bridges connecting Amager with Zealand and the rest of the city. The city centre is at the present 

time still dominated by buildings constructed around the sixteenth and seventeenth century, while many of 

the most central and densely populated neighbourhoods have maintained much of the original layout from 

their construction around the end of the nineteenth century (Samson, 2019). The city is thus still characterised 

by rather narrow and slightly winding streets and a fairly dense urban core, at least compared to the much 

younger cities in e.g. North America, with their more symmetrical grids and often much wider streets and 

longer blocks (Boeing, 2019). Copenhagen has however also in the past decades added entire new 

neighbourhoods to the city, some of which have faced extensive criticism for their more modern layout of 

the street network, which is claimed to accommodate car driving at the cost of cyclists and pedestrians 

(Corneliussen, 2002). These are not just curious historical details, but an important piece of information in 

an analysis of a network that to a large extent is shaped after the city’s street grid. 

 

 

Cycling in Copenhagen 

Although much of Copenhagen’s present bike lanes have been constructed within the past 30-40 years 

(Colville-Andersen, 2014), the city has a long history of cycling. Denmark’s first bike lane was constructed 

in Copenhagen in 1892 as cycling became more and more popular (Dietrich, 2009), but the city was 

nevertheless heavily dominated by car traffic throughout the twentieth century. The City of Copenhagen has 

been working strategically to improve cycling conditions and increase the number of cyclists since the 1990’s 

and adopted its first official cycling strategy in 2002. The strategy set up concrete targets for, among other 

things, the modal share of cyclists, improvement and extension of the physical infrastructure, as well as for 

the cyclists’ experience of safety and comfort (City of Copenhagen, 2002). Today the City of Copenhagen 

(not including Frederiksberg) has around 382 kilometres of designated bike lanes, of which the majority are 

elevated and physically separated from car traffic by a curb (City of Copenhagen, 2019b). In 2018, 28% of 

all trips and 49% of all commuter trips in the municipality were done on a bike, which is just short of the 

official goal of a commuter modal share of 50% for bikes (ibid.). The high rates of cycling are however also 

reflected in the number of cyclists who experience the bike lanes as too narrow and crammed (ibid.), which 

underlines the importance of strategic improvements to the current network. 
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Although bike lanes are a seemingly simple type of 

physical infrastructure, the design solutions and 

standards differ widely between places, and 

sometimes even within the same city (Andersen, 

2017). The bike lanes in Copenhagen are generally 

of a high standard, with raised curbs and a 

minimum width of 2.2 metres, although part of the 

network does consist of paths with a width of 

minimum 1.5 metres, which only are separated 

from motorised traffic by a painted white line (City 

of Copenhagen, 2013) (see Figure 3 and Figure 4). 

 

In Copenhagen, the bike lanes are usually one-

directional and placed on both sides of a street, 

although two-directional bike lanes are used 

occasionally, for example for bike paths that 

do not follow a regular street (e.g. bike lanes in parks).  

 

 

 

 

 

 

 

 

 

 

Besides the designated bike lanes, the network includes so-called ‘cycle streets’, which are streets with mixed 

traffic, but where the cars must give way to bikes. The network moreover includes the Green Cycle Routes and 

the Cycle Superhighways (see Figure 2 and Figure 5). The Green Cycle routes are bike-friendly routes with a 

focus on recreational values rather than speed and efficiency, and which may or may not follow designated 

Figure 2. The entire network of cycling infrastructure 
 in Copenhagen 

Figure 4. Bike lane marked with a painted line 
(City of Copenhagen, 2013) 

Figure 3. Bike lane with raised curb (Alpert, 2016) 
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bike lanes (ibid.). The network of Green Cycle Routes spans around 63 kilometres, which also includes 

pedestrian areas as well as bridges for cyclists and pedestrians (City of Copenhagen, 2019b). The inclusion 

of pedestrian areas, bridges etc. is the main reason that this thesis refers to the network as ‘cycling 

infrastructure’, since the network consist of other types of infrastructure than just bike lanes – although bike 

lanes do form the backbone of the network. 

 

The Cycle Superhighways are a regional project 

between the City of Copenhagen and the 

neighbouring municipalities. The project 

focusses on facilitating longer-distance 

commuting on bike between Copenhagen and 

the surrounding suburbs and towns, through 

constructing and maintaining a number of extra 

wide bike lanes on strategic stretches in the 

participating municipalities, making sure that 

intersections are optimised for cyclists, etc. 

The network of cycling infrastructure in 

Copenhagen is thus closely and deliberately 

connected to cycling infrastructure in 

surrounding municipalities. It could therefore 

be argued that analysing the network at a municipal scale does not capture the full extent and characteristics 

of the network of cycling infrastructure in the Copenhagen metropolitan area. In this way the analysis risk 

making what in geography is referred to as ‘the modifiable areal unit problem’, in which the division of a 

geographical area into specific districts can alter the results and potentially exaggerate or disguise the actual 

distribution of the studied phenomenon (Altaweel, 2018). While this is something to be kept in mind 

throughout the analysis, the cycling infrastructure in the various municipalities in and around Copenhagen 

are, in the planning process, mostly approached as separate networks, or at best as connected sub-graphs in 

the same network. Although interesting results undoubtedly could be obtained from approaching the entire 

region as one, connected network, I believe that it makes sense to consider the networks at a municipal level, 

since this is the spatial scale which most of the planning decisions are taking place on. 

Figure 5. Cycle Superhighways and Green Cycle Routes in and around 
Copenhagen 
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3. Theoretical Framework 

In this chapter I will present the theoretical framework for the analysis. The chapter will begin with an outline 

of the perspective on transportation networks which will be applied throughout the analysis. In the following 

section I will give a brief presentation of what the spatial perspective entails for the methodology and the 

outcome of the analysis. Finally, the formal definition of a network, how it is abstracted, and the concepts 

and terms used to analyse and examine the network will be explained. 

 

Accessibility & Equity in Transportation Networks 

There are numerous different ways of answering the question of how to utilise a network analysis within 

urban planning. The section below will present the approach I will apply in the upcoming analysis, which 

primarily is concerned with how the network analysis can be used to highlight issues with inequity and lack 

of access. 

 

The following will be an analysis of not just a network, but a transportation network, meaning that it is a 

system designed to overcome space and frictions such as distance, time, and topography (Rodrigue et al., 

2009). When analysing transportation networks, focus can be on distance, accessibility, spatial interaction 

(actual flows of objects, people or information between places), or transportation/land use models (a more 

complicated framework for analysing relationships and feedback mechanisms between transportation flows 

and the supporting spatial structure) (ibid.). As mentioned above, the focus here will be on distance and 

accessibility. 

 

Distance can be defined in numerous different ways, such as Euclidian distance, travel time, travel cost, etc. 

Accessibility is generally understood as a measure for the extent to which a location can reach or be reached 

from other locations (ibid.), but can otherwise be conceptualised quite differently, depending on the 

perspective. Some studies approach accessibility in a network as improving the overall efficiency and 

reachability of the transportation network, while others consider access from an equity perspective, with an 

aim of ensuring an equitable distribution of access throughout the network (Litman, 2020). Equity can again 

be understood either as so-called horizontal equity or as vertical equity. Horizontal equity means that 

everybody and every location preferable should have the same level of access (Bhuyan et al., 2019), which 
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for example can be implemented as a completely uniform network density throughout the city. Others 

approach equity in terms of the outcome, also known as vertical equity, which entails that the focus is on 

directing and redistributing resources towards those most in need, not just on ensuring universal access 

(ibid.). Within the context of cycling this could for example mean providing a higher level of accessibility to 

areas or people, who are otherwise underserved in terms of transportation infrastructure or resources in 

general. Several studies have already evaluated cycling infrastructure within an equity and accessibility 

framework (e.g. Bhuyan et al., 2019 and Kent and Karner, 2019). The ambition in the following analysis is 

not to define one specific measure for an equitable configuration of the cycling network in Copenhagen, but 

it will be considered how the various network measures vary compared to common socio-economic metrics, 

such as income and education. 

 

Planning or evaluating a network for cyclists in terms of accessibility also includes considering that a city’s 

cyclists are a very heterogenous group – particularly in a city with as high a proportion of cyclists as 

Copenhagen. While some commute by bike, others use a bike for recreational purposes or exercise, just as 

people differ by age, cycling experience, etc. Even though cyclists generally are more sensitive to factors such 

as distance, noise, and feeling unsafe in traffic than people in cars or on public transportation, the willingness 

to tolerate detours, closely passing cars, or unregulated intersections vary considerably between different 

segments of cyclists (Schoner and Levinson, 2014; Boisjoly and El-Geneidy, 2016). 

 

The diversity of cyclists and their preferences have been attempted captured in several different taxonomies 

for cyclists and cycling infrastructure (Kent and Karner, 2019; Zuo and Wei, 2019; Bhuyan et al., 2019). One 

of these is the Level of Traffic Stress (LTS) originally proposed by the Mineta Transportation Institute (Kent 

and Karner, 2019). LTS is method for classifying streets depending on their level of comfort for cyclists in 

order to quantify how cyclists experience a network and identify low stress connections (ibid.). With LTS, 

each street segment is classified on a scale from 1 to 4, where 1 corresponds to the lowest level of stress and 

4 is the highest (ibid.). The classification levels correspond to a categorisation of cyclists into four groups, 

where 1 is those most vulnerable to traffic stress (e.g. children) and 4 are the most confident and experienced 

cyclists (Zuo and Wei, 2019). The exact methodology for how to classify street segments according to LTS 

varies from different studies and contexts (ibid.). Determinant factors are usually speed limit, street width, 

and the presence of bike lanes. The classification schemes have mostly been developed for a North American 

context, which usually differ significantly from the situation in Copenhagen when it comes to cycling. LTS 
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will thus not be adopted directly in the evaluation of the network but will serve as an inspiration for how to 

evaluate different types of network segments as part of the network analysis. The exact classification of the 

Copenhagen network will be explained as part of the methodology (see p.35). 

 

GIS, Geodata & Spatial Analysis 

The following is a spatial analysis, which first and foremost entails that the research topic is approached from 

a spatial perspective, i.e. with a focus on the significance of location and spatial relationships such as distance 

and topology. In this case it also implies that GIS-software and other tools for working with spatial data will 

be an essential foundation for the analysis. A GIS-analysis makes sense for the research topic at hand, because 

the phenomenon being investigated – cycling infrastructure conceptualised as a network – at the most 

fundamental level is characterised by its spatial qualities, as for example proximity between elements, 

intersections of lanes, geographical density, etc. The analysis will thus first and foremost make use of spatial 

data. The term ‘spatial data’ covers a wide range of data types and formats, which however all share that the 

data must have a spatial component that allows you to determine the location of the object or area which 

the data describe. The exact data types and file formats used for this analysis will be described in detail in the 

next chapter (see p.29). 

 

The fact that the analysis first and foremost will be based on quantitative, spatial data naturally has some 

implications for the type of knowledge the analysis can produce, and entails that e.g. more subjective and 

qualitative evaluations of the cycling network won’t be an integral part of the analysis. The analysis is an 

examination of network characteristics and will be incorporating other factors than just metric distance, but 

it cannot give a full picture of how the network of cycling infrastructure is functioning or experienced by its 

users, even though this information to some extent do exist: the City of Copenhagen is on a regular basis 

conducting surveys among the city’s cyclist, asking questions about their feelings of safety, satisfaction with 

bike lanes, experience with the cycling culture, etc. (City of Copenhagen, 2019b). This type of knowledge is 

an important element in a comprehensive understanding of the cycling infrastructure, but significantly lacks 

a more detailed spatial perspective, since the questions usually are not about specific elements of the network, 

but instead asks about the network as a whole. The conclusions which will be presented here should therefore 

not be interpreted as a complete examination of the network of cycling infrastructure, but as a new 

perspective and as a supplement to existing knowledge. 
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Network Analysis 

The concept of a ‘network’ is used often and widely to refer to a quite diverse group of phenomena and 

within vastly different fields, from social network studies to electrical circuits (Brandes and Erlebach, 2005). 

Network theory is however also a field on its own, drawing on knowledge and methods from primarily 

mathematics and computer science. This approach to networks is also known as graph theory and focusses 

on the formal definitions and concepts used to model and study networks. Graph theory and the associated 

metrics have been chosen because they allow for describing the entire network in a quantifiable and 

systematic manner, and thus fits the purpose of developing a more systematic and comprehensive method 

for describing networks of cycling infrastructure. 

 

In the following chapter I will introduce key concepts from graph theory used for describing and analysing 

networks, followed by an outline of the specific field of network analysis concerned with spatial networks. 

The chapter ends with some specific considerations for using network analysis and graph theory for an 

analysis of specifically networks of cycling infrastructure. 

 

Spatial Network Data & Graph Theory 

What is a Network? 

Before commencing a network analysis, the first question to answer is of course what the concept of a 

‘network’ covers. At the most general level, a network is “an object composed of elements and interactions 

or connections between these elements” (Brandes and Erlebach, 2005, p.7). Within mathematics, this 

concept is described as a graph. Network and graph will therefore be used synonymously in the following. 

A graph consists of two types of elements: vertices (also referred to as nodes) and edges (sometimes known as 

links), where each edge connect a pair of vertices in the graph (see Figure 6). For a graph G = (V, E) the set 

of vertices is denoted V(G) and the set of edges E(G). The number of vertices in G is denoted v while e 

represents the number of edges (ibid.). If a vertex only is connected to one edge it is a dangling vertex 

(Tresidder, 2005). 

 



13 
 

 

Figure 6. The structure of a graph 

 

Two vertices joined by an edge are considered adjacent or neighbouring vertices (Brandes and Erlebach, 2005). 

For this specific application of graph theory, the edges describe actual segments of cycling infrastructure, 

whereas the vertices describe the segments’ intersection or start and end points. This is the so-called primal 

approach, and arguably more intuitive way of representing a transportation network. A network can also be 

modelled according to the dual approach, in which street segments are considered vertices and an edge is 

created between two vertices, if the street segments represented by the vertices are connected (Lin, 2017). 

The primal approach to network representation corresponds to the L-space for networks, in which only 

adjacent vertices are considered having a direct connection. This is different than for example P-space, in 

which connections are assumed between all vertices if there is a path between them (see Figure 7) (Lin, 2017). 

The primal approach and the L-space modelling have been chosen for this analysis because the edges in this 

case are the fundamental structure of the network, not just abstract links between vertices, as it is in for 

example social networks, where the vertices are the initial elements.  

 

 

 

 

 

 

 

 

 

Figure 7. A network of bike lanes (a) modelled in L-space (b) and P-space (c) (based on Lin, 2017) 

 

a b c 
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A network can either be directed or undirected (see Figure 8), describing respectively whether an edge 

connecting two vertices creates a connection in both directions or if it only allows movement in one 

direction. If a network is directed, an edge connecting two vertices v and u will be an outgoing edge for v and 

an incoming edge from u. 

 

 

 

 

The network of cycling infrastructure in Copenhagen is to some extent directed. It can however be 

complicated to determine whether a given segment in the network is directed or not: there are both two-way 

streets, which however only have a bike lane in one side; one way streets which might or might not have a 

bike lane in the same direction as the car traffic; mixed traffic streets which only are one-way for cars, and 

one-way streets with a bike lane that runs in the 

opposite direction of car traffic, thus allowing cyclists 

to cycle on the street in one direction and on the bike 

lane in the other direction (see Figure 9). Moreover, it 

is in many places common practice for cyclists to bike 

on streets against the allowed direction (even though it 

is illegal), and the available data from the city do not 

describe whether a given segment represent bike lanes 

on both sides or only one side/direction. The following 

analysis will therefore assume that the network is 

undirected. 

 

 

Another aspect in which the graph representing the network is simplified compared to the physical network 

is the representation of parallel edges. The physical network of cycling infrastructure is actually a multigraph, 

meaning that there might be parallel edges between the same vertices. This is for example the case for all the 

streets which have bike lanes on both sides of the street. As just mentioned, this is however not the case for 

the dataset, and the graph used to represent the network will therefore be a simple graph, i.e. with no parallel 

edges (Brandes and Erlebach, 2005). It is moreover loop-free since there are no edges for which the start 

u 

v 

Figure 8. An undirected graph 

Figure 9. On Kronprinsessegade, the bike lane allows cyclists to 
move against the traffic on the otherwise one-directional street 
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and end vertices are identical. A similar simplification is done considering the planarity of the network. A 

planar graph is a graph where no edges intersect without having a vertex at the intersection (Dill, 2004). In 

other words, there are no cases where an edge is intersecting another edge without actually being connected 

with that edge. For the cycling network in Copenhagen, this is the case for almost all locations, except for a 

few cycling bridges which requires a small detour in order to connect to the street and bike lanes under the 

bridge (see Figure 10). For the sake of this analysis the network will however be considered a planar network. 

 

 

 

 

 

 

 

 

 

 

A graph is considered connected if there is a path from every vertex to every other vertex, i.e. there is no 

location in the network which cannot be reached from all other locations (disregarding the length and 

complexity of the path) (ibid.). Otherwise the network is disconnected (see Figure 11). Whether the network 

of cycling infrastructure is considered connected depends on how the physical network is converted into the 

abstraction of a graph. If smaller gaps between bike lanes are disregarded, if it is still possible to bike between 

the bike lanes, the network is connected3. A path is in this context a sequence of vertices and edges which 

together form a connection between vertex u and vertex v, given that v ≠ u. 

 

 

 

 

 

3 Ignoring a few completely isolated segments which will not be included in the analysis. See p.31 for more about how the data 
have been cleaned and condensed. 

 

 

 

 
Figure 11. A disconnected graph 

Figure 10. The cycle bridge Åbuen requires a small detour to connect 
to the bike lane below. Image from Jørgensen, 2015. 
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To determine e.g. the shortest path (see p.18 for more on shortest paths), the metric distance between vertices 

can be used, given that each vertex has been assigned a location that enables distance computation. Shortest 

paths and distances can however also be based on vertex or edge weights, which describes a given property of 

the segment. The weights for a graph can represent e.g. distance, travel time, or other forms of cost, or it 

can be a measure of e.g. the strength or capacity of a connection (ibid.). The network will in this case be 

assigned weights representing the costs for the various segments (see p.35 for a further description). 

Finally, the Copenhagen network of cycling infrastructure is considered a complex network. Complex 

networks are networks which are neither completely random nor completely regular4, which is the case of 

most real-life networks (Lin, 2017). 

 

Storing Network Elements 

Common ways to store network elements and describe the connection between them are respectively an 

incidence matrix and an adjacency matrix. An incidence matrix B for an undirected graph is a matrix with v rows 

and e columns (with v being the number of vertices and e being the number of edges). If an entry Bi,j = 1 

this means that the vertex i and the edge j are connected, if Bi,j = 0, they are unconnected. An incidence 

matrix can for example be used to quickly get an overview of the number of edges connected to each vertex 

(which is equal to the sum of the row corresponding to that vertex) (see Table 2 for an example). An 

adjacency matrix A is a matrix with v rows and v columns. For an undirected graph, if an entry Au,v = 1 the 

vertices u and v are adjacent, i.e. there is an edge between them. If Au,v = 0 the vertices are non-adjacent 

(Brandes and Erlebach, 2005). The adjacency matrix can be modified to store edge weights, so that Au,v stores 

the weight of the edge (Wagner, 2003). In that case, the lack of a valid number signifies that there is no edge 

between the vertices (Harrie, 2014b) (see Table 3 for an example).  

 

4 A regular graph is a graph in which all vertices have the same number of neighbours (Brandes and Erlebach, 2005) 
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 Edges 

Vertices              
1 2 4 5 8 9 10 11 14 15 16 18 19 20 21 22 … 

1 1 
               

 

2 
                

 

3 
 

1 
              

 

4 
 

1 
              

 

7 
  

1 
             

 

8 
  

1 
             

 

9 
   

1 
            

 

10 
                

 

11 
                

 

15 
    

1 
           

 

16 
    

1 
           

 

17 
     

1 
          

 

18 
     

1 
          

 

19 
      

1 
         

 

20 
      

1 
         

 

21        1          

…                  

 
Table 2. Segment of the incidence matrix for the graph. 

 

Vertices  1 2 3 4 7 8 9 10 11 15 16 17 18 19 20 21 22 … 

1                                     

2                                     

3       2                             

4     2                               

7           4                         

8         4                           

9                                     

10                                     

11                                     

15                     8               

16                   8                 

17                         9           

18                       9             

19                             10       

20                           10         

…                   

 
Table 3. Segment of the adjacency matrix for the graph, in this case storing the IDs of edges between vertices  
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Analysing & Evaluating Networks 

With the formal conceptualisation of a network taken care of, I will introduce some of the core concepts 

and methods for analysing, evaluating, and comparing networks. As mentioned above, network analysis is a 

broad field, and the abstract concept of a graph is used to model many different types of phenomena. Not 

all concepts from graph theory will be meaningful or applicable for all types of networks or approaches, and 

it is therefore important to choose your analytical concepts carefully. In the section below I will limit the 

focus to the selected concepts for examining a network of cycling infrastructure. 

 

When analysing a network, you are generally interested in identifying either some general, underlying 

characteristics for the whole network, or to identify specific segments or elements which stand out from the 

rest of the network. Measurements describing the entirety of the graph are referred to as global values, whereas 

measurements for specific segments are local values (Brandes and Erlebach, 2005). Measurements can 

furthermore be calculated either as single values (e.g. the average path length) or as distributions (e.g. the 

range of path lengths) (ibid.). Many of the measurements are based on the computation of shortest paths 

between vertex pairs. The concept of shortest paths and how they can be calculated will therefore be the 

first topic of this section. 

 

Shortest Paths 

As mentioned above, a common operation in network analysis is to find a path between two vertices, a path 

which usually is equal to the shortest possible path. The shortest path is normally defined as the one with 

the lowest costs, based on the weights assigned to the edges or vertices (Aby-Ryash and Tamimi, 2015). The 

shortest path is hence a relative intuitive concept, although the actual computation of shortest paths can be 

less straightforward. 

 

The computation of shortest paths can be divided into two different approaches: the single-source shortest paths 

problem (SSSP) and the all-pairs shortest paths problem (APSP) (Brandes and Erlebach, 2005). For the single-

source shortest paths problem, the shortest paths are calculated from a single source vertex s to all other 

vertices in the graph. For the all-pairs shortest paths problem, the problem is to find the shortest paths for 

all possible pairs of vertices in the graph (ibid.). The analysis performed here requires the shortest paths 



19 
 

between all vertices and will therefore use the APSP approach. Several methods for solving the APSP exists. 

In this case, the Floyd-Warshall algorithm will be applied. 

 

The Floyd-Warshall Algorithm 

The Floyd-Warshall Algorithm for solving the APSP problem works by comparing all potential paths 

between all vertex pairs in the graph. The algorithm makes use of an adjacency matrix and furthermore 

requires a distance matrix D with the dimensions n*n which stores the distance between all vertex pairs. For 

the algorithm to produce the correct result, the graph must be connected and have no cycles of negative 

weights5. 

• First, all entries in the distance matrix are set to infinity 

• For each vertex v, the entry in the distance matrix corresponding to the distance between the vertex 

v and itself, Dv,v is set to 0 

• For each edge (v,u) (i.e. each edge connected to vertex v) the distance matrix Dv,u is set to the weight 

of edge (v,u) 

• The next step is to check if there exists a vertex triple (v,w,u) for which the distance is shorter than 

for (v,u), in which case the distance matrix for Dv,u is updated with the shortest distance value 

• The check is performed in a triple loop over all vertices until the shortest distance between all vertex 

pairs have been found (Brandes and Erlebach, 2005). 

 

For an example of how the Floyd-Warshall algorithm can be implemented, see Appendix XIII. 

 

Connectivity 

The first type of measurement to be introduced below are different ways of determining the connectivity of a 

graph. Connectivity could be said to be the main objective behind a transportation network (Dill, 2004). The 

computation of a networks’ connectivity is usually done on a global scale (i.e. one measurement for the whole 

network), as an indication for how well connected the network is in general. This is in contrast to the 

 

5 A cycle, or circuit, is “a finite, closed path starting and ending at a single node” (Dill, 2004, p.6). A cycle of negative weight is a 
cycle which weights added together results in a negative number. 
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centrality indices introduced later (see p.22), which can be used as quantifications of how well the individual 

network elements are connected to the rest of the network. 

 

Alpha, Beta & Gamma Indices  

Some of the common measurements for network connectivity are the alpha, beta, and gamma indices. The 

alpha index α measures the actual number of cycles in a network, compared to the theoretical maximum 

number of cycles for that network. The alpha index ranges from 0 to 1. Simple networks and graphs with a 

tree structure will have an alpha index of 0, while higher alpha-values represent a more connected network 

(Rodrigue et al., 2009). The alpha index can be computed based on the number of edges (e) and the number 

of vertices (v) in a graph (Dill, 2004): 

 
𝛼 =  

𝑒 − 𝑣 + 1

2 ∗ 𝑣 − 5
 Eq. 1. Alpha Index 

  

The beta index β describes the ratio between the number of edges to the number of vertices (ibid.). Simple 

networks have a beta index smaller than 1 while more complex networks have a beta index larger than 1 

(Rodrigue et al., 2009). The beta index is, within network analyses of street networks, also known as the Link-

Vertex Ratio (Dill, 2004). A perfect street grid has a beta index of 2.5, but the suggested value for street 

networks is usually around 1.4, which is neither too simple nor to gridded for an urban street network (ibid).  

The index can be computed as (Rodrigue et al., 2009): 

 

 𝛽 =  
𝑒

𝑣
 Eq. 2. Beta Index 

  

Finally, the gamma index γ is a measure based on the ratio between the number of actual, observed edges in 

a graph compared to the theoretical maximum number of edges (Rodrigue et al., 2009). Just like the alpha 

index, the gamma index range between 0 and 1, with a value of 1 representing a completely connected 

network, also known as strong connected, with direct links between all vertices (ibid.; Brandes and Erlebach, 

2005). The gamma index can be computed as (Rodrigue et al., 2009): 

 

 𝛾 =  
𝑒

3 ∗ (𝑣 − 2)
 Eq. 3. Gamma Index 
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The alpha, beta, and gamma indices can be useful for an initial description of the connectedness of a graph, 

but two very different graphs might still have the same values for these three indices, and the they do thus 

not necessarily reveal a graph’s more unique structural properties (ibid.). To achieve that, additional 

measurements are needed. 

 

Density 

A suggested measurement for the connectivity of a transportation network is the network density and 

clustering. Network density can be conceptualized in several different ways: 

Intersection density is the number of intersections between network segments per area unit (e.g. square 

kilometre). The higher the number the higher the connectivity of the network is assumed to be (Dill, 2004). 

Street density is correlated to intersection density but is measured as the network length per area unit, with 

higher values indicating a shorter distance between edges, which might suggest a higher connectivity (ibid.). 

Connected node ratio (CNR) is calculated as the number of intersections (e.g. between bike lanes) divided by the 

number of intersections plus the number of dangling vertices. The CNR ranges between 0 and 1 with a 

higher CNR-value suggesting few dangling vertices, which usually indicates a higher connectivity (ibid.).  

 

Clustering 

The amount of clustering in a network can be quantified through the clustering coefficient. The clustering 

coefficient can both be computed as a local value for each vertex, or as a global value for the entire network 

(Lin, 2017). The clustering coefficient is actually measuring the edge density of a vertex’s neighbours by 

testing for the existence of triangles in the network (Shanmukhappa et al., 2018) (see Figure 12). 
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Figure 12. Various levels of clustering for the vertex v: Maximum clustering (a), medium clustering (b), no clustering (c)  
(based on Bisht, s.d.) 

b a 
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The clustering coefficient Ci for a vertex vi can be computed based on the degree of the vertex di (see p.23) 

and the number of edges between the adjacent vertices (mi) (Lin, 2017): 

 

 
𝐶𝑖(𝑣𝑖) =  ∑

2 ∗ 𝑚𝑖

𝑑𝑖 ∗ (𝑑𝑖 − 1)
 

 

Eq. 4. Local Clustering Coefficient 

 

There are several ways of determining the global clustering coefficient, but one method is simply to find the 

average of all local clustering coefficients for all vertices (Shanmukhappa et al., 2018): 

 

 
𝐶̅ =

1

𝑣
∑ 𝐶𝑖

𝑣

𝑖=1
 Eq. 5. Global Clustering Coefficient 

 

Average Path Length 

A network’s average path length is another global measure that can reveal some of the network’s underlying 

characteristics (Lin, 2017). The average path length is defined as below, with v denoting the number of 

vertices and dst referencing the distance between two vertices s and t (Lin and Ban, 2017): 

 
𝐿𝑎𝑣𝑒 =

1

𝑣(𝑣 − 1)
∑ 𝑑𝑠𝑡

𝑠,𝑡∈𝑉,𝑠≠𝑡

 Eq. 6. Average Path Length 

 

Network Efficiency 

A final method for evaluating the global connectivity of the network is network efficiency. The efficiency of a 

network naturally depends on the objective with the network and which function it serves but can be 

generalised as the effectiveness of movement through a network (Lin, 2017). The network efficiency can be 

computed as (ibid.): 

 
𝐸 =  

1

𝑣(𝑣 − 1)
∑

1

𝑑𝑠𝑡
𝑠,𝑡∈𝑉,𝑠≠𝑡

 Eq. 7. Network Efficiency 

 

The computation of average path length and network efficiency look remarkably similar. While average path 

length is based on the distance between vertices in the chosen unit and returns an average in the same unit, 

network efficiency is based on the reciprocal distance between vertices and thus returns a result which, 

although influenced by the choice of unit, is not expressed in that unit.  
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Centrality 

The computation of centrality is used to quantify the possibly “intuitive understanding” that in a network, 

some vertices or edges are more important for the network connectivity than others (Brandes and Erlebach, 

2005, p.16). This variance of importance is usually computed as a so-called centrality index which assigns a 

level of centrality to every vertex or edge (ibid.). Although centrality indices are essential within network 

analysis, there is no single or clear-cut definition of what a centrality index is. Instead, a number of 

interpretations and methods for how to determine the relative importance of network segments exists, and 

the choice of method must depend on the real-life function of the network. One interpretation of centrality 

might be to identify the edges with the most activity/flow, or the vertices with the highest number of 

connections, while another approach might understand centrality as the vertices and edges which, if removed, 

would disconnect the network (ibid.). For all centrality indices it is however a requirement that they only 

depend on the structure of the graph and, for most centrality indices, that the graph is connected (ibid.). 

 

Vertex Degree 

A common and straightforward centrality index is the measurement of the degree of a vertex. The degree 

CD(v) for a vertex v in an undirected graph is simply the number of edges connected to the vertex v (ibid.). 

The degree centrality is a local measurement, since it only measures a vertex’s immediate neighbours, and it 

does not tell you anything about how central or well-connected the vertex’s neighbours are (ibid.; 

Shanmukhappa et al., 2018). The degree measurement is applicable for the analysis of transportation 

networks, even though there are natural limitations to the degree variation for specifically street networks: it 

is rare to encounter intersections with more than 3 intersecting roads, which results in a maximum degree of 

6 for all vertices in the network (Lin, 2017). 

 

Stress Centrality 

The stress centrality Cs(e) gives an indication of the amount of strain or ‘work’ done by each vertex or edge 

(Brandes and Erlebach, 2005). The index is based on the number of shortest paths that goes through a 

network element and is thus based on the assumption that flows always follow the shortest path. The stress 

centrality for edges is defined as below, where σst(e) refers to the number of shortest paths containing the 

edge e, and s and t are the start and end vertices (ibid.): 
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 𝐶𝑠(𝑒) =  ∑ ∑ 𝜎𝑠𝑡(𝑒)

𝑡∈𝑉𝑠∈𝑉

 
Eq. 8. Stress Centrality 

 

 

Cyclists do not always choose the shortest path but are generally quite sensitive to distance and tend to value 

shorter distances over most other factors (Schoner and Levinson, 2014). The stress centrality measures the 

amount of flow through an edge in an “all-to-all scenario” (Brandes and Erlebach, 2005, p.29), i.e. a 

hypothetical situation where there for each vertex is exactly one person cycling to all other vertices. This is 

of course not an accurate picture of the actual flow of cyclists in a city. The stress centrality can however be 

a good indication of which edges are most important for the overall network connectivity, and moreover 

reveal how many shortest paths would be affected if an edge were changed or removed. Stress centrality can 

likewise be used as an indication of the resilience of the network: an even distribution of stress centrality 

indicates a resilient system where no single edge carries too much stress, whereas a high variety in stress 

centrality and a few elements with very high values indicates that the network is too reliant on a small number 

of critical vertices and edges (Lin and Ban, 2017). 

 

Closeness Centrality 

The closeness centrality is based on the average distance from a vertex to all other vertices in the network and 

can thus be a measure of the reachability of that vertex to or from other places in the network (Brandes and 

Erlebach, 2005). The distribution of closeness centrality can for example be used to illustrate various levels 

of accessibility in a network, with higher variations in closeness in less gridded street networks (Lin, 2017). 

The closeness centrality is computed as follows, with dst denoting the length of the shortest path between 

vertex s and vertex t and v denoting the number of vertices in the network (ibid.): 

 

 
𝐶𝑐(𝑠) =  

𝑣 − 1

∑ 𝑑𝑠𝑡
 Eq. 9. Closeness Centrality 

 

The closeness centrality value actually measures the inverse distance to all other vertices. Vertices with a high 

closeness centrality value thus have the shortest distance to all other vertices (Neo4J, s.d.). 
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Straightness Centrality 

The straightness centrality introduces the spatial distance in the calculation of centrality, rather than just shortest 

path, and is based on a comparison between the length of the shortest paths in the network compared to the 

Euclidian distance measured as a straight line (Lin, 2017). The straightness centrality can therefore be 

interpreted as a measurement of the efficiency of the network, in the sense that it measures how much longer 

the path in the network is, compared to a path that does not have to follow the structure of the network. 

This centrality index is thus only applicable for networks where it makes sense to distinguish between 

different types of distance, as it is the case for a cycling network. The straightness centrality for a vertex is 

defined as below, with 𝑑𝑠𝑡
𝐸𝑢 denoting the Euclidian distance between vertex s and vertex t: 

 

 
𝐶𝑠(𝑠) =  

1

𝑣 − 1
∑

𝑑𝑠𝑡
𝐸𝑢

𝑑𝑠𝑡
𝑠,𝑡∈𝑉,𝑠≠𝑡

 Eq. 10. Straightness Centrality 

 

Network Statistics 

The measurements and indices introduced above are often summarised in the form of network statistics, which 

have the purpose of describing “essential properties” of the network, without having to present the detailed 

structure of the graph (Brandes and Erlebach, 2005, p.293). This is particularly relevant for local values, 

which might be difficult to interpret, especially for large and complex networks. The transformation of local 

values to global values or distributions can e.g. be done by summation, averaging, or finding minimum or 

maximum values (Brandes and Erlebach, 2005). It might furthermore be useful to normalise both local and 

global values, or in other words, to transform them to a relative value compared to the overall distribution 

of values for that specific measurement. A common normalisation method for most connectivity and 

centrality indices is to divide all local values with the maximum value for that index, resulting in all values 

being transformed to a value on a scale from 0 to 1 (ibid.). This normalisation makes it easier to assess 

whether a specific vertex for example has a relatively low or high degree compared to the distribution of 

values across the network. It should however be used carefully, if the objective is to compare values between 

different networks, since a normalised value no longer tells you anything about the actual value range. For 

comparison, non-normalised values are usually preferable. Comparisons across graphs should still be done 

carefully, since e.g. the maximum centrality value that a vertex can have is depending on the graph size (ibid.). 
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Differing centrality values might thus be more of an indication that two graphs differ in their size than an 

indication of variations in structure.  

 

Spatial Network Analysis 

There is a long history of network analysis in geography, for example for the study of urban street structures, 

transportation networks, and route planning (Lin, 2017; Dill, 2004). The interest in network analysis has been 

fuelled by the development of GIS and increasing computing powers, which allows for more advanced 

analysis of complex networks (Xie and Levinson, 2007). The theoretical framework presented above is 

applicable for spatial applications, but there are some specific considerations for spatial networks. This is for 

example, as previously described, the modelling of the network, particularly what the edges and vertices are 

made to represent. The fact that the graph in this case represents a physical structure moreover requires 

some extra considerations, such as how the physical landscape might place constraints on the network 

structure and explain some of the observed topological relationships. Spatial networks additionally exist in 

three dimensions, which particularly should be considered in places where elevation is a factor. Copenhagen 

is located in a very flat area and elevation will therefore not be a variable in this network analysis, but elevation 

can be an important factor for networks of cycling infrastructure in other locations. 

 

Apart from elevation, a network analysis of cycling infrastructure moreover has some challenges which are 

less prevalent for regular street networks. Cycling infrastructure is for example more prone to suffer from 

missing links and unconnected networks and the datasets describing the networks often have a lower data 

quality and ambiguous classification of different types of cycling facilities (Schoner and Levinson, 2014; 

Lucas-Smith, 2019). It is therefore important to clarify the assumptions and limitations for the analysis since 

reliable data about the exact extent of the physical infrastructure might not exist. 
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4. Method 

In the following chapter I will begin with an introduction to the different tools used during the analysis, 

followed by a description of the collection and subsequent cleaning of data. Subsequently, the central steps 

in the method used for the analysis will be presented. 

 

Tools 

Throughout the data collection, data cleaning, and analysis, I have made use of a wide range of tools and 

technologies. The following is thus only a presentation of the tools which have been most decisive for the 

design of the analysis. 

 

A Spatial Database with PostgreSQL 

The foundation for the storage and analysis of all data used in the analysis is a database in the open-source 

database software system PostgreSQL, also known as Postgres. Postgres is an object-relational database 

management system (ORDBMS) (Mansourian and Harrie, 2013), meaning that the system combines 

characteristics from the relational data model and the object-based data model. From the relational model, Postgres 

has adopted the idea that data are stored in ‘relations’ or tables which can be linked together with the use of 

unique ‘keys’ or ids, allowing the user to combine for example a table with the population data for a city’s 

neighbourhoods with another table describing the neighbourhood’s infrastructure. Furthermore, Postgres 

uses SQL (Structured Query Language) to communicate with the database, just like most relational databases 

(ibid.). From the object-oriented data model, Postgres has adapted the possibility to implement abstract data 

types (ADT), as for example spatial data. The implementation of ADTs in the database makes it possible to 

combine both geometric and attribute data in the same table (unlike the relational model where geometries 

and attributes are stored separately) (ibid.). This is one of the main benefits for using an ORDBMS for spatial 

applications, since the storage of spatial data in the table enables you to perform geometric and topological 

queries using the same methods – in this case SQL – as with the attribute data (ibid.). 

 

To allow Postgres to support and query geographic objects, the extension PostGIS is required. With PostGIS, 

the database can store different feature types (e.g. points, linestrings, polygons etc.), support spatial and 
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topological operations (such as area, distance, intersect, buffering), and define and change the data’s spatial 

reference system. 

 

A Postgres database with the PostGIS extension was the primary tool for the storage and pre-processing of 

the data, as well as for some of the initial queries used in the analysis (see below for details). The computation 

of shortest paths, which is the foundation of the majority of the centrality indices, was however done with 

the programming language Python, as outlined below. 

 

Using Python for Spatial Analysis 

Python is a general purpose open-source programming language often used in data analysis. Python is also 

widely used within spatial analysis due to its potential for automation and more customized solutions, 

compared to desktop software. Many desktop GIS therefore come with a build-in Python module, which 

allows you to run Python scripts as part of a spatial analysis, just as there exist numerous packages that 

supports using Python for spatial data. 

 

In this analysis, Python has been used for some pre-processing of data, but is predominantly applied in the 

computation of shortest paths. The computation of shortest paths could potentially have been conducted in 

Postgres with the PostGIS extension pgRouting, which contains an implementation of the Floyd-Warshall 

algorithm for all pair shortest paths. This solution does however not allow you to inspect the actual shortest 

paths, only the distances or costs between all vertex pairs (pgRouting, 2017) and is therefore not adequate 

for the requirements for this analysis. 

 

The solution to the APSP problem and the computation of the various connectivity and centrality indices 

are primarily based on the Python packages Pandas and NetworkX6. Pandas is a package based on NumPy7 

and is particularly useful for working with tabular data structure. I have in this context used it for e.g. the 

pre-processing of demographic and socio-economic data and for creating the adjacency matrices. NetworkX 

is a Python package developed specifically for modelling and studying graphs and has been utilised for the 

 

6 A Python package is a collection of different files/modules containing code defining functions, classes, variables, etc. 
7 NumPy is Python package developed for scientific computing based on an array data structure, as used in for example an 
adjacency matrix. 
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computation of shortest paths, with the use of the build-in function for the Floyd-Warshall algorithm and 

the package’s predefined classes for graphs and their components of edges and vertices. 

Additionally, a number of other packages and modules used for e.g. plotting and connecting to the database 

have been applied. 

 

There are several reasons for using Python with NetworkX rather than e.g. a desktop GIS. First of all, the 

most common desktop GIS do not support advanced network analysis, like the computation of APSP or 

centrality indices – at least not without requiring additional licenses, which often are not available in the 

urban planning settings in which such an analysis frequently will take place. The goal was therefore to make 

use of open source tools, which do not have any immediate barriers from acquisition costs. An analysis based 

on several, lower-level tools and steps, rather than e.g. a pre-programmed function in a desktop software, 

moreover makes it easier to examine the interplay between data quality and structure and the final results, as 

well as allowing for an exploration of how a network analysis can be adapted to the specific research topic. 

Desktop GIS – in this case QGIS – has however also been used at various steps in the analysis and is also 

used for data visualisation. 

 

Data Preparation 

The following sections will firstly describe which datasets I have used to answer the research questions, what 

the data describe, and how they have been obtained. Subsequently, the most important steps taken to pre-

process and clean the data, before the actual analysis, will be explained. 

 

Data Collection 

All data used for the analysis are made available by the City of Copenhagen and Frederiksberg Municipality, 

primarily as open data through the data portal for public data in Denmark, opendata.dk. The majority of the 

datasets are geodata and available as Shapefiles8, but demographic data are available as tabular data from the 

City of Copenhagen’s public database with city statistics, statistikbanken.kk.dk. 

 

8 A Shapefile is a nontopological data format developed by the GIS-company ESRI. Shapefiles are used for storing location and 
attribute information about spatial features and can contain either points, lines, or polygons (ESRI, 2016). The file format has 
become an industry standard for working with spatial data. 
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Bike lanes and routes in Copenhagen 

Two different datasets describing bike lines have been obtained from respectively the City of Copenhagen 

and Frederiksberg Municipality. The most important information in the datasets are: 

• Type of segment (e.g. bike lane, green cycling route, bike friendly street etc.) 

• Whether the segment already has been established or only is planned for later construction 

• Geographic extent of each segment 

 

Roads 

For the street network, several different datasets were used. The most important information in the datasets 

for the street network are: 

• Type of street (e.g. local street, regional street, pedestrian shopping street, etc.) 

• Whether the street is public, municipal, or state owned 

• Speed limit, where available 

• The geographic extent of the road surface (i.e. polygon data) 

• Traffic counts (measuring the volume of traffic on a street segment) 

 

Socioeconomic Data 

To contextualise the findings of the analysis of network and centrality, several different datasets were used, 

describing for each neighbourhood: 

• Neighbourhood boundaries 

• Population density 

• Average income 

• Level of education 

• Age distribution 

  

Apart from the data described above, various datasets and base maps will be used for visualisation purposes.  
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Data Cleaning & Pre-Processing 

Demographic Data 

The demographic data describing the age distribution for each neighbourhood are made available as CSV-

files containing a level of detail which are not necessary nor appropriate for the research topic. The first step 

in the pre-processing of data was thus a classification of the population data into age groups. The groups 

used here follows the classification of the population into children, young people, adults, and elderly normally 

used within traffic planning and cycling research (see e.g. Herby and Friis, 2014): 

• 0 – 17 years 

• 18 – 24 years 

• 25 – 64 years 

• 65 – 99 years 

 

Cycling Infrastructure 

The Shapefiles describing the cycling infrastructure in Copenhagen had a great number of missing attribute 

values, invalid geometries, duplicate lines and vertices, gaps between segments which actually are connected 

in the physical infrastructure, dangling ends at intersections etc. This would be an issue for most spatial 

analysis, but is possibly particularly problematic for a network analysis, in which it is of great importance 

whether two segments are connected or not, and where duplicate and overlapping edge segments will give a 

skewed value for the length of the network. The first part of the data cleaning was thus an extensive and 

mostly manual entering of missing values, removal of duplicate features, merging of mistakenly divided 

segments, etc. The pre-processing of the data did moreover also involve moving from a dataset with lines 

which ideally should represent the exact extent of the physical infrastructure to one which represents the 

more abstract idea of a graph. This for example means that while the original data did not connect two bike 

lanes separated by an intersection, although they in practice function as one segment, those segments should 

be connected in the final graph. The removal of gaps between segments can to some extent be automated, 

but in many instances require a visual inspection: a 10 meter gap between segments might for example be 

due to an intersection, meaning that the segments actually should be considered connected, or it might be a 

pedestrian-only street or canal dividing the bike lanes, in which case the segments should not be connected 

in the final graph. 
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The automated data editing steps can be summarised as follows: 

• If a line segment a ends less than 3 meters from another line b, line a is extended so that it connects 

to line b (see Figure 13). 

 

 

 

 

 

 

• If two lines intersect and produces dangling ends, which are 3 meters or less, the ends are removed 

(see Figure 14). 

 

 

 

 

 

 

• The final dataset only contains segments classified as bike lanes, Cycle Superhighways, or Green 

Cycle Routes. 

• The network both includes existing and planned/future segments for bike lanes and Cycle 

Superhighways, while planned segments of Green Cycle Routes are not included, since these planned 

segments might not actually allow for cycling at all at the moment. For bike lanes and Cycle 

Superhighways it is assumed that biking is still possible, regardless of whether the infrastructure has 

been established or only decided on – and since the ambition is to identify potentially overlooked 

areas, the distinction between existing or planned is of less interest. 

• The segments of bike lane are assigned an attribute describing whether they are part of a Green Cycle 

Route and/or a Cycle Superhighway, taken as a sign of respectively recreational value or as an 

indicator that the segment has been optimised for efficient and comfortable cycling. 

• All segments are furthermore assigned an attribute describing whether they run through or along the 

water or a park, taken as a sign of recreational value. 

Figure 13. Unconnected edges are connected 

< 3 meters 

< 3 meters 

Figure 14. Dangling ends are removed 
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• Unconnected segments were identified. Only four, shorter unconnected segments were identified 

and removed from the final graph. 

• Finally, the dataset was converted to a topologically valid graph of edges and vertices (see below for 

an elaboration and Figure 15 for a visualisation of the edges and vertices). 

 

The data editing performed in Postgres can be seen in Appendix III. 

 

Topology 

Spatial data loaded into a Postgres database extended with PostGIS is not, as a starting point, topological, 

meaning that the dataset contains the location and extent of the geographical features, but it does not 

explicitly store any information about whether the features intersect, touches, overlap, etc. Since the 

Shapefiles, which the data originally are delivered as, are not topological either, no data is lost by loading the 

files into a Postgres database. Topology is however essential when the line features are to be converted into 

a graph, since a graph is based around the idea of shared vertices (Mikiewicz et al., 2017). To enable explicit 

storage of topological relationships, the PostGIS topology extension can be applied. The PostGIS topology 

extension is based around the ISO standard for topological networks which constructs networks from 

vertices, edges and faces9 (ibid.). Before any topological relationship can be determined, the dataset must be 

both simple and valid, i.e. only one vertex can be located at a given coordinate pair and features cannot be 

self-intersecting. When the geometries in the Postgres table are converted into the topological format, four 

new tables are created containing respectively the faces, vertices, and edges, and a table providing the 

relationship between the new edges and the original data, where the other attributes are stored. The actual 

topological relationships need to be queried from the edge table, which stores information about the start 

and end vertex of each edge, as well as the ID of up to two edges connected to the same vertices. Exactly 

how many edges a given edge is directly connected to or how many edges connect to a given vertex is not 

explicitly stored but can be queried from the tables. 

 

9 Faces are used to represent polygons as bounding boxes but will not be used in this analysis. 
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Figure 15. The network abstracted as vertices and edges 
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Data Analysis 

The following section I will present firstly, how and according to which criteria the edges in the graph have 

been assigned weights, followed by an outline of how the various connectivity and centrality indices have 

been computed. Finally, I will describe the approach to contextualising and interpreting the results. 

 

A Weighted Network 

Assigning weights to a network of cycling infrastructure is not a straightforward task. Different attributes 

have various importance to different people, depending on both personal preferences – do you for example 

prefer a green and scenic route or to bike close to shops and urban life? – and well as the demographic group 

you belong to. Children and the elderly might e.g. be more sensitive towards high speed or a lack of separated 

bike lanes. Ideally, a weighted network analysis would be adapted according to the needs of a specific group, 

since the least cost path for e.g. commuters and school children cannot be expected to be the same. 

 

Some approaches to analysing cycling networks, as for example the LTS method mentioned before, create a 

classification scheme for network segments, in which all segments within a class are considered to be equally 

suitable, and some classes might be completely omitted from the analysis. While this approach creates an 

intelligible and simple overview of the network it misses the nuances and cannot incorporate the fact that 

the experience of a given network segment is influenced by several and sometimes contradicting factors. A 

weighted network analysis on the other hand allows for differentiation based on a wider range of attributes 

summarised into a final weight for each segment. 

 

For this analysis, two different approaches for assigning weights have been attempted to illustrate how 

varying preferences among cyclists influence how well-connected the network is in practice. One (Wsafety) is 

designed with a general preference for segments with less traffic and slower speed, while the other (Wefficiency) 

gives more importance to efficiency, based on the Cycle Superhighways and the presence of physical bike 

lanes. As mentioned, cyclists are very sensitive to distance. It is thus important not to assign weights so high, 

that the paths of least cost actually are long detours in terms of physical distance. Additionally, a computation 

only based on segment lengths (Wdistance) have been performed. 
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The edges in the graph have been assigned weights depending on the following factors: 

• Whether the segment is part of a Green Cycle Route or a Cycle Superhighway 

• Whether it is close to water or a park 

• The type of street the segment is located on 

• Whether the segment is a bike lane or not 

• The speed limit for cars on the street where the segment is located 

• The amount of car traffic and the number of trucks on the street 

• The length of the segment 

 

All segments have, as a starting point, been assigned a weight of 0. Weights are then either subtracted or 

added, depending of the edge’s attributes. Since weights signify ‘costs’, positive attributes like green 

surroundings results in a smaller weight while negative attributes, like a high volume of traffic, increases the 

weight. Each edge weight is then multiplied with the edge length in 100 meters, to consider the fact that a 

long segment with a high weight should result in a higher cost than a shorter segment with the same 

attributes. Finally, all edge weights are increased with their length in meters, to take into account that distance 

is a determinant factor for cyclists. 

 

The exact criteria and what weights they have resulted in can be seen in Appendix IV (see p.92). 

 

Computing Connectivity & Centrality Indices 

The connectivity and centrality indices selected for this analysis have all been computed based on the 

equations presented in chapter 3. I will not present every step in the methodology here, but only outline the 

general methodological approach. The various steps in the analysis and exact computations can be found in 

the appendices, which contain the Python code and SQL queries used for computing the indices. 

 

The connectivity and centrality indices have been computed with the help of both SQL and Python scripts, 

which can be seamlessly combined using different Python packages, that allows connecting, querying, and 

uploading to a Postgres database from a Python environment. Most of the indices are based on the 

computation of shortest paths. In these instances, the shortest paths have been computed with the help of 
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NetworkX’s built-in function for the Floyd-Warshall algorithm. This function has been combined and 

incorporated into a range of my own functions10 for creating an adjacency matrix, computing the centrality 

and connectivity indices, retrieving path lengths, etc. (see Appendix VII – X). 

When evaluating and assessing the network, the approach has been to, if possible, find local values for each 

individual network segment, but also to transform these local values to a global measure by finding e.g. the 

minimum, maximum, and average values, both for the whole network and for each neighbourhood. When 

appropriate (i.e. when the index is based on shortest path), indices have been computed for each of the three 

weighting schemes used for the shortest path computations. 

 

To compare how the use of different weighting schemes affect reachability and flow through the network, 

maps showing how respectively Wefficiency and Wsafety differ from Wdistance at the neighbourhood level have been 

made. It is generally an important part of the methodology to make maps of the distribution and variation 

of the various indices: since it is a spatial network, a (visual) examination of geographical variations and any 

potential spatial autocorrelation is an important part of understanding how the network functions. Maps 

visualising network variations along with the area’s physical and urban geography can furthermore help 

answer whether any of the variations in the network can be explained by the landscape or the physical shape 

of the network, such as differences between centre/periphery. 

 

Contextualising a Network Analysis 

The first and central part of the research question is focused on how to evaluate a network of cycling 

infrastructure based on graph theory. This focus point is however followed by an ensuing question on how 

such a network assessment can be used within urban planning, which in this thesis has been narrowed down 

to a question about how a transportation network might be evaluated in terms of equity in connectivity and 

accessibility. In order to demonstrate this, the Copenhagen network of cycling infrastructure and the 

variations in connectivity and centrality at the neighbourhood scale are compared and correlated to how the 

neighbourhoods differ when it comes to socio-economic characteristics and neighbourhood density. The 

purpose of this method is to determine firstly, whether the network fulfils the idea of horizontal equity within 

 

10 NetworkX does come with pre-defined function for several of the centrality indices, but they often do not return the results in 
the desired format and also offer less transparency into how the indices are calculated. 



38 
 

access to transportation networks, and secondly, to examine to what extent the network of cycling 

infrastructure lives up to, or conversely fails, the ideal of vertical equity – in other words whether some 

neighbourhoods appear to have a disproportionate high or low network quality, and whether this might be 

explained by some characteristic of that neighbourhood. 

 

The choice of the neighbourhood as the analytical scale11 means that the data on network variation is 

distributed on 11 datapoints, which imposes some limitations for the granularity and detail in the correlation 

between different parts of the network and the surrounding areas. The data do moreover not fulfil basic 

requirements for e.g. linear regression, such as for example constant variance. The neighbourhood variables 

and network variation have thus not been correlated through a rigorous statistical test but have instead been 

examined by plotting each pair of variables together, to visually examine whether any correlation might exist. 

This method does thus not allow for any firm claims about a, for Copenhagen, universal correlation between 

a neighbourhood variable and the quality of the network. It does however support an identification of 

neighbourhoods which stand out based on their network quality and can be used to indicate whether a poor 

network quality might be particularly problematic given the other characteristics of the neighbourhood. 

 

  

 

11 A choice which primarily has been determined by the fact that the neighbourhood is the most detailed scale for most publicly 
available socio-economic data in Copenhagen. 
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5. Results 

In the following section I will present the result of the network analysis for each of the connectivity and 

centrality indices presented in chapter 3. The chapter will start out with the measures for overall connectivity, 

followed by the centrality indices. When relevant, the results for all 3 weighting schemes will be presented. 

The results will either be presented as the immediate results of the computation or as normalised values12, 

depending on the unit of the results. For some indices, the non-normalised value represents a meaningful 

unit – e.g. the actual number of shortest paths passing through an edge – while it for others represent e.g. a 

fraction, in which case a normalised value might be just as informative. 

 

Network Connectivity 

The results of the connectivity indices presented in this section are so-called global values, i.e. they describe 

how well connected the graph is in general, in contrast to the local values for individual network elements. 

The connectivity indices are as a starting point computed on a city scale but, when relevant, the global values 

for each neighbourhood will be presented as well. 

 

Comparing Edges to Vertices: Alpha, Beta & Gamma 

In the graph representing the network of cycling infrastructure, the number of edges e = 997 and the number 

of vertices v = 704. 

 

Alpha can thus be computed as: 

 
𝛼 =  

𝑒 − 𝑣 + 1

2 ∗ 𝑣 − 5
=  

997 − 704 + 1

2 ∗ 704 − 5
= 0.209 

 

Eq. 11. Calculation 
of Alpha 

 

This is a fairly low alpha value, which is a sign of a less connected network with few cycles and which is 

leaning towards a tree-like structure. This alpha-value is however a normal value for an urban street network 

and comparable with alpha-values for the regular street network (not bicycle network) for cities such as 

Stockholm and Toronto (Lin, 2017). 

 

12 Normalised values are based on the normalisation method described on p.26 
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Beta is calculated as: 

 𝛽 =  
𝑒

𝑣
=  

997

704
= 1.416 

Eq. 12. Calculation 
of Beta 

 

The Beta value for the network matches the suggested value for street networks (see p.20) and indicates a 

network which is neither completely simple nor perfectly gridded. The Beta value for the entire city does 

however cover substantial variations within the network, which for example can be detected at the 

neighbourhood scale, where e.g. Frederiksberg and Nørrebro have a more grid-like structure (with Beta 

values at respectively 1.9 and 1.8). 

 

Gamma is calculated as: 

 

 
𝛾 =  

𝑒

3 ∗ (𝑣 − 2)
=

997

3 ∗ (704 − 2)
= 0.473 

 

Eq. 13. Calculation 
of Gamma 

Gamma values are always located in the range between 0 and 1, with 1 representing a completely connected 

network (strong connected). The Gamma value calculated here confirms the initial picture of a network 

structure somewhere in the middle between a simple and a strong connected network. 

 

 

How Dense is the Network? 

Intersections are defined as vertices with more than two connected segments, meaning that there is more 

than one entry for the vertex in the adjacency matrix. According to this definition, the number of 

intersections is 575 while there are 129 so-called dangling vertices which only are connected to one edge (see 

Figure 16). 
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With an area of 102.17 km2 for the entire city, the intersection density is 5.63 intersections per square 

kilometre. This does however cover some considerable variations between the different neighbourhoods: 

 

Neighbourhood Number of intersections 
Intersection density 

(per km2) 
Normalised 

intersection density 

Copenhagen 575 5.70 0.48 

Amager Øst 38 3.87 0.32 

Amager Vest 79 4.08 0.34 

Bispebjerg 33 4.83 0.40 

Brønshøj-Husum 26 2.97 0.25 

Frederiksberg 44 5.05 0.42 

Indre By 106 10.22 0.86 

Nørrebro 49 11.93 1.00 

Østerbro 60 6.10 0.51 

Valby 41 4.44 0.37 

Vanløse 31 4.63 0.39 

Vesterbro-Kongens Enghave 67 7.92 0.66 
 

Table 4. Intersection Density 

Figure 16. Dangling vertices and intersections 
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Figure 17. Neighbourhood intersection density 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Part of the geographical variation in the intersection density is to be expected: since the network is connected 

and have no subgraphs, it is no surprise that there will be more dangling vertices in the peripheral 

neighbourhoods. An important consideration in the interpretation of intersection density compared to the 
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Figure 18. Intersection density as number of intersections per square kilometre 
(Natural Breaks Classification) 
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number of dangling vertices is moreover that dangling ends located at the border of the study area might not 

be dangling at all, but actually connect to edges located outside the municipality. Despite these reservations, 

there are clearly considerable variants in intersection density across the city. 

 

 

Street density is measured as the network length per area unit, which in this case is square kilometres. The 

entire network has a length of 373.68 km and a street density of 3.66 km per km2. As with intersection density 

there are however also substantial variations between different parts of the city: 

 

Neighbourhood Length of network (km) 
Street density 

(km/km2) 
Normalised street density 

Copenhagen 373.68 3.66 0.62 

Amager Øst 26.74 2.72 0.46 

Amager Vest 55.22 2.85 0.48 

Bispebjerg 26.17 3.83 0.65 

Brønshøj-Husum 22.18 2.54 0.43 

Frederiksberg 34.47 3.96 0.67 

Indre By 48.21 4.64 0.79 

Nørrebro 24.21 5.89 1.00 

Østerbro 39.00 3.96 0.67 

Valby 35.22 3.83 0.65 

Vanløse 25.02 3.74 0.63 

Vesterbro-Kongens Enghave 36.23 4.28 0.73 
 

Table 5. Street Density 
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Figure 19. Neighbourhood street density 
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Figure 20. Street density as kilometre network per square kilometre  
(Natural Breaks Classification) 
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A high value for street density is an indication of a denser part of the network. This both implies that there 

is more biking infrastructure in this part of the city, but can also suggest higher connectivity, since the 

network segments will be closer together than in areas with a lower street density. If Figure 18 and Figure 

20, depicting respectively intersection and street density in the different neighbourhoods, are compared, it 

becomes clear that the two types of densities in this case are correlated. 

 

The connected node ratio (CNR) can be used to describe the extent of dead-ends and missing links in a 

graph. The CNR for the entire network is computed as follows: 

 

 
𝐶𝑁𝑅 =  

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑑𝑎𝑛𝑔𝑙𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠
=

575

575 + 129
= 0.82 

 

Eq. 14. CNR 

 

This is a relatively high CNR-value (CNR is ranging from 0 to 1), which indicates high connectivity in the 

sense that the network has few dangling vertices relative to the total number of vertices. Normally, values 

over 0.7 are preferred for street networks, which entails that the network of cycling infrastructure in 

Copenhagen is comparable to a well-connected, regular street network.  

That the graph has a relatively high CNR-value is maybe not surprising, given that the graph has no sub-

graphs, and that Copenhagen is known for its well-developed network of cycling infrastructure, which 

connects all parts of the city and does not suffer from the same degree of fragmentation and piecemeal 

developments as many other cycling networks do (Vassi and Vlastos, 2014).  

 

Is the Network Clustered? 

The network has very little clustering, with no vertex having more than one connecting edge between their 

adjacent vertices (see p.21 for the definition of clustering), and only 79 vertices having any clustering at all 

(see Figure 21). Among the vertices with any clustering, the minimum local clustering coefficient C(v)min = 

0.1, the maximum local clustering coefficient C(v)max = 1.0, and the average local clustering coefficient C(v)ave 

= 0.25. With a total number of 704 vertices, the global clustering coefficient, as an average of all clustering 

coefficients is   C = 0.03. 
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The lack of clustering is in this case not necessarily an indication of the spacing between vertices or the 

overall connectivity in the network, but is most likely a symptom of the structure of the street network along 

which most of the cycling infrastructure is located. In the definition of clustering used here, a square gridded 

network with right angles will have no clustering, while a street network with a less gridded structure and 

pointed angles between edges do form the triangles measured by the clustering coefficient (see Figure 22 and 

Figure 23 below). 
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Figure 21. Distribution of clustering coefficients 

Figure 23. Example of vertices with no clustering Figure 22. Example of vertex (purple) with clustering 



47 
 

Average Cycling Distance Between Vertices 

The concept of average path length describes the average length of the shortest path between all vertex pairs. 

The average path length for the graph is influenced by the weighting scheme used for the computation of 

shortest paths, since different weighting schemes result in different shortest paths. If the weights had solely 

been based on some other metric than distance – e.g. traffic volume – the average path length can be 

presented as a different unit that physical distance. In that case, the average path length could reveal for 

example the average amount of traffic or pollution a cyclist would encounter. In this case, where both 

distance and other factors have been combined, the average path length is however computed as the physical 

distance of the paths. 

 

For the shortest paths based on the three different APSP solutions, the average path lengths, based on 

equation 6 are as follows: 

Weighting Scheme Average Path Length (km) Total Path Length (km) 

Wefficiency 6.14 3,037,996 

Wsafety 6.22 3,077,751 

Wdistance 5.7 2,820,630 

 
Table 6. Average Path Lengths 

That the average path length between a vertex pair increases, as costs other than just distance is added to the 

shortest path computation, is of course to be expected. The differences in average path lengths for the three 

weighting schemes moreover shows that the weighting scheme for efficient paths (but still with a preference 

for less traffic and green areas) indeed do give a shorter path length, on average, than the weighting scheme 

designed to avoid streets with high speed and a lot of traffic. This suggests that cyclists in Copenhagen must 

make a trade-off between shorter distances and any desire to avoid streets with heavy traffic or high speed. 

The differences between the three weighting schemes and their influence on path lengths can also be 

examined from the following figures, which illustrate the variations in the total path length between each 

vertex to all other vertices. 
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When looking at the maps of the vertices visualised 

based on the length to all other vertices, the 

differences might not immediately seem significant 

(see Figure 25, Figure 24 and Figure 26). The maps 

can nevertheless illustrate where the distance to 

other vertices increases, when other costs than 

simply distances are introduced, or identify vertices 

which, despite of a relatively central location, are far 

away from other vertices when it comes to path 

lengths (e.g. the encircled vertex on Figure 26). That 

a vertex appears isolated in terms of path lengths 

does not necessarily imply that it is hard to access, 

since it is possible to cycle outside of the dedicated 

cycling infrastructure in many parts of the city – but 

it can indicate a gap or a missing link in the network for cyclists, who do not feel safe cycling without e.g. 

separated bike lanes. 

Figure 24. Vertices visualised based on the length to all other 
vertices (Wsafety) 

Figure 25. Vertices visualised based on the length to all other 
vertices (Wefficiency) 

Figure 26. Vertices visualised based on the length to all other vertices 
(Wdistance) 
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Evaluating Network Efficiency 

Based on equation 7, the network efficiency for the graph is as follows: 

 

Weighting Scheme Network Efficiency 
 (based on distance in km) 

Wefficiency 0.270 

Wsafety 0.268 

Wdistance 0.281 

 
Table 7. Network Efficiency 

The values for network efficiency are not necessarily interesting on their own and vary depending in the unit 

used to measure the length of the shortest path. Network efficiency is however useful for comparing how 

well different graphs functions in terms of the flow through the network and can likewise be used to identify 

whether e.g. a new network segment will improve the overall network connectivity. As expected, the network 

efficiency is best if only distance is considered as a cost, and then decreases as more costs are added. Just as 

for average path length, the variations in network efficiency between the weighting scheme confirms that the 

weighting scheme for efficiency indeed does results in a more efficient network compared to the scheme for 

safety. 

 

 

To sum up, the connectivity indices presented above indicate a relatively well-connected network, judging 

from the CNR-value, and a network which is neither completely simple nor entirely gridded or very complex, 

based on the values for alpha, beta, and gamma. While these measures have been developed to describe 

graphs as a general concept, they must be interpreted in the specific context of street networks, or more 

specifically in the context of networks of cycling infrastructure. A street network will for example usually not 

be very complex or have high values alpha-values, since alpha-values approaching the maximum value of 1 

indicates a network with edges between all vertices, which is not practically possible in a street network at 

the size of Copenhagen. Similarly, the CNR-value for Copenhagen might actually be very high if it was 

compared to other networks of cycling infrastructure, since they oftentimes are fragmented and scattered 

across a city (Vassi and Vlastos, 2014). The variations in network density do however also indicate that there 

are substantial differences in the network connectivity between neighbourhoods, and that the access to 

cycling infrastructure is not evenly distributed throughout the city. 
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Centrality: Comparing Network Elements 

The results presented in this section are, as a starting point, local values, meaning that they describe properties 

for an individual network element. The local values will, for most centrality indices, be visualised on maps, 

and otherwise be transformed into global values by finding the minimum, maximum, median, and average 

for each centrality index. Global values for each neighbourhood can be found in Appendix I. The centrality 

indices have, when possible, been computed for edges rather than vertices, but e.g. closeness or straightness 

centrality can only be calculated for vertices. 

 

Vertex Degree & Edge Intersections 

The vertex degree can be considered a measurement of reachability for the individual vertex, but also 

functions as a global measurement for how dense or sparse the graph is. As mentioned before, a street 

network has some physical limitations which rules out high degree values. For the Copenhagen network of 

cycling infrastructure, the minimum degree is 1 (representing dangling vertices), the mean is 2.83, and the 

maximum degree is 5, which however only occurs at 4 vertices (see Figure 27). The median degree value, 

with 313 out of 704 vertices, is 3, representing three-way junctions. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 27. Vertex degree distribution 
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Stress Centrality: Identifying Central Edges 

Stress centrality Cs(e) for a graph describes the number of shortest paths which passes through a network 

element. Since the shortest paths depend on the weights assigned to the network elements, this centrality 

index varies between the three weighting schemes.  

 

The minimum stress centrality for the Copenhagen network is 0, meaning that there are several edges which 

are not part of any shortest paths. This is possible because shortest paths are based on vertex pairs – but 

does of course not imply that the given edge is not actually used by cyclists. In the interpretation of the result 

it is important to remember that stress centrality is a theoretical construction, assuming that there is exactly 

one cyclist moving between each possible pairing of vertices. 

 

Weighting Scheme 
Minimum Stress 

Centrality 
Average Stress 

Centrality 
Median Stress 

Centrality 
Maximum Stress 

Centrality 

Wefficiency 0 4,764 1,988 45,640 

Wsafety 0 4,763 2,003 44,270 

Wdistance 0 4,621 2,845 33,378 

 
Table 8. Stress Centrality 

The stress centralities presented in Table 8 shows that when other costs than just distance are introduced in 

the computation of shortest paths, the paths tend to concentrate on a smaller number of edges, resulting in 

higher average and higher maximum stress centralities. It is furthermore evident that there is a rather uneven 

distribution of stress centrality across the network. This is the case for all three weighting schemes, but as 

can be seen on the maps below (see Figure 28, Figure 29, and Figure 30), the stress centrality indices for the 

weighted shortest paths have a more uneven distribution than the stress centralities only based on the 

distance between vertices. The high stress centrality index for a small number of edges indicates that the 

network in some areas have a low resilience, since a high number of shortest paths are depending on a small 

number of network elements. Given that the network is planar, higher values for stress centrality in the 

centre of the graph is to be expected, but as evident on the visualisations below, a central location does not 

explain all of the high values and uneven distribution. Although the stress centrality indices should not be 

confused with numbers for actual traffic flow, this uneven distribution of stress centrality matches the current 

situation of the city, where some centrally placed bike lanes and cycle bridges experience very high numbers 

of cyclists (City of Copenhagen, 2016c). 
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The uneven distribution of stress centralities is to 

some extent a consequence of the city’s geography, 

where the water and canals intersecting the city result 

in a lot of pressure on bridges, particularly the bridges 

connecting Amager and Islands Brygge with the rest 

of the city.  The City of Copenhagen has for several 

of the new bridges been positively surprised by the 

high number of daily users (City of Copenhagen, 

2017c; FAOD, 2019). Given the central role which 

the bridges play in connecting different parts of the 

network, it is however not surprising that several of 

the cycling bridges are among the edges with the most 

daily cyclists (City of Copenhagen, 2019b).  

Figure 28. Stress Centrality based on Wefficiency  

(Natural Breaks Classification) 
Figure 29. Stress Centrality based on Wsafety  

(Natural Breaks Classification) 

Figure 30. Stress Centrality based on Wdistance (Natural Breaks Classification) 
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As evident from Figure 31 and Figure 32, the differences in stress centrality between the weighting scheme 

based solely on distance and respectively efficiency and safety follow the same pattern. Although the average 

stress centrality is higher for Wefficiency and Wsafety at a city scale, this is not true for all neighbourhoods. For 

some neighbourhoods, as for example Bispebjerg, adding more factors such as traffic volumes or speed 

limits results in a higher average stress centrality, while it for other neighbourhoods result in a lower average 

stress centrality. 

 

The variation in stress centrality needs to be interpreted carefully, since the sum and distribution of stress 

centrality values depend on, for example, whether paths tend to go through many short edges or few, longer 

edges. The average value does furthermore not necessarily say anything about the dispersion of paths 

between edges. In the case of Bispebjerg both minimum, mean and median values for Wefficiency and Wsafety are 

however higher than for Wdistance, indicating that more paths go through that neighbourhood when other 

factors are added to the computation of paths. The maps seen below can in this way be used as an indication 

of areas where the shortest paths are changed considerably by the respective weighting schemes. 

  

Figure 31. Differences in average Stress Centrality for Wefficiency 
compared to Wdistance 

Figure 32. Differences in average Stress Centrality for Wsafety 

compared to Wdistance 
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Closeness Centrality: How Easy are Vertices to Reach? 

Closeness centrality Cc(v) for a vertex measures reachability based on the average distance from a vertex to 

all other vertices in the network. The computation of closeness centrality for the network confirms the 

picture that reachability and access for the networks decreases as more of the factors which can influence 

the experience of cycling are introduced in the analysis (see Table 9). As explained earlier (see p.24), the 

closeness centrality value represents the inverse distance to all other vertices. In this case this entails that 

higher values are preferred, since they indicate that a vertex is close to the other vertices in the network. 

 

Weighting 
Scheme 

Minimum Closeness 
Centrality 

Average Closeness 
Centrality 

Median Closeness 
Centrality 

Maximum Closeness 
Centrality 

Wefficiency 0.091 0.172 0.169 0.238 

Wsafety 0.090 0.170 0.166 0.237 

Wdistance 0.094 0.184 0.181 0.256 

 
Table 9. Closeness Centrality, based on the distance in kilometres 

The differences in closeness centrality computed with shortest paths based on respectively Wefficiency and Wsafety 

does not appear to be significant. On the other hand, the use of Wdistance results in higher closeness centralities 

in general, although the difference between the weighted and unweighted closeness centralities vary across 

the network (see Figure 33, Figure 34, and Figure 35). This does not necessarily mean that vertices in areas 

with a smaller variation between the three different computations of closeness centralities are less influenced 

by the factors used for assigning costs. Instead, the lack of variation in closeness centrality for vertices in 

some neighbourhoods might reflect that there often only is little if any change in the paths around those 

vertices. This is most likely due to the sparsity of the network there and hence a lack of alternative routes, 

particularly if long detours are not considered (see Figure 36 and Figure 37 below). 
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Figure 33. Closeness Centrality based on Wefficiency  

(normalised values) 
Figure 34. Closeness Centrality based on Wsafety 

(normalised values) 

Figure 35. Closeness Centrality based on Wdistance 

(normalised values) 
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As can be seen in Figure 36 and Figure 37, the differences between Wefficiency and Wsafety compared to Wdistance 

vary between neighbourhoods, suggesting that the introduction of additional factors for some 

neighbourhoods result in longer detours and a larger drop in reachability than in others. 

 

  

Figure 36. Differences in average Closeness Centrality for 
Wefficiency compared to Wdistance 

Figure 37. Differences in average Closeness Centrality for Wsafety 
compared to Wdistance 
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Straightness Centrality: How Long are the Detours? 

Straightness centrality Cs(v) is a measure for reachability based on a comparison of the length of the shortest 

path between two vertices and the distance between them based on a straight line. Higher values indicate 

that the shortest path is closer to a straight line, whereas lower values indicate longer detours. It is naturally 

not surprising that the shortest paths optimised solely according to distance results in a higher average 

straightness centrality (See Table 10). The straightness centrality index can however still be useful for 

identifying locations where adding other considerations than just distance appear to result in longer detours 

(see Figure 38, Figure 39Figure 40). Straightness centrality can additionally identify locations that, despite a 

central geographical location, have low accessibility and thus requires long detours to reach. Some of the 

vertices with very low straightness centralities (see encircled area on Figure 40) have indeed already been 

identified as an area needing better connectivity and the municipality is therefore planning to add a 

connection across the water (Køhler, 2020). 

 

Weighting 
Scheme 

Minimum Straightness 
Centrality 

Average Straightness 
Centrality 

Median Straightness 
Centrality 

Maximum 
Straightness Centrality 

Wefficiency 0.584 0.769 0.779 0.843 

Wsafety 0.579 0.760 0.771 0.840 

Wdistance 0.614 0.817 0.827 0.874 

 
Table 10. Straightness Centrality 
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Figure 38. Straightness Centrality based on Wefficiency 

(Natural Breaks Classification) 

Figure 39. Straightness Centrality based on Wsafety 

(Natural Breaks Classification) 

Figure 40. Straightness Centrality based on Wdistance 

(Natural Breaks Classification) 
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Looking at the maps below, which compare the differences between straightness centralities based on Wdistance 

and respectively Wefficiency and Wsafety (Figure 42 and Figure 41), confirms the picture about changes in 

reachability when other factors than distance are introduced. While the straightness centralities generally are 

lower when shortest paths are based on more than distance, the drop in straightness centrality, implying 

longer detours, is more pronounced for some neighbourhoods than others. Particularly the neighbourhood 

Valby seems to experience a noteworthy drop in straightness centrality, which could indicate that the most 

direct route used in a lot of shortest paths is suffering from factors such as a lot of car traffic or high speed, 

which will make the weighted shortest path computations find longer detours to avoid those costs. 

 

 

 

 

 

Figure 42. Differences in average Straightness Centrality for 
Wefficiency compared to Wdistance 

Figure 41. Differences in average Straightness Centrality for 
Wsafety compared to Wdistance 
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To sum up, the centrality indices presented above indicates a network which have some considerable internal 

variations, despite generally having a high level of connectivity, especially interpreted in the context of street 

networks. The average degree of the network of cycling infrastructure is similar to that of a regular urban 

street network, confirming the picture of a network of cycling structure that fulfils the purpose of connecting 

different segments – in other words, most edges do actually connect to other edges. Combining this metric 

with the global range for stress, closeness, and straightness centrality however confirms what was also shown 

by the neighbourhood variations in network density: there are noteworthy variations in reachability and 

connectivity within the network. 

 

When it comes to stress centrality, the large value range indicates a network which in many places is 

depending on a few central edges and thus have a low resilience. This tendency is reinforced when other 

factors are introduced into the computation, suggesting that if cyclists want to avoid e.g. segments with high 

speed and/or prefer to bike along green areas and on separated bike lanes, the dependency on a small number 

of network segments becomes even greater. 

 

The closeness centralities throughout the network not only reveals the more obvious observations, such as 

the fact that network elements in the exterior neighbourhoods indeed are further away from all other 

segments than those in the middle of the network. The closeness centralities based on the weighted shortest 

paths also indicate that the reachability drops much more for some neighbourhoods than others if additional 

preferences among cyclists are taken into account. This implies that some areas are hard to reach if you want 

to avoid e.g. high-speed streets. That the closeness centralities do change for some areas is however also an 

indication that there is more than one potential route to a given vertex. Consequently, the lack of change in 

closeness centrality for other vertices might not mean that they shortest paths leading to them are not 

weighted differently when more factors are added to the shortest paths computation, but might simply be 

due to the fact that there is no other possible path in this area. 

 

This picture is finally confirmed by the straightness centrality. The value range and variations here both 

indicates that, although the landscape in Copenhagen plays an important role for the reachability for some 

areas, there are network elements which, independent of the topography, requires much longer detours than 

others, particularly if additional factors are added to the computation of shortest paths. 
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6. Interpretation & Discussion 

In this final chapter I will start out with a contextualisation and interpretation of the results in relation to the 

city’s neighbourhoods and their respective differences in demography and socio-economic characteristics, 

followed by a discussion of how the results of the analysis can be interpreted and applied. Finally, I will 

discuss some of the assumptions and limitations for the analysis and resulting conclusions, along with ideas 

and potentials for further research. Through this discussion, the research question of how a network analysis 

can be used to inform urban planning decisions will be answered, along with considerations for how a 

network analysis can incorporate a broader range of factors and variables to more closely reflect different 

types of cyclists’ experiences of the network. 

 

 

Examining Neighbourhood Variations 

From the results presented above, it is clear that connectivity and centrality indices vary between 

neighbourhoods, and that, although the topography in and around Copenhagen definitely plays a role in the 

uneven accessibility, not all variations can be explained by the landscape. Although Copenhagen, when 

compared with other European capitals, is a fairly small city, the city’s neighbourhoods not only have distinct 

differences in terms of the density of cycling infrastructure, but also when it comes to factors such as 

population density, the average income, educational level of the residents, age distribution, etc. 

 

The analysis of the network has so far looked at accessibility in the network both defined as general, global 

metrics and through more local variations. These local variations will, in the following section, form the 

foundation for an interpretation of how the network of cycling infrastructure performs in terms of equity, 

i.e. to what extent network variations coincide with differences between neighbourhoods when it comes to 

for example income and population density. The data on neighbourhood variations is, due to the choice of 

the neighbourhood as the analytical scale, distributed on only 11 datapoints and do furthermore not fulfil 

the basic requirements for e.g. linear regression. The results below will thus not be presented in the form of 

any quantified correlation, but instead use plots to detect and discuss the extent to which any correlations 

between neighbourhood demographics and centrality and connectivity indices exist. 

 



62 
 

All connectivity and centrality indices as well as all neighbourhood data have been plotted together to look 

for any sign of a positive or negative correlation. Only some of the variables showing some type of correlation 

will be presented here, but all plots can be found in Appendix II. The variables used in the plot below are, 

when based on shortest paths, all based on the shortest paths computed only with distance as cost. 

 

Neighbourhood Characteristics 

The maps presented on this and the following page show 

how the Copenhagen neighbourhoods differ in terms of 

population density, proportion of population with a long 

education, and average income (see Figure 43, Figure 44 

and Figure 45). Population densities are to a large extent 

results of the neighbourhoods being dominated by 

different types of building stock, with a higher share of 

dense, multi-storey buildings in the centrally located 

neighbourhoods. Population density is also influenced by 

the proportion of real estate used for commerce and offices 

(e.g. in the case of Indre By) and how much of the 

neighbourhood is taken up by green areas (e.g. in the case 

of Amager Vest). 

 

Although there is no perfect correlation between income and education, Figure 44 and Figure 45 give a good 

indication of the pattern of socio-economic stratification in Copenhagen, which also is present in similar 

patterns for factors such as health and life expectancy (City of Copenhagen, 2017b). 

Figure 43. Neighbourhood population density 
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Correlating Neighbourhood Characteristics with Network Variations 

Network Density & Centrality Indices 

When looking at the correlation between neighbourhood characteristics and network variations, it is 

important to keep in mind that, just like the average income and the resident’s level of education is positively 

correlated, so are several of the centrality and connectivity indices. That some centrality indices, like closeness 

and stress centrality will be correlated is somewhat intuitive, at least in a planar and connected network, like 

the one analysed here. That street density and closeness centrality, as well as intersection density and stress 

centrality (see Figure 46 and Figure 47), appear to be positively correlated, where neighbourhoods13 with a 

higher network density also tend to have higher closeness and stress centralities is however not a given. 

Instead, it indicates that neighbourhoods, which already are located centrally in the network, at the same time 

also are in denser and thus more connected areas. This furthermore means that high values for stress 

centrality cannot be explained with a lack of alternative routes, since neighbourhoods where many paths pass 

 

13 Neighbourhoods are labelled with their neighbourhood ID (1: Indre By, 2: Østerbro, 3: Nørrebro, 4: Vesterbro-Kongens 
Enghave, 5: Valby, 6: Vanløse, 7: Brønshøj-Husum, 8: Bispebjerg, 9: Amager Øst, 10: Amager Vest, 11: Frederiksberg) 

Figure 44. Share of population with a medium/long education Figure 45. Average income (Dkr.) across Copenhagen 
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through, also have a high network density and thus a high number of bike lanes and routes (although it might 

still be the case that areas with high stress centralities have few alternatives that fulfil the preferences of 

cyclists in terms of safe and low stress conditions). 
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Figure 46. The correlation between street density and  
average closeness centrality 

Figure 47. The correlation between intersection density and  
average stress centrality 
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When looking at the connection between neighbourhood statistics and network indices, the first conclusion 

is that there is no perfect linear relationship between any demographic variable and any of the centrality or 

connectivity indices. There does however still appear to be some type of positive correlation between 

population and network density, and between several network indices and the share of a neighbourhood’s 

population with a long higher education. 

 

While discussing the relationship between variables it is important to remember that correlation does not 

imply causation: even though two variables might follow a similar pattern, that does not necessarily mean 

that an increase in one variable directly causes an increase in the other. Detecting correlation, even without 

claims of causality, can nevertheless still be used in a discussion of whether some areas are underserved by 

the current infrastructure, and whether these areas, according to ideas of vertical equity should have access 

to an above average quality of transportation infrastructure (see p.9 for a description of equity within 

transportation planning). 

 

Population & Network Density 

As can be seen on Figure 48 and Figure 49, 

there appears to be a positive correlation 

between population and network density. 

The network is thus denser and have a better 

connectivity in areas with more residents. 

Exceptions are Indre By (1) and 

Frederiksberg (11) which appears to have 

respectively a higher and lower network 

density than their population densities 

warrants. That Indre By, being the city centre, 

has a high network density makes sense, given that the neighbourhood experiences a lot of traffic from other 

places and has a high number of businesses. It is however interesting that Frederiksberg, which belongs to a 

different municipality that than the other ten neighbourhoods, appear to have a considerably lower 

intersection density relative to the neighbourhood’s high population density. 
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Plotting population density with network 

density also shows that, although for 

example the neighbourhood Brønshøj-

Husum (7) has a much lower network 

density than most other neighbourhoods, 

there are also much fewer potential cyclists 

based on the neighbourhood’s low 

population density. 

 

 

 

Educational Level & Network Quality 

Network density is not only correlated with population density, but also with the share of the population 

with a longer higher education (see Figure 50). Likewise, the level of education among a neighbourhood’s 

residents appear to be correlated with the average stress and closeness centrality, in the sense that people 

with a longer education tend to live in central areas with a denser and more connected network (see Figure 

50, Figure 51, and Figure 52), indicating that they have better access to cycling infrastructure. 
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Figure 49. Correlation between population density and  
street density 
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The average income for a neighbourhood does, for most neighbourhoods, also appear to have a weak 

positive correlation with closeness and stress centrality, although the relationship is more ambiguous (see 

Appendix II for all plots). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plotting the selected neighbourhood variables with the area’s average connectivity and centrality indices have 

thus shown that the level of network density coincides with population density, and that the people with a 

longer higher education tend to live in more central areas in the city/network, which generally have a higher 

level of connectivity and accessibility. What this means in terms of transportation planning and the ideals of 

equity within access to transportation infrastructure will be discussed further in the following section, in 

which I will look at the wider implications and potential interpretations of the results of the network analysis. 
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Figure 51. Correlation between educational level and  
average stress centrality 

Figure 52. Correlation between educational level and  
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Interpretation & Application of Results 

The purpose of this research project has first of all been to explore how a network analysis based on graph 

theory can be used to examine and assess the quality and structure of a network of cycling infrastructure. 

The evaluation of the network is however not only interesting in itself, but also as a potential tool for the 

planning and evaluation of future improvements and extensions to the network. In the following section I 

will summarise what the results says about the Copenhagen network compared to other cities, outline 

suggestions for how to interpret the results in an urban planning context, and discuss how the methodology 

might be applied in the planning process. 

 

From the results presented above it is clear that a network analysis both can reveal some general features of 

a network, but also is well-suited for identifying areas and elements which stands out from the rest of the 

network. When looking at the network in its entirety, the Copenhagen network of cycling infrastructure is 

mostly well-connected, does not suffer from fragmentation, and has a structure which in several ways 

resembles that of a regular street network. Particularly the fact that the city’s cycling infrastructure is not 

connected into subgraphs but functions as one, integrated network distinguishes it from most other cycling 

networks. Other than that, it is however hard to make any direct comparison between the Copenhagen 

network and networks in other cities based on the network indices. Very few comprehensive analyses of 

cycling networks have been made (Schoner and Levinson, 2014), partly because the cycling infrastructure in 

many places is so dispersed and poorly connected that a network analysis hardly is meaningful (U.S. 

Department of Transportation, 2018; Furth and Noursalehi, 2015). Those that do exist moreover use 

custom-made methods, making any direct comparison difficult14, and results available for comparison are 

often based on different assumptions and types of data. The Copenhagen network of cycling infrastructure 

for example appears to have a higher network density than the network in Amsterdam, but the computation 

of density in Amsterdam is, opposed to those computed for Copenhagen in this analysis, only based on 

segregated bike lanes and not routes and other types of paths (Niedderer et al., 2017). In many other studies15 

the regular street network for motorised vehicles is, due to a low number of actual bike lanes and routes, 

used as a proxy for the cycling network, which however makes it impossible to compare results with an 

analysis only including bike lanes and routes. Finally, the approach here both uses positive and negative 

 

14 This is for example the case for the otherwise meticulous methods developed and used by People For Bikes. 
15 See for example Tresidder, 2005; Kent and Karner, 2019; Dill, 2004. 
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characteristics, to either subtract or add costs. This is contrary to many other classifications of cycling 

networks that mostly, if not only, operates with negative factors (Zuo, and Wei, 2019; Bhuyan et al. 2019). 

Although it can be interesting to describe a network at a generalised level, despite challenges when it comes 

to inter-city comparison, the most interesting and useful part of a network analysis like the one conducted 

here might be its ability to reveal internal differences and disparities within the network. 

 

It has already been concluded that there are substantial variations in network density and connectivity, and 

that accessibility, understood as how easy it is to reach or be reached from other parts of the network, 

therefore is unevenly distributed throughout the city. It is moreover evident that the variations in network 

density and connectivity do not appear to be completely random, but instead are correlated with the location 

in the network, with higher rates of access in the city centre and lower values in the peripheral 

neighbourhoods. This pattern is additionally related to both population density and the share of the residents 

with a longer higher education. A longer education is in Denmark not only correlated to higher income, but 

also to a longer life expectancy, better health, and a higher participation in the democratic process (Statistics 

Denmark, 2005; Ministry of Health, 2014; Vilhelmsen, 2016; Ejlertsen, 2020; Nielsen, 2019). Interpreted in 

terms of transportation equity, this means that the current network not only fails in terms of horizontal 

equity, i.e. there is not a uniform level of access, but even more in terms of vertical equity, since some of the 

neighbourhoods that are doing worse when it comes to many of the traditional variables for socio-economic 

status and well-being have a lower quality network. These neighbourhoods are additionally not covered by 

the city’s expanding subway system and might also have a lower access to cars, since there usually is a clear 

connection between income and car ownership (City of Copenhagen, 2018b).  

 

While it could be argued that the variation in e.g. network density is understandable and natural, since it fits 

the variation in population density across the city, the population density is, due to the popularity and 

attractiveness of many of the central and densely build neighbourhoods, strongly connected to other variables 

such as income, education, health, etc. Therefore, a seemingly logical pattern in the distribution of network 

density inadvertently results in a lower access to cycling infrastructure for less privileged groups. It should 

nevertheless still be noted that these differences are taking place within a city which overall has a very high 

quality of cycling infrastructure compared to other cities (Colville-Andersen, 2017). That some 

neighbourhoods have a lower network quality should thus not be interpreted as meaning that they have a 
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low quality – only that there are internal differences, which might be useful to consider when planning future 

expansions and improvements of the network. 

 

When comparing neighbourhoods, it is also important to remember that the network has been weighted 

based on a range of different factors, which have been combined to form a single score for each edge. This 

can conceal other variations between neighbourhoods, e.g. in terms of the number and length of routes going 

through green areas or the amount of car traffic. The connectivity and centrality indices presented here are 

therefore only one perspective on network quality and needs to be combined with other forms of assessment 

and evaluation. With that in mind, the computation of for example stress centrality might still be a useful 

tool for identifying network segments which might need to be expanded, or for suggesting where new bike 

lanes and routes should be considered to relieve some of the pressure on the most used bike lanes. Similarly, 

adding potential future bike lanes to the dataset will allow you to visualise how different solutions will 

improve connectivity in an area. The method of assigning weights to edges based on their different 

characteristics can furthermore be adapted to different cyclist profiles, in order to identify how the network 

is experienced by for example cyclist who feel unsafe without separated bike lanes, cyclists who want to avoid 

polluted streets, and so on. 

 

At the moment, the planning of new cycling infrastructure is relying on a range of different sources to identify 

where the network is in need of improvement, such as urban planners’ personal knowledge about the 

network and inputs from citizen and neighbourhood organisations. Common to these different sources is 

however that they rely on personal experiences from people who are interested in cycling infrastructure. This 

method might be feasible for a relatively small city as Copenhagen but will pose a challenge for larger cities 

where the distance between the municipal planning unit and some parts of the city might be greater. The 

dependence on personal knowledge and citizen input can furthermore be problematic for neighbourhoods 

where the citizens do not have the same resources to make their claims heard, or where there is less of a 

tradition for cycling and thus less awareness of what could be improved. In such situations, a more systematic 

network analysis can provide an additional perspective. 
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Methodological Considerations 

In this final section before the conclusion, I will discuss some of the limitations and assumptions for the 

analysis and results, along with ways in which the analysis could be adapted and extended with further 

research. 

 

When assessing the results presented above, it is important to remember that the analysis is based on several 

core assumptions, which to some extent can limit the validity or accuracy of the results. The most central 

assumptions are those describing the fundamental structure of the network, namely that it is planar, 

undirected, and simple. As described in chapter 3, this is not entirely accurate. A network analysis based on 

a more detailed dataset which accounts for non-planar, parallel, and directed edges would give a higher 

accuracy and give a better fit between the abstracted graph and the actual, physical network. 

 

The model of the graph furthermore does not include several factors which can have a big impact on the 

experience of cycling and potentially influence the cyclists’ choice of route. These are for example the cost 

of turning, particularly left turns which requires you to cross the street twice16, the presence and timing of 

traffic lights, and the state and width of bike lanes. All these variables can be incorporated into a network 

analysis, if the data are available, and would potentially give a more realistic view of the actual paths chosen 

by the city’s cyclists. 

 

The comparison of neighbourhood variations in network connectivity and density with various 

neighbourhood characteristics could similarly be extended and incorporate more variables, such as the 

distribution of businesses and industries across the city, the rate of car ownership in different 

neighbourhoods, and access to public transport. The comparison and correlation of neighbourhood 

characteristics with network variables should however be done carefully, since there is a high degree of 

correlation, and potentially causality, between both neighbourhood characteristics and network indices.  

 

A smaller analytical unit than the neighbourhood might potentially also reveal a different pattern in the 

distribution of network variation. The analytical unit could moreover be made to incorporate connecting 

 

16 This way of turning left at intersections is also known as ‘the Copenhagen left’ and is by some considered both cumbersome 
and hazardous (Hembrow, 2010). See Copenhagen, 2019c for a description of this way of turning left. 
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bike lanes and routes in neighbouring municipalities. This could reveal issues with gaps and missing links 

between segments on each side of the municipal border and give a more accurate account of the number of 

dangling vertices. 

 

A final consideration is the way in which the different factors are used to assign cost to the edges. In the 

method used for this analysis, distance is the determinant factor for the cost assigned to an edge. This means 

that the overall reachability of course goes down when more factors are introduced, and might make it harder 

to decipher the influence of the different variables compared to the influence of the length of a segment. 

While distance is crucial for modelling the route choices of cyclists, a network analysis without distance as a 

cost would to a greater extent reveal network segments with particularly good or bad cycling conditions. 

Similarly, it could be considered to separate the positive and negative factors used for assigning costs into 

two different weighting schemes. This might aid in the interpretation of the results and for example ensure 

that e.g. the presence of a park or water nearby does not mask that a segment simultaneously have a lot of 

traffic and no separated bike lane. The weighting schemes could furthermore be adapted to produce a larger 

difference between results from different weighting schemes, and in this way more clearly display how the 

network is experienced based on different preferences. This approach could potentially be extended to 

assigning infinite cost to edges with particularly high traffic counts or high speed, which would make it clear 

whether any areas become inaccessible if a cyclist is uncomfortable with this type of street. While some other 

network analysis of cycling infrastructure actually do exclude high stress segments17, this does however not 

match the actual experience of cycling in Copenhagen, which, both in theory and practice, allows for cycling 

on almost all street segments, and even have bike lanes along some highways. The data used here furthermore 

only includes segments which officially are part of the cycling infrastructure of bike lanes and routes (present 

and planned), and all segments are thus considered bikeable. A network analysis based on the entire street 

network might however have to modify this assumption. It is in this regard important to remember that an 

analysis like the one performed here needs to be adapted to the local context, since assumptions made here 

might not hold for other places. 

  

  

 

17 See e.g. Zuo and Wei, 2019 or Kent and Karner, 2019. 
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7. Conclusion 

The analysis and results presented above have all aimed to answer the research question of how a GIS-based 

network analysis can be used for evaluating cycling infrastructure. My objective with this question has been 

to firstly, explore how a network analysis can be used to describe and assess a network of cycling 

infrastructure at a general level, and secondly, to examine in what ways such a network analysis might also 

be used to identify areas and network segments that stand out, for example due to lower than average 

connectivity. 

 

The results and methods applied throughout the analysis have shown that measures of connectivity and 

centrality can reveal the core structure and state of a network. It does this by describing to what extent e.g. 

the connectivity between network elements, network density, and ratio between edges and vertices make the 

cycling infrastructure function as a proper transportation network, that allows you to move through the city 

without too many constraints and detours. Connectivity and centrality indices can also be used to identify 

issues with low network resilience in places where a network is too reliant on a small number of network 

segments. The computation of such indices can furthermore highlight problems with disparities and 

inequalities in the network, e.g. in terms of access to cycling infrastructure, network density, and distance 

and reachability to or from other parts of the network. 

 

To achieve these results, the concept of shortest path is essential, both for the computation of overall 

connectivity and for identifying the centrality of different network elements. The use of shortest path 

computations for network analysis is particularly useful when the shortest path is not only taken to mean 

physical distance, but instead the path of ‘lowest costs’, since this allows for the incorporation of a wider 

variety of variables that all influence the experience of cycling. It is in this regard nonetheless important to 

keep in mind that the shortest path is a theoretical construct, which does not necessarily reflect the actual 

paths of cyclists. A computation of the connectivity and centrality indices used in this analysis, but based on 

actual paths, would thus be an interesting idea for future research. 

 

The use of weighted shortest paths based on a range of different variables describing each network segment 

have demonstrated that shortest path computations can incorporate many more variables than simply 

physical distance, if data are available. Adding more variables will give a different understanding of the 
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network and potentially provide a more realistic and nuanced depiction of how a network is experienced by 

cyclists, who rarely only are concerned about distance. If the goal is to understand how a specific 

characteristic is influencing the connectivity and costs of moving through the network, a different approach 

than the one used here is however needed. 

 

With that said, the analysis has clearly demonstrated the potentials of a network analysis as a tool when 

planning and designing better cycling infrastructure. A network analysis like the one I have conducted here 

can for example provide a comprehensive overview of how a network functions as a whole, which is 

otherwise hard to achieve for larger networks, and can identify areas with low connectivity and access. While 

it is straightforward to determine e.g. how many kilometres of bike lane a neighbourhood has, the length and 

number of bike lanes and routes do not necessarily tell you how well connected the bike lanes are, whether 

they connect properly to surrounding areas, how easy the area is to reach, if they are disproportionately 

affected by car traffic, and so on. A network analysis can therefore be used to detect otherwise overlooked 

areas, identify missing links, model the consequences of new extensions, and moreover provides standardised 

and quantifiable measurements for the quality of the network. The City of Copenhagen already has specific 

targets and measurements used to track and guide the development for e.g. the share of the population 

commuting by bicycle, satisfaction with bike lanes, safety, etc. As a network of cycling infrastructure becomes 

increasingly developed and established, it might be useful to similarly establish concrete goals for the network 

as a whole, such as e.g. a minimum network density for a neighbourhood, the maximum cost of cycling 

across the city, a maximum amount of dangling ends per square kilometre, etc. Such metrics can help ensure 

a consistent network quality across the city and prevent that some areas fall behind as the cycling 

infrastructure is improved and extended. Even though some of the missing links, issues with network 

resilience, and disparities in access and connectivity might already be known, a quantifiable metric moreover 

makes it easier to measure and communicate progress and improvements.  

 

This thesis has primarily been an exploration of a method, with the aim of showing the potentials of network 

analysis for understanding and communicating the state of cycling infrastructure. The analysis has shown 

that network analysis is a highly flexible approach that can be adapted to specific needs and preferences, for 

example when it comes to the weighting of network segments. The results are however only as good as the 

underlying data, and data availability, quality, and accuracy are reoccurring challenges when it comes to 

planning for cycling. The analysis I have performed here could thus easily be improved if better and more 
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accurate data were available, particularly concerning the fundamental assumptions about the network 

structure and directionality. Future research could also examine how to use the preferences of actual cyclists 

to model the weights and cost, and ideally incorporate more data about the condition and characteristics of 

network segments. With a longer time perspective, developing the methods, functions, and equations used 

here into broadly available plugins and packages that can be run with common GIS-technologies would make 

it easier and more accessible to perform detailed and comprehensive network analyses, and hopefully result 

in more comparable metrics. Finally, I have shown that the connectivity and accessibility for cyclists do not 

need to be deduced or assumed based on regular street networks build for motorised traffic, but that 

networks of cycling infrastructure can be treated as independent networks, with meaningful results. 
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9. Appendices 

 

Appendix I: Neighbourhood Centrality Indices 

Table 11. Neighbourhood Centrality Indices based on Wefficiency 

Neighbourhood 
Minimum 

Stress 
Centrality 

Average 
Stress 

Centrality 

Maximum 
Stress 

Centrality 

Minimum 
Straightness 

Centrality 

Average 
Straightness 

Centrality 

Maximum 
Straightness 

Centrality 

Minimum 
Closeness 
Centrality 

Average 
Closeness 
Centrality 

Maximum 
Closeness 
Centrality 

Amager Øst 46 2780 14979 0.649 0.782 0.842 0.108 0.149 0.189 

Amager Vest 0 5384 31224 0.585 0.748 0.834 0.091 0.15 0.216 

Bispebjerg 94 4112 28224 0.716 0.804 0.843 0.132 0.162 0.195 

Brønshøj-Husum 0 2411 9339 0.712 0.795 0.83 0.095 0.122 0.163 

Frederiksberg 0 5053 36887 0.705 0.774 0.822 0.147 0.196 0.23 

Indre By 0 6404 45640 0.584 0.775 0.826 0.128 0.206 0.238 

Nørrebro 0 7174 45640 0.703 0.794 0.823 0.177 0.209 0.237 

Østerbro 21 3505 17657 0.603 0.762 0.818 0.1 0.158 0.204 

Valby 0 3041 14503 0.646 0.746 0.79 0.103 0.146 0.189 

Vanløse 8 3046 15070 0.682 0.783 0.83 0.106 0.151 0.19 

Vesterbro-Kongens 
Enghave 

59 5624 41184 0.608 0.745 0.79 0.117 0.188 0.231 

 

Table 12. Neighbourhood Centrality Indices based on Wsafety 

Neighbourhood 
Minimum 

Stress 
Centrality 

Average 
Stress 

Centrality 

Maximum 
Stress 

Centrality 

Minimum 
Straightness 

Centrality 

Average 
Straightness 

Centrality 

Maximum 
Straightness 

Centrality 

Minimum 
Closeness 
Centrality 

Average 
Closeness 
Centrality 

Maximum 
Closeness 
Centrality 

Amager Øst 49 2619 11233 0.631 0.744 0.84 0.106 0.147 0.186 

Amager Vest 0 5408 28602 0.579 0.742 0.832 0.09 0.149 0.213 

Bispebjerg 90 3953 25238 0.71 0.792 0.84 0.13 0.159 0.194 

Brønshøj-Husum 0 2447 9668 0.709 0.792 0.828 0.095 0.122 0.163 

Frederiksberg 0 5307 35949 0.704 0.77 0.819 0.146 0.195 0.229 

Indre By 0 6408 44270 0.579 0.766 0.816 0.126 0.204 0.237 

Nørrebro 0 6852 44270 0.695 0.788 0.82 0.176 0.207 0.236 

Østerbro 0 3536 17791 0.592 0.746 0.803 0.098 0.154 0.202 

Valby 0 3090 13626 0.643 0.736 0.781 0.103 0.144 0.187 

Vanløse 9 3036 12557 0.679 0.779 0.827 0.101 0.15 0.189 

Vesterbro-Kongens 
Enghave 

0 5596 36940 0.606 0.74 0.786 0.117 0.186 0.229 
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Table 13. Neighbourhood Centrality Indices based on Wdistance 

Neighbourhood 
Minimum 

Stress 
Centrality 

Average 
Stress 

Centrality 

Maximum 
Stress 

Centrality 

Minimum 
Straightness 

Centrality 

Average 
Straightness 

Centrality 

Maximum 
Straightness 

Centrality 

Minimum 
Closeness 
Centrality 

Average 
Closeness 
Centrality 

Maximum 
Closeness 
Centrality 

Amager Øst 38 3018 17429 0.678 0.824 0.875 0.113 0.159 0.203 

Amager Vest 0 4726 30242 0.626 0.81 0.874 0.094 0.164 0.235 

Bispebjerg 77 3359 14506 0.758 0.839 0.87 0.138 0.171 0.208 

Brønshøj-Husum 6 2144 8874 0.804 0.839 0.868 0.107 0.13 0.173 

Frederiksberg 56 5099 23537 0.747 0.824 0.855 0.158 0.211 0.247 

Indre By 0 7472 33378 0.614 0.817 0.878 0.135 0.22 0.256 

Nørrebro 26 6311 23985 0.728 0.832 0.861 0.192 0.222 0.253 

Østerbro 0 3461 13467 0.639 0.803 0.848 0.105 0.169 0.215 

Valby 0 2779 13520 0.709 0.818 0.858 0.113 0.161 0.2 

Vanløse 120 3125 12534 0.712 0.832 0.869 0.12 0.162 0.199 

Vesterbro-Kongens 
Enghave 

20 5270 23245 0.669 0.794 0.84 0.129 0.202 0.25 
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Appendix II: Pairwise Correlation of Network Indices and Neighbourhood 
Characteristics 

 

 

Figure 53. Seaborn pairwise comparison plot based on Wefficiency 
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Figure 54. Seaborn pairwise comparison plot based on Wsafety 
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Figure 55. Seaborn pairwise comparison plot based on Wdistance 
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Appendix III: Pre-processing of Network Topology with PostGIS 

CREATE DATABASE network_analysis 

ENCODING = UTF8 

WITH OWNER = postgres; 

 

-- Table with age distribution and population density -- 

 

CREATE TABLE age_density 

(n_name character varying(50) NOT NULL UNIQUE PRIMARY KEY, 

Total_0_17 float,  

Percent_0_17 float,  

Total_18_24 float, 

Percent_18_24 float, 

Total_25_64 float, 

Percent_25_64 float, 

Total_65_99 float, 

Percent_65_99 float, 

Total_pop float, 

Area float, 

Pop_dens float ); 

 

\copy age_density FROM 'Neighbourhoods_age_density.csv' DELIMITER ',' CSV HEADER; 

 

-- Table with income and educational levels 

 

CREATE TABLE income_education (n_name character varying(50) NOT NULL UNIQUE PRIMARY KEY, 

income integer, 

elementary integer, 

percent_elementary float, 

high_school integer, 

percent_highschool float, 

vocational integer, 

percent_vocational float, 

short_further integer, 

percent_short float, 

medium_higher integer, 

percent_medium float, 

bachelor integer, 

percent_bachelor float, 

long_higher integer, 

percent_long float, 
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total_16_66 integer 

); 

 

\copy income_education FROM ‘Neighbourhoods_income_education.csv' DELIMITER ',' CSV HEADER; 

 

-- Shapefiles loaded using PostGIS Bundle 

-- Updating spatial reference for shapefiles 

 

select UpdateGeometrySRID('all_bikelanes', 'geom', 25832); 

select UpdateGeometrySRID('all_roads', 'geom', 25832); 

select UpdateGeometrySRID('traffic_counts', 'geom', 25832); 

select UpdateGeometrySRID('road_surface', 'geom', 25832); 

select UpdateGeometrySRID('neighbourhoods', 'geom', 25832) 

select UpdateGeometrySRID('parks', 'geom', 25832); 

select UpdateGeometrySRID('water', 'geom', 25832); 

 

-- Adding Frb. to Neighbourhoods layer-- 

 

CREATE TABLE single_neighs AS  

SELECT gid, navn, areal_m2, area_km2, neigh_number, (ST_DUMP(geom)).geom::geometry(Polygon,25832) AS geom FROM ne

ighbourhoods; 

 

CREATE TABLE frb (like single_neighs); 

INSERT INTO frb(geom)(SELECT St_MakePolygon(st_interiorringn(st_union(geom),1)) AS geom FROM neighbourhoods); 

 

-UPDATE frb SET gid = 11, navn = 'Frederiksberg', neigh_number = 11; 

 

INSERT INTO single_neighs SELECT * FROM frb; 

 

ALTER TABLE single_neighs RENAME TO neighbourhoods; 

 

-- Adding roadid to table traffic counts 

ALTER TABLE traffic_counts ADD COLUMN roadid VARCHAR; 

UPDATE traffic_counts SET road_id = road_surface.vejid FROM road_surface 

WHERE ST_Intersects(traffic_counts.geom, road_surface.geom); 

 

-- Saving bike lanes as separate table 

CREATE TABLE regular_bikelanes AS SELECT * FROM all_bikelanes_old WHERE kategori = 'Bike lane'; 

 

-- Assigning road_id to bikelanes 

UPDATE bikelanes SET vejid = all_roads.road_id FROM all_roads 

WHERE ST_Intersects(bikelanes.topogeom, all_roads.geom) AND vejid IS NULL; 
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-- Saving Cycle Superhighways and Green Cycle Routes as separate table -- 

CREATE TABLE super_green AS SELECT * FROM all_bikelanes_old WHERE kategori IN ('Super','Green'); 

 

-- layer with bikelanes edited in arcmap and qgis 

-- all segments joined and then split at intersection 

-- spatial join with most overlapping road surface 

-- reloaded as bikelanes 

 

-- Specifying bikelanes which are part of green cycle routes of cycle superhighways 

ALTER TABLE bikelanes ADD COLUMN green VARCHAR; 

ALTER TABLE bikelanes ADD COLUMN super VARCHAR; 

 

-- super_green has been split into singleparts using QGIS 

CREATE TABLE super_buffer AS  

SELECT ST_Union(ST_Buffer(geom,15)::geometry(Polygon,25832)) AS geom  

FROM super_green_single WHERE super_green_single.kategori = 'Super'; 

 

WITH regular_super AS  

(SELECT * FROM bikelanes AS bl, super_buffer AS sb WHERE ST_Within(bl.geom, sb.geom)) 

UPDATE bikelanes SET super = 'super' from regular_super rs WHERE bikelanes.id = rs.id; 

 

CREATE TABLE green_buffer AS  

SELECT ST_Union(ST_Buffer(geom,15)::geometry(Polygon,25832)) AS geom  

FROM super_green_single WHERE super_green_single.kategori = 'Green'; 

 

WITH regular_green AS  

(SELECT * FROM bikelanes AS bl, green_buffer AS gb WHERE ST_Intersects(bl.geom, gb.geom)) 

UPDATE bikelanes SET green = 'g' FROM regular_green rg WHERE bikelanes.id = rg.id; 

 

-- Specifying bikelanes which are part of closer to the water or parks 

ALTER TABLE bikelanes ADD COLUMN park VARCHAR; 

ALTER TABLE bikelanes ADD COLUMN water VARCHAR; 

 

WITH bikelanes_water AS  

(SELECT bl.gid FROM bikelanes AS bl, water AS w WHERE ST_DWithin(bl.topogeom, w.geom, 15)) 

UPDATE bikelanes SET water = 'w' 

FROM bikelanes_water bw WHERE bikelanes.gid = bw.gid; 

 

WITH bikelanes_park AS  

(SELECT bl.gid FROM bikelanes AS bl, parks AS p WHERE ST_DWithin(bl.topogeom, p.geom, 15)) 

UPDATE bikelanes SET park = 'p' 
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FROM bikelanes_park bp WHERE bikelanes.gid = bp.gid; 

 

-- Checking for non-valid and non-simple geometries 

SELECT * FROM bikelanes WHERE ST_IsValid(geom) =  FALSE; 

 

SELECT * FROM bikelanes WHERE ST_IsSimple(geom) = FALSE; 

 

-- Deleting null geometries from regular bikelanes 

DELETE FROM bikelanes WHERE geom IS NULL; 

 

---Installing the topology extension 

CREATE EXTENSION postgis_topology; 

 

-- Creating new empty topology 

SELECT topology.CreateTopology('network_topology', 25832, 1, FALSE);  

 

-- Creating new column for TopoGeometry 

SELECT topology.AddTopoGeometryColumn('network_topology','public','bikelanes','topogeom','MULTILINE');  

 

-- Filling TopoGeometry column with snapping threshold 1 meter -- 

DO $$DECLARE r record; 

BEGIN 

  FOR r IN SELECT * FROM bikelanes LOOP 

    BEGIN 

      UPDATE bikelanes SET topogeom = topology.toTopoGeom(geom,'network_topology',1,2) 

      WHERE id = r.id; 

    EXCEPTION 

      WHEN OTHERS THEN 

        RAISE WARNING 'Loading of record % failed: %', r.id, SQLERRM; 

    END; 

  END LOOP; 

END$$;    

 

-- Validating topology 

SELECT * FROM topology.ValidateTopology('network_topology'); 

 

--Topological errors where fixed using e.g.: 

SELECT ST_NewEdgeHeal('network_topology',186,610); 

 

-- Identify unconnected edges -- 

SELECT * FROM network_topology.edge_data WHERE edge_id = abs_next_left_edge AND edge_id = abs_next_right_edge; 
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Appendix IV: Factors & Corresponding Weights 

Weighting Scheme for Efficiency & Separated Bike Lanes (Wefficiency) 

Speed Weight  Class Weight 

0 -20  Highway 30 

15 -20  Distribution street 10 

30 -15  Regional street 20 

40 -10  Shopping street 0 

5018 0  Neighbourhood street 0 

60 20  Unknown 0 

70 25    
90 30    

 

Status Weight  Attributes Weight 

Path19 0  Green Cycle Route -15 

Private street 0  Cycle Superhighways -25 

Main road 10  Park -10 

Municipal street 0  Water -10 

   Bike lane - 40 

 

Traffic counts, cars 
(thousands) Weight  

Traffic counts, trucks 
(thousands) Weight 

0 0  0.001 – 0.1 5 

0.1 - 3 0  0.1 – 0.5 10 

3 - 10 5  0.5 – 1.2 15 

10 - 17 10  1.2 – 1.9 20 

17 - 27 15    

27 - 43 20    

43 - 67 25    

67 - 89 30    
 

  

 

18 Default speed limit in urban areas in Denmark. 
19 Paths are in some cases significantly more bike friendly than streets, for example in the base of separate bike lanes constructed 
away from the street. Other paths are however not exclusively used by cyclists and might have a surface which is less suitable for 
bike. 
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Weighting Scheme for Lower Traffic Speed & Fewer Cars (Wsafety) 

Speed Weight  Class Weight 

0 -30  Highway 30 

15 -20  Distribution street 10 

30 -15  Regional street 20 

40 -10  Shopping street 0 

50 0  Neighbourhood street 0 

60 25  Unknown 0 

70 30    
90 40    

 

Status Weight  Attributes Weight 

Path - 10  Green Cycle Route -15 

Private street 0  Cycle Superhighways -15 

Main road 10  Park -10 

Municipal street 0  Water -10 

   Bike lane - 20 

 

Traffic counts, cars 
(thousands) Weight  

Traffic counts, trucks 
(thousands) Weight 

0 0  0.001 – 0.1 10 

0.1 - 3 0  0.1 – 0.5 15 

3 - 10 5  0.5 – 1.2 20 

10 - 17 10  1.2 – 1.9 25 

17 - 27 20    

27 - 43 30    

43 - 67 35    

67 - 89 40    
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Appendix V: Adding Weights to Network Segments 

--This scripts weighs the different network segments based on their attributes 

 

ALTER TABLE bikelanes ADD COLUMN total_weight_safety NUMERIC; 

ALTER TABLE bikelanes ADD COLUMN total_weight_efficiency NUMERIC; 

 

ALTER TABLE network_topology.edge_data ADD COLUMN length_ NUMERIC; 

UPDATE network_topology.edge_data SET length_ = ST_Length(geom); 

 

CREATE TABLE safety_weights AS  

SELECT gid, vejid FROM bikelanes; 

 

-- Update safety_weights based on class 

ALTER TABLE safety_weights ADD COLUMN weight_class NUMERIC; 

UPDATE safety_weights SET weight_class = 0; 

UPDATE safety_weights SET weight_class = weight_class + 30 FROM all_roads  

WHERE vejid = road_id AND class = 'Highway'; 

 

UPDATE safety_weights SET weight_class = weight_class + 10  

FROM all_roads WHERE vejid = road_id AND class = 'Distribution street'; 

 

UPDATE safety_weights SET weight_class = weight_class + 20  

FROM all_roads WHERE vejid = road_id AND class = 'Regional street'; 

 

-- Update safety_weights based on road status 

ALTER TABLE safety_weights ADD COLUMN weight_status NUMERIC; 

UPDATE safety_weights SET weight_status = 0; 

UPDATE safety_weights SET weight_status = weight_status + 10  

FROM all_roads WHERE vejid = road_id AND status = 'Main road'; 

UPDATE safety_weights SET weight_status = weight_status - 10  

FROM all_roads WHERE vejid = road_id AND status = 'Path'; 

 

-- Update safety_weights based on speed 

ALTER TABLE safety_weights ADD COLUMN weight_speed NUMERIC; 

UPDATE safety_weights SET weight_speed = 0; 

UPDATE safety_weights SET weight_speed = weight_speed - 30  

FROM all_roads WHERE vejid = road_id AND speed = 0; 

 

UPDATE safety_weights SET weight_speed = weight_speed - 20  

FROM all_roads WHERE vejid = road_id AND speed = 15; 

 

UPDATE safety_weights SET weight_speed = weight_speed - 15 
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FROM all_roads WHERE vejid = road_id AND speed = 30; 

 

UPDATE safety_weights SET weight_speed = weight_speed - 10 

FROM all_roads WHERE vejid = road_id AND speed = 40; 

 

UPDATE safety_weights SET weight_speed = weight_speed + 25 

FROM all_roads WHERE vejid = road_id AND speed = 60; 

 

UPDATE safety_weights SET weight_speed = weight_speed + 30 

FROM all_roads WHERE vejid = road_id AND speed = 70; 

 

UPDATE safety_weights SET weight_speed = weight_speed + 40 

FROM all_roads WHERE vejid = road_id AND speed = 90; 

 

-- Update safety_weights based on traffic counts (cars) 

ALTER TABLE safety_weights ADD COLUMN weight_cars NUMERIC; 

UPDATE safety_weights SET weight_cars = 0; 

UPDATE safety_weights SET weight_cars = weight_cars + 5 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 10000 and cars_weekday >= 3000; 

 

UPDATE safety_weights SET weight_cars = weight_cars + 10 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 17000 and cars_weekday > 10000; 

 

UPDATE safety_weights SET weight_cars = weight_cars + 20 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 27000 and cars_weekday > 17000; 

 

UPDATE safety_weights SET weight_cars = weight_cars + 30 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 43000 and cars_weekday > 27000; 

 

UPDATE safety_weights SET weight_cars = weight_cars + 35 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 67000 and cars_weekday > 43000; 

 

UPDATE safety_weights SET weight_cars = weight_cars + 40 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday > 67000; 

 

-- Update safety_weights based on traffic counts (trucks) 

ALTER TABLE safety_weights ADD COLUMN weight_trucks NUMERIC; 

UPDATE safety_weights SET weight_trucks = 0; 

UPDATE safety_weights SET weight_trucks = weight_trucks + 10 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 100 and trucks >= 1; 

 

UPDATE safety_weights SET weight_trucks = weight_trucks + 15 
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FROM traffic_counts WHERE vejid = road_id AND trucks <= 500 and trucks > 100; 

 

UPDATE safety_weights SET weight_trucks = weight_trucks + 20 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 1200 and trucks > 500; 

 

UPDATE safety_weights SET weight_trucks = weight_trucks + 25 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 1900 and trucks > 1200; 

 

-- Update safety_weights based on proximity to parks or water 

ALTER TABLE safety_weights ADD COLUMN weight_recreational NUMERIC; 

UPDATE safety_weights SET weight_recreational = 0; 

UPDATE safety_weights SET weight_recreational = weight_recreational -10  

FROM bikelanes WHERE bikelanes.gid =  safety_weights.gid AND park = 'p'; 

UPDATE safety_weights SET weight_recreational = weight_recreational -10  

FROM bikelanes WHERE bikelanes.gid =  safety_weights.gid AND water = 'w'; 

 

-- Update safety_weights based on Cycle Superhighways or Green Cycle Routes 

ALTER TABLE safety_weights ADD COLUMN weight_route NUMERIC; 

UPDATE safety_weights SET weight_route = 0; 

UPDATE safety_weights SET weight_route = weight_route - 15  

FROM bikelanes WHERE bikelanes.gid =  safety_weights.gid AND green = 'g'; 

UPDATE safety_weights SET weight_route = weight_route - 15 

FROM bikelanes WHERE bikelanes.gid =  safety_weights.gid AND super = 'super'; 

 

-- Update safety_weights based on whether there is a physical bikelane 

ALTER TABLE safety_weights ADD COLUMN weight_bikelane NUMERIC; 

UPDATE safety_weights SET weight_bikelane = 0; 

UPDATE safety_weights SET weight_bikelane = weight_bikelane - 20 

FROM bikelanes WHERE bikelanes.gid = safety_weights.gid and bikelane = 'yes'; 

 

-- Summing total weight 

ALTER TABLE safety_weights ADD COLUMN total_weight_safety NUMERIC; 

UPDATE safety_weights SET total_weight_safety =  

weight_class + weight_status + weight_speed + weight_cars + weight_trucks +  

weight_recreational + weight_route; 

 

-- Adding total weight to table bikelanes 

UPDATE bikelanes SET total_weight_safety = safety_weights.total_weight_safety  

FROM safety_weights where bikelanes.gid = safety_weights.gid; 

 

-- Creating second table for weights 

CREATE TABLE efficiency_weights AS  

SELECT gid, vejid FROM bikelanes; 
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-- Update efficiency_weights based on class 

ALTER TABLE efficiency_weights ADD COLUMN weight_class NUMERIC; 

UPDATE efficiency_weights SET weight_class = 0; 

UPDATE efficiency_weights SET weight_class = weight_class + 30 FROM all_roads  

WHERE vejid = road_id AND class = 'Highway'; 

 

UPDATE efficiency_weights SET weight_class = weight_class + 10  

FROM all_roads WHERE vejid = road_id AND class = 'Distribution street'; 

 

UPDATE efficiency_weights SET weight_class = weight_class + 20  

FROM all_roads WHERE vejid = road_id AND class = 'Regional street'; 

 

-- Update efficiency_weights based on road status 

ALTER TABLE efficiency_weights ADD COLUMN weight_status NUMERIC; 

UPDATE efficiency_weights SET weight_status = 0; 

UPDATE efficiency_weights SET weight_status = weight_status + 10  

FROM all_roads WHERE vejid = road_id AND status = 'Main road'; 

 

-- Update efficiency_weights based on speed 

ALTER TABLE efficiency_weights ADD COLUMN weight_speed NUMERIC; 

UPDATE efficiency_weights SET weight_speed = 0; 

UPDATE efficiency_weights SET weight_speed = weight_speed - 30  

FROM all_roads WHERE vejid = road_id AND speed = 0; 

 

UPDATE efficiency_weights SET weight_speed = weight_speed - 20  

FROM all_roads WHERE vejid = road_id AND speed = 15; 

 

UPDATE efficiency_weights SET weight_speed = weight_speed - 15 

FROM all_roads WHERE vejid = road_id AND speed = 30; 

 

UPDATE efficiency_weights SET weight_speed = weight_speed - 10 

FROM all_roads WHERE vejid = road_id AND speed = 40; 

 

UPDATE efficiency_weights SET weight_speed = weight_speed + 20 

FROM all_roads WHERE vejid = road_id AND speed = 60; 

 

UPDATE efficiency_weights SET weight_speed = weight_speed + 25  

FROM all_roads WHERE vejid = road_id AND speed = 70; 

 

UPDATE efficiency_weights SET weight_speed = weight_speed + 30 

FROM all_roads WHERE vejid = road_id AND speed = 90; 
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-- Update efficiency_weights based on traffic counts (cars) 

ALTER TABLE efficiency_weights ADD COLUMN weight_cars NUMERIC; 

UPDATE efficiency_weights SET weight_cars = 0; 

UPDATE efficiency_weights SET weight_cars = weight_cars + 5 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 10000 and cars_weekday >= 3000; 

 

UPDATE efficiency_weights SET weight_cars = weight_cars + 10 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 17000 and cars_weekday > 10000; 

 

UPDATE efficiency_weights SET weight_cars = weight_cars + 15 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 27000 and cars_weekday > 17000; 

 

UPDATE efficiency_weights SET weight_cars = weight_cars + 20 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 43000 and cars_weekday > 27000; 

 

UPDATE efficiency_weights SET weight_cars = weight_cars + 25 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday <= 67000 and cars_weekday > 43000; 

 

UPDATE efficiency_weights SET weight_cars = weight_cars + 30 

FROM traffic_counts WHERE vejid = road_id AND cars_weekday > 67000; 

 

-- Update efficiency_weights based on traffic counts (trucks) 

ALTER TABLE efficiency_weights ADD COLUMN weight_trucks NUMERIC; 

UPDATE efficiency_weights SET weight_trucks = 0; 

UPDATE efficiency_weights SET weight_trucks = weight_trucks + 5 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 100 and trucks >= 1; 

 

UPDATE efficiency_weights SET weight_trucks = weight_trucks + 10 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 500 and trucks > 100; 

 

UPDATE efficiency_weights SET weight_trucks = weight_trucks + 15 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 1200 and trucks > 500; 

 

UPDATE efficiency_weights SET weight_trucks = weight_trucks + 20 

FROM traffic_counts WHERE vejid = road_id AND trucks <= 1900 and trucks > 1200; 

 

-- Update efficiency_weights based on proximity to parks or water 

ALTER TABLE efficiency_weights ADD COLUMN weight_recreational NUMERIC; 

UPDATE efficiency_weights SET weight_recreational = 0; 

UPDATE efficiency_weights SET weight_recreational = weight_recreational -10  

FROM bikelanes WHERE bikelanes.gid =  efficiency_weights.gid AND park = 'p'; 

UPDATE efficiency_weights SET weight_recreational = weight_recreational -10  
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FROM bikelanes WHERE bikelanes.gid =  efficiency_weights.gid AND water = 'w'; 

 

-- Update efficiency_weights based on uHighways or Green Cycle Routes 

ALTER TABLE efficiency_weights ADD COLUMN weight_route NUMERIC; 

UPDATE efficiency_weights SET weight_route = 0; 

UPDATE efficiency_weights SET weight_route = weight_route -15  

FROM bikelanes WHERE bikelanes.gid =  efficiency_weights.gid AND green = 'g'; 

UPDATE efficiency_weights SET weight_route = weight_route -25 

FROM bikelanes WHERE bikelanes.gid =  efficiency_weights.gid AND super = 'super'; 

 

-- Update efficiency_weights based on whether there is a physical bikelane 

ALTER TABLE efficiency_weights ADD COLUMN weight_bikelane NUMERIC; 

UPDATE efficiency_weights SET weight_bikelane = 0; 

UPDATE efficiency_weights SET weight_bikelane = weight_bikelane - 40 

FROM bikelanes WHERE bikelanes.gid = efficiency_weights.gid and bikelane = 'yes'; 

 

-- Summing total weight 

ALTER TABLE efficiency_weights ADD COLUMN total_weight_efficiency NUMERIC; 

UPDATE efficiency_weights SET total_weight_efficiency =  

weight_class + weight_status + weight_speed + weight_cars + weight_trucks +  

weight_recreational + weight_route; 

 

-- Adding total weight to table bikelanes 

UPDATE bikelanes SET total_weight_efficiency =  

efficiency_weights.total_weight_efficiency  

FROM efficiency_weights where bikelanes.gid = efficiency_weights.gid; 

 

-- Making sure that there are no negative safety_weights 

SELECT MIN(total_weight_safety) FROM bikelanes; 

 

-- The lowest weight is -90 

UPDATE bikelanes SET total_weight_safety = total_weight_safety + 90; 

 

-- Making sure that there are no negative efficiency_weights 

SELECT MIN(total_weight_efficiency) FROM bikelanes; 

 

-- The lowest weight is -90 

UPDATE bikelanes SET total_weight_efficiency = total_weight_efficiency + 90; 

 

-- Join edge_id and edge_length with weights in new table 

CREATE TABLE edge_weights AS  

(SELECT gid, edge_id, start_node, end_node, total_weight_safety,  

total_weight_efficiency, e.length_  
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FROM bikelanes bl  

INNER JOIN network_topology.relation AS r  

ON (((bl.topogeom).id , (bl.topogeom).layer_id)) = (r.topogeo_id, r.layer_id) 

INNER JOIN network_topology.edge_data AS e ON (r.element_id = e.edge_id)  

ORDER BY edge_id); 

 

ALTER TABLE edge_weights ADD COLUMN safety_weight_distance NUMERIC; 

ALTER TABLE edge_weights ADD COLUMN efficiency_weight_distance NUMERIC; 

 

--Multiplying the weights with the distance 

UPDATE edge_weights SET safety_weight_distance = (total_weight_safety *(length_/100))::INT; 

UPDATE edge_weights SET efficiency_weight_distance = (total_weight_efficiency*(length_/100))::INT; 

--Adding distance as a weight 

UPDATE edge_weights SET safety_weight_distance = safety_weight_distance + length_::INT; 

UPDATE edge_weights SET efficiency_weight_distance = efficiency_weight_distance + length_::INT; 

 

-- Export edge and node data 

\COPY (SELECT edge_id, start_node, end_node FROM network_topology.edge_data ORDER BY start_node)  

TO 'edge_data.csv' DELIMITER ',' CSV HEADER; 

 

-- Retrieving data about the connection between edges and the org. data with weights 

\COPY (SELECT gid, topology.GetTopoGeomElements(topogeom) FROM bikelanes  

ORDER BY gid) TO 'edge_relation.csv' DELIMITER ',' CSV HEADER; 

 

-- Export tables with edge weights 

\COPY (SELECT * from edge_weights) TO 'edge_relation_weights.csv' DELIMITER ',' CSV HEADER; 

 
 

  



101 
 

Appendix VI: Visualised Edge Weights 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 56. Edge weights based on Wefficiency Figure 57. Edge weights based on Wsafety 

Figure 58. Edge weights based on Wdistance 
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Appendix VII: Network Density with SQL 

--Counting the number of vertices 

SELECT COUNT(edge_id) FROM network_topology.edge_data; 

 

CREATE TABLE vertices AS (SELECT start_node FROM network_topology.edge_data); 

INSERT INTO vertices SELECT end_node FROM network_topology.edge_data; 

 

ALTER TABLE vertices RENAME start_node TO vertex; 

 

SELECT COUNT(DISTINCT vertex) FROM vertices; 

 

-- Length of entire network 

SELECT SUM(ST_Length(geom))/1000 FROM network_topology.edge_data; 

 

--Length of network in different neighbourhoods 

WITH inter AS (SELECT ST_Intersection(e.geom, n.geom) AS geom FROM network_topology.edge_data e, neighbourhoods n

 WHERE n.navn = 'Vanloese') 

SELECT SUM(ST_Length(geom))/1000 FROM inter; 

 

--Length of network per square kilometre in different neighbourhoods 

WITH inter AS (SELECT ST_Intersection(e.geom, n.geom) AS geom FROM network_topology.edge_data e, neighbourhoods n

 WHERE n.navn LIKE 'Frederiksberg') 

SELECT SUM(ST_Length(geom)/1000) /(SELECT area_km2 FROM neighbourhoods n WHERE n.navn LIKE 'Frederiksberg') FROM 

inter; 

 

-- Number of vertices with more than one edge connected (i.e. the vertex is present more than once) 

CREATE VIEW intersections AS (SELECT vertex, COUNT(1) FROM vertices GROUP BY vertex HAVING COUNT(1) > 1 ORDER BY 

vertex); 

-- Join with original node geometry 

CREATE VIEW inter_nodes AS (SELECT * FROM intersections INNER JOIN network_topology.node ON vertex = node_id); 

 

-- Finding degree for each vertex 

CREATE VIEW degree AS (SELECT vertex, COUNT(1) FROM vertices GROUP BY vertex ORDER BY vertex); 

-- Joining degree with node geometry 

CREATE VIEW nodes_degree AS (SELECT * FROM degree INNER JOIN network_topology.node ON vertex = node_id); 

 

-- Find the number of intersections for each neighbourhood 

SELECT COUNT(*) FROM inter_nodes i, neighbourhoods n WHERE ST_Intersects(i.geom, n.geom) AND n.navn LIKE 'Frederi

ksberg'; 

-- Find the number of intersections per square kilometres in different neighbourhoods 

SELECT COUNT(*)/(SELECT area_km2 FROM neighbourhoods n WHERE n.navn LIKE 'Frederiksberg') FROM inter_nodes i, nei

ghbourhoods n WHERE ST_Intersects(i.geom, n.geom) AND n.navn LIKE 'Frederiksberg'; 
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-- Retrieving the number of nodes and edges for each neighbourhood 

SELECT COUNT(*) FROM network_topology.node v, neighbourhoods n  

WHERE ST_Within(v.geom, n.geom) AND n.navn LIKE 'Bispebjerg%'; 

 

SELECT COUNT(*) FROM network_topology.edge_data e, neighbourhoods n  

WHERE ST_Within(e.geom, n.geom) AND n.navn LIKE 'Frederiksberg%'; 

 

-- Finding stress centrality for neighbourhoods 

WITH stress_centrality AS (SELECT index, edge_id, count, norm_stress, geom FROM stress_cent_dist s JOIN network_t

opology.edge_data e ON s.index = e.edge_id) 

SELECT MIN(count)::INT FROM stress_centrality s, neighbourhoods n  

WHERE ST_Intersects(s.geom, n.geom)  

AND n.navn LIKE 'Bispebjerg%'; 

 

-- Finding closeness centrality for neighbourhoods 

WITH closeness_centrality AS (SELECT index, node_id, sum_dist, norm_close, geom FROM closeness_eff c JOIN network

_topology.node n ON c.index = n.node_id) 

SELECT ROUND(MIN(sum_dist)::NUMERIC,3) FROM closeness_centrality c, neighbourhoods n  

WHERE ST_Intersects(c.geom, n.geom)  

AND n.navn LIKE 'Amager V%'; 

 

-- Finding straightness centrality for neighbourhoods 

WITH straightness_centrality AS (SELECT index, node_id, c_s, norm_straight, geom FROM straightness_eff s JOIN net

work_topology.node n ON s.index = n.node_id) 

SELECT ROUND(MIN(c_s)::NUMERIC,3) FROM straightness_centrality s, neighbourhoods n  

WHERE ST_Intersects(s.geom, n.geom)  

AND n.navn LIKE 'Amager Ø%'; 

 

-- Comparing neighbourhoods 

ALTER TABLE income_education ADD COLUMN income_norm NUMERIC; 

UPDATE income_education  

SET income_norm = ROUND((income/(SELECT MAX(income) FROM income_education)::NUMERIC); 

 

ALTER TABLE income_education ADD COLUMN higher_ed_percent NUMERIC; 

ALTER TABLE income_education ADD COLUMN highed_norm NUMERIC; 

UPDATE income_education SET higher_ed_percent = percent_medium+percent_bachelor+percent_long 

UPDATE income_education SET highed_norm = ROUND((higher_ed_percent/(SELECT MAX(higher_ed_percent)  

FROM income_education)::NUMERIC),3); 

 

ALTER TABLE age_density ADD COLUMN pop_dens_norm NUMERIC; 

UPDATE age_density SET pop_dens_norm = ROUND((pop_dens/(SELECT MAX(pop_dens) FROM age_density))::NUMERIC,3); 
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ALTER TABLE age_density ADD COLUMN children_norm NUMERIC; 

ALTER TABLE age_density ADD COLUMN young_norm NUMERIC; 

ALTER TABLE age_density ADD COLUMN adults_norm NUMERIC; 

ALTER TABLE age_density ADD COLUMN elderly_norm NUMERIC; 

 

UPDATE age_density SET children_norm = ROUND((percent_0_17/(SELECT MAX(percent_0_17) FROM age_density))::NUMERIC,

3); 

UPDATE age_density SET young_norm = ROUND((percent_18_24/(SELECT MAX(percent_18_24) FROM age_density))::NUMERIC,3

); 

UPDATE age_density SET adults_norm = ROUND((percent_25_64/(SELECT MAX(percent_25_64) FROM age_density))::NUMERIC,

3); 

UPDATE age_density SET elderly_norm = ROUND((percent_65_99/(SELECT MAX(percent_65_99) FROM age_density))::NUMERIC

,3); 

 

CREATE TABLE neighbourhood_comparison_norm AS  

(SELECT a.n_name, a.neigh_id, pop_dens_norm, children_norm, young_norm, adults_norm, elderly_norm, income_norm, h

ighed_norm  

FROM age_density a INNER JOIN income_education i ON a.neigh_id = i.neigh_id); 

 

CREATE TABLE neighbourhood_comparison AS  

(SELECT i.n_name, i.neigh_id, income, pop_dens, higher_ed_percent, percent_0_17, percent_18_24, percent_25_64, pe

rcent_65_99 

FROM income_education i JOIN age_density a ON i.neigh_id = a.neigh_id); 
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Appendix VIII: Adjacency/Incidence Matrix &  
Centrality Functions with Python 

'''  

Function for creating and computing an adjacency matrix for an undirected graph 

''' 

 

def adj_matrix(input_data, start_column, end_column, edge_column): 

    import pandas as pd 

 

    ''' 

    The function requires one dataframe as input w. columns containing edge_id or edge weight, start vertex and  

    end vertex 

    Additionally, the column names for start_nodes, end_nodes and edge_id must be provided 

    The function returns an adjacency matrix with the vertices as row indices and column names 

    ''' 

     

    #Retrieving a list of all nodes and removing duplicates 

    node_list = list(set(input_data[start_column].to_list() + input_data[end_column].to_list())) 

    node_list.sort() 

 

    #Creating an empty adjacency matrix 

    output_matrix = pd.DataFrame(index=node_list, columns=node_list) 

 

    for index, _ in input_data.iterrows(): 

        start_vertex = input_data.loc[index, start_column] 

        end_vertex = input_data.loc[index, end_column] 

        edge_id = input_data.loc[index, edge_column] 

        output_matrix.at[start_vertex, end_vertex] = edge_id 

        # Since the graph is not directed: 

        output_matrix.at[end_vertex, start_vertex] = edge_id 

 

    return output_matrix 

 

''' 

Function for creating an incidence matrix for an undirected graph 

''' 

 

def inc_matrix(input_data, start_column, end_column, edge_column): 

    ''' 

    The function requires one dataframe as input w. columns containing edge_id, start 

    vertex and end vertex 
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    Additionally, the column names for start_nodes, end_nodes and edge_id 

    must be provided 

    The function returns an incidence matrix with the vertices as row indices and  

    edges as column names 

    ''' 

    import pandas as pd 

 

    #Retrieving list of vertices, making sure that there are no duplicates 

    vertices = list(set(input_data[start_column].to_list() +  

    input_data[end_column].to_list())) 

    vertices.sort() 

 

    #Retrieving list of edges making sure that there are no duplicates 

    edges = list(set(input_data[edge_column].to_list())) 

    edges.sort() 

 

    #Creating incidence matrix, initialised as 0 

    inc_matrix = pd.DataFrame(data=0, index=vertices, columns=edges) 

 

    #Looping through input data and filling out incidence matrix 

    for _, row in input_data.iterrows(): 

 

        edge = row[edge_column] 

        start_vertex = row[start_column] 

        end_vertex = row[end_column] 

 

        inc_matrix.at[start_vertex,edge] = 1 

        inc_matrix.at[end_vertex,edge] = 1 

 

    return inc_matrix 

 

''' 

Script with functions for computing shortest paths, lengths of shortest paths, stress centrality or euclidian dis

tance based on networkX 

''' 

import pandas as pd 

import networkx as nx 

import itertools 

 

def construct_path_nodes(nodes, path_dictionary): 

    ''' 

    Functions for recreating shortest paths computed with NetworkX 

    The function returns the paths as a dataframe sort of like an adjacency matrix,  
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    but with lists of oath nodes as values 

    Requires a list of nodes and dictionary with paths as input 

    ''' 

    #Creating dataframe for resulting paths 

    path_nodes = pd.DataFrame(index = nodes, columns= nodes) 

 

    for i in nodes: 

        for k in nodes: 

            if k == i: 

                continue 

            path = nx.reconstruct_path(i, k, path_dictionary) 

            path_nodes.at[i, k] = path 

     

     

    return path_nodes 

 

def construct_path_edges(nodes, path_dictionary, adjacency_matrix):  

    ''' 

    Functions for recreating shortest paths computed with NetworkX 

    The function returns the paths as a dataframe sort of like an adjacency matrix, but with lists of path edges      

    as values 

    Requires a list of nodes, dictionary with paths and adjacency matrix with edge ids as input 

    ''' 

    #Creating dataframe for resulting paths 

    path_edges = pd.DataFrame(index = nodes, columns= nodes) 

 

    for i in nodes: 

        for k in nodes: 

            if k == i: 

                continue 

            path_nodes = nx.reconstruct_path(i, k, path_dictionary) 

            #Empty list for edges 

            edges = [] 

            for z in range(len(path_nodes)-1): 

                #Finding edge id 

                edge = adjacency_matrix.loc[path_nodes[z],path_nodes[z+1]] 

                #Storing edges 

                edges.append(edge) 

            path_edges.at[i, k] = edges 

 

    return path_edges 

def construct_path_lengths(nodes, path_dictionary, adjacency_matrix): 

    ''' 
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    Functions for recreating shortest paths computed with NetworkX 

    The function returns the paths as a dataframe sort of like an adjacency matrix, but with length between nodes

    as values 

    Requires a list of nodes, dictionary with paths and adjacency matrix with edge lengths as input 

    ''' 

    #Creating dataframe for path lengths 

    path_lengths = pd.DataFrame(index = nodes, columns= nodes) 

 

    for i in nodes: 

        for k in nodes: 

            if k == i: 

                continue 

            path_nodes = nx.reconstruct_path(i, k, path_dictionary) 

            #Empty list for edges 

            edges = [] 

            for z in range(len(path_nodes)-1): 

                #Finding edge id 

                edge = adjacency_matrix.loc[path_nodes[z],path_nodes[z+1]] 

                #Storing edges 

                edges.append(edge) 

            length = sum(edges) 

            path_lengths.at[i, k] = length 

 

    return path_lengths 

 

def compute_stress_centrality(edges, nodes, path_dictionary, adjacency_matrix): 

    '''  

    The function reconstructs paths based on a networkx path dictionary and counts how many paths an edge is part

    of 

    Requires a list of all nodes and the path dictionary as input 

    ''' 

    #Creating dataframe for stress centrality, initially all counts are set to zero 

    zeros = [0]*len(edges) 

    s_central = pd.DataFrame({'count': zeros}, index=edges) 

 

    for a, b in itertools.combinations(nodes, 2): 

        path_nodes = nx.reconstruct_path(a, b, path_dictionary) 

         

        #Going through list path of nodes 

        for z in range(len(path_nodes)-1): 

            edge = adjacency_matrix.loc[path_nodes[z],path_nodes[z+1]] 

            s_central.loc[edge, 'count'] = s_central.loc[edge, 'count'] + 1 
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    return s_central 

 

def calculate_distance(point_geometries, node_id): 

    ''' 

    Calculates the distance between Point geometries 

    Needs a dataframe with the points and the point geometries and the name of the column with the node_id 

    ''' 

 

    #Retrieving a list of all nodes and edges and removing duplicates 

    node_ids = list(set(point_geometries['node_id'])) 

    node_ids.sort() 

 

    distances = pd.DataFrame(index=node_ids, columns=node_ids) 

 

    #Calculating the Euclidian distance between two points 

    for i in node_ids: 

        for k in node_ids: 

            point_i = point_geometries.loc[point_geometries['node_id'] == i,'geom'].iloc[0] 

            point_k = point_geometries.loc[point_geometries['node_id'] == k,'geom'].iloc[0] 

            dist = point_i.distance(point_k) 

             

            #Saving it to dataframe 

            distances.at[i,k] = dist 

 

    return distances 

 

def distance_divided(euclidian_distance, path_length): 

    #Functions divides values in dataframe w. euclidian distance with values from dataframe with path length 

    #Dataframes should have same index and column names 

     

    #Create new dataframe with same index and columns 

    divided = pd.DataFrame(index=euclidian_distance.index, columns=euclidian_distance.index) 

 

    #Fill any potential NaN-values 

    euclidian_distance.fillna(0, inplace=True) 

    path_length.fillna(0, inplace=True) 

 

    #list of nodes 

    nodes = euclidian_distance.index.to_list() 
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    for i in nodes: 

        for k in nodes: 

            divided.at[i,k] = euclidian_distance.loc[i,k]/path_length.loc[i,k] 

         

    return divided 
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Appendix IX: Computing Vertex Degree & Clustering with Python 

  

#Importing modules 

import pandas as pd 

from AdjacencyMatrix import adj_matrix 

from sqlalchemy import create_engine 

  

#Reading original file with edges and vertices 

fp1 = r'C:\Users\viero\OneDrive\Documents\IGEON\THESIS\DATA\ANALYSIS_DATA\Code_files\edge_data.csv' 

data = pd.read_csv(fp1) 

 

#Using the function to fill the adjacency matrix 

adj = adj_matrix(data, 'start_node', 'end_node', 'edge_id') 

 

#Saving the adjacency matrix to csv 

fp2 = r'C:\Users\viero\OneDrive\Documents\IGEON\THESIS\DATA\ANALYSIS_DATA\Code_files\adj_matrix.csv' 

adj.to_csv(fp2) 

  

#Counting number of connected edges to each vertex 

count = list(adj.count()) 

intersections = [i for i in count if i != 1] 

number_of_intersections = len(intersections) 

 

#Loading adj_matrix into Postgres 

engine = create_engine('postgresql://postgres:IGEON20@localhost:5432/network_analysis') 

 

#Loading empty data frame to database 

adj.to_sql("adj_mat", engine) 

  

#Using psql to load data 

\copy adj_mat FROM 'C:\Users\viero\OneDrive\Documents\IGEON\THESIS\DATA\ANALYSIS_DATA\Code_files\adj_matrix.csv' 

DELIMITER ',' CSV HEADER; 

 

#Retrieving a list of all nodes and removing duplicates 

node_list = list(set(data['start_node'].to_list() + data['end_node'].to_list())) 

node_list.sort() 

 

#Empty dataframe to store clustering coefficient for each vertex 

#Fill dataframe with zeros 

zeros = [0.0] * len(node_list) 

cluster = pd.DataFrame({'m_i':zeros, 'clustering':zeros, 'degree':zeros}, index=node_list) 
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#Replace NaN with 0 

adj.fillna(0) 

 

#Computing the clustering coefficients 

for index, row in adj.iterrows(): 

 

    # Empty list for adjacenct vertices 

    neighbours = [] 

    #Iterating through each columns 

    for col in adj.columns: 

        if row[col] > 0: 

            neighbours.append(col) 

 

    #Saving number of neighbours as degree 

    d_i = len(neighbours) 

    cluster.at[index,'degree'] = d_i 

 

    #Number of links between adjacent vertices is initially set to 0 

    m_i = 0 

 

    #Iterate through neighbours to see if they are connected 

    for i in neighbours: 

        #Checking if adjacent vertices are connected 

        for k in neighbours: 

            if k == i: 

                continue 

            if adj.loc[i, k] > 0: 

                m_i =+ 1 

 

    #Update with number of links between adjacent vertices 

    cluster.at[index,'m_i'] = m_i 

 

    #Compute cluster coefficient 

    if d_i > 1: 

        cluster.at[index,'clustering'] = (2*m_i)/(d_i*(d_i-1)) 

 

#Find number of vertices with any clustering 

is_clustered = cluster['clustering'] > 0 

clustered_vertices = cluster[is_clustered] 

 

#Find min, maximum and average clustering coefficient 

min_cluster = clustered_vertices['clustering'].min() 

max_cluster = cluster['clustering'].max() 
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ave_cluster = clustered_vertices['clustering'].mean() 

 

#Find global clustering coefficient 

global_cluster = cluster['clustering'].mean() 

 

#Find min, max, average and median degree 

min_degree = cluster['degree'].min() 

max_degree = cluster['degree'].max() 

mean_degree = cluster['degree'].mean() 

median_degree = cluster['degree'].median() 

 

#Exporting cluster to csv 

fp3 = r'C:\Users\viero\OneDrive\Documents\IGEON\THESIS\DATA\ANALYSIS_DATA\Code_files\cluster.csv' 

cluster.to_csv(fp3) 

 

#Grouping by number of degrees 

grouped_degree = cluster['degree'].value_counts() 

fp4 = r'C:\Users\viero\OneDrive\Documents\IGEON\THESIS\DATA\ANALYSIS_DATA\Code_files\grouped_degree.csv' 

grouped_degree.to_csv(fp4) 

 

#Grouping by clustering 

grouped_cluster = cluster['clustering'].value_counts() 

fp5 = r'C:\Users\viero\OneDrive\Documents\IGEON\THESIS\DATA\ANALYSIS_DATA\Code_files\grouped_clustering.csv' 

grouped_cluster.to_csv(fp5) 
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Appendix X: Shortest Path Analysis with Python 

  

#Importing modules 

from AdjacencyMatrix import adj_matrix 

from centrality_functions import construct_path_edges, construct_path_nodes, construct_path_lengths, compute_stre

ss_centrality, calculate_distance, distance_divided 

import pandas as pd 

import geopandas as gpd 

import networkx as nx 

import numpy as np 

from sqlalchemy import create_engine 

import psycopg2 

  

#Loading file with edge weights 

fp1 = 'edge_relation_weights.csv' 

edge_weights = pd.read_csv(fp1) 

  

#Creating adjecency matrices with weights 

adj_safety = adj_matrix(edge_weights, 'start_node', 'end_node', 'safety_weight_distance') 

adj_eff = adj_matrix(edge_weights, 'start_node', 'end_node', 'efficiency_weight_distance') 

adj_dist = adj_matrix(edge_weights, 'start_node', 'end_node', 'length_') 

adj = adj_matrix(edge_weights, 'start_node', 'end_node', 'edge_id') 

 

# NaN-values are replaced with zeros and Dataframe converted to numeric datatype 

adj_eff.fillna(0, inplace = True) 

adj_eff.apply(pd.to_numeric) 

 

adj_safety.fillna(0, inplace= True) 

adj_safety.apply(pd.to_numeric) 

 

adj_dist.fillna(0, inplace=True) 

adj_dist.apply(pd.to_numeric) 

adj_dist.round(1) 

  

#Creating the graphs using NetworkX 

graph_e = nx.from_pandas_adjacency(adj_eff) 

graph_s = nx.from_pandas_adjacency(adj_safety) 

graph_d = nx.from_pandas_adjacency(adj_dist) 

  

#Finding path and length between all vertex pairs, based on respectively different weights and geographical  

distance 

path_e, length_e = nx.floyd_warshall_predecessor_and_distance(graph_e) 
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path_s, length_s = nx.floyd_warshall_predecessor_and_distance(graph_s) 

path_d, length_d = nx.floyd_warshall_predecessor_and_distance(graph_d) 

  

#Retrieving a list of all nodes and edges and removing duplicates 

node_list = list(set(edge_weights['start_node'].to_list() + edge_weights['end_node'].to_list())) 

node_list.sort() 

 

edge_list = list(set(edge_weights['edge_id'].to_list())) 

edge_list.sort() 

  

#Retrieving all paths as nodes 

nodepaths_eff = construct_path_nodes(node_list, path_e) 

nodepaths_safe = construct_path_nodes(node_list, path_s) 

nodepaths_distance = construct_path_nodes(node_list, path_d) 

  

#Retrieving all paths as edges 

edgepaths_eff = construct_path_edges(node_list, path_e, adj) 

edgepaths_safe = construct_path_edges(node_list, path_s, adj) 

edgepaths_distance = construct_path_edges(node_list, path_d, adj) 

  

#Computing lengths of shortest paths between all vertex pairs 

lengths_eff = construct_path_lengths(node_list, path_e, adj_dist) 

lengths_safe = construct_path_lengths(node_list, path_s, adj_dist) 

lengths_dist = construct_path_lengths(node_list, path_d, adj_dist) 

  

#Average path length 

#Finding the sum of all path lengths (in km) 

sum_path_eff = pd.DataFrame(lengths_eff.sum()) 

sum_path_eff.rename(columns ={0:'total_length'}, inplace = True) 

total_length_e = int(sum_path_eff.sum()/1000) 

 

sum_path_safe = pd.DataFrame(lengths_safe.sum()) 

sum_path_safe.rename(columns ={0:'total_length'}, inplace = True) 

total_length_s = int(sum_path_safe.sum()/1000) 

 

sum_path_dist = pd.DataFrame(lengths_dist.sum()) 

sum_path_dist.rename(columns ={0:'total_length'}, inplace = True) 

total_length_d = int(sum_path_dist.sum()/1000) 

 

#Normalised total path length 

sum_path_eff['total_length_norm'] = sum_path_eff['total_length']/sum_path_eff['total_length'].max() 

sum_path_safe['total_length_norm'] = sum_path_safe['total_length']/sum_path_safe['total_length'].max() 

sum_path_dist['total_length_norm'] = sum_path_dist['total_length']/sum_path_dist['total_length'].max() 
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#Load summarised path lengths into Postgres 

engine = create_engine('postgresql://postgres:IGEON20@localhost:5432/network_analysis') 

 

sum_path_eff.to_sql('total_pathlength_eff', engine) 

sum_path_safe.to_sql('total_pathlength_safe', engine) 

sum_path_dist.to_sql('total_pathlength_dist', engine) 

 

#Network efficiency 

def divide_with_length(matrix): 

    divided = matrix.copy(deep = True) 

    divided.apply(pd.to_numeric) 

    divided.fillna(0, inplace = True) 

    for index, row in divided.iterrows(): 

        for col in divided.columns: 

            if row[col] == 0: 

                continue 

            length = (row[col]/1000) 

            divided.at[index,col] = 1/length 

 

    return divided 

 

efficiency_eff = divide_with_length(lengths_eff) 

efficiency_safe = divide_with_length(lengths_safe) 

efficiency_dist = divide_with_length(lengths_dist) 

 

#Find total values for efficiency computation 

sum_efficiency_e = sum(efficiency_eff.sum()) 

sum_efficiency_s = sum(efficiency_safe.sum()) 

sum_efficiency_d = sum(efficiency_dist.sum()) 

 

#Compute stress centrality 

stress_cent_eff = compute_stress_centrality(edge_list, node_list, path_e, adj) 

stress_cent_safe = compute_stress_centrality(edge_list, node_list, path_s, adj) 

stress_cent_dist = compute_stress_centrality(edge_list, node_list, path_d, adj) 

  

#Normalise values for stress centrality 

#Find and divide with max value 

max_stress_e = stress_cent_eff['count'].max() 

max_stress_s = stress_cent_safe['count'].max() 

max_stress_d = stress_cent_dist['count'].max() 

 

stress_cent_eff['norm_stress'] = stress_cent_eff['count'] / max_stress_e 
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stress_cent_safe['norm_stress'] = stress_cent_safe['count'] / max_stress_s 

stress_cent_dist['norm_stress'] = stress_cent_dist['count'] / max_stress_d 

 

#Calculating betweenness centrality 

path_count = 247456 

 

stress_cent_eff['between'] = stress_cent_eff['count'] / path_count 

stress_cent_safe['between'] = stress_cent_safe['count'] / path_count 

stress_cent_dist['between'] = stress_cent_dist['count'] / path_count 

 

#Normalise values for betweenness centrality 

#Find and divide with max values 

max_between_e = stress_cent_eff['between'].max() 

max_between_s = stress_cent_safe['between'].max() 

max_between_d = stress_cent_dist['between'].max() 

 

stress_cent_eff['norm_between'] = stress_cent_eff['between'] / max_between_e 

stress_cent_safe['norm_between'] = stress_cent_safe['between'] / max_between_s 

stress_cent_dist['norm_between'] = stress_cent_dist['between'] / max_between_d 

 

#Exporting stress centrality 

fp2 = 'stress_centrality_eff.csv' 

fp3 = 'stress_centrality_safe.csv' 

fp4 = 'stress_centrality_dist.csv' 

 

stress_cent_eff.to_csv(fp2) 

stress_cent_safe.to_csv(fp3) 

stress_cent_dist.to_csv(fp4) 

  

#Load stress and betweenness centrality data into Postgres 

stress_cent_eff.to_sql('stress_cent_eff', engine) 

stress_cent_safe.to_sql('stress_cent_safe', engine) 

stress_cent_dist.to_sql('stress_cent_dist', engine) 

  

 

#Calculating Betweenness Centrality with NetworkX 

between_eff = nx.edge_betweenness_centrality(graph_e, weight='weight', normalise = False) 

between_safe = nx.edge_betweenness_centrality(graph_s, weight='weight', normalise = False) 

between_dist = nx.edge_betweenness_centrality(graph_d, weight='weight', normalise = False) 

 

#Closeness centrality 

v_minus1 = 704 - 1 

closeness_efficiency = pd.DataFrame() 
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closeness_efficiency['sum_dist'] = v_minus1/(lengths_eff.sum(axis = 0)/1000) 

closeness_safety = pd.DataFrame() 

closeness_safety['sum_dist'] = v_minus1/(lengths_safe.sum(axis = 0)/1000) 

closeness_distance = pd.DataFrame() 

closeness_distance['sum_dist'] = v_minus1/(lengths_dist.sum(axis = 0)/1000) 

 

#Normalise values 

closeness_efficiency['norm_close'] = closeness_efficiency['sum_dist'] / closeness_efficiency['sum_dist'].max() 

closeness_safety['norm_close'] = closeness_safety['sum_dist'] / closeness_safety['sum_dist'].max() 

closeness_distance['norm_close'] = closeness_distance['sum_dist'] / closeness_distance['sum_dist'].max() 

 

#Export closeness centrality values 

fp8 = 'closeness_eff.csv' 

fp9 = 'closeness_safe.csv' 

fp10 = 'closeness_dist.csv' 

 

closeness_efficiency.to_csv(fp8) 

closeness_safety.to_csv(fp9) 

closeness_distance.to_csv(fp10) 

  

#Load Closeness Centrality to postgres database 

closeness_efficiency.to_sql('closeness_eff', engine) 

closeness_safety.to_sql('closeness_safe', engine) 

closeness_distance.to_sql('closeness_dist', engine) 

 

#Straightness Centrality 

#Connecting to database 

connection = psycopg2.connect(database='network_analysis', user='postgres', password='IGEON20', 

    host='localhost') 

 

sql_query = 'SELECT node_id, geom FROM network_topology.node' 

 

#Using geopandas to store geometries 

nodes = gpd.GeoDataFrame.from_postgis(sql_query, connection, geom_col='geom' ) 

 

#Use distance function to compute straight line distance between vertices 

euclidian_dist = calculate_distance(nodes, 'node_id') 

 

#Find differences between Euclidian and path length with function for divided distances 

divided_eff = distance_divided(euclidian_dist, lengths_eff) 

divided_safe = distance_divided(euclidian_dist, lengths_safe) 

divided_dist = distance_divided(euclidian_dist, lengths_dist) 

  



119 
 

#Find final values for Straightness Centrality computation 

const = 1/(704-1) 

straightness_eff = pd.DataFrame() 

straightness_eff['c_s'] = const*divided_eff.sum(axis=0) 

straightness_safe = pd.DataFrame() 

straightness_safe['c_s'] = const*divided_safe.sum(axis=0) 

straightness_dist = pd.DataFrame() 

straightness_dist['c_s'] = const*divided_dist.sum(axis=0) 

  

#Normalise values 

straightness_eff['norm_straight'] = straightness_eff['c_s'] / straightness_eff['c_s'].max() 

straightness_safe['norm_straight'] = straightness_safe['c_s'] / straightness_safe['c_s'].max() 

straightness_dist['norm_straight'] = straightness_dist['c_s'] / straightness_dist['c_s'].max() 

 

#Export Straightness Centrality values 

fp11 = 'straightness_eff.csv' 

fp12 = 'straightness_safe.csv' 

fp13 = 'straightness_dist.csv' 

 

straightness_eff.to_csv(fp11) 

straightness_safe.to_csv(fp12) 

straightness_dist.to_csv(fp13) 

  

#Upload Straightness Centrality data to databas 

straightness_eff.to_sql('straightness_eff', engine) 

straightness_safe.to_sql('straightness_safe', engine) 

straightness_dist.to_sql('straightness_dist', engine) 
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Appendix XI: Comparing Neighbourhood Indices with Python 

  

#Importing modules 

import pandas as pd 

from sqlalchemy import create_engine 

import psycopg2 as pg 

import pandas.io.sql as psql 

import seaborn as sb 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

import statsmodels.api as sm 

  

#Reading files with centrality and connectivity indicy values for each neighbourhood and weighting scheme 

neigh_eff = pd.read_csv('Neighbourhood_efficiency.csv') 

neigh_safe = pd.read_csv('Neighbourhood_safety.csv') 

neigh_dist = pd.read_csv('Neighbourhood_distance.csv') 

  

#Only keeping columns with average values 

col_names = ['Neigh_id', 'Average Stress Centrality','Average Straightness Centrality', 'Average Closeness Centra

lity'] 

neigh_eff_ave = neigh_eff[col_names] 

neigh_safe_ave = neigh_safe[col_names] 

neigh_dist_ave = neigh_dist[col_names] 

 

#Computing differences between weighting schemes as percentage 

neigh_dist_eff_ave = 100 - (neigh_dist_ave.set_index('Neigh_id').div(neigh_eff_ave.set_index('Neigh_id')).mul(100

)) 

neigh_dist_safe_ave = 100 - (neigh_dist_ave.set_index('Neigh_id').div(neigh_safe_ave.set_index('Neigh_id')).mul(1

00)) 

 

neigh_dist_eff_ave = neigh_dist_eff_ave.round(3) 

neigh_dist_safe_ave = neigh_dist_safe_ave.round(3) 

  

#Load results into Postgres 

engine = create_engine('postgresql://postgres:IGEON20@localhost:5432/network_analysis') 

 

neigh_dist_eff_ave.to_sql('ave_diff_dist_eff', engine) 

neigh_dist_safe_ave.to_sql('ave_diff_dist_safe', engine) 

 

neigh_eff.to_sql('neighbourhood_eff', engine) 

neigh_safe.to_sql('neighbourhood_safe', engine) 

neigh_dist.to_sql('neighbourhood_dist',engine) 
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#Examining the relationship between socio-economic characteristics and centrality indices 

neigh_eff_ave.set_index('Neigh_id', inplace = True) 

neigh_eff_ave.sort_index(inplace = True) 

neigh_safe_ave.set_index('Neigh_id', inplace = True) 

neigh_safe_ave.sort_index(inplace = True) 

neigh_dist_ave.set_index('Neigh_id', inplace = True) 

neigh_dist_ave.sort_index(inplace = True) 

 

#Retrieving data from Postgres database 

connection = pg.connect(database='network_analysis', user='postgres', password='IGEON20', host='localhost') 

 

sql_query1 = 'SELECT * FROM neighbourhood_comparison ORDER BY neigh_id' 

 

neigh_data = psql.read_sql(sql_query1, connection) 

neigh_data.set_index('neigh_id', inplace = True) 

neigh_data.sort_index(inplace = True) 

 

sql_query2 = 'SELECT * FROM neighbourhood_comparison_norm ORDER BY neigh_id' 

 

neigh_data_norm = psql.read_sql(sql_query2, connection) 

neigh_data_norm.set_index('neigh_id', inplace = True) 

neigh_data_norm.sort_index(inplace = True) 

 

sql_query3 = 'SELECT * FROM intersection_density ORDER BY neigh_id' 

intersections = psql.read_sql(sql_query3, connection) 

intersections.set_index('neigh_id', inplace = True) 

intersections.drop(12, axis=0, inplace=True) 

 

sql_query4 = 'SELECT * from street_density ORDER BY neigh_id' 

street_dens = psql.read_sql(sql_query4, connection) 

street_dens.set_index('neigh_id', inplace = True) 

street_dens.drop(12, axis=0, inplace = True) 

  

#Examining the correlation between network density and socio-economic and demographic variables 

 

#Creating dataframes with all variables to be compared 

density_merge = intersections.merge(street_dens, left_index=True, right_index=True) 

density_variables = density_merge[['intersect_density', 'street_density']].copy() 

variables_all = density_variables.merge(neigh_data, left_index=True, right_index=True) 

variables = variables_all[['intersect_density','street_density', 'pop_dens', 'income', 'higher_ed_percent']].copy

() 

 

variables_dist = variables.merge(neigh_dist_ave, left_index=True, right_index=True) 
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variables_eff = variables.merge(neigh_eff_ave, left_index=True, right_index=True) 

variables_eff.drop(['intersect_density', 'street_density'], axis=1, inplace=True) 

variables_safe = variables.merge(neigh_safe_ave, left_index=True, right_index=True) 

variables_safe.drop(['intersect_density', 'street_density'], axis=1, inplace=True) 

 

#Export variables to csv 

variables_dist.to_csv('variables.csv') 

  

#Using pairplot for an initial screaning of correlation 

pairplot_dist = sb.pairplot(variables_dist) 

pairplot_efff = sb.pairplot(variables_eff) 

pairplot_safe = sb.pairplot(variables_safe) 

  

#Saving figures to file 

pairplot_dist.savefig('pairplot_dist.png') 

pairplot_efff.savefig('pairplot_eff.png') 

pairplot_safe.savefig('pairplot_safe.png') 

  

#Performing linear regression 

X = variables_dist['pop_dens'] 

Y = variables_dist['Average Stress Centrality'] 

 

model = sm.OLS(X, Y).fit() 

predictions = model.predict(Y) 

model.summary() 

 

#Plotting values 

x = X.values.reshape(-1,1) 

y = Y.values.reshape(-1,1) 

 

linear_regres = LinearRegression() 

linear_regres.fit(x,y) 

y_pred = linear_regres.predict(x) 

 

plt.scatter(X,Y) 

plt.plot(x,y_pred, color='purple') 

plt.title('Correlation') 

plt.xlabel('Population Density') 

plt.ylabel('Average Stress Centrality') 

 

#Plotting residuals 

plt.hist(model.resid_pearson) 
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Appendix XII: Neighbourhood Centralities with SQL 

-- Finding stress centrality for neighbourhoods 

WITH stress_centrality AS (SELECT index, edge_id, count, norm_stress, geom FROM stress_cent_dist s JOIN network_t

opology.edge_data e ON s.index = e.edge_id) 

SELECT MIN(count)::INT FROM stress_centrality s, neighbourhoods n  

WHERE ST_Intersects(s.geom, n.geom)  

AND n.navn LIKE 'Bispebjerg%'; 

 

-- Finding closeness centrality for neighbourhoods 

WITH closeness_centrality AS (SELECT index, node_id, sum_dist, norm_close, geom FROM closeness_eff c JOIN network

_topology.node n ON c.index = n.node_id) 

SELECT ROUND(MIN(sum_dist)::NUMERIC,3) FROM closeness_centrality c, neighbourhoods n  

WHERE ST_Intersects(c.geom, n.geom)  

AND n.navn LIKE 'Amager V%'; 

 

-- Finding straightness centrality for neighbourhoods 

WITH straightness_centrality AS (SELECT index, node_id, c_s, norm_straight, geom FROM straightness_eff s JOIN net

work_topology.node n ON s.index = n.node_id) 

SELECT ROUND(MIN(c_s)::NUMERIC,3) FROM straightness_centrality s, neighbourhoods n  

WHERE ST_Intersects(s.geom, n.geom)  

AND n.navn LIKE 'Amager Ø%'; 

 

-- Comparing neighbourhoods 

ALTER TABLE income_education ADD COLUMN income_norm NUMERIC; 

UPDATE income_education  

SET income_norm = ROUND((income/(SELECT MAX(income) FROM income_education)::NUMERIC); 

 

ALTER TABLE income_education ADD COLUMN higher_ed_percent NUMERIC; 

ALTER TABLE income_education ADD COLUMN highed_norm NUMERIC; 

UPDATE income_education SET higher_ed_percent = percent_medium+percent_bachelor+percent_long 

UPDATE income_education SET highed_norm = ROUND((higher_ed_percent/(SELECT MAX(higher_ed_percent)  

FROM income_education)::NUMERIC),3); 

 

ALTER TABLE age_density ADD COLUMN pop_dens_norm NUMERIC; 

UPDATE age_density SET pop_dens_norm = ROUND((pop_dens/(SELECT MAX(pop_dens) FROM age_density))::NUMERIC,3); 

 

ALTER TABLE age_density ADD COLUMN children_norm NUMERIC; 

ALTER TABLE age_density ADD COLUMN young_norm NUMERIC; 

ALTER TABLE age_density ADD COLUMN adults_norm NUMERIC; 

ALTER TABLE age_density ADD COLUMN elderly_norm NUMERIC; 
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UPDATE age_density SET children_norm = ROUND((percent_0_17/(SELECT MAX(percent_0_17) FROM age_density))::NUMERIC,

3); 

UPDATE age_density SET young_norm = ROUND((percent_18_24/(SELECT MAX(percent_18_24) FROM age_density))::NUMERIC,3

); 

UPDATE age_density SET adults_norm = ROUND((percent_25_64/(SELECT MAX(percent_25_64) FROM age_density))::NUMERIC,

3); 

UPDATE age_density SET elderly_norm = ROUND((percent_65_99/(SELECT MAX(percent_65_99) FROM age_density))::NUMERIC

,3); 

 

CREATE TABLE neighbourhood_comparison_norm AS  

(SELECT a.n_name, a.neigh_id, pop_dens_norm, children_norm, young_norm, adults_norm, elderly_norm, income_norm, h

ighed_norm  

FROM age_density a INNER JOIN income_education i ON a.neigh_id = i.neigh_id); 

 

CREATE TABLE neighbourhood_comparison AS  

(SELECT i.n_name, i.neigh_id, income, pop_dens, higher_ed_percent, percent_0_17, percent_18_24, percent_25_64, pe

rcent_65_99 

FROM income_education i JOIN age_density a ON i.neigh_id = a.neigh_id); 
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Appendix XIII: Implementation of the Floyd-Warshall Algorithm 

''' 

This script contains an implementation of the Floyd Warshall Algorithm for finding the shortest path between all 

vertex pairs 

The first function uses a pandas dataframe with an adjacency matrix as input and returns a distance_matrixance ma

trix and a dataframe with the last visited vertex as output 

The second function returns the path between two vertices given the path matrix as input 

''' 

 

#Importing modules 

import pandas as pd 

import numpy as np 

from random import randint 

import math 

 

def floyd_warshall(adjacency_matrix): 

    #Creating distance_matrixance matrix with similar edge weights 

    distance_matrix = adjacency_matrix.copy(deep=True) 

 

    #Creating empty path matrix 

    path_matrix = pd.DataFrame(data=None, index=distance_matrix.index, columns=distance_matrix.columns) 

 

    vertices = list(adjacency_matrix.columns) 

 

    #distance_matrixance is set to infinity if there is no edge between vertices 

    for i in vertices: 

        for j in vertices: 

            if math.isnan(distance_matrix.loc[i,j]) == True: 

                distance_matrix.at[i,j] = math.inf 

 

    #Setting the distance_matrixance to zero where start and end vertex are identical 

    #Setting the path matrix as v where where start vertex v and end vertex v are identical 

    for i in vertices: 

        for j in vertices: 

            if i == j: 

                distance_matrix.at[i,j] = 0 

                path_matrix.at[i,j] = i 

 

    #Filling path matrix with initial values 

    for i in vertices: 

        for j in vertices: 

            if adjacency_matrix.loc[i,j]: 
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                path_matrix.at[i,j] = j 

                path_matrix.at[j,i] = i 

 

    #Finding the shortest path between vertices 

    for k in range(1,11): 

        for i in range(1,11): 

            for j in range(1,11): 

                if distance_matrix.loc[i,j] > distance_matrix.loc[i,k] + distance_matrix.loc[k,j]: 

                    distance_matrix.at[i,j] = distance_matrix.loc[i,k] + distance_matrix.loc[k,j] 

                    path_matrix.at[i,j] = path_matrix.loc[i,k] 

 

    return distance_matrix, path_matrix 

 

#Function for returning the path between two vertices 

def return_path(u, v, path_matrix): 

    if path_matrix.loc[u,v] == False: 

        path = 'There is no path' 

    path = [u] 

    while u != v: 

        u = path_matrix.loc[u,v] 

        path.append(u) 

    return path 

 

#Testing 

 

#Test data 

vertices = list(range(1,11)) 

#Empty adjacency matrix 

adj = pd.DataFrame(np.nan, index=vertices, columns=vertices) 

 

#Filling adjacency matrix with random values 

for i in vertices: 

    for j in vertices: 

        if i == j: 

            continue 

        if i % 2: 

            edge_value = randint(3,20) 

            adj.at[i,j] = edge_value 

            adj.at[j,i] = edge_value 

 

#Finding distances and last visited vertex 

dist, path = floyd_warshall(adj) 
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start_node = 8 

end_node = 1 

test_path = return_path(start_node, end_node, path) 

print('The path between {start} and {end} is:'.format(start=start_node,end=end_node),test_path) 

 

  



128 
 

  



129 
 

Series from Lund University 

 

Department of Physical Geography and Ecosystem Science 

Master Thesis in Geographical Information Science 

1. Anthony Lawther: The application of GIS-based binary logistic regression for slope 

failure susceptibility mapping in the Western Grampian Mountains, Scotland 

(2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. Applied 

GIS methods in time geographical research (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using GIS 

and Remote Sensing (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems as an 

analytical and visualization tool for mass real estate valuation: a case study of 

Fontibon District, Bogota, Columbia (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: The use 

of GIS functionalities in transport of transformers, as part of maintaining a reliable 

power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 

(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding sites 

using aerial photographs (2010). 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome of 

the programme of rehabilitation measures for the river Rhine in the Netherlands 

(2010). 

9. Samira Muhammad: Development and implementation of air quality data mart for 

Ontario, Canada: A case study of air quality in Ontario using OLAP tool. (2010). 

10. Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 

temporal relationships between photosynthetic productivity of vegetation and 

malaria transmission intensities in selected parts of Africa (2011). 

11. Svajunas Plunge: Advanced decision support methods for solving diffuse water 

pollution problems (2011). 

12. Jonathan Higgins: Monitoring urban growth in greater Lagos: A case study using 

GIS to monitor the urban growth of Lagos 1990 - 2008 and produce future growth 

prospects for the city (2011). 

13. Mårten Karlberg: Mobile Map Client API: Design and Implementation for 

Android (2011). 

14. Jeanette McBride: Mapping Chicago area urban tree canopy using color infrared 

imagery (2011). 

15. Andrew Farina: Exploring the relationship between land surface temperature and 

vegetation abundance for urban heat island mitigation in Seville, Spain (2011). 

16. David Kanyari: Nairobi City Journey Planner:  An online and a Mobile Application 

(2011). 
 



130 
 

 

17. Laura V. Drews:  Multi-criteria GIS analysis for siting of small wind power plants 

- A case study from Berlin (2012). 

18. Qaisar Nadeem: Best living neighborhood in the city - A GIS based multi criteria 

evaluation of ArRiyadh City (2012). 

19. Ahmed Mohamed El Saeid Mustafa: Development of a photo voltaic building 

rooftop integration analysis tool for GIS for Dokki District, Cairo, Egypt (2012). 

20. Daniel Patrick Taylor: Eastern Oyster Aquaculture: Estuarine Remediation via Site 

Suitability and Spatially Explicit Carrying Capacity Modeling in Virginia’s 

Chesapeake Bay (2013). 

21. Angeleta Oveta Wilson: A Participatory GIS approach to unearthing Manchester’s 

Cultural Heritage ‘gold mine’ (2013). 

22. Ola Svensson: Visibility and Tholos Tombs in the Messenian Landscape: A 

Comparative Case Study of the Pylian Hinterlands and the Soulima Valley (2013). 

23. Monika Ogden: Land use impact on water quality in two river systems in South 

Africa (2013). 

24. Stefan Rova: A GIS based approach assessing phosphorus load impact on Lake 

Flaten in Salem, Sweden (2013). 

25. Yann Buhot: Analysis of the history of landscape changes over a period of 200 

years. How can we predict past landscape pattern scenario and the impact on 

habitat diversity? (2013). 

26. Christina Fotiou: Evaluating habitat suitability and spectral heterogeneity models 

to predict weed species presence (2014). 

27. Inese Linuza: Accuracy Assessment in Glacier Change Analysis (2014). 

28. Agnieszka Griffin: Domestic energy consumption and social living standards: a 

GIS analysis within the Greater London Authority area (2014). 

29. Brynja Guðmundsdóttir: Detection of potential arable land with remote sensing 

and GIS - A Case Study for Kjósarhreppur (2014). 

30. Oleksandr Nekrasov: Processing of MODIS Vegetation Indices for analysis of 

agricultural droughts in the southern Ukraine between the years 2000-2012 (2014). 

31. Sarah Tressel: Recommendations for a polar Earth science portal 

in the context of Arctic Spatial Data Infrastructure (2014). 

32. Caroline Gevaert: Combining Hyperspectral UAV and Multispectral Formosat-2 

Imagery for Precision Agriculture Applications (2014). 

33. Salem Jamal-Uddeen:  Using GeoTools to implement the multi-criteria evaluation 

analysis - weighted linear combination model (2014). 

34. Samanah Seyedi-Shandiz: Schematic representation of geographical railway 

network at the Swedish Transport Administration  (2014). 

35. Kazi Masel Ullah: Urban Land-use planning using Geographical Information 

System and analytical hierarchy process: case study Dhaka City (2014). 

36. Alexia Chang-Wailing Spitteler: Development of a web application based on 

MCDA and GIS for the decision support of river and floodplain rehabilitation 

projects (2014). 

37. Alessandro De Martino: Geographic accessibility analysis and evaluation of 

potential changes to the public transportation system in the City of Milan (2014). 



131 
 

 

38. Alireza Mollasalehi: GIS Based Modelling for Fuel Reduction Using Controlled 

Burn in Australia. Case Study: Logan City, QLD (2015). 

39. Negin A. Sanati: Chronic Kidney Disease Mortality in Costa Rica; Geographical 

Distribution, Spatial Analysis and Non-traditional Risk Factors (2015). 

40. Karen McIntyre: Benthic mapping of the Bluefields Bay fish sanctuary, Jamaica 

(2015). 

41. Kees van Duijvendijk: Feasibility of a low-cost weather sensor network for 

agricultural purposes: A preliminary assessment (2015). 

42. Sebastian Andersson Hylander: Evaluation of cultural ecosystem services using 

GIS (2015). 

43. Deborah Bowyer: Measuring Urban Growth, Urban Form and Accessibility as 

Indicators of Urban Sprawl in Hamilton, New Zealand (2015). 

44. Stefan Arvidsson: Relationship between tree species composition and phenology 

extracted from satellite data in Swedish forests (2015). 

45. Damián Giménez Cruz: GIS-based optimal localisation of beekeeping in rural 

Kenya (2016). 

46. Alejandra Narváez Vallejo: Can the introduction of the topographic indices in LPJ-

GUESS improve the spatial representation of environmental variables? (2016). 

47. Anna Lundgren: Development of a method for mapping the highest coastline in 

Sweden using breaklines extracted from high resolution digital elevation models 

(2016). 

48. Oluwatomi Esther Adejoro: Does location also matter?  A spatial analysis of social 

achievements of young South Australians (2016). 

49. Hristo Dobrev Tomov: Automated temporal NDVI analysis over the Middle East 

for the period 1982 - 2010 (2016). 

50. Vincent Muller: Impact of Security Context on Mobile Clinic Activities  

A GIS Multi Criteria Evaluation based on an MSF Humanitarian Mission in 

Cameroon (2016). 

51. Gezahagn Negash Seboka: Spatial Assessment of NDVI as an Indicator of 

Desertification in Ethiopia using Remote Sensing and GIS (2016). 

52. Holly Buhler: Evaluation of Interfacility Medical Transport Journey Times in 

Southeastern British Columbia. (2016). 

53. Lars Ole Grottenberg:  Assessing the ability to share spatial data between 

emergency management organisations in the High North (2016). 

54. Sean Grant: The Right Tree in the Right Place: Using GIS to Maximize the Net 

Benefits from Urban Forests (2016). 

55. Irshad Jamal: Multi-Criteria GIS Analysis for School Site Selection in Gorno-

Badakhshan Autonomous Oblast, Tajikistan (2016). 

56. Fulgencio Sanmartín: Wisdom-volkano: A novel tool based on open GIS and time-

series visualization to analyse and share volcanic data (2016). 

57. Nezha Acil: Remote sensing-based monitoring of snow cover dynamics and its 

influence on vegetation growth in the Middle Atlas Mountains (2016). 

58. Julia Hjalmarsson: A Weighty Issue:  Estimation of Fire Size with Geographically 

Weighted Logistic Regression (2016). 



132 
 

59. Mathewos Tamiru Amato: Using multi-criteria evaluation and GIS for chronic food 

and nutrition insecurity indicators analysis in Ethiopia (2016). 

60. Karim Alaa El Din Mohamed Soliman El Attar: Bicycling Suitability in 

Downtown, Cairo, Egypt (2016). 

61. Gilbert Akol Echelai: Asset Management: Integrating GIS as a Decision Support 

Tool in Meter Management in National Water and Sewerage Corporation (2016). 

62. Terje Slinning: Analytic comparison of multibeam echo soundings (2016). 

63. Gréta Hlín Sveinsdóttir: GIS-based MCDA for decision support: A framework for 

wind farm siting in Iceland (2017). 

64. Jonas Sjögren: Consequences of a flood in Kristianstad, Sweden: A GIS-based 

analysis of impacts on important societal functions (2017). 

65. Nadine Raska: 3D geologic subsurface modelling within the Mackenzie Plain, 

Northwest Territories, Canada (2017). 

66. Panagiotis Symeonidis: Study of spatial and temporal variation of atmospheric 

optical parameters and their relation with PM 2.5 concentration over Europe using 

GIS technologies (2017). 

67. Michaela Bobeck: A GIS-based Multi-Criteria Decision Analysis of Wind Farm 

Site Suitability in New South Wales, Australia, from a Sustainable Development 

Perspective (2017). 

68. Raghdaa Eissa: Developing a GIS Model for the Assessment of Outdoor 

Recreational Facilities in New Cities Case Study: Tenth of Ramadan City, Egypt 

(2017). 

69. Zahra Khais Shahid: Biofuel plantations and isoprene emissions in Svea and 

Götaland (2017). 

70. Mirza Amir Liaquat Baig: Using geographical information systems in 

epidemiology: Mapping and analyzing occurrence of diarrhea in urban - residential 

area of Islamabad, Pakistan (2017). 

71. Joakim Jörwall: Quantitative model of Present and Future well-being in the EU-

28: A spatial Multi-Criteria Evaluation of socioeconomic and climatic comfort 

factors (2017). 

72. Elin Haettner: Energy Poverty in the Dublin Region: Modelling Geographies of 

Risk (2017). 

73. Harry Eriksson: Geochemistry of stream plants and its statistical relations to soil- 

and bedrock geology, slope directions and till geochemistry. A GIS-analysis of 

small catchments in northern Sweden (2017). 

74. Daniel Gardevärn: PPGIS and Public meetings – An evaluation of public 

participation methods for urban planning (2017). 

75. Kim Friberg: Sensitivity Analysis and Calibration of Multi Energy Balance Land 

Surface Model Parameters (2017). 

76. Viktor Svanerud: Taking the bus to the park? A study of accessibility to green 

areas in Gothenburg through different modes of transport (2017).  

77. Lisa-Gaye Greene: Deadly Designs: The Impact of Road Design on Road Crash 

Patterns along Jamaica’s North Coast Highway (2017).  

78. Katarina Jemec Parker: Spatial and temporal analysis of fecal indicator bacteria 

concentrations in beach water in San Diego, California (2017).  



133 
 

79. Angela Kabiru: An Exploratory Study of Middle Stone Age and Later Stone Age 

Site Locations in Kenya’s Central Rift Valley Using Landscape Analysis: A GIS 

Approach (2017).  

80. Kristean Björkmann: Subjective Well-Being and Environment: A GIS-Based 

Analysis (2018).  

81. Williams Erhunmonmen Ojo: Measuring spatial accessibility to healthcare for 

people living with HIV-AIDS in southern Nigeria (2018).  

82. Daniel Assefa: Developing Data Extraction and Dynamic Data Visualization 

(Styling) Modules for Web GIS Risk Assessment System (WGRAS). (2018).  

83. Adela Nistora: Inundation scenarios in a changing climate: assessing potential 

impacts of sea-level rise on the coast of South-East England (2018).  

84. Marc Seliger: Thirsty landscapes - Investigating growing irrigation water 

consumption and potential conservation measures within Utah’s largest master-

planned community: Daybreak (2018).  

85. Luka Jovičić: Spatial Data Harmonisation in Regional Context in Accordance with 

INSPIRE Implementing Rules (2018).  

86. Christina Kourdounouli: Analysis of Urban Ecosystem Condition Indicators for 

the Large Urban Zones and City Cores in EU (2018).  

87. Jeremy Azzopardi: Effect of distance measures and feature representations on 

distance-based accessibility measures (2018).  

88. Patrick Kabatha: An open source web GIS tool for analysis and visualization of 

elephant GPS telemetry data, alongside environmental and anthropogenic variables 

(2018).  

89. Richard Alphonce Giliba: Effects of Climate Change on Potential Geographical 

Distribution of Prunus africana (African cherry) in the Eastern Arc Mountain 

Forests of Tanzania (2018).  

90. Eiður Kristinn Eiðsson: Transformation and linking of authoritative multi-scale 

geodata for the Semantic Web: A case study of Swedish national building data sets 

(2018).  

91. Niamh Harty: HOP!: a PGIS and citizen science approach to monitoring the 

condition of upland paths (2018).  

92. José Estuardo Jara Alvear: Solar photovoltaic potential to complement 

hydropower in Ecuador: A GIS-based framework of analysis (2018). 

93. Brendan O’Neill: Multicriteria Site Suitability for Algal Biofuel Production 

Facilities (2018). 

94. Roman Spataru: Spatial-temporal GIS analysis in public health – a case study of 

polio disease (2018). 

95. Alicja Miodońska: Assessing evolution of ice caps in Suðurland, Iceland, in years 

1986 - 2014, using multispectral satellite imagery (2019). 

96. Dennis Lindell Schettini: A Spatial Analysis of Homicide Crime’s Distribution and 

Association with Deprivation in Stockholm Between 2010-2017 (2019). 

97. Damiano Vesentini: The Po Delta Biosphere Reserve: Management challenges and 

priorities deriving from anthropogenic pressure and sea level rise (2019). 



134 
 

98. Emilie Arnesten: Impacts of future sea level rise and high water on roads, railways 

and environmental objects: a GIS analysis of the potential effects of increasing sea 

levels and highest projected high water in Scania, Sweden (2019). 

99. Syed Muhammad Amir Raza: Comparison of geospatial support in RDF stores: 

Evaluation for ICOS Carbon Portal metadata (2019). 

100. Hemin Tofiq: Investigating the accuracy of Digital Elevation Models from UAV 

images in areas with low contrast: A sandy beach as a case study (2019). 

101. Evangelos Vafeiadis: Exploring the distribution of accessibility by public transport 

using spatial analysis. A case study for retail concentrations and public hospitals in 

Athens (2019). 

102. Milan Sekulic: Multi-Criteria GIS modelling for optimal alignment of roadway by-

passes in the Tlokweng Planning Area, Botswana (2019). 

103. Ingrid Piirisaar: A multi-criteria GIS analysis for siting of utility-scale 

photovoltaic solar plants in county Kilkenny, Ireland (2019). 

104. Nigel Fox: Plant phenology and climate change: possible effect on the onset of 

various wild plant species’ first flowering day in the UK (2019). 

105. Gunnar Hesch: Linking conflict events and cropland development in Afghanistan, 

2001 to 2011, using MODIS land cover data and Uppsala Conflict Data 

Programme (2019). 

106. Elijah Njoku: Analysis of spatial-temporal pattern of Land Surface Temperature 

(LST) due to NDVI and elevation in Ilorin, Nigeria (2019). 

107. Katalin Bunyevácz: Development of a GIS methodology to evaluate informal 

urban green areas for inclusion in a community governance program (2019). 

108. Paul dos Santos: Automating synthetic trip data generation for an agent-based 

simulation of urban mobility (2019). 

109. Robert O’ Dwyer: Land cover changes in Southern Sweden from the mid-Holocene 

to present day:  Insights for ecosystem service assessments (2019). 

110. Daniel Klingmyr: Global scale patterns and trends in tropospheric NO2 

concentrations (2019). 

111. Marwa Farouk Elkabbany: Sea Level Rise Vulnerability Assessment for Abu 

Dhabi, United Arab Emirates (2019). 

112. Jip Jan van Zoonen: Aspects of Error Quantification and Evaluation in Digital 

Elevation Models for Glacier Surfaces (2020). 

113. Georgios Efthymiou: The use of bicycles in a mid-sized city – benefits and 

obstacles identified using a questionnaire and GIS (2020). 

114. Haruna Olayiwola Jimoh: Assessment of Urban Sprawl in MOWE/IBAFO Axis of 

Ogun State using GIS Capabilities (2020). 

115. Nikolaos Barmpas Zachariadis: Development of an iOS, Augmented Reality for 

disaster management (2020). 

116. Ida Storm: ICOS Atmospheric Stations: Spatial Characterization of CO2 Footprint 

Areas and Evaluating the Uncertainties of Modelled CO2 Concentrations (2020). 

117. Alon Zuta: Evaluation of water stress mapping methods in vineyards using airborne 

thermal imaging (2020). 

118. Marcus Eriksson: Evaluating structural landscape development in the municipality 

Upplands-Bro, using landscape metrics indices (2020). 



135 
 

119. Ane Rahbek Vierø: Connectivity for Cyclists? A Network Analysis of 

Copenhagen’s Bike Lanes (2020). 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
 


