
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Optimization and implementation of a Viterbi decoder under flexibility constraints

Kamuf, Matthias; Öwall, Viktor; Anderson, John B

Published in:
IEEE Transactions on Circuits and Systems Part 1: Regular Papers

DOI:
10.1109/TCSI.2008.918148

2008

Link to publication

Citation for published version (APA):
Kamuf, M., Öwall, V., & Anderson, J. B. (2008). Optimization and implementation of a Viterbi decoder under
flexibility constraints. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 55(8), 2411-2422.
https://doi.org/10.1109/TCSI.2008.918148

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 12. Jul. 2025

https://doi.org/10.1109/TCSI.2008.918148
https://portal.research.lu.se/en/publications/7dd33fe6-2c5e-490c-aab0-42cc688655cc
https://doi.org/10.1109/TCSI.2008.918148

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008 2411

Optimization and Implementation of a Viterbi
Decoder Under Flexibility Constraints

Matthias Kamuf, Member, IEEE, Viktor Öwall, Member, IEEE, and John B. Anderson, Fellow, IEEE

Abstract—This paper discusses the impact of flexibility when de-
signing a Viterbi decoder for both convolutional and TCM codes.
Different trade-offs have to be considered in choosing the right ar-
chitecture for the processing blocks and the resulting hardware
penalty is evaluated. We study the impact of symbol quantization
that degrades performance and affects the wordlength of the rate-
flexible trellis datapath. A radix-2-based architecture for this data-
path relaxes the hardware requirements on the branch metric and
survivor path blocks substantially. The cost of flexibility in terms of
cell area and power consumption is explored by an investigation of
synthesized designs that provide different transmission rates. Two
designs are fabricated in a digital 0.13- m CMOS process. Based
on post-layout simulations, a symbol baud rate of 168 Mbaud/s is
achieved in TCM mode, equivalent to a maximum throughput of
840 Mbit/s using a 64-QAM constellation.

Index Terms—Convolutional codes, flexibility, quantization,
subset decoding, Trellis-coded modulation (TCM), Viterbi de-
coding, VLSI, wireless personal area network (WPAN).

I. INTRODUCTION

W ITH growing application diversity in mobile communi-
cations, the need for flexible processing hardware has

increased. As an example, consider application-diverse high-
rate wireless personal area networks (WPANs) [1], which pro-
vide short-range ad hoc connectivity for mobile consumer elec-
tronics and communication devices. In this environment, dif-
ferent transmission schemes and code rates are required in order
to adjust to varying channel conditions [2], [3]. Thus, a flexible
channel decoding platform should be able to handle at least two
decoding modes, one when a high error-correcting capability is
required at low , and another one supporting high data
throughput if the channel is good. How flexibility constrains the
design process and its overall cost in terms of hardware are is-
sues that are often overlooked. A design goal could be stated as
follows: increase flexibility with as little sacrifice as possible in
area, throughput, and power consumption.

Trellis-coded modulation (TCM) [4], [5] is considered as a
means of transmitting coded information at high data rates. It
is most efficient for higher (quadrature) constellations beyond
quadrature phase-shift keying (QPSK), which carry more than

Manuscript received September 12, 2006; revised August 15, 2007. First pub-
lished February 7, 2008; current version published September 17, 2008. This
work was supported by the Competence Center for Circuit Design at Lund Uni-
versity. This paper was recommended by Associate Editor I. Verbauwhede.

M. Kamuf was with the Department of Electrical and Information Tech-
nology, Lund University, SE-22100 Lund, Sweden. He is now with the Ericsson
Mobile Platforms, SE-22370 Lund, Sweden (e-mail: Matthias.Kamuf@eric-
sson.com).

V. Öwall and J. B. Anderson are with the Department of Electrical and Infor-
mation Technology, Lund University, SE-22100 Lund, Sweden (e-mail: Viktor.
Owall@eit.lth.se; John_B.Anderson@eit.lth.se).

Digital Object Identifier 10.1109/TCSI.2008.918148

Fig. 1. BER performance in AWGN of TCM codes from [1] together with the
Shannon limit of equivalent rate � (bits/dimension) systems. Target BER for
transmission is �� .

two information symbols per 2-D channel use. The subset se-
lectors of the TCM codes in [1] are rate 1/2 for QPSK and
rate 2/3 for 16-QAM, 32-CR, and 64-QAM constellations. In
Fig. 1, we plot their bit error rate (BER) in the additive white
Gaussian noise (AWGN) channel since these curves are not gen-
erally available in literature. For comparison, the Shannon limit
for equivalent rate (bits/dimension) systems is shown in this
figure. For example, since there is one coded bit per constella-
tion point, the rate for 16-QAM TCM transmission is 3 bits per 2
dimensions, equivalent to . The target
BER in the WPAN standard is around ; here the transmis-
sion schemes using higher constellations are around 5 dB from
the Shannon limit.

The QPSK scheme is considered as a dropback mode for low
. In such a small-constellation scenario, rate 1/2 binary

convolutional codes are usually preferred since they can achieve
the same transmission rate as TCM with better BER perfor-
mance. Simulations show that at the target BER, the best 8-state
rate 1/2 convolutional code together with Gray-mapped QPSK
is about 0.3 dB better than the TCM QPSK scheme. Apparently,
subset partitioning is not very effective at this low rate. In the fol-
lowing, the coding polynomials (octal notation, right justified)
considered are for the rate 1/2 convolutional
encoder in controller form and for the rate 2/3
TCM subset selector in observer form.

The Viterbi algorithm (VA) [6], [7] is a maximum-likelihood
(ML) decoding scheme that is used, among others, to recover
encoded information corrupted during transmission over a
noisy channel. Its processing complexity increases both with

1549-8328/$25.00 © 2008 IEEE

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

2412 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

the number of trellis states and branches per node
that connect these states. Here, denotes encoder memory and
there are information bits per trellis stage.

Flexible Viterbi decoding processors were studied and pre-
sented in, for example, [8] and [9]. However, they were intended
solely for use with rate binary convolutional codes, an in-
teger, and provided flexibility by varying the encoder state space
and thus error performance. No attempt was made to investigate
the cost of this flexibility.

The trellis diagram of rate codes can be decomposed
into a radix-2 (R2) butterfly state interconnect structure. To re-
duce bandwidth expansion, higher rate codes up to rate 1 are
obtained by puncturing [10] the basic code, which pre-
serves the R2 structure of the trellis. In case of TCM, however,
puncturing is not applicable if code performance is to be fully
maintained. This degradation stems from altering the minimum
inter-subset distance [11]. The trellis of the considered subset
selector consists of radix-4 (R4) butterflies, where 4 branches
are leaving and entering each state. Almost all practical trellis
codes, whether TCM or not, are based on either R2 or R4 but-
terflies. Therefore, the presented architecture easily extends to
other codes.

To summarize these considerations, a flexible channel de-
coding architecture has to be tailored to efficiently process both
R2 and R4 butterflies, while limiting overhead in both area and
power consumption, that is, both modes should utilize the same
computational kernel. For the trellis processing blocks such an
architecture is presented in [12]. However, flexibility is also re-
quired in other processing blocks, namely branch metric (BM)
and survivor path (SP) units. In this paper, we consider all pro-
cessing blocks of the decoder and evaluate the cost of flexibility
for our design example.

The paper is organized as follows. In Section II we briefly
review the building blocks in the VA. Section III–V describe
optimization steps for the different blocks to achieve the de-
sired flexibility with minimum hardware penalty. In particular, it
will be seen how the architecture choice of the main processing
block enables the other blocks to reuse hardware resources as
efficiently as possible. In Section VI, the contribution of flexi-
bility to the overall cost in cell area and power consumption is
evaluated based on synthesized hardware. It also presents a chip
implementation in a digital 0.13- m CMOS process.

II. OVERALL ARCHITECTURE

For the scope of this paper, we briefly revisit the basic
building blocks used in the VA. A more thorough, hard-
ware-oriented description is found in [13]. As shown in Fig. 2,
there are three main processing blocks in a Viterbi decoder, that
is, BM, trellis, and SP unit. The BM unit provides measures of
likelihood for the transitions in a trellis. These measures are
consumed by the trellis unit, where add-compare-select (ACS)
operations on the state metrics (SMs) at instant form
a new vector of SMs at instant . This opera-
tion is equivalent to discarding unlikely branches in the trellis
diagram. Here, denotes the vector of states in a trellis and
is its permutation according to the given state interconnection.

The trellis unit outputs an matrix of decision bits
about surviving branches. These bits are processed by the
survivor path (SP) unit to reconstruct the information bits that

Fig. 2. Block structure of a Viterbi decoder. Flexible parts are indicated and
additional parts needed for decoding of TCM codes are dashed.

caused the transitions. Additionally, in case of TCM, the most
likely transmitted signals for all subsets have to be stored
in the subset signal memory. These signals, together with the
reconstructed subset sequence from the SP unit, form the final
decoded sequence.

Which parts of the architecture have to be flexible is seen in
Fig. 2. The architecture of the trellis and SP units solely de-
pends on the code rate and number of states in a trellis diagram.
A realization in dedicated hardware, which is more energy effi-
cient, is thus logical. The BM unit, on the other hand, is strongly
related to the task the Viterbi processor is intended for. For ex-
ample, apart from calculating distances between received and
expected symbols as in the case of binary convolutional coding,
TCM codes require an additional subset decoder. Extension of
this architecture to cope with, for example, Viterbi equalization
would require another processing part for finding the necessary
BMs.

III. BRANCH METRIC UNIT

We first introduce an applicable distance measure and apply
it in the context of TCM. An investigation of symbol quantiza-
tion follows. Its impact on cutoff rate as well as error perfor-
mance is evaluated, which ultimately leads to the required BM
wordlength that determines the wordlength of the trellis data-
path.

Throughout this section, we consider 2-D quadrature modu-
lations that consist of two independent pulse amplitude modu-
lations (PAMs) generated from orthogonal pulses. Dimensions

, 1 relate to in-phase and quadrature-phase signal
components, respectively.

To provide measures of likelihood for the state transitions,
different metrics are appropriate for different channel models. In
the AWGN channel, the optimal distance measure is the squared
Euclidean distance between received channel symbol and con-
stellation symbol

(1)

where is from the alphabet of -PAM. In case of binary
signaling per dimension where , (1) simpli-
fies to since and contribute equally to all dis-
tances and can be neglected. For larger constellations, different

have to be taken into account in the distance calculation.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: OPTIMIZATION AND IMPLEMENTATION OF A VITERBI DECODER UNDER FLEXIBILITY CONSTRAINTS 2413

Fig. 3. Maximum distance between a received point and constellation point
belonging to one of 8 subsets, which are represented by circles, squares, and tri-
angles. For an infinite constellation (here lattice), the largest distance (bound
by the dashed circle) appears if the received point coincides with any constel-
lation point. For a finite constellation (shown is part of 64-QAM), this distance
(bound by the solid circle sector) appears if the received point is in the corner
of the constellation. Depending on the maximum number range, an additional
factor � has to be accounted for in either dimension.

Here, possible simplifications utilize the constellation’s bit map-
ping, commonly Gray, to determine soft bit values [14] that can
be utilized by the ML decoder. Due to TCM’s subset parti-
tioning, assigning such soft bit values is not meaningful since
Gray mapping is only applied to points in the same subset, not
to the constellation itself. Furthermore, only the distance to the
nearest constellation point in a specific subset is considered as
BM for that subset in TCM decoding. This point has to be deter-
mined for each subset before the BM calculations. Fig. 3 shows
part of the lattice , where denotes the minimum distance
between lattice points and the subset distribution is represented
by circles, squares, and triangles. The largest distance appears if
the received symbol matches a lattice point and the resulting
maximum attainable BM is bound by a circle of radius

.
For the given finite constellation, though, the situation is

slightly different. Assume that the values of the received sym-
bols are limited by the dynamic range of the analog-to-digital
(A/D) conversion. Receiving a corner point causes the largest
distance, that is, as in Fig. 3. Depending on the
dynamic range, which ultimately determines the mapping of
constellation points in respect to the maximum number range,
one might have to consider an additional factor per dimen-
sion. This factor will be included in the BM calculations in the
following subsection.

A. Quantization Issues

One method of wordlength design [15] is based on the cutoff
rate , which is a lower bound to capacity for any specific sig-
naling constellation. Consider a communication system using

-PAM at the transmitter and a receiver that outputs noisy
channel symbols quantized with bits. This arrangement con-
stitutes a discrete memoryless channel (DMC) with inputs

Fig. 4. Cutoff rates for a DMC with � equally spaced inputs �
�
� � ��

and � uniformly quantized outputs. � �� is chosen for desired quadrature
��� � �	 , see Fig. 1. Connected curves are in increasing order � from
right to left. Vertical lines denote the optimal
 for a chosen � found beside the
line. The respective maximum� for unquantized channel outputs is indicated
by the horizontal lines.

and outputs. Let the symbols be equiprobable (symmetric
cutoff rate [16]). Thus

(2)

where the transition probabilities for AWGN are

(3)

and is the set of equally spaced constellation points
over the interval . A quantization scheme for
this DMC is considered optimal for a specific choice of and
if it maximizes (2). For simplicity, we assume a uniform quanti-
zation scheme with precision . The thresholds that bound the
integration areas in (3) are located at either

or

Furthermore, assume an automatic gain control (AGC) that per-
fectly estimates the noise variance by which the
noisy channel symbols are normalized.

An information theoretical approach could involve an evalu-
ation of to determine the that maximizes given

, , and . However, since there is no analytical solution to
the integral in (3) for , numerical calculations have to
be carried out to find the optimal threshold spacing , which in
turn determines the dynamic range of the A/D conversion. Fig. 4

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

2414 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

TABLE I
LOSS IN � �� AT ��� � �� FOR UNIFORM SYMBOL QUANTIZATION

WITH � BITS AND OPTIMUM CHOICE OF �. ABSOLUTE DISTANCES ARE USED

ACCORDING TO (4). AS A REFERENCE, ROW � � � SHOWS THE REQUIRED

� �� WITH UNQUANTIZED INPUTS AND EUCLIDEAN DISTANCE AS IN (1)

shows the cutoff rates for different -PAM schemes. The
corresponding -QAM schemes are found in Fig. 1, where

is assumed to achieve a BER of . Note that 32-CR
corresponds to 36-QAM where the corner points are removed
to achieve a lower energy constellation. The vertical lines de-
note the optimal given . The upper limit on for unquan-
tized channel outputs is indicated by the horizontal lines. For
example, given and , the optimal is around
0.135, which yields a dynamic range of 2.16. Considering the
precision requirement on , which is based on a good noise es-
timation, it is already seen from Fig. 4 that a deviation towards a
slightly higher than the optimal one is more tolerable. That is,
the slope of a cutoff rate curve is rather flat after its maximum,
whereas it is comparably steep before it.

Having found a range of feasible for the discrete channel,
one can verify these results with BER simulations for the TCM
schemes. To lower the complexity of the distance calculation
in (1), which involves squaring, a suboptimal metric is used. It
considers only the absolute distances in either dimension and
(1) is replaced by

(4)

Table I summarizes the expected loss in compared to
(1) and unquantized channel outputs. As expected, for a cer-
tain constellation the loss becomes smaller as increases, and
larger constellations generally require finer quantization. QPSK
together with binary convolutional coding is not listed in Table I
since it is well known that 3 bits symbol quantization is usually
sufficient for good performance [17]. A rate 1/2 convolutional
code therefore requires 4 bits for the BM.

In order to determine , one can consider two approaches.
First, to guarantee negligible performance degradation for all
schemes, one could choose the that leads to the largest
tolerable degradation for the largest constellation, in this case
64-QAM. Then, the overall loss in becomes the least
in all transmission modes. Or secondly, one could vary the
wordlength of the A/D samples to achieve the required tolerable
degradation for each mode.

Pursuing the first approach, assume bits performs close
to optimal with 64-QAM, see Table I. This choice provides neg-
ligible degradation for the other two constellations. If the largest
-bit number exceeds the number assigned to the largest con-

stellation point in either or , an additional factor has to

Fig. 5. Decision boundaries for subset � (squares) for 16-QAM (a), 32-CR
(b), and 64-QAM (c) constellations. For example, the shaded part in (a) shows
the region where � � � � ��	.

be added per dimension. Considering Fig. 3 and (4), the largest
BM becomes

(5)

Choosing according to Fig. 4 to maximize and achieve
equidistant spacing between constellations points yields

. Then requires at least bits. If
the A/D-conversion uses its dynamic range efficiently, is small
compared to the first term in (5) and the number of bits will
be sufficient. Using the same also for 16-QAM and 32-CR
increases the number of levels between two constellation points
so that 8 and 7 bits are now required for the BMs. That is, the
lowest constellation needs the largest BM range, which means
that the architecture is overdesigned.

Considering the second approach, that is, adjusting the
wordlength of the A/D-samples, assume that 16-QAM and
32-CR employ and , respectively. This yields
a of 9 and 13, and the largest BM becomes at least 36
and 52. can now be represented by 6 bits, and the largest
BM range applies to the highest constellation. The candidate
are shaded in Table I.

B. Subset Decoding and Signal Memory

In contrast to binary convolutional codes, which carry code
symbols along trellis branches, TCM codes carry subsets that
themselves consist of signals. Before BM calculations can be
done one has to determine the most likely transmitted signal
for each subset. This process is called subset decoding. For ex-
ample, the decision boundaries for subset are depicted in
Fig. 5 for the different constellations. In order to find the most
likely subset point, comparisons with and to
boundaries are needed. Furthermore, if there are more than two
points per subset, as for 32-CR and 64-QAM, additional com-
parisons with or are required to resolve ambiguities, which
are indicated by the horizontal and vertical boundaries. To deter-
mine the most likely points for the other subsets, one can either
translate the input symbols relative to or simply adjust the
comparison values for the boundaries.

To evaluate the computational effort, consider the lat-
tice with an -point constellation that is divided into

subsets with points per subset. With
, this setup requires

for
for

(6)

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: OPTIMIZATION AND IMPLEMENTATION OF A VITERBI DECODER UNDER FLEXIBILITY CONSTRAINTS 2415

Fig. 6. Architecture of the BM unit for the flexible decoder. The gray part is
the overhead due to TCM.

slicing operations (comparisons with a constant) along the de-
cision boundaries. The number of comparisons in (6) is split
into two terms: the first relates to diagonal boundaries and the
second to horizontal/vertical boundaries. The boolean compar-
ison results are mapped to a unique point in the subset.

The complete architecture for the BM unit is depicted in
Fig. 6. In total there are slicing operations and BM
calculations according to (1) or (4). These BMs appear as

for in Fig. 2. The overhead due to
TCM decoding is indicated in gray in Fig. 6. A subset decoder
for consists of comparisons and a demapper that chooses
from these comparison bits one out of constellation
points. This point is used for distance calculation to yield the
BM . The calculations needed for subset decoding,
and , can be reused in case of binary rate 1/2 convolu-
tional coding. These results are equivalent to the BMs for code
symbols and , respectively. The remaining
two metrics are derived from these by negation.

As already mentioned in Section II, TCM gives rise to
overhead in this flexible architecture: the unit that stores the
candidate surviving signals. These “uncoded” bits represent
subset points at each trellis stage and together with the recon-
structed survivor path form the decoded output sequence. The
unit comprises a memory that stores the bits
from the subset decoder for all subsets. The length of this
first-in first-out (FIFO) buffer equals the latency of the SP unit.
For the architecture to be power-efficient, this part has to shut
down when TCM is not employed.

To summarize the requirements for the BM unit, it appears
that the initial price for flexibility is high due to TCM’s subset
decoding in combination with its larger constellations.

IV. TRELLIS UNIT

The trellis unit consists of ACS units that are arranged and
connected with each other in a butterfly fashion. These units de-
liver updated SMs and decisions based on pre-
vious SMs and present BMs . The kernel has to cope
with two different code rates, 1/2 and 2/3, and hence both R2 and
R4 butterflies are to be processed. Our optimization objective is
the following: given a fixed R2 butterfly architecture, how can
the R4 butterflies be efficiently mapped onto this architecture, so
the existing interconnections can be reused? According to [12],
such a flexible processing architecture is preferably based on a
modified R2 butterfly block. For convenience, we briefly repeat
the concept of this R2-based flexible trellis processing.

A. Processing Framework

We consider an R4 butterfly which utilizes a set of BMs
for . As in Fig. 7, there are butterflies in a

Fig. 7. An R2 butterfly (a) and an R4 butterfly (b) with state labels for encoders
in controller form.� is the number of states in the trellis and � � ��� ��� ���
in the respective cases, � � �, 2. The R4 butterfly can be decomposed into four
R2 butterflies, indicated by the different line styles.

trellis, that is, given and , there is only one R4
butterfly. Since , we have and the state
labels become 0, , 3.

To update one state in an R4 butterfly, one can carry out all
six possible partial comparisons in parallel [18]. Four such op-
erations are needed to calculate a complete R4 butterfly as in
Fig. 7(b). However, this leads to inefficient hardware reuse in
a rate-flexible system due to the arithmetic in the 4-way ACS
units. In [19], area-delay complexity of R2- and R4-based but-
terfly processing is evaluated. Two cases are considered; one
where an R2-based trellis is processed with R2 processing ele-
ments (PEs), and one where two R2 trellis stages are collapsed
into one R4 stage [18], which is processed with the 6-com-
parator approach. For a standard cell design flow (this includes
FPGA implementations), R2 PEs are found to be more cost-ef-
ficient, whereas a full-custom datapath as in [18] benefits the
R4 6-comparator method. This is due to the achieved speed-ups
compared to the area overhead for these approaches. In a stan-
dard cell design flow, the achieved speed-up was 1.26, whereas
for the full-custom design it was 1.7. On top of this, introducing
a redundant number representation and bit-level pipelining in
a time-shared ACS datapath, the authors of [20] increased the
speed-up to 1.9, only 5% from the optimum of 2. Again, their
work reaches into the domain of full-custom tailormade data-
path implementations. A similar approach was followed in [21],
which is based on physical design-oriented hard macro blocks
from an in-house datapath generator. The authors concur that
this involves a higher design effort. Since platform indepen-
dence and standard design flows are desired properties, we use
an architecture that can be designed with standard cells and
tools. Based on the preceding considerations, the said architec-
ture thus consists of R2 butterfly units.

Another R4 trellis decoding architecture is found, for ex-
ample, in [22] and it belongs to the domain of log-MAP de-
coders used in iterative decoding. The authors follow the same
trellis collapsing approach as previously described. However,
instead of using the 6-comparator method, they apply a straight-
forward two logic level approach for the 4-way ACS, similar
to the one described in the following paragraphs. To summa-
rize, their work is more concerned with efficient calculation of
the logsum look-up table needed in log-MAP decoding and ap-
proximations that increase implementation efficiency without
degrading decoding performance.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

2416 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

Fig. 8. A decomposed R4 butterfly and the two partial computations leading to
the updated metrics for states 0 and 3 in (a) and 1 and 2 in (b). As an example,
the necessary operations to update SM 0 are drawn bold.

Generally, a 4-way ACS operation can be carried out in two
successive steps: in the first step a pair of cumulative metrics
(ACS) is evaluated and discarded; then in the second step, one
of the surviving metrics is discarded, which corresponds to a
compare-select (CS) operation in Fig. 8. This procedure is a de-
composition into R2 operations that are separated in both state
and time. Considering step , the split into four R2 but-
terflies achieves the cumulation of the SMs with all four BMs.
Then, in step , the partial survivors are compared
and the final survivors selected. Here, Fig. 8(a) updates states 0
and 3, and Fig. 8(b) updates states 1 and 2.

To capture these processing steps formally we use the fol-
lowing definition. The state connectivity of an R2 butterfly is
defined in Fig. 7(a). Assume that the two states at time are
named and with SMs and , respectively.
The two ACS operations leading to two updated state metrics
for states and at stage are expressed as butterfly oper-
ation . Without loss of generality, the are distributed as
in

(7)
We have already seen from Fig. 8 that there are four such R2
butterflies between and , so four operations as in (7) are
needed. For example, is shown in Fig. 8(a), that is,
and .

Processing the R4 butterfly based on (7) preserves the com-
patibility with the base R2 architecture. The scheme for ob-
taining all partial survivors is then expressed as

(8)

where the columns determine the instance of an iteration. So far
we have only computed half of the partial survivors needed; to
complete the R4 butterfly in parallel another unit has to carry
out

(9)

The operations in (8) and (9) guarantee that all SMs at stage
are added to all BMs, that is, 16 partial sums are reduced to 8
partial survivors at intermediate stage by means of CS oper-
ations. The final surviving SMs at stage are obtained by
CS operations on the hitherto surviving metric pairs. Note that
the partial survivors are not altered and therefore the final SMs
are not changed compared to a straightforward implementation.

B. R2-Based Approach

According to the preceding considerations, all partial sur-
vivors are calculated during two cycles, and in the third cycle
the final update takes place. As an example, the operations to
update state metric 0 are drawn bold in Fig. 8(a). The partial
survivors needed for the final CS are created at instance 0 by
operation and at instance 1 by . These operations are car-
ried out in different butterfly units; that is, the partial survivors
have to be stored temporarily. The appropriate routing for the
final CS is according to the required ordering of the updated
SMs. Here, the partial survivors are brought together by means
of I/O channels between adjacent butterfly units as indicated on
the left side of Fig. 9.

Fig. 9 also shows the rate-flexible butterfly unit. Its arithmetic
components, adders and the CS units, are identical to the ones
in a R2 butterfly unit, that is, if the gray parts are removed, one
yields a standard R2 butterfly unit. To cope with a decomposed
R4 butterfly, routing resources (shaded in gray) are provided to
distribute the partial survivors as dictated by the BM distribution
and the state transitions. The input MUXes shuffle the two input
SMs to guarantee their cumulation with all four BMs. The 4:2
MUXes in front of the CS units select whether the partial sur-
vivors at stage are to be captured into the routing unit PERM

or the final comparison at stage is to be performed. When
carrying out (8) or (9), PERM is fed during two cycles and in the
third and final cycle the partial survivors are compared. Here,
the signals and provide the connections to the adjacent but-
terfly unit to carry out the comparison with the desired pairs of
partial survivors. For example, is connected to in the ad-
jacent butterfly unit. The CS operations at steps and

in Fig. 8 are executed by the same CS unit, thus
saving hardware.

The unit PERM, which is needed for permutating the partial
survivors, simply consists of two tapped delay lines. If the global
SM memory is implemented as a bank of registers, they can be
reused to store the second intermediate survivors. Hence, PERM

would be reduced to only two storage elements to capture the

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: OPTIMIZATION AND IMPLEMENTATION OF A VITERBI DECODER UNDER FLEXIBILITY CONSTRAINTS 2417

Fig. 9. Shown on the left are two butterfly unit pairs (� � �, 1) that carry out the trellis processing in either R2 or R4 manner. The basic building block of these
pairs is a rate-flexible butterfly unit and is depicted in the middle. An R4 butterfly is updated in three clock cycles. The shaded blocks are the overhead compared
to an R2 butterfly unit. The connections for the routing block PERM apply to pair � � � in the design example.

first intermediate survivors. If it turns out that the metric in the
global register is the surviving one, the final update can be sup-
pressed and no switching power would be consumed. On av-
erage, 50% of the final updates are superfluous.

Given the BM assignments of the TCM code, PERM carries
out the same permutation in a pair of adjacent butterfly units.
For the codes considered, there are two such pairs in total. For
the pair the partial survivors on the top rail, and ,
are devoted to the same butterfly unit, whereas the bottom rail
survivors, and , are assigned to the adjacent butterfly unit. For
the pair , it is vice versa. Now the design fits seamlessly
into the base architecture; that is, the feedback network (“perfect
shuffle” state interconnection is assumed) in Fig. 2 is reused as
is. Furthermore, the survivor symbols to be processed by the SP
unit become equivalent to the information symbols. It will be
seen that this is beneficial for the chosen implementation of the
SP unit.

Additionally, a controller is needed to provide control signals
to the MUXes (and) and clock enable signals to
the registers. Clocking is only allowed when input data is valid
so that no dynamic power is consumed unnecessarily. In R2
mode, these signals are kept constant. Neglecting the controller,
the rate-flexible butterfly unit only adds six 2:1 MUXes and four
(two) registers on top of a R2 butterfly unit, and there is no
arithmetic overhead.

V. SURVIVOR PATH UNIT

We start this section by discussing some basic algorithms for
SP processing, namely register-exchange (RE) and trace-back
(TB); see [13] for an overview or [23], [24] for in-depth cov-
erage. Let denote the necessary decoding depth of the con-
volutional code after which the survivor paths are expected to
have merged with sufficiently high probability. The necessary
depth is determined by simulations. Furthermore, to cope with
rate flexibility, specific architectural trade-offs have to be inves-
tigated for this unit.

A. Existing Algorithms

Register-Exchange: This method is the most straightforward
way of survivor path processing since the trellis structure is di-
rectly incorporated in the algorithm. Every trellis state is linked
to a register that contains the survivor path leading to that state.
The information sequences of the survivor paths are then con-
tinuously updated based on the decisions provided by the ACS
units.

In a parallel implementation, bits need to be stored and
the latency of this algorithm is simply . Since all these bits
must be read and written in every trellis stage, an implementa-
tion in high density random access memory (RAM) is imprac-
tical due to the high memory bandwidth requirement. Instead,
the algorithm is preferably realized by a network of multiplexers
and registers that are connected according to the trellis topology.
For a larger number of states, though, the low integration density
of the multiplexer-register network and the high memory access
bandwidth of bits per cycle become the major drawback
of this algorithm.

Trace-Back: This method is a backward processing algo-
rithm and requires the decisions from the ACS units to be stored
in a memory. After having found the starting state of a decoding
segment, typically after an -step search through a segment
where all survivor paths merge into one, this surviving state se-
quence is reconstructed in a backward fashion by means of the
stored decisions. The corresponding information symbols are
output time-reversed and, therefore, a last-in-first-out (LIFO)
buffer has to be introduced to reverse the decoded bitstream.

Considering an architecture with two read pointers, where
decode, merge, and write segments are each of length , we find
the memory requirement is bits for the decision memory
plus bits for the LIFO, and latency is .

Only compared to decision bits are written every
cycle, lowering the memory access bandwidth. Another advan-
tage compared to RE is the storage of the decisions in a much
denser memory, typically RAMs. The cost is higher memory re-
quirement and latency.

In order to lower both memory requirement and latency in
TB-based architectures the trace-forward (TF) procedure [25]

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

2418 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

Fig. 10. BER performance for the RE and TB/TF algorithms and decoding
depth �. Assumed � �� for the TCM modulation schemes that use rate 2/3
subset selectors appears in Table I in row � ��. For the Gray-mapped QPSK
scheme with rate 1/2 convolutional coding, the � �� is 5.4 dB.

can be applied. This is a forward-processing algorithm to es-
timate the starting state for a trace-back decode such that the
merging segment can be omitted. It relies on the fact that all tail
states of the survivor path are expected to coincide after steps.
Compared to the two-pointer architecture, the memory depth de-
creases from to and latency from to . The number
of bits for RAM and TF unit is and .

B. Decoding Depth

An estimation for the decoding depth for convolutional
codes is given in [17]. Rate 1/2 codes need to be observed over
a length of around five times the constraint length of the code.
To estimate the largest necessary for both code rates (1/2 and
2/3), we compare TB/TF and RE approaches and their expected
performance degradation at required for a BER of
for the different transmission schemes, as shown in Fig. 10. It
is seen that both approaches do not need more than .
The degradation of RE compared to TB/TF for smaller decoding
depths is caused by using fixed-state decoding, where the de-
coded bit is always derived from a predefined state. This is less
complex than taking a majority decision among all RE outputs
and saves memory by neglecting bits connected to states that
cannot reach this predefined state at step .

C. The Designed Rate-Flexible Survivor Path Unit

For this design, we employ the RE approach since the
number of states is rather low, and, considering the additional
subset signal memory needed for TCM, the least overhead is
introduced since the decoding latency is by far the lowest. If

denotes the maximum rate of the TCM transmission,
extra bits are required, whereas three times

more are needed for a TB/TF approach because its latency
is three times higher. In this design equals 5 for the
64-QAM constellation.

Additionally, for TCM a demapper has to be employed that
delivers the most likely subset signal at a certain time. This is

a multiplexer which chooses a subset signal depending on the
decoded subset number from the SP unit. Recall that for convo-
lutional decoding, information bits are decoded every cycle.
This is not sufficient for this task since the subset number con-
sists of . In this case, the RE algorithm must store in
total bits. More precisely, bits
can be neglected due to fixed-state decoding.

To reduce memory, an alternative approach only considers se-
quences of information bits in the RE network as in the case
of convolutional decoding. These are the estimated uncoded bits
of a subset number; that is, only the two most significant bits
(MSB) , , are decoded. A demapper has to choose the cor-
rect subset based on the MSBs in order to decide the most likely
subset signal. This is achieved by an additional encoder fed
by , . Together with the resulting coded bit , the subset
number is now complete.

Once there is a deviation from the ML path, a distorted se-
quence for the coded bits is created in the decoder, which in
turn chooses wrong subset signals during the error event. Al-
though the error event for , can be quite short, the resulting
event for becomes much longer since the encoder has to be
driven back into the correct state. From examination of the en-
coder properties, 50% of the coded bits are expected to be wrong
during this event. Simulations show that this approach is quite
sensitive to variations in the signal-to-noise ratio (SNR) which
determines the number of unmerged paths at depth that cause
these error events. The decoding depth has to be increased, even-
tually to the point where the total number of registers is larger
than in the previous case. For the considered, it turned
out that is 24, requiring slightly fewer stored bits than in the
original approach where . The latter’s robustness, on the
other hand, is more beneficial for this implementation.

Which radix is most beneficial for a building block in the RE
network? Recalling the decomposition approach from the trellis
unit in Section IV, which saved arithmetic units at the cost of a
slight increase in storage elements, one is tempted to apply the
same approach to the R4 RE network. Again, one wants to break
the R4 structure into R2 blocks. Note that in an RE network there
is no arithmetic, and, contrary to the trellis unit, not only one
but in total duplicates of a trellis step are connected in series.
Per trellis stage, there are bits overhead, which is not
acceptable in this implementation. Therefore, a straightforward
R4 implementation of the RE network is pursued.

An architecture for the R4 RE network is depicted in
Fig. 11(a). The network is visually split into three separate
slices, to represent the processing of the three survivor path
bits representing a subset. The basic processing element of
a slice consists of a 4:1 MUX (equals three 2:1 MUXes),
connected to a 1-bit register. Expressed in terms of 2:1 MUXes,
the hardware requirement for this approach is MUXes
and registers. However, the network can be improved by
matching it to the throughput of the trellis unit. Remember that
R4 processing takes 3 clock cycles and thus the RE update can
also be carried out sequentially. That is, the registers are now
placed in series such that three cycles are needed to update the
complete survivor sequence, as in Fig. 11(b). The hardware
requirement is dramatically lowered since 66% of the MUXes
and interconnections become obsolete. At the same time, the
utilization for both modes is effectively increased.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: OPTIMIZATION AND IMPLEMENTATION OF A VITERBI DECODER UNDER FLEXIBILITY CONSTRAINTS 2419

Fig. 11. Two architectures of the RE algorithm to suit the combined convolutional and TCM decoder. (a) shows the straightforward scheme, which basically
consists of three RE slices in parallel. Two of these slices are considered overhead for rate ��� binary convolutional codes. The second architecture in (b) is
matched to the throughput of the trellis unit and executes the survivor path update in a serial fashion, thus saving 66% of the MUXes and interconnections. In both
figures, the shaded parts can be disabled for convolutional decoding. The initialization Init �� is derived from the decision bits in� and state numbers.

Were it only for R4 processing, the sequential elements could
be simply realized as edge-triggered master-slave flip-flops.
However, R2 processing, which allows only one cycle for
the survivor path update, requires the first two registers to
be bypassed. There are two cures to the problem: either one
introduces another 2:1 MUX in front of the third register in a
stage, or the first two sequential elements in a stage are latches
that are held in transparent mode. Since flip-flop-based designs
are more robust considering timing and testability, the first
approach is applied.

Parts of the RE network could usually be disabled since the
decoding depth of the rate 1/2 code is expected to be less
than for the 2/3 code. This is indicated by the shaded parts
in Fig. 11. However, following the simulations in Fig. 10, we
choose for both code rates to have some extra margin
for varying SNR. The initial values fed into the network (Init

) are derived from the decision bits and, in case of R4
processing, state numbers.

VI. HARDWARE EVALUATION AND DISCUSSION

In this section, we first study how and in which parts an in-
creased flexibility impacts the design. Then, a chip implemen-
tation is presented.

We consider designs that provide up to three settings to adapt
to varying channel conditions. For low SNR, rate (data
bits per 2-D channel use) is employed, which uses a rate 1/2
convolutional code together with Gray-mapped QPSK. A rate

mode is incorporated in the design in case there is higher
SNR. In addition to the previous setup, TCM with a rate 2/3
subset selector and 16-QAM as master constellation is provided.
On top of this, the third mode uses TCM with 64-QAM, thus
adding . In the following, the different designs are named
by their maximum transmission rate. Note that design ONE is
fixed since it only provides , whereas THREE and FIVE are
flexible. Furthermore, a more flexible design incorporates a less
flexible one without additional hardware cost.

Recall from Section IV that the architecture of the trellis unit
consists of R2 elements. Thus, the processing for the convolu-
tional code in system ONE is one symbol per cycle. However,
the other two systems need to support R2 and R4 processing.
The trellis unit determines the computation rate of the whole
system, which becomes one symbol per three cycles for R4 pro-
cessing. We now turn to implementation aspects for the pro-
cessing units, and evaluate the cost of flexibility based on the
synthesized hardware blocks.

A. Branch Metric Unit

In Section III it is shown that the BM unit requires additional
resources for designs THREE and FIVE because of TCM’s subset
decoding in combination with larger constellations. As indi-
cated in the previous sections, additional hardware resources
due to flexibility can be minimized by matching the rates of the
processing units in the designs. This is done by interleaving the
BM calculations and reusing the subset decoding units for the
other subsets.

Subset decoding for 16-QAM is simply an MSB check of
. This comparison unit is reused for 64-QAM, where

the maximum number of boundaries is 9 according to (6) and
Fig. 5(c).1 Simulations show that removing the 4 extra compar-
isons needed to resolve ambiguities in 64-QAM has no notice-
able effect on the overall BER.

With the given subset distribution, some slicing operations
apply to a pair of subsets; for example, for and [1] there
are three comparison results that apply to the diagonal bound-
aries . It is therefore beneficial to calculate such subset
pairs together in one cycle. Subset decoding units are reused by
translating the input symbols, here only , for the subset pair in
question. Two operations are required to form ; in the
first cycle is processed and in the second .
Thus, in total it takes three cycles to decode and calculate

1From Fig. 5 it is also seen that 32-CR would need an additional two slicers,
which are not used by the other two constellations, causing an overhead of 18%.
To lower the already high complexity of the BM unit, 32-CR is thus omitted in
the flexible designs.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

2420 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

TABLE II
THREE DESIGNS WITH DIFFERENT TRANSMISSION RATES. POWER CONSUMPTION � ��� ESTIMATED AT � � ��� � AND � � ��� MHz

for all subsets. Now the computation rate is matched to the
trellis unit. Note that a latency of three cycles is introduced by
this hardware sharing, which has to be accounted for in the depth
of the subset signal memory.

Since the processing in the BM unit is purely feedforward, it
can be easily pipelined so the throughput of the design is deter-
mined by the feedback loop of the trellis unit. Therefore, two
additional pipeline stages were introduced and the depth of the
subset signal memory was adjusted accordingly.

This memory could be partitioned in order to efficiently sup-
port 16-QAM and 64-QAM, which use 1 and 3 bits to specify
a subset signal, respectively. The required memory width is the
number of subsets times the maximum number of subset signal
bits, that is, 8 3. Based on area estimates from custom memory
macros, it turns out that a single 24 bit wide implementation
gives less overhead than three separate 8 bit wide blocks. Nev-
ertheless, memory words are partitioned into 8 bit segments
that can be accessed separately and shut down to save power.
To account for all latency in the flexible designs, a single-port
memory of size 28 24 is used. Since simultaneous read and
write accesses are not allowed in single-port architectures, an
additional buffer stage is required.

B. Trellis Unit

To avoid manual normalization of the otherwise unbounded
wordlength increase of SMs in the trellis datapath, the modulo
normalization technique from [26] is used. It relies on the fact
that the VA bounds the maximum dynamic range of SMs
to be .

If two SMs and are to be compared using
subtraction, the comparison can be carried out according to

without ambiguity. Modulo
arithmetic is simply implemented by ignoring the SM overflow
if the wordlength is chosen to represent twice the dynamic
range of the cumulated SMs before the compare stage, namely

(10)

The datapath wordlengths vary due to varying symbol quanti-
zation for the different constellations. Choosing ,
which leads to acceptable degradation for 64-QAM according
to Table I, 10 bits are needed to represent the SMs. For 16-QAM
and 32-CR (, 6), 9 bits are required for the SMs, whereas
in the QPSK case , the wordlength turns out to be 7
bits. That is, in order to be power-efficient for both convolutional
and TCM decoding, one could slice the datapath to 7 plus 3 ex-
tension bits, and prevent the latter bits from toggling in QPSK
mode.

C. Impact of Flexibility

The cost of the flexible processing blocks was already charac-
terized at the architecture level. Now, three flexible designs are
considered. The numbers for the cell area (expressed as NAND2-
equivalent kGates) in Table II apply to synthesized blocks at the
gate level. We applied the same design constraints to allow a
fair comparison. The constraints are chosen such that the im-
plementation is still in the flat part of the area-delay curve and
the resulting critical path for the designs lies in the trellis unit.

As flexibility is introduced, for example, from design ONE to
THREE, note that the BM unit gets a larger share of the total area.
In design ONE, it is almost negligible, whereas in design THREE,
it is comparable to the size of the trellis unit; in design ONE this
unit took half of the total size, declining to about a fifth in THREE.
The growth of the BM unit is not only due to TCM; it is mainly
due to the required slicing operations, which stem from larger
QAM constellations and would have to be considered even for
a Gray-mapped convolutional code.

The higher code rate of the subset selector for design THREE

and FIVE impacts the trellis and SP units. These units are in
theory independent of the code details. However, the size of the
SP unit is partially influenced by TCM; the bits that rep-
resent a subset number are processed per RE stage and state,
instead of bits in the case of conventional convolutional de-
coding. Contrary to the trellis unit, the SP unit now takes a larger
part. The dramatic decrease of the trellis unit share certainly jus-
tifies the R4 emulation by R2 elements. Recall that this emula-
tion would not have made sense for the SP unit, where one has
to accept the R4 processing character, hence, its percent growth.

For design FIVE, the BM share grows even further, although
not as much as before; it appears that the initial price for task
flexibility or larger constellations has already been paid. Also,
the percent cost of the trellis unit decreases slightly, although
another transmission rate has been introduced. It appears that
task flexibility has a larger impact on the size of an implementa-
tion than rate flexibility. That is, the underlying trellis structure
of a code is much easier to reuse than BM calculations that are
specialized for a certain task.

The observed trend is expected to continue for larger constel-
lations. The BM unit takes even larger portions, whereas trellis
and SP units, which are principally fixed except for the growth of
the wordlength (10), drop in percent. The parts exclusive of the
TCM, subset memory and demapper, consume roughly a fifth
of the cell area.

Power estimation in Table II is carried out with Synopsys
Power Compiler on the synthesized netlists, back-annotated
with state- and path-dependent toggle information obtained
from a simulation run. There are in principle two comparison
scenarios that need to be distinguished: first, convolutional de-
coding using either a fixed (ONE) or one of the flexible designs

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

KAMUF et al.: OPTIMIZATION AND IMPLEMENTATION OF A VITERBI DECODER UNDER FLEXIBILITY CONSTRAINTS 2421

Fig. 12. Layout of the routed chip. Designs ONE and FIVE are shown on the
left and right side, respectively. Row utilization is approximately 80% in both
implementations.

(THREE or FIVE) to find out how much power one has to sacri-
fice for a certain flexibility; and second, a comparison between
designs THREE and FIVE to see how much more power has to
be spent for additional transmission rates. These comparisons
yield a measure of the cost of flexibility.

Not surprisingly, power consumption is sacrificed for flexi-
bility. Scenario one indicates that from design ONE to THREE,
there is twice the power spent to run the flexible design with
transmission rate 1. For design FIVE, the number is slightly
higher but still roughly twice the amount of power for rate
1 compared to the fixed design. Comparing designs THREE

and FIVE, we find there is a 4% and a 9.7% increase in power
consumption for rate 1 and 3 configurations. Furthermore, rate
5 mode in design FIVE only requires an extra 3.4% power, a low
number considering the additional rate provided.

To conclude, having accepted the initial impact of task flex-
ibility in the TCM-designs, it makes sense to strive for more
transmission rates. Therefore, the two designs ONE and FIVE will
be implemented on a chip.

D. Silicon Implementation

The complete design was modeled in VHDL at reg-
ister-transfer level (RTL) and then taken through a design
flow that includes Synopsys Design Compiler for synthesis
and Cadence Encounter for routing. We used a high-speed
standard cell library from Faraday for the 0.13- m process
from United Microelectronics Company (UMC). The RTL and
gate level netlists are all verified against test vectors generated
from a MATLAB fixed-point model. Post-layout timing is
verified using Synopsys Prime Time with net and cell delays
back-annotated in standard delay format.

Fig. 12 shows the layout of the fabricated chip. It is pad-lim-
ited due to test purposes and measures 1.44 mm . Designs ONE

and FIVE are placed on the same die with separate to mea-
sure their power consumption independently. In TCM mode, de-
sign FIVE achieves a symbol rate of 168 Mbaud/s, a throughput
of 504 Mbit/s and 840 Mbit/s using and configu-
rations. Design ONE achieves a throughput of 606 Mbit/s; flex-

ibility causes a speed penalty in that FIVE provides 504 Mbit/s
in mode.

If WPANs are the application, these throughputs are higher
than WPAN specification. Thus, supply voltage can be lowered
to save energy. Measurements on the fabricated chip will show
how much speed has to be traded for each energy reduction.

VII. CONCLUSION

We presented a design for a Viterbi decoder that decodes both
convolutional and TCM codes to cope with varying channel con-
ditions. Sacrifices in the speed of the trellis unit result in large
hardware savings for the other processing blocks by applying
computation rate matching. Synthesized designs that provide
different transmission rate combinations show that task flexi-
bility inherent in the BM unit impacts the design size far more
than rate flexibility of trellis and SP units. Furthermore, power
estimation figures at the gate-level indicate that the flexible de-
signs become more cost-effective if provided with more than
two transmission rates. Last, to yield a quantitative cost on flexi-
bility, a silicon implementation is crucial. The implementation is
fabricated in a 0.13- m CMOS process. Thus, the performance
of two designs, one fixed, one flexible, can be compared. For
good channel SNRs, the flexible design enables a 28% higher
throughput than the fixed, while it only lags by 17% when run
in low SNR configuration.

ACKNOWLEDGMENT

The authors thank Dr. J. N. Rodrigues for help with the layout
of the chip and UMC for its fabrication.

REFERENCES

[1] Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for High Rate Wireless Personal Area Networks
(WPANs), IEEE Std. 802.15.3, 2003.

[2] J. Karaoğuz, “High-rate wireless personal area networks,” IEEE
Commun. Mag., vol. 39, no. 12, pp. 96–102, Dec. 2001.

[3] Z. Ding and S. Lin, Channel Equalization and Error Correction for High
Rate Wireless Personal Area Networks Dept. Electrical and Computer
Engineering, Univ. of Calif., Davis, Tech. Rep. MICRO 01-029, 2001.

[4] G. Ungerböck, “Channel coding with multilevel/phase signals,” IEEE
Trans. Inf. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[5] G. Ungerböck, “Trellis-coded modulation with redundant signal sets,”
IEEE Commun. Mag., vol. 25, no. 2, pp. 5–21, Feb. 1987.

[6] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13,
no. 2, pp. 260–269, Apr. 1967.

[7] G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, no. 3,
pp. 268–278, Mar. 1973.

[8] D. E. Hocevar and A. Gatherer, “Achieving flexibility in a Viterbi de-
coder DSP coprocessor,” in Proc. IEEE Veh. Technol. Conf., Boston,
MA, Sep. 2000, pp. 2257–2264.

[9] J. R. Cavallaro and M. Vaya, “Viturbo: A reconfigurable architecture
for Viterbi and turbo decoding,” in Proc. IEEE Intl. Conf. Acoust.,
Speech, Signal Process., Hong Kong, Apr. 2003, pp. 497–500.

[10] J. B. Cain, G. C. Clark, Jr., and J. M. Geist, “Punctured convolutional
codes of rate ������� and simplified maximum likelihood decoding,”
IEEE Trans. Inf. Theory, vol. 25, no. 1, pp. 97–100, Jan. 1979.

[11] J. B. Anderson and A. Svensson, Coded Modulation Systems. New
York: Plenum, 2003.

[12] M. Kamuf, V. Öwall, and J. B. Anderson, “Architectural considerations
for rate-flexible trellis processing blocks,” in Proc. IEEE Intl. Symp.
Personal, Indoor, and Mobile Radio Commun., Berlin, Germany, Sep.
2005, pp. 1076–1080.

[13] H. Dawid, O. Joeressen, and H. Meyr, “Viterbi decoder: High per-
formance algorithms and architectures,” in Digital Signal Processing
for Multimedia Systems, ser. Signal Processing Series. New York:
Marcel Dekker, Feb. 1999, ch. 17.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

2422 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 55, NO. 8, SEPTEMBER 2008

[14] F. Tosato and P. Bisaglia, “Simplified soft-output demapper for binary
interleaved COFDM with application to HIPERLAN/2,” in Proc. IEEE
Intl. Conf. Commun., New York, Apr./May 2002, pp. 664–668.

[15] I. M. Onyszchuk, K.-M. Cheung, and O. Collins, “Quantization loss
in convolutional decoding,” IEEE Trans. Commun., vol. 41, no. 2, pp.
261–265, Feb. 1993.

[16] L.-N. Lee, “On optimal soft-decision demodulation,” IEEE Trans. Inf.
Theory, vol. 22, no. 4, pp. 437–444, Jul. 1976.

[17] J. A. Heller and I. M. Jacobs, “Viterbi decoding for satellite and space
communication,” IEEE Trans. Commun., vol. 19, no. 5, pp. 835–848,
Oct. 1971.

[18] P. J. Black and T. H.-Y. Meng, “A 140-Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1877–1885,
Dec. 1992.

[19] H. T. Feldkämper, H. Blume, and T. G. Noll, “Study of heterogeneous
and reconfigurable architectures in the communication domain,” Adv.
Radio Science—Kleinheub. Berichte, vol. 1, pp. 165–169, May 2003.

[20] A. K. Yeung and J. M. Rabaey, “A 210-Mb/s radix-4 bit-level pipelined
Viterbi decoder,” in Dig. Tech. Papers IEEE Intl. Solid-State Circuits
Conf., San Francisco, CA, Feb. 1995, pp. 88–92.

[21] T. Gemmeke, M. Gansen, and T. G. Noll, “Implementation of scalable
power and area efficient high-throughput Viterbi decoders,” IEEE J.
Solid-State Circuits, vol. 37, no. 7, pp. 941–948, Jul. 2002.

[22] M. A. Bickerstaff et al., “A 24 Mb/s radix-4 logMAP turbo decoder
for 3GPP-HSDPA mobile wireless,” in Dig. Tech. Papers IEEE Intl.
Solid-State Circuits Conf., San Francisco, CA, Feb. 2003, pp. 150–151.

[23] R. Cypher and C. B. Shung, “Generalized trace back techniques for
survivor memory management in the Viterbi algorithm,” in Proc. IEEE
Global Telecommun. Conf., San Diego, Dec. 1990, pp. 1318–1322.

[24] G. Feygin and P. G. Gulak, “Architectural tradeoffs for survivor
sequence memory management in Viterbi decoders,” IEEE Trans.
Commun., vol. 41, no. 3, pp. 425–429, Mar. 1993.

[25] P. J. Black and T. H.-Y. Meng, “Hybrid survivor path architectures
for Viterbi decoders,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Minneapolis, MN, Apr. 1993, pp. 433–436.

[26] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,”
IEEE Trans. Commun., vol. 37, no. 11, pp. 1220–1222, Nov. 1989.

Matthias Kamuf (S’02–M’06) was born in Karl-
sruhe, Germany, in 1973. He received the Dipl.-Ing.
(FH) degree in communications engineering from
Karlsruhe University of Applied Sciences in 1998
and the Dipl.-Ing. degree in electrical engineering
from Universität Karlsruhe in 2001. In March 2007,
he graduated as Ph.D. in circuit design from Lund
University, Lund, Sweden.

He is presently with the Research Department at
Ericsson Mobile Platforms, Lund, Sweden, working
on baseband algorithms for next-generation wireless

terminals and reconfigurable VLSI architectures for baseband processing. His
main research interests are channel coding and algorithm-architecture trade-offs
in the implementation of communication systems.

Viktor Öwall (M’91) received the M.Sc. and Ph.D.
degrees in electrical engineering from Lund Univer-
sity, Lund, Sweden, in 1988 and 1994, respectively.

During 1995 to 1996, he joined the Electrical En-
gineering Department, the University of California at
Los Angeles as a PostDoc, where he mainly worked
in the field of multi-media simulations. Since 1996,
he has been with the Department of Electrical and
Information Technology, Lund University. His main
research interest is in the field of digital hardware
implementation, especially algorithms and architec-

tures for wireless communication, image processing and biomedical applica-
tions. Current research projects include combining theoretical research with
hardware implementation aspects in the areas of pacemakers, channel coding,
video processing, and digital holography.

Dr. Öwall was an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING (from
2000–2002) and is currently Associate Editor of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS—I: REGULAR PAPERS.

John B. Anderson (M’72–SM’82–F’87) was born
in New York State in 1945. He received the B.S.,
M.S. and Ph.D. degrees in electrical engineering
from Cornell University in 1967, 1969 and 1972.
During 1972–1980 he was on the faculty of the
Electrical and Computer Engineering Department
at McMaster University in Canada, and during
1981–1998 he was Professor in the Electrical,
Computer and Systems Engineering Department at
Rensselaer Polytechnic Institute. Since 1998 he has
held the Ericsson Chair in Digital Communication at

Lund University, Sweden. He has held visiting professorships at the University
of California, Berkeley (1978–1979), Chalmers University, Sweden (1987),
Queen’s University, Canada (1987), Deutsche Luft und Raumfahrt, Germany
(1991–1992, 1995–1996) and Tech. University of Munich (1995–1996). His
research work is in coding and communication algorithms, bandwidth-efficient
coding, and the application of these to data transmission and compression. He
has served widely as a consultant in these fields. Presently, he is Director of
the Swedish Strategic Research Foundation Center for High Speed Wireless
Communication at Lund.

Dr. Anderson was a member of the IEEE Information Theory Society Board
of Governors during 1980–1987 and 2001–2006, serving as the Society’s
Vice-President (1983–1984) and President (1985). In 1983 and 2006, he was
Co-Chair of the IEEE International Symposium on Information Theory. He
served during the 1990s as chair of Research Initiation Grants for the IEEE
Foundation. In the IEEE publications sphere, he served on the Publications
Board of IEEE during 1989–1991 and 1994–1996. He was a member of
the IEEE Press Board during 1993–2006 and during 1994–1996 was Ed-
itor-in-Chief of the Press. Since 1998, he has edited the IEEE Press book Series
on Digital and Mobile Communication. He has also served as Associate Editor
for the IEEE TRANSACTIONS ON INFORMATION THEORY (1980–1984) and as
Guest Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS on several
occasions. He is author or coauthor of six textbooks, including most recently
Digital Transmission Engineering, IEEE Press (2nd ed. 2005), Coded Modula-
tion Systems, Plenum/Springer (2003), and Understanding Information Theory,
IEEE Press (2005). He received the Humboldt Research Prize (Germany) in
1991. In 1996 he was elected Swedish National Visiting Chair in Information
Technology. He received the IEEE Third Millennium Medal in 2000.

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on March 25,2010 at 19:28:04 EDT from IEEE Xplore. Restrictions apply.

