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Mobile Positioning in MIMO System Using Particle
Filtering

Svetlana Bizjajeva
Centre for Mathematical Sciences
Lund University
Lund 221 00, Sweden
Email: svetik@maths.lth.se

Abstract—This paper represents the results of a
simulation study on positioning of a mobile unit in
MIMO settings. We used two different approaches
for modeling the mobile movement, combined with
a simple geometrical model for the MIMO channel.
Three different particle filters were implemented for
the position estimation. The results show that all three
filters are able to achieve estimation accuracy required
by Federal Communication Commission. The dimen-
sionality of the particle filter state space is independent
of the number of antenna elements, and it is possible to
increase the number of antennas and use more sophis-
ticated channel models without changing the filtering
algorithms.

Index Terms—MIMO, mobile positioning, channel
modeling, particle filtering, simulations.

I[. INTRODUCTION

Wireless systems are now used worldwide to help people
and machines to communicate with each other irrespec-
tively of their location. In a global perspective, wireless
stands to be a method most people will use to connect
to the Internet. New generation wireless communication
systems (4G) should be able to provide clients with all the
benefits associated with the World Wide Web: multimedia,
e-commerce, unified messages, peer-to-peer network etc.
To increase system performance is thus very important.

Another goal of 4G systems is to allow switching be-
tween networks of systems that gives “the best” connection
at the moment. Mixing various connections from satellites
to local area networks may result in a crowded frequency
spectrum and requires a signaling strategy that is spec-
trally efficient.

Using multiple antennas at both transmitter and re-
ceiver can solve these issues. The MIMO (multiple-input
multiple-output) technology, proposed by Paulraj and
Kailath in [1], increases the spectral efficiency of a sys-
tem. It enables high capacities suited for Internet and
multimedia services and also dramatically increases range
and reliability. In the last few years, MIMO systems have
emerged as one of the most promising approaches for high
data-rate wireless systems. For more details about the
MIMO technology see, for example, [2].

The positioning of a mobile unit in MIMO settings is
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a challenging problem. During the last decade wvarious
location technologies have been invented using either cellu-
lar network-based, mobile-based, or hybrid approaches. A
comprehensive overview of different positioning methods
can be found in [3]. Most known and widely used is the
satellite Global Positioning System (GPS), which is based
on measurements of time difference of arrival. The prop-
agation time of signals is measured simultaneously from
satellites at known locations and the distance between a
satellite and a user receiver is obtained by multiplying
the propagation time with the speed of light, assuming
the line of sight (LOS). In most applications however, the
LOS signal is succeeded by multi-path components that
arrive to the receiver with a short delay. This introduces
significant errors in the LOS path time of arrival and
gain estimation, especially in urban environments with
many reflections from buildings and other objects. On the
contrary, MIMO systems can use the information from
multipath components to improve the accuracy of the
estimation.

The key concept for the positioning in MIMO settings is
the selection of an appropriate model for the propagation
channel. With the proper channel model the location prob-
lem can be solved using sequential Monte Carlo methods,
also called particle filtering, see [4]. In this paper we will
investigate the performance of particle filtering in MIMO
system settings.

II. STATE-SPACE MODEL AND PARTICLE FILTERING

The positioning problem in a MIMO setting consists
in the estimation of the receive antenna coordinates at
time ¢ given the signal strength measurements at the
receiver end up to this time, if the transmitted signal is
known. In a state-space model framework this problem
corresponds to computation of the filtering probability
density function and estimation of the expected values of
the state variables.

Consider a discrete state-space model with additive
noise,

{Et-|—1 = f(z¢) + &4, (1)

Uy = h(EI) + €t ,



where the process noise £; and the measurement noise e;
are independent random variables with known probability
density functions p.(z;) and p.(e;), respectively. Arbitrary,
often non-linear functions f(z;) : R™ — R™ and h(z) :
R™ — R™ describe the evolution of the state variables, z;,
and the measurements, u;, over time.

Suppose that the measurements up to time ¢, ug.¢, are
avaliable. Then the filtering probability density for the
state variables, p(z;|ug.), is derived using Bayes’ formula,

P(ztluD:t) —

P(H:|Et)f-'(3: |HD::—1)
P(Htlﬂt—l) ] (2)

where

plug|ui—1) = /P(Hﬂzﬂp(zﬂuﬂ:t—l)dzt-

This density can be used to estimate the expected values
of the state variables according to

I(9(2)) = Eportucry (9(21)) = / 9(z0)p(zeluos) dz. (3)

The integrals involved in (2) and (3) can be analytically
evaluated only in a limited number of cases. The most
important special case is the linear Gaussian state-space
model, when the Kalman filtering technique is applicable.
Many popular algorithms for the non-linear/non-Gaussian
case, like the extended Kalman filter and Gaussian sum
filter, rely on analytical approximations of the integrals
[5]. The great computational power of modern computers
however allows using numerical methods based on Monte
Carlo integration. A complete description of sequential
Monte Carlo methods can be found in [6]. In the next
paragraphs we shall briefly explain the basic steps in the
derivation of the particle filtering algorithm.

The particle filter appmmmates the density by a large
set of M samples (particles), {z”t, i = 1... M}, where

each particle has an associated normalized weight, 11'1?},

such that mfi} > 0 for all i and S;7 ﬁ':f} = 1. An empiri-
cal estimate of the filtering probability density function is
then given by

2 @:70(z = 2p),

where d(+) is the Dirac delta function. Further, an estimate
of the integral (3) is the weighted sample mean,

Z ~{1} {1}
t|t

The particles are initialized at random points of the
state space. The filter updates the particle locations and
weights each time a new observation is avaliable. Firstly,
the particle location is obtained by passing the current
particles through the system dynamics:

fi}u: = f(z :|:) +5£431: where 55431 ~ Pe(€t41).

Er |HD it

The unnormalized weights wii} are usually updated se-
quentially in time, and the updating coefficients are equal
to the values of the conditional density of the observations,
evaluated at the observed values,

'5*‘-";:_31 = '5"-'1{ }P(“t—l—llzt_l_l“)

This updating mechanism has the serious drawback that
normalized weights tend to degenerate with time, in the
sense that after few steps of the algorithm all but one of
the normalized weights are very close to zero. As a result, a
large computational effort is spent on updating trajectories
with very small contribution to the final estimate. To avoid
the degeneracy problem, a resampling procedure is intro-
duced. This step consists of resampling with replacement
among the predictive particles, according to the updated
and normalized weights,

~(7)

P[zﬁl _EE:TI—}III) Wiy, i=1... M,

where normalized weights are given by

@) _ @
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After resampling all weights are set to 1/M.

The weight of a particle reflects how likely the obtained
measurement is, given the present state. Particles with
large weights have high probabilities to be drawn from
the true distribution and thus have high probabilities of
being resampled. At the same time, particles with low
weights appear to come from the wrong distribution and
have to be discarded. There are several resampling algo-
rithms proposed in the literature, namely, simple random
resampling, stratified resampling, systematic sampling and
residual sampling, see [7] and [8].

If the state-space model (1) contains a linear Gaussian
sub-structure, the estimates can be improved by using
a marginalized particle filter [9]. Consider a state-space
model, that is linear in all states and with additive Gaus-
sian noise for some states. The state vector z; can then be
split into two parts,

£t = (Efn th)‘l:

where zF corresponds to the states with Gaussian dy-

namics and z! corresponds the rest of the states. Simi-
larly we split the vector of errors &, = (&f, /), where
ef ~ N (0,%;) and ] ~ p.(&}).

Then the model (1) can be rewritten in the following
way:

o k _k k
Zp41 Az + Afzf T €41

§ #t41 = Brsz-u + BYz} + €41, (4)
Uy = ht(zf] + Ctzf + ;.

%

This split of the state variables and errors allows us to

split the filtering probability density into two components,
k

P(zt sz:l U'D‘I)P( f

P(EIIHD‘J) — Zy IUD‘.t)-



Here the first term can be evaluated analytically by the
Kalman filter and the second term can be estimated
using particle filtering. Such a combination reduces the
computational complexity of the algorithm [10] and al-
lows to obtain better estimates with the same number of
particles. More about this splitting technique, also called
Rao-Blackwellization, can be found in [6].

III. MODELS FOR POSITIONING IN MIMO SETTINGS
A. Movement models

The transmit antenna is assumed kept at a fixed point
with a fixed orientation. The receiver moves along an arbi-
trary trajectory and the receiving antenna turns randomly
at some time points. The position of the receiver at time
t is expressed by the abscise i ; and the ordinate yg; of
the reference point.

In the Cartesian approach, these quantities are related
to the horizontal and vertical velocities ©,, and yg;.
These velocities, in turn, are assumed to follow a simple
linear Markovian model with random accelerations. The
evolution of these four states is described by the system
of equations

Trit1 = Tre+ At agz 41,
L:'H:-t-l_l — L:‘H:-t + &t ] uybt—i_l]
Thpitl = Trt+ At Tg 441,

Yrit+l = Yrt + AL Yriy1,

(5)

where a, ; and a,, , are independent random variables with
N(0, 02Z/At) and N(0, o2/At) distributions, respectively.

In the polar approach the coordinates of the receiver are
related to the speed of the receiver, vy, and the direction
of movement, ¢ ;. Both the velocity and the direction are
assumed to follow simple linear Markovian models with
random acceleration and turns. This gives the evolution
equations

(Vpt1 = ”fi,t + At - agq1,

€141 with probability 6,

< Priv1 = § Opt + VAL - Et41 (6)
\ with probability 1 — 9,

Tpis1 = Trt+ At Vg 41008 (Priy1),

Yrt+1 = Yrat + At - Vg 44180 (Priy1).

e

The acceleration, a;, and the turns, &;, are assumed
to be sequences of independent random wvariables with
N(0, 62/At) and U|[—m, =] distributions, respectively.

The dynamics of the receiving antenna orientation was
modeled as

(V41 with probability &,
Urt + VAL v (7)
with probability 1 — &',

Vritt1 = 4

%

where the random turns v, are independent variables from
a U[—m, ] distribution.

B. MIMO propagation channel model

Recently, many different models for MIMO propagation
channels have been proposed. An overview of these models
can be found in [11], and the research on this topic is
continued. In our simulation study we will model the
channel using the geometrical approach introduced in [12].
The basic idea of this approach is to place scatterers at
random and then emulate the propagation process from
the transmitter to the receiver, taking into account the
effect of scattering.

Consider a MIMO system with Np transmit elements
and Npg receive elements. At time ¢ the relationship be-
tween input and output can be expressed as

uy = Hyvy + ey, (8)

where v; is the Np-vector of the transmitted signal, u; is
the Ng-vector of the received signal and e; is an additive
Gaussian noise term. The channel is described by the de-
terministic N, X N, channel response matrix H;. A single
element of this matrix, h,,, , is the impulse response from
the m-th transmit to the n-th receive antenna element.
Suppose there are Ng scatterers around the receiver and
the transmitter. Then the impulse response is determined

by
Ng
hmt = Y Ast exp(jds) exp(j¢ms) exp(inns,e).  (9)

s=1

Here A;; denotes the amplitude damping for the path
between the transmitter, scatterer s and the receiver,

As,t — d_-;_,i; * gy (1[})

with the total traveling distance d, ;, random damping o,
at the scatterer and propagation coeflicient v. Note that
we assume no LOS and single scattering for all paths.

The phase shift is composed of three components: ran-
dom phase shift ¢, at scatterer s, phase shift (,,s at the
m-th transmit antenna element and phase shift 7, at
the n-th receive antenna element. These are derived from
simple geometrical relationships and given by

gms — ZTW : dT,m . ISiﬂ(HT,s)I

) Sign(d"r,s T dT,ms);
27 . T
Mns,t = BN dpp - |sin(@rst + 5~ Ur.t)l

. Sigﬂ(dmns,t — dﬂ,s,t}:

(11)

(12)

where A denotes the wave length and the angular param-
eters and the distances are explained in Figure 1.

IV. PARTICLE FILTERING ALGORITHMS

Equations (5)—(7)—(8) and (6)—(7)—(8) define a state-
space model with five states. The position of the receiver
is involved in the measurement equation in a highly non-
linear way. It influences both the amplitude damping and
the phase shifts, since the coordinates of a reference point
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Figure 1. The distances and angular parameters used in the phase
shift derivations.

at the receiver are used in the calculation of all distances
in (10), (11), and (12). In addition, the direction of arrival,
0r.s.t, depends on the position of the receiver at time t. In
the Cartesian model the velocities, however, have linear
(Gaussian dynamics and do not appear in the measurement
equation.

The distribution of the measurement noise e; is the
Nrp-dimensional complex Gaussian distribution with zero
mean and covariance matrix ..

The particle filter weights equal the conditional density
of the observations, given the states:

w” = plue|zye-1) = pe(ue — h(z1))
1
= =, X
x exp { —(us — Hi 1), (uy — Higvy)}
The estimates of the position of the receiver are simply the

weighted sample means over M particles, evaluated with
the normalized weights:

M M
(Zr,ts Tr,t) = (Z Wi ,iTR,it Zlﬁt,iyn,i,t) - (14)
i=1 i=1

The estimate of the direction of the receiver is the circular
mean direction [13]:

M
S = Z \ Wy ; COSWg 4 4

i=1

(13)

M
C=) \/Uhisinyriz

i=1

‘tan~—1(S/C), if S > 0,C >0

Vet = { tan~1(8/C) +m, fC < 0

tan~'(S/C) +2m, if§ <0, C > 0.

To measure the degeneracy of the algorithm we used the
effective sample size estimate [14], defined as

No—_ Yt
Y ()
> w2

i=1

(15)

(16)

Resampling was carried out if N, fell below 60% of the
total number of particles.
The filtering algorithm is specified as follows:

1) Initialization, t =0
a) For i =1 to M, sample

(:ER,E',D: yR,i,D)E ~U ([ﬂ., b] A [ﬂ'E: H])
ﬁf’R,i,D ~ U[ﬁ, 2“]
Erio ~Ule, d], Yrio ~Ule, d

or
Urio0 ~ Ule, d], ¢rio~ U0, 2r]

b) Sett=1
2) PF time update
For i = 1 to M, move current particles according to
(6) or (5) and turn the antenna according to (7).
3) PF measurement update
a) For i = 1 to M evaluate the channel matrix
H; ;, update the weights, normalize, calculate
the effective sample size estimate. Estimate the
position and the direction according to (14).
b) If the effective sample size estimate is less than
0.6 M, resample with replacement M particles
according to the normalized weights using sys-
tematic sampling. Set all weights equal to 1/M.
4) Set t =t + 1 and iterate to step 2.

The algorithm for the marginalized particle filtering
combines the Kalman filter for the velocities in the Carte-
sian model (#g4, ¥r:) with the particle filter for the
coordinates and the direction of the antenna.

1) Initialization, t =0

a) For i =1 to M, sample
(:ER,E',D:I yR,i':,.D)iI ~ U ([ﬂ'! b] e [ﬂ';! b;])
Vr,i0 ~ U[0, 27]

:E-'H’LD ool U[ﬂj d]!l E;"H,.Er-,D - U[ﬂ! d]

b) Sett=1
2) Resampling (PF measurement update)

a) For i = 1 to M evaluate the channel matrix
H; ;, update the weights, normalize, calculate
the effective sample size estimate. Estimate the
position and the direction according to (14).

b) If the effective sample size estimate is less than
0.6 M, resample with replacement M particles
according to the normalized weights using the
systematic sampling procedure. Set all weights
equal to 1/M.

3) PF time update and KF update

a) KF measurement update:

(T ryitts Uristlt) = (Troit|t—15 Yri,t|t—1);



Pt|t — P:t|t-1-

b) PF time update:
For 1+ =1 to M, move current particles accord-
ing to (6) or (5) and turn the antenna according
to (7).

¢c) KF time update:

_ 1
Lritel|t = At (IR,£,1+1|t - iEH,:-:,t|t)

: 1
Yrit+1|t = At (yR,i,t+1|t — yR,i,m)

20
R‘,—|—1|t :Pt|t :ﬂt( Jﬂm

2
Ty
4) Set t =t + 1 and iterate to step 3.

V. SIMULATIONS

The transmitting antenna is linear with N = 3 ele-
ments distanced by the half wave length, and the wave
length A = 3/20 m corresponding to 2 GHz frequency. The
transmitter is located at the origin, (2, y+)' = (0,0)’, and
the orientation of the transmit antenna is 90°.

The receiving antenna is also linear with three elements,
Ngr = 3, distanced by the half wave length. The receiver
starts moving at (100, 0) with speed 6 km/h and direction
0°. The initial orientation of the antenna is 45°. The
receiver moves along the trajectory with turns of size 90°
and 45° during 3 minutes, and turns the antenna by 90°
or 45° at some time points.

There are 45 scatterers, placed randomly within the
area [0, 300] x [0, 250] m. The amplitude damping at each
scatterer is simulated from a Rayleigh distribution with
mean -6 dB, and the phase shifts are uniformly distributed
between 0 and 2w. All these are fixed over time, and used
as the filter input.

The standard deviation for signal noise is set to 107%
for each antenna element in order to keep signal to noise
ratio between 10 and 30 dB. Noises on different antenna
elements are assumed to be independent, which gives the
diagonal covariance matrix

1016 0 0
¥, = 0 1016 0 ,
0 0 1016

for the calculation of weights by (13).

The sampling rate is 100 times per sec, so At = (.01 sec
and T = 18, 000. Propagation coefficient v is set to 3.5.

Three different filters are applied: common particle fil-
ters with either Cartesian (5) or polar (6) model for the
mobile movement (Filters 1 and 2, respectively) and the
marginalized particle filter, based on the Cartesian model
(Filter 3). All filters are run using 500 particles, with
o7 = op = 3, o, = 3 in common particle filters, and
with 02 = 02 = 2 in the marginalized particle filter. The
probabilities 4 and ¢’ in the models of the direction of
movement (6) and of the antenna orientation (7) are set
to 0.01. In all three filters initial positions are sampled

within the area [95,105] x [—5,5] m, and initial speeds are
sampled from U[1, 6] km /h.

To estimate the over-time performance for each filter
we calculated the RMSE, based on R runs for the position
estimates,

i
1 . .
RMSE, = B E (2t — Z4.0)% + (Y2 — 1.r)?],
" r=1

t=1 I

IR 3

and the arithmetic sample mean over R runs for the angle
estimates.

Figures 2 and 3 show the true trajectory and the true
direction of the receiver together with the results for three
different filters. All filters seem to perform quite well and
are able to follow the track, with the estimation error not
more than 25 m. Filter 1 has the largest over-time mean
estimation error in the position, 4.9 m, compared to 3.5 m
and 3.4 m for filters 2 and 3, respectively.

The estimation error in the orientation of the receiver is
quite large at the turning times, but at the next time point
decreases to less than 25° for all three filters. Over-time
mean errors for all three filters are around 4°.

Figure 4 displays the RMSE for these filters based on
68 runs. Over-time performance for all filters corresponds
with the results from one run. Filter 1 has largest over-
time mean RMSE of 16.3 m, whereas for the filters 2 and
3 over-time mean RMSE is 5.4 m and 3.9 m, respectively.
The mean estimation error in the antenna orientation
is displayed in Figure 5. All three filters have similar
precision of estimation, with the mean error staying below
20° most of the time.

Table I shows the Federal Communication Commission
(FCC) performance requirements for the mobile location,
expressed in error probability. For example, at least 67%
of the positioning errors should be smaller than 100 m.
To compare our results with these requirements, we have
calculated the positioning error at each time point for 68
runs of three different filters, and then evaluated 67 and 95
percentiles for each time point. Maximal over-time values
for three filters are given in Table 1I. Comparing these two
tables, we see that the estimation accuracy for all three
filters fits the FCC requirements for both network-based
and mobile-based positioning.

We have also applied these three filters in more so-
phisticated situations, where the receiver moves along the
circular or simusoidal track and the receiving antenna
makes a full round during the movement.

Results are displayed in Figure 6 and show good per-
formance of all three filters in the estimation of both the
position and the antenna orientation.

VI. CONCLUSIONS

Three different particles filters were applied for mobile
positioning in a MIMO settings: Filter 1, based on the
Cartesian model (5) for the states variables; Filter 2, based



Table 1
FCC REQUIREMENTS FOR MOBILE- AND NETWORK-BASED
POSITIONING, EXPRESSED IN ERROR PROBABILITY,

Error % Mobile-based Network-based
67 50 m 100 m
95 150 m 300 m

Table 11
THE MAXIMAL PERCENTILES FOR 68 RUNS OF THREE DIFFERENT
FILTERS,WITH THE MAXIMUM IS TAKEN OVER ALL TIME POINTS.

Error % Filter 1 Filter 2 Filter 3
67 17 m 16 m 12 m
95 34 m 24 m 25 m

on the polar model (6) for states, and Filter 3, marginal-
ized particle filter. Results, averaged over 68 independent
runs of these filters, show good performance, satisfying
the FCC performance requirements for the mobile location
in network-based positioning as well as in mobile-based
positioning. The marginalized particle filter, being the
combination of Kalman filter and particle filter, shows the
best performance with over-time mean RMSE of 3.9 m and
95% of positioning errors below 25 m.

In our simulation we used a very simple channel model
with a small number of transmit and receive antennas. It is
possible to increase the number of antennas and use more
sophisticated channel models (including e.g. effects of mul-
tiple scattering) without changing the filtering algorithms.
In addition, the dimensionality of the particle filter state
space is independent of the number of antenna elements,
as well as of the number of scatterers.

Note however, that the positioning with particle fil-
ters in these settings requires large computational power.
There are two reasons for that. First, the calculations
involve high-dimensional matrices, with one dimension
equal to the number of particles. Second, all tested filters
have high resampling rate about 98%, which means that
the filters degenerate and need to resample at almost
every step. The practical solution to the first problem
can be to reduce the number of particles. It will increase
the positioning error, but at the same time decrease the
computation time. A solution for the second problem is
somewhat more difficult. In our filtering algorithms we
sampled particles according to the system dynamics. In
other words, we chose the prior distribution of states as the
sampling distribution This choice gives a simple expression
for the calculation of weights, but filter may perform badly
if the likelihood is peaked. As a solution, one can use
so-called auxiliary particle filter, discussed by Pitt and
Shephard in [4].
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and the sinusoidal (lower panel) movement. Green lines show the results for Filter 1, blue: Filter 2, magenta: Filter 3. Over-time mean errors
in the positioning do not exceed 10 m. Over-time mean errors in estimation of the antenna orientation are around 10°.
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