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To Morten

To dare is to lose one’s footing momentarily.
To not dare is to lose oneself.

Søren Kierkegaard
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Summary

Cell replacement therapy of neurodegenerative disorders aims to substitute the 

degenerating cells with new functional neurons. Clinical trails with patients suffering from 

Parkinson’s or Huntington’s disease have provided proof-of-principle that neural precursors 

taken from the developing human brain can survive upon grafting to the diseased brain 

and provide long-lasting symptomatic relief. However, further development of this type 

of therapy critically depends on the generation of an unlimited and standardized source of 

neural precursors that after transplantation differentiate into the proper neuronal subtypes. 

This requires knowledge on the molecular mechanisms responsible for the specification of 

neurons during development, and how cells with the potential for regional specific neuronal 

differentiation can be expanded in culture. The work presented in this thesis is focused on 

the role of the proneural gene Neurogenin2 in specification of the midbrain dopaminergic 

(mesDA) neurons, the cell population that degenerate in Parkinson’s disease. Additionally, 

we have studied to what extent neural stem cells isolated from the developing brain and 

expanded under growth-factor stimulation in culture maintain their regional specification. 

We show that Neurogenin2 is required in vivo for proper development of the mesDA neuron 

system, more specifically for the immature mesDA neuron precursors to adopt a neuronal 

fate. Furthermore, we successfully applied a new culture system for expansion of neural 

stem cells, the neural stem cell (NS cell) cultures, to neural precursors from different regions 

of the developing brain. We showed that even after extensive expansion cells in the NS cell 

cultures retain their capacity to form neurons. Furthermore, the expanded cells harbor regional 

differences in their growth properties and to some extend in their gene expression profile. 

This show that the NS cell culture system is an attractive alternative to the traditionally and 

more commonly used neurosphere culture system for expansion of fetal neural stem cells. 

Unfortunately, our investigations also showed that neither in the neurosphere nor in the NS 

cell culture system cells with the characteristic of mesDA neuron precursors are expandable. 

These results are valuable for further progression in neural stem cell research and particular 

for improvement of the existing protocols for generating mesDA neurons from expanded 

neural stem cells.
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Neurodegenerative sygdomme kendetegnes af tab af en eller flere typer nerveceller. I 

Parkinsons sygdom, der påvirker mere en 1% af befolkningen over 60 år, er det specifikt de 

dopaminproducerende nerveceller i mellemhjernen som dør. Nervecellerne anvender dopamin 

som signalstof og deres funktion er vigtig for at en person har et normalt bevægelsesmønster. 

Der findes ingen helbredelse for Parkinsons sygdom og de eksisterende behandlingsformer 

giver ofte alvorlige bivirkninger efter en 5-10-årig behandlingsperiode. Det specifikke tab af 

en type nerveceller i et lokaliseret hjerneområde åbner dog muligheden for at udvikle celle-

baserede behandlingstyper for netop Parkinsons sygdom. Ideen bag denne form for behandling 

er at de celler som dør erstattes af nye nerveceller via transplantation af umodne stam celler 

til hjernen. Kliniske forsøg udført i Lund og andre steder rundt om i verden har vist at 

princippet fungerer, da patienter, som har modtaget umodne celler isoleret fra mellemhjernen 

af aborterede fostre, har opnået vedvarende symptomatiske forbedringer. Anvendelsen af 

væv fra aborterede fostre er dog yderst problematisk, både etisk men også ret praktisk, da 

materialemængden er meget begrænset og ikke mulig at standardisere. Etableringen af en 

cellebaseret behandling for Parkinsons sygdom eller for andre neurodegenerative sygdomme 

afhænger derfor i høj grad af udviklingen af kultursystemer til vækst af celler med potentiale 

for dannelsen af specifikke typer nerveceller efter transplantation til hjernen. I denne 

afhandling har vi undersøgt forskellige systemer for vækst af celler isoleret fra den embryonale 

hjerne og undersøgt i hvilken grad cellerne bevarer deres evne til at danne netop den type 

nerveceller som er karakteristisk for det område i hjernen de kommer fra, med fokus på 

de dopaminproducerende nerveceller i mellemhjernen. Vi har også undersøgt mekanismerne 

bag dannelsen af de dopaminproducerende nerveceller under fosterudviklingen. Denne type 

forskning er vigtig netop for udviklingen af alternative kilder af celler til at muliggøre en 

cellebaseret terapi for Parkinsons sygdom.
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Abbreviations

bFGF  basic fibroblast growth factor
bHLH  basic helix-loop-helix
BLBP  brain lipid-binding protein
BrdU  bromo-deoxyuridine
CNS   central nervous system
CTX   cortex
DA  dopaminergic
DARPP-32 dopamine and cAMP-regulated phosphoprotein
E  embryonic day
EGF  epidermal growth factor
En  engrailed
ES  embryonic stem
FACS  fluorescence activated cell sorting
FGF8  fibroblast growth factor 8
GE  ganglionic eminences
GFP  green fluorescence protein
L-dopa  L-3,4-dihydroxyphenylalanine
LGE  lateral ganglionic eminences
mesDA  midbrain dopaminergic
MGE  medial ganglionic eminences
Ngn2  neurogenin2
NS cell(s) neural stem cell(s)
P  postnatal day
SHH  sonic hedghog
SN  substantia nigra
TH  tyrosine hydroxylase
VM  ventral midbrain 
VTA  ventral tegmental area
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Ideas and principles

Cell replacement therapy aims to substitute diseased or degenerating cells with new 

functional cells. The prospect of replacing dying neurons is particularly attractive for 

neurodegenerative and acute neurological diseases as the brain does not, for the most 

part, possess any regenerative capacity. Currently, only symptomatic treatments exist for 

neurodegenerative diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease. As 

age is the main risk factors for both Alzheimer’s and Parkinson’s disease, the two most-

common neurodegenerative disorders, and the age of the world’s population will increase 

over the coming decades these age-related diseases will become an increasing burden on our 

societies.

Parkinson’s and Huntington’s disease are ideal diseases for cell replacement therapy. 

Both diseases are slowly progressive and characterized by the loss of preferentially one 

type of neurons: the dopaminergic (DA) neurons of the midbrain in Parkinson’s disease and 

GABAergic medium sized spiny neurons of the striatum in Huntington’s disease. In both 

disorders open-label clinical trails have provided proof-of-principle that neural precursors 

taken from the developing brain can survive upon grafting to the diseased brain and provide 

long-lasting symptomatic relief (Lindvall et al., 1994; Freeman et al., 1995; Defer et al., 1996; 

Bachoud-Levi et al., 2000; Bachoud-Levi et al., 2006). However, further development of cell 

a replacement therapy for these diseases critically depends on generation of an unlimited and 

standardized source of transplantable neural precursors.

Parkinson’s disease

James Parkinson was in

Parkinson’s disease. The disease affects more than 1% of the population over 65 years, and 

classical symptoms of the disease are muscle rigidity, slowness of movements (hypokinesia) 

and resting tremor (Lang and Lozano, 1998b). In 5-10% of the cases Parkinson’s disease is 

believed to have a genetic component, but most often the cause of the disease is unknown, 

termed idiopatic Parkinson’s disease (Olanow and Tatton, 1999). Parkinson’s disease results 

from a progressive loss of DA neurons in the midbrain. Small numbers of DA neurons also 

exist in other sites of the central nervous system (CNS), such as the olfactory bulb and the 
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diencephalon, however, these neurons are not affected to the same extend as the midbrain 

dopaminergic (mesDA) neurons. The mesDA neurons are located in three nuclei: the 

substantia nigra (SN, cell group A9), the ventral tegmental area (VTA, cell group A10) and 

DA neurons in the SN project to the dorso-lateral striatum, and it is the loss of this innervation 

that is the leading cause of the debilitating motor symptoms in Parkinson’s disease (Lang and 

Lozano, 1998b). The more medially located VTA neurons project to the limbic areas and 

1B).

The standard treatment for Parkinson’s disease is administration of the dopamine precursor 

L-3,4-dihydroxyphenylalanine (L-dopa), which is taken up by the remaining mesDA neurons 

and converted to dopamine, thus increasing dopamine signaling. In early- and mid-stages of 

the disease, symptoms are effectively alleviated by L-dopa treatment, however, as the disease 

involuntary movements (dyskinesias)(Lang and Lozano, 1998a; Ahlskog and Muenter, 2001). 

Cell replacement therapy aims to restore dopamine signaling by replacing the degenerating 

SN mesDA neurons with DA neurons grafted into the striatum –the normal target of the 

mesDA neurons. Studies done in rodents have shown that transplanted DA neuron precursors 

Figure 1. The DA neurons in the adult rat ventral midbrain as detected by TH expression (A). SN 

neurons are located laterally, VTA neurons medially. Schematic illustration of the projection of the SN 

and VTA neurons to the forebrain (B).
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can re-establish functional innervation and restore dopamine neurotransmission in the 

deinnervated striatum. The grafted neurons are spontaneously active, release dopamine in 

an impulse-dependent manner, and reverse motor impairments in animal models (Rioux et 

al., 1991; Nikkhah et al., 1994; Winkler et al., 1999; Winkler et al., 2000). Recent work from 

our laboratory, show that it is the mesDA neurons with characteristics of SN neurons that are 

responsible for the reinnervation of the striatum, which is in agreement with the knowledge 

that the striatum is the natural target of these neurons (Thompson et al., 2005). Together with 

the results from the clinical trails these results strengthen the belief that with the right type of 

cell, development of a cell-based therapy for Parkinson’s disease is plausible.

Developmental neurobiology and cell replacement therapy

To develop unlimited and standardized sources of transplantable neural precursors that 

have the capacity to differentiate into mesDA neurons after grafting, it is crucial to be able 

to transplantation. This requires knowledge on the molecular mechanisms responsible for 

the generation of the mesDA neurons during development, and also insight into how cells 

with the potential for mesDA neuron differentiation can be expanded in culture. The work 

presented in this thesis is focused on the role of the proneural gene Neurogenin2 (Ngn2) 

in vitro under 

growth-factor stimulation. We have performed our studies in the mouse, as murine tissue 

allows for faster analysis due to more rapid growth and better availability of the tissue. 

source, but the history has shown that results from basic developmental studies on rodents to 

a large extent can be applied also to human tissue.

Development of mesDA n

When the work of this thesis was initiated two groups of genes were known to be 

formation of the midbrain, and the second group for the terminal differentiation and survival 

of young postmitotic DA neurons present in this region. However, little was known about the 

the role of the proneural gene Ngn2
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from other research groups, have within the past years dramatically increased the knowledge 

The mesDA neurons develop in the ventral part of the midbrain in the immediate vicinity 

Early in development the mid-hindbrain boundary is positioned by the expression of two 

homeodomain transcription factors: Otx2 (expressed in the fore- and midbrain) and Gbx2 

(expressed in the hindbrain) (Broccoli et al., 1999; Millet et al., 1999). The transcription 

8 (FGF8) are induced at the interface of the Otx2 and Gbx2 expression and their expression 

is critical for the further development of the mid-hindbrain region (Wurst et al., 1994; Bally-

Cuif et al., 1995; Lee et al., 1997; Schwarz et al., 1997; Meyers et al., 1998). Ventrally, the 

position the DA neuron domain within the mid-hindbrain region (Hynes et al., 1995b; Hynes 

et al., 1995a; Ye et al., 1998).

Postmitotic development of mesDA neurons

In mice, the bulk of the mesDA neurons are born between embryonic day (E) 10.5 and 

12.5, and tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, is 

Figure 2. Schematic presentation of the DA neurons within the developing ventral midbrain (A-C). 

Sagital view of the CNS, showing the location of the mesDA neurons in the direct vicinity of SHH 

and FGF8 secreting regions (A). Line in A indicates the section through the midbrain represented in B. 

Distribution of immature and differentiating DA neuron precursors and TH-expressing DA neurons in 

the ventral midbrain (C). A: anterior; P: posterior.
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detectable from around E10.5-E11 (Bayer et al., 1995; Kawano et al., 1995). The mesDA 

neurons are born at the ventral midline in the proliferative layer lining the ventricle, the 

in the midbrain appear to be neurogenic and give rise to the DA neurons (Ono et al., 2007). 

When the precursors become postmitotic they migrate ventrally into an intermediate zone 

Loss-of-function studies have shown that genes such as Nurr1, Pitx3, Lmx1b, and En1/2, all 

Smidt et al., 2000; Simon et al., 2001; Nunes et al., 2003; van den Munckhof et al., 2003; 

Alberi et al., 2004). Pitx3

MesDA neuro

of Perlmann and Ericson published a paper in which they identify 
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Proneural genes and neuronal commitment

In this thesis we studied the role of the proneural gene Ngn2 in ventral midbrain 

development. The proneural genes, which include Ngn1, Ngn2 and Mash1, are part of a family 

termed basic helix-loop-helix (bHLH) transcription factors (Lo et al., 1991; Guillemot and 

Joyner, 1993; Ma et al., 1996; Sommer et al., 1996). They promote neuronal differentiation 

(Fode et al., 2000; Nieto et al., 2001; Sun et al., 2001) and are in some cases also involved in 

et al., 2002). The proneural genes are initially expressed at low levels in the dividing cells 

of the proliferative zones. As the level of expression increases, the cells become postmitotic 

and committed to a neuronal fate, after which the expression of the proneural genes is down-

regulated (Bylund et al., 2003; Nguyen et al., 2006). The expression and function of the 

proneural genes have been studied in detail at the level of the forebrain and spinal cord, but 

at the time this work was started much less was known about their expression and function 

at the level of the midbrain.

In the clinical trails discussed above, the cells used for transplantation were obtained from 

the developing brain of aborted fetuses. Each patient received tissue from 1-7 fetuses (Winkler 

et al., 2005), which is not only problematic ethically but also practically. Thus, for future 

development of cell replacement based therapies for any neurodegenerative disorder, there 

is a need for an unlimited on-demand source of transplantable cells that can be standardized 

and quality tested prior to transplantation. Cultured neural stem cells might hold this promise. 

Neural stem cells can be isolated and cultured from the adult and fetal CNS (Reynolds et al., 

1992; Reynolds and Weiss, 1996); from differentiation of embryonic stem (ES) cells, that 

harbors the potential to form a new embryo (Lee et al., 2000; Tropepe et al., 2001; Ying et 

al., 2003); and from adult non-neural tissue stem cells (e.g. bone marrow stem cells) that 

“trans-differentiate” into neural stem cells (Brazelton et al., 2000; Mezey et al., 2000). The 

latter method, however, is still being questioned (Terada et al., 2002; Ying et al., 2002). ES 

cells are responsive to developmental factors and can be differentiated to various neuronal 

subtypes (Kawasaki et al., 2000; Lee et al., 2000; Wichterle et al., 2002; Bibel et al., 2004). 

However, undifferentiated ES cells, which often persist in the cultures upon differentiation, 

represent a risk for tumor formation upon transplantation to the brain (Bjorklund et al., 2002; 
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Morizane et al., 2006). Additionally, due to the broad differentiation potential of the ES cells, 

the differentiated cultures contain a mixture of neural as well as non-neural tissue. These 

aspects of the ES cultures, and the ethics related to destruction of potential life when the ES 

cultures are established, greatly complicate the use of this cell type. In this thesis, we have 

expanded neural stem cells derived from various region of the developing mouse brain using 

two different neural stem cell culture systems, the neurosphere cultures and the neural stem 

cell (NS cell) cultures. 

m cell

What is a neural stem cell? 

more of its own kind, and (3) generate a large number of progeny including all major cell 

types of the CNS, i.e. being multipotent (Reynolds and Weiss, 1996). This is a quite rigorous 

cells can repopulate the entire system. However, the CNS consists of thousands of different 

subtypes of cells and is a solid tissue unlike the circulating blood. Proving that a stem cell 

can give rise to a broad range of cell types at all levels of the CNS is thus quite problematic 

and, in practice, impossible. Instead, the formation of the three major cell types of the CNS: 

neurons, astrocytes and oligodendrocytes became the standard read-out of multipotency in

vitro 

progenitor cells that can self-renew and produce differentiated progeny (Temple, 2001). For 

simplicity, I will refer to the cultured fetal neural progenitors, as neural stem cell cultures 

Neural stem cells in the developing CNS

Neural stem and progenitor cells can be isolated from all levels of the developing CNS. 

The CNS develops from a tube structure, the neural tube, where the hollow part of the tube 

forms the ventricular system (Gilbert, 1997). During development cells with stem cell 

properties are situated along the ventricular wall in the proliferative ventricular zone. In 

some regions of the CNS, such as the forebrain, these cells are located also in a secondary 

proliferative zone, the subventricular zone, located immediately adjacent to the ventricular 

zone (Smart, 1961; Takahashi et al., 1993). To isolate the neural stem cells, the region of 
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interest is dissected and dissociated into a single cell suspension. The dissociated cells are 

then exposed to mitogen-stimulation, which promote the growth of the neural stem cells as 

wells as more committed progenitors (Reynolds et al., 1992; Ray et al., 1993; Reynolds and 

Weiss, 1996). The most common method for expansion of neural stem cells is the neurosphere 

culture system introduced by Reynolds et al. in 1992.

The neurosphere culture system

Various methods with slight variations in protocol exist for establishing and expanding 

neurosphere cultures. In general, the starting population of cells is usually plated as a single 

cell suspension on uncoated plastic in serum-free medium, supplemented with a hormone 

epidermal growth factor (EGF), or both (Vescovi et al., 1993; Morshead et al., 1994; Gritti 

et al., 1996; Reynolds and Weiss, 1996; Tropepe et al., 1999). The cells divide under these 

the presence of cells in the fetal and adult brain with characteristics of neural stem cells 

(Reynolds et al., 1992; Reynolds and Weiss, 1996) and is an extremely useful tool to analyze 

proliferation, self-renewal capacity, and multipotency of neural stem cells (Gritti et al., 1996; 

Tropepe et al., 1999; Uchida et al., 2000; Rietze et al., 2001; Jensen and Parmar, 2006).

In addition to the function as a neural stem cells assay, comparative studies of the 

developing brain and neurosphere cultures have shown that the neurosphere-expanded 

cells in several aspects behave like their in vivo correlates:  The proliferative capacity and 

Figure 3.

NS cell cultures (B). 
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differentiation potential of the cells after exposures to different external factors varies in 

Irvin et al., 2003). Further, the expression of a number of developmental control genes is 

and the neurosphere-derived cells partially maintain the potential to generate the neuronal 

subtypes characteristic for their region of origin (Zappone et al., 2000; Hitoshi et al., 2002a; 

Ostenfeld et al., 2002; Parmar et al., 2002; Klein et al., 2005). Due to their relevance for 

treatment of patients with Parkinson’s disease much effort has been put into generating 

mesDA neurons from neurosphere-expanded ventral midbrain cells. However, the potential 

for mesDA neuron differentiation does not appear to be maintained in the neurosphere culture 

system (Caldwell and Svendsen, 1998; Ostenfeld et al., 2002; Roybon et al., 2005; Andersson 

et al., 2007).

Unfortunately, the neurosphere culture system is not stable over time and the capacity 

to form neurons declines with the number of passages (Fricker et al., 1999; Morshead et 

al., 2002; Suslov et al., 2002; Parmar et al., 2003). Whether this is because progenitors with 

capacity to form neurons are outnumbered by non-neurogenic cells and thus progressively 

lost, or whether the cells within the neurospheres change their properties over time, is not 

clear. Furthermore, the neurospheres are highly heterogeneous in nature and only a small 

percentage of cells within each sphere hold the neurosphere-forming capacity (Reynolds and 

Rietze, 2005). In fact, each neurosphere contains cells at various stages of differentiation, 

including stem cells, proliferating neural progenitors and immature neurons and astrocytes 

event or cell in isolation and studies using neurospheres should be seen and interpreted as 

studies on a mixed population of cells and not as studies of neural stem cells. Finally, while 

some researchers have been successful in obtaining a considerable number of neurons after 

transplantation of neurosphere-expanded cells into the two neurogenic areas of the brain, 

the hippocampus and the subependymal layer of the striatum (Flax et al., 1998; Fricker et 

al., 1999; Englund et al., 2002), only poor yields of neurons have been achieved when cells 

are engrafted into non-neurogenic areas such as the striatum (Svendsen et al., 1997; Winkler 

et al., 1998; Eriksson et al., 2003; Vroemen et al., 2003). The engrafted cells survive, but 

differentiate into glial cells, astrocytes and oligodendrocytes, rather than neurons.

The decline in neuron formation upon multiple passages and the poor yield of neurons 

after transplantation to the brain limit the use of the neurosphere cultures as a cell source for 

cell replacement therapy. 
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The NS cell culture system

In 2005, Conti and colleagues introduced a new culture system, the neural stem cell (NS 

cell) cultures (Conti et al., 2005). Like the neurosphere-expanded cells, the NS cells are 

are plated on an adhesive surface that allow them to attach and form a monolayer culture 

neural stem cells are generated. For decades radial glia were believed mainly to function as 

support for radial migration of immature neurons out of the ventricular zone (Rakic, 1972; 

as neural stem and progenitor cells of the cerebral cortex (Malatesta et al., 2000; Noctor et 

al., 2001; Noctor et al., 2002), and later at all levels of the CNS (Anthony et al., 2004). The 

homogenous NS cell cultures can be extensively expanded (passaged more than 100 times, 

with 3-4 fold increase in cell number per passage) without changing their growth properties 

or their potential to form neurons (Conti et al., 2005). Clonal analysis has shown that the NS 

cells retain their self-renewal capacity and upon growth factor removal can generate both 

neurons and astrocytes. Later, the NS cell cultures were shown also to harbor the potential 

for oligodendorcyte formation (Glaser et al., 2007). 

The NS cell cultures were initially generated from mouse ES cells, but cells from the 

developing human and mouse forebrain were also shown to be expandable in the NS cell 

culture system (Conti et al., 2005). A separate study applied the protocol to adult neural tissue 

(Pollard et al., 2006). However, these initial studies of the NS cell cultures did not address 

the question of to what extent neural stem cells from various region of the developing brain 

transplantation to the brain.
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Aims of the present thesis

Th

we have studied the role of the proneural gene Ngn2 in mesDA neuron development and 

factor-stimulated expansion in culture. In the second part we have broadened our analysis to 

include not only cells from the ventral midbrain but also forebrain progenitors with focus on 

the cells that give rise to the projection neurons of the striatum.

In part I:

To analyze the expression of Ngn2 in the ventral midbrain during the formation of 1)

the mesDA neurons (paper I)

To following the fate of the Ngn2-expressing cells and study their potential for 2)

mesDA neuron formation (paper I)

3)

the analysis of mice lacking the Ngn2 gene (paper II)

In part II:

To investigate if forebrain-derived neural progenitors retain the potential for striatal 4)

projection neuron formation after expansion in the neurosphere culture system 

(paper III)

To establish NS cell cultures from various regions of the developing brain and study 5)

To study if mesDA neuron progenitors can be expanded in the two alternative neural 6)

stem cell culture systems (paper IV)
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Ngn2 expression in the developing ventral midbrain (paper I)

Immunohistochemical analysis of the expression pattern of Ngn2 showed that Ngn2 

expression is spatially and temporally well correlated with the generation of DA neurons in 

the ventral midbrain. The Ngn2 protein can be detected in the ventricular zone in the medial 

part of the ventral midbrain as early as E10.5, i.e., at

expressing DA neurons start to appear. At E11.5, the Ngn2-expressing cells are found in the 

4A-B). At E15.5 after the last DA neurons are born, only single Ngn2-expressing cells were 

detected at the most caudal part of the ventral midbrain, consistent with the known rostral-to-

caudal gradient of DA neurogenesis (Bayer et al., 1995).

Ngn2-expressing cells are contained within the dorso-ventral boundary of the Ki67-positive 

showed that a small fraction of the most ventral located Ngn2-positive cells co-express the 

postmitotic DA neuron marker (paper II). When the Ngn2 expression was compared to that of 

Aldh1, an early DA neuron progenitor marker demarcating the DA neuron domain, we found 

that most of the Ngn2-expressing cells are located within the Aldh1-positive domain, and that 

the caudal boundary of Aldh1 expression also marks the caudal limit of Ngn2 expression. 

Notably, at E11.5 Ngn2 expression extends laterally, outside the Aldh1-expressing area 

This expression pattern suggests a role for Ngn2 in the formation of the mesDA 

neurons.

Isolation of Ngn2-expressing cells and their progeny (paper I)

To study the fate of the Ngn2

mouse where the Ngn2

protein (GFP). In heterozygous mice carrying one Ngn2 allele and one allele for GFP (Ngn2-

Ngn2 locus, allowed 
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ventral midbrain of Ngn2

with that of Ngn2, however, high levels of GFP can also be detected in the Nurr1-positive/

Ngn2-negative intermediate zone. Even some TH-positive DA neurons contain low levels of 

GFP protein compared with that of Ngn2, and enables short-time fate-mapping of the Ngn2-

When cells from E12.5 ventral midbrain were sorted into GFP-negative and GFP-positive 

fractions and subsequently allowed to form neurons in culture, TH-positive DA neurons 

when the cells were transplanted into the striatum of newborn rats and the grafts analyzed 4 

weeks later. The GFP-negative cell grafts contain barely any TH-positive neurons; all TH-

positive neurons were located in the GFP-positive cell grafts. By contrast serotonergic (from 

contaminating hindbrain precursors), GABAergic and cholinergic neurons occurred almost 

GFP-positive cell grafts did not contain this type of cells.

Figure 4.

400 m.
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population of Ngn2-expresing cells and their immidiate progress and that other neuronal 

subtypes of the ventral midbrain such as GABAergic and cholinergic neurons are omitted 

from this population at E12.5.

Ngn2
(paper II)

Reduction of mesDA neurons in the absence of Ngn2 

We next studied the phenotype of mice lacking the Ngn2 gene, which where obtained 

by crossing heterozygous Ngn2-GFP +/- mice to generate embryos where both alleles of 

the Ngn2 gene were replaced with that of GFP. At E11.5 only single TH-positive cells were 

seen in 4 out of 7 Ngn2 mutant embryos and at E13.5 the number of TH-positive neurons 

cells present in the Ngn2 mutant were primarily located in thin stripes at the lateral edges 

of the DA neuron domain, where as the medial part of the DA domain lacked TH-positive 

cells. Between E15.5 and E17.5, however, more TH-positive neurons had been generated and 

the discrepancy between wild-type and Ngn2 mutant embryos with respect to both number 

postnatal day 18 (P18) the distribution of TH-positive cells was similar in wild-type and 

mutant mice, however, the number of TH-positive cells was markedly reduced both in VTA 

Ngn2 mutant in both the VTA 

and SN.

To ensure that what we had observed was a true loss of mesDA neurons and not only a 

reduction in the expression of TH, we stained for two additional markers for DA neurons, 

aromatic aminoacid decarboxylase (AADC) and vesicular monoamine transporter (VMAT2). 

actual loss of DA neurons rather than a selective down-regulation of the TH gene itself. The 

number of Isl1- and Brn3a-positive cells marking two non-DA neuron nuclei of the ventral 

midbrain (Wallen et al., 1999; Agarwala et al., 2001), however, was not affected in the Ngn2

mutant. Thus, the 

formation of DA neurons.
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The initial lack of cells in the medial part of the DA domain could indicate that the DA 

medially. The TH-positive cells were correctly located in the midbrain after birth and the 

the striatum and the adjacent limbic and cortical forebrain areas in the Ngn2 mutant did not 

differ from that seen in wild-type littermates, suggesting that the DA neurons remaining in 

Figure 5.

neuron development in the Ngn2 mutant embryos compared to wild type (A-B). Later in development, 

the DA neuron phenotype is partially rescued, and the discrepancy between wild-type and Ngn2 mutant 

embryos with respect to number and distribution of the TH-positive cells is less pronounced (C-F). 
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the mutant SN and VTA were projecting to their appropriate target areas. Finally, Girk2 and 

calbindin, the two best-described markers of SN and VTA DA neurons (Liang et al., 1996; 

Schein et al., 1998; Thompson et al., 2005), respectively, were correctly expressed in the 

mesDA neurons of the Ngn2 mutant. These results indicate that the mesDA neurons formed 

VTA DA neurons.

In the ventral spinal cord Ngn2 is required for the correct expression of a number of 

homeodomain transcription factors involved in neuronal subtype differentiation (Scardigli 

et al., 2001). However, the mesDA neurons of the mutant mice expressed the homoedomain 

factors Pitx3 and Engrailed1/2 to the same extent as in wild type. Together these data indicate 

that the mesDA neurons formed in Ngn2

Further analysis of the Ngn2 mutant showed a reduction in not only mature DA neurons 

but also in Nurr1-expressing DA neuron precursors situated in the intermediate zone. 

Similar to TH, we detected Nurr1-positive cells only at the lateral edge of the presumptive 

DA domain. Staining against cell nuclei (DAPI) revealed a dramatic reduction of cells in 

the mantle zone in the medial section of the DA domain, together with an accumulation of 

cells in the ventricular zone at E13.5. The presence of cells in the medial section was also 

visualized by the GFP expression from the Ngn2 locus.

On closer examination, we noticed a displacement of GFP-positive cells towards the 

ventricle and a tendency of these cells to maintain contact with the ventricular surface in the 

mutant. These GFP-positive cells co-labeled with the radial glial marker GLAST (Shibata et 

al., 1997; Anthony et al., 2004) suggesting that the absence of Ngn2 leads to an increase in the 

number of radial glial neural progenitor cells. However, the number of dividing cells within 

the medial section was not increased in the mutant, as detected by Ki67 and incorporation of 

the thymidine analog bromo-deoxyuridine (BrdU). This indicates that, despite the increase in 

radial glia, the accumulating cells in the medial section of the Ngn2 mutant are postmitotic. 

At the same time, none of the accumulating cells expressed PSA-NCAM or GFAP, which 

speaks against the presence of neurons or astrocytes, respectively.

The expression of TH showed an initial loss of DA neurons followed by a partial recovery 

between E15.5 and E17.5. To investigate if the later-formed neurons were generated from 

a retained pool of dividing cells, we exposed embryos to BrdU at E15.5 and E16.5, i.e. at 

time-points when mesDA neurogenesis is complete in wild-type mice. At birth, no BrdU/TH 

doubled labeled mesDA neurons were observed in either wild-type or Ngn2 mutant mice. The 
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increase in mesDA neurons between E15.5 and E17.5, therefore, is unlikely to be explained 

by a prolonged neurogenesis, beyond E15.5.

Together, these results suggest that in the absence of Ngn2 most precursors within the 

mesDA domain are initially arrested in their differentiation at an early postmitotic stage when 

they have not yet acquired the characteristics of neuronal precursors. A fraction of these cells 

appear to maintain radial glial characteristics. Eventually, some of these precursors appear to 

be released from this arrest.

Generation of striatal projection neurons from expanded forebrain cultures

Previous studies from our laboratory had shown that neural progenitors from the lateral 

ganglionic eminences (LGE), the ventral part of the forebrain known to give rise to olfactory 

bulb interneurons and projection neurons of the striatum (Deacon et al., 1994; Olsson et 

al., 1995; Olsson et al., 1998; Wichterle et al., 2001), only partially maintain their native 

differentiation potential after expansion in neurosphere cultures (Parmar et al., 2002). The 

neurosphere-expanded LGE cells generate neurons with characteristics of olfactory bulb 

interneurons but not striatal projection neurons (Parmar et al., 2002). This suggests that 

either the progenitors of striatal projection neurons are not expandable in culture, or the 

required developmental cues for striatal neuron differentiation are not present in the standard 

differentiation paradigm.

To test the latter hypothesis, neurosphere-expanded cells were differentiated in coculture 

with primary cells directly isolated from the developing LGE, as these primary cultures 

are known to generate striatal projection neurons (Ivkovic and Ehrlich, 1999; Toresson 

et al., 1999). Neurosphere-expanded LGE cells, differentiated in coculture with primary 

cells, expressed both the dopamine and cAMP-regulated phosphoprotein (DARPP-32) and 

Isl1, factors expressed by the striatal projection neurons and their precursors, respectively 

(Anderson and Reiner, 1991; Toresson et al., 2000; Toresson and Campbell, 2001). Thus 

the neurosphere-expanded LGE cells do harbor the potential to generate neurons with the 

characteristics of striatal projection neurons. 

Genetic evidence suggests that both striatal projection neurons and olfactory bulb 

interneurons are derived from Gsh2-expressing progenitors of the LGE ventricular zone 

(Corbin et al., 2000; Toresson et al., 2000; Toresson and Campbell, 2001; Yun et al., 2001; 
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Yun et al., 2003). The expression of Gsh2 is maintained in the neurosphere-expanded LGE 

cells, and in order to examine if the potential for striatal neuron differentiation depends on 

lacking Gsh2 (Szucsik et al., 1997). The neurospheres generated from the Gsh2 mutant 

showed no major changes in growth or neuron formation when compared to wild-type-

derived cultures. However, neither Isl1 nor DARPP-32 expression could be detected in cells 

derived from the Gsh2 mutant after differentiation in coculture with primary LGE cells. 

Thus, in the absence of Gsh2 the potential to generate neurons with characteristics of striatal 

projection neurons is compromised in the neurosphere-expanded LGE cultures, as is the case 

in the forebrain during development (Corbin et al., 2000; Toresson et al., 2000; Toresson and 

Campbell, 2001; Yun et al., 2001; Yun et al., 2003).

Nature of the inducing signal present in the cocultures

To investigate the nature of the developmental cues directing the striatal fate we tested: (1) 

cultures were contact-depended, and (3) the importance of region of origin of the primary 

cells.

Factors such as retinoic acid (RA), brain-derived neurotrophic factor (BDNF), SHH, and 

neurotrophin-3 (NT3) have been shown to increase the number of Isl1 and/or DARPP-32-

expressing cells in tissue slices and primary cultures (Roelink et al., 1995; Ivkovic et al., 

1997; Kohtz et al., 1998; Dutton et al., 1999b, a; Ivkovic and Ehrlich, 1999; Toresson et al., 

to promote Isl1 or DARPP-32 expression in the differentiated LGE-derived neurosphere 

cultures. We were also unsuccessful in promoting a striatal neuron fate when the neurospheres 

were differentiated in conditioned medium from primary LGE cells, or differentiated in 

coculture with, but physically separated from, the primary cells. Finally, only primary cells 

isolated from the LGE, and to a lesser extent the neighboring medial ganglionic eminences 

(MGE), but not those isolated from the developing cortex or ventral midbrain, were found to 

provide the factors necessary to guide striatal projection neuron differentiation.

Taken together, these data indicate that the factors necessary to guide striatal projection 

neuron differentiation are provided by the primary cells isolated from the LGE in a contact-
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Expansion of fetal neural progenitors in the NS cell culture system

Neurospheres had been used in our laboratory for many years as the standard method of 

expanding neural progenitors from the developing brain. However, because of the decline in 

neuronal yield upon passage (Fricker et al., 1999; Morshead et al., 2002; Suslov et al., 2002; 

Parmar et al., 2003) and the general poor neuronal differentiation after transplantation to 

the brain (Svendsen et al., 1997; Winkler et al., 1998; Eriksson et al., 2003; Vroemen et al., 

2003), we decided to apply the new NS cell culture system to our fetal tissue source.

We successfully established NS cell cultures from three subregions of the developing 

mouse brain: cerebral cortex, ganglionic eminences (GE)(at a stage, E11.5, where LGE and 

MGE cannot be distinguished) and ventral midbrain (VM). The NS cell cultures from all 

three regions showed stable growth over an extensive number of passages (currently above 

passage 100). As described in the original paper, the cultures were highly homogeneous 

in their morphology and the vast majority of the cells expressed the radial glial markers 

GLAST (Shibata et al., 1997), and brain lipid-binding protein (BLBP)(Feng et al., 1994), 

and the neural progenitor markers nestin (Lendahl et al., 1990) and Sox2 (Rex et al., 1997). 

Conversely, the expression of GFAP and -III-tubulin was neglible, indicating that under 

growth-factor-stimulation the cultures did not contain differentiated astrocytes or neurons, 

respectively. When we applied the published differentiation protocol to our fetal NS cell 

cultures we experienced extensive cell death, and consequently obtained only a small number 

of neurons at the end of the differentiation period. However, by optimizing the differentiation 

protocol we managed to limited the cell death and consistently obtained 30-50% neurons 

independent of the region of origin. The neurons formed have a mature morphology and 

express the two neuronal markers tested -III-tubulin and Map2. This potential for neuronal 

differentiation does not decline with passages, as observed in cultures passaged more than 

60 times.

Regional differences across the region of origin

There were clear regional as well as temporal differences in the behavior of the cells 

during the establishing phase of the NS cell cultures. Cells from the E10.5 and E11.5 ventral 

midbrain easily attached and formed homogenous NS cell cultures, whereas cells from the 

established cultures when grown at high density. Because of lack of attachment we were 

unsuccessful in generating NS cell cultures from cortex before E15 and from LGE at E12.5 
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and E13.5. Despite being morphologically alike, the cortical NS cells also appeared with 

smaller soma and longer and thinner processes than GE- and VM-derived NS cells. 

Staining for regional markers during the expansion phase, showed that the expression 

of most regional markers are lost in the NS cell cultures. The cortical expression of Pax6, 

however, is both maintained in and restricted to the cortical-derived NS cell cultures. After 

differentiation differences exist between the different regions of origin with respect to the 

morphology of the neurons formed and their expression of regional markers, but the types of 

neurons generated are not always reflective of the region of origin. As with the neurosphere 

cultures DA neurons were not generated from the VM-derived NS cell cultures upon 

differentiation, although both differentiated VM- and GE-derived NS cell cultures express 

Nurr1.

Thus although lacking the expression of many classical regional markers, the NS cell 

cultures show some differences across the three regions of origin with respect to cell adhesion, 

regional marker expression and neuronal subtype differentiation.

Growth-factor-stimulated expansion of mesDA neuron progenitors (paper IV)

As DA neurons are neither formed in the neurosphere nor in the NS cell culture system, we 

next studied if progenitors with the characteristic of DA neuron progenitors are expanded in 

the current culture conditions at all. In this experiment cells were isolated from E10.5 ventral 

midbrain, to ensure that the starting material contained dividing DA neuron progenitors. 

Directly after dissection a significant fraction of the cells co-expressed the homeodomain 

transcription factors Lmx1a and Foxa2, the latter expressed by the floor plate cells and in 

the cell populations lateral to the DA neuron domain (Ferri et al., 2007; Ono et al., 2007). 

However, already in the unpassaged neurospheres and NS cells the number of positive cells 

was dramatically reduced. After the first passage both factors were undetectable in both 

culture systems. Additionally, in both culture system the vast majority of the cells expressed 

the radial glial and neural progenitor markers GLAST, BLBP and nestin before the first 

passage.

These results suggest that cells with DA neuron progenitor characteristic are lost in the 

two culture systems already at the first passage, even when isolated at an early stage of DA 

neuron development.
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with the generation of mesDA neurons and that cells with the potential for generating DA 

neurons in culture and after transplantation to the brain are contained within the Ngn2-

expressing cells and their immediate progeny. Analysis of mice lacking the Ngn2 gene 

showed that Ngn2 is required for proper development of the mesDA neurons. In its absence, 

the Ngn2 mutant embryos the mesDA neuron precursors are retained at an undifferentiated 

stage where they have not yet acquired a neuronal fate. In the second part, we show that 

regional differences persist in fetal neural stem cells expanded as neurospheres or in the 

new NS cell culture system. Our analysis, furthermore, showed that the environment of the 

expanded cells. For example, neurons with characteristics of striatal projection neurons are 

only formed from neurosphere-expanded cells when they are differentiated in contact with 

cells directly isolated from the developing striatum. We also show that the NS cell cultures 

offer several advantages over the neurosphere culture system when it comes to extensive 

expansion of fetal neural stem cells with sustained potential for generating a high yield of 

neurons upon differentiation. Finally, we show that both in the neurosphere and in the NS cell 

culture system cells isolated from the developing ventral midbrain lose their mesDA neuron 

precursor characteristics upon expansion.

lopment

A number of developmental genes, such as En1/2, Lmx1b, Pitx3 and Nurr1, are expressed 

in the DA neuron domain during development, and has been shown to be of major importance 

for the formation of the mesDA neuron system (Zetterstrom et al., 1997; Smidt et al., 2000; 

Simon et al., 2001; van den Munckhof et al., 2003). For the most part, however, these 

genes are expressed at postmitotic stages and are important for the terminal differentiation, 

maintenance, or survival of the mesDA neurons. When we published our analysis on Ngn2, 

midbrain, where loss of function caused impaired mesDA neurogenesis without affecting 

other types of neurons within the ventral midbrain. After our study, the study on Lmx1a 
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and Msx1 was published, identifying Lmx1a as a mesDA neuron determinant and Msx1 

as a downstream target of Lmx1a important for the timing of mesDA neuron neurogenesis 

(Andersson et al., 2006). Interestingly, Msx1 up-regulates the expression of Ngn2, and in 

mice lacking the Msx1 gene the number of both Ngn2- and Nurr1-expressing cells is reduced 

tion

In parallel with our analysis of Ngn2 expression, Kele et al. 2006 performed a similar 

analysis including the expression of two additional bHLH transcription factors, Mash1 and 

Ngn1. Their analysis showed that Mash1, but not Ngn1, is expressed in the DA neuron domain 

of the ventral midbrain (Kele et al., 2006). Of notice, Mash1 is expressed in the ventricular 

zone of the entire midbrain, in contrast to Ngn2 that shows a much more restricted expression 

pattern (Nakatani et al., 2007). Furthermore, Kele et al. showed that the partial rescue of the 

DA neuron phenotype between E15.5 and E17.5 depends on the expression of Mash1, as this 

rescue does not occur in mice lacking the genes for both Ngn2 and Mash1. On the other hand, 

Mash1 is not required for mesDA neuron formation as this process is unaffected in Mash1

mutant mice (Kele et al., 2006). 

Our analysis showed that the mesDA neurons formed in the Ngn2 mutant are correctly 

Ngn2 locus still lack about 50% of the mesDA neurons (Kele et al., 2006), showing that 

Mash1 cannot fully substitute for Ngn2. Ngn2 does, therefore, appear to have a unique 

role in mesDA neuron formation in addition to its proneural activity. The Ngn2-knock-out-

Mash1-knock-in mice were not studied after birth, and it is therefore unknown if the mesDA 

be performed to reveal how the activity of Ngn2 and Mash1 differ in the differentiation and 

Mechanism of Ngn2 function in the development of the mesDA neurons

The results from our FACS sorting experiments where the Ngn2-GFP-positive and -negative 

cells were separated indicate that precursors expressing Ngn2 are committed to a neuronal fate 

as no glial cells could be detected in cell grafts from the GFP-positive cell fraction (the cells 

expressing Ngn2 or their immediate progeny). All Ngn2-expressing precursors, however, 
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Figure 6. Schematic presentation of Ngn2 in the molecular pathway of Lmx1a and Msx1 in mesDA 

neuron development.   

are not fully committed to a DA neuron fate, as only a small fraction of the cells within the 

graft become DA neurons. That Ngn2 is involved in promoting neuronal differentiation and 

commitment of precursors to a neuronal fate is supported by the loss of NeuroD expression, 

a neuronal determinant (Lee et al., 1995), in the DA neuron domain of the Ngn2 mutant. 

In a simple model of neurogenesis, an increased number of dividing cells would be a 

logical consequence of the delayed neuronal differentiation in the Ngn2 mutant. We detected 

an increase in the number of cells along the ventricle in the DA neuron domain and a tendency 

for these to maintain the expression of the radial glia marker GLAST. However, we did 

not detect an increase in the number of dividing cells. In agreement with these results, no 

increase has been detected in the number of proliferating cells in the cortex of the Ngn2 

mutant (Britz et al., 2006) and the number of dividing cells is reduced in the forebrain of the 

Mash1 mutant (Casarosa et al., 1999; Horton et al., 1999). In the Mash1 mutant the reduction 

was explained by a disruption of the Notch signaling pathway. Notch keeps progenitors in 

an undifferentiated radial glial state (Gaiano et al., 2000; Hitoshi et al., 2002b) partially by 

upregulatig the expression of the Hes genes, which repress the expression of the proneural 

genes (Sasai et al., 1992; Ishibashi et al., 1995; Jarriault et al., 1995). Contrary, the proneural 

genes activate the expression of Delta-like, a ligand of Notch (Bettenhausen et al., 1995; Ma 

et al., 1996)(figure 7). This signaling loop is important for the balance between proliferation 

and differentiation. The differentiating cells stimulate the Notch pathway in the neighboring 

cells and thus prevent them from differentiating, creating a salt-and-pepper-pattern of 

immature progenitors and committed neuronal precursors. Kele et al. showed a loss of Delta-

like1 and Hes5 expression in the Ngn2 mutant at E11.5 (Kele et al., 2006), together with the 

lack of increased number of dividing cells, this indicates that the salt-and-pepper-pattern of 

precursors is disrupted in the DA neuron domain in the absence of Ngn2.
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fate. In the absence of Ngn2 the number of mesDA neurons are dramatically reduced and 

the natural balance between differentiating and undifferentiated precursors in the ventricular 

zone of the DA domain is disrupted.

em cells

Previous studies from our and other groups have shown that fetal neural stem cells 

system (Yamamoto et al., 2001; Hitoshi et al., 2002a; Ostenfeld et al., 2002; Parmar et al., 

2002). If this is true for the NS cell culture system, however, had not been studied. Our 

results show that clear differences exist between NS cell cultures isolated from different 

regions of origin. As for neurospheres (Ostenfeld et al., 2002), differences exist in the growth 

characteristics of the NS cell cultures with respect to cell attatchment and cell morphology 

across different regions of origin. Additionally, differences were detected in the expression of 

regional markers during expansion and in the neuronal subtypes formed after differentiation. 

These differences in gene protein expression, however, are few and the neuronal subtypes 

Figure 7. Schematic presentation of the Notch-signaling pathway in immature and differentiating 

neural precursors.
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et al., 2005), our data indicate that the fetal-derived NS cells retain regional differences also 

after long-term expansion.

Neurosphere-expanded LGE cells were known to maintain the potential to generate 

olfactory bulb interneurons, but appeared to lose the potential for striatal neuron differentiation 

(Parmar et al., 2002). Interestingly, our analysis of neurosphere-expanded cells from the 

LGE showed that these cells to a greater extent than previously reported retain their native 

differentiation potential. When differentiated in coculture with primary cells directly isolated 

from the LGE, the neurosphere-expanded cells generated cells and neurons expressing Isl1 

and DARPP-32, two proteins expressed in immature and mature striatal projection neurons, 

respectively (Anderson and Reiner, 1991; Toresson et al., 2000; Toresson and Campbell, 

2001). Thus, the neurosphere-expanded LGE cells do retain the potential for striatal neuron 

differentiation. Additionally, we showed that this potential depends on the presence of Gsh2-

expressing ventricular-zone-like progenitors in the expanded cultures. The developmental 

These results draw attention to the fact that the environment the cells encounter during 

differentiation has a major impact on the differentiation potential revealed and that simple 

culture systems are unlikely to reveal the full differentiation potential of a cell.

Neurosphere cultures versus NS cell cultures

Some of the drawbacks of the neurosphere cultures have been the relatively limited 

yield of neurons upon differentiation, the instability of the system, and the heterogeneous 

cell composition of the individual neurospheres (Jensen and Parmar, 2006). In our study on 

progenitors derived from different regions of the developing brain. The NS cell cultures are 

highly homogenous consisting of radial glia-like neural progenitors. Upon differentiation, 

these cultures, independent of region of origin, consistently give rise to 30-50% neurons, which 

this potential for neuronal differentiation is maintained even after more than 50 passages 

(equals more than 1012-fold expansion), showing that the NS cell culture system is stable over 

time. For comparison, most neurosphere studies are conducted at passage 8, or lower.

The regional analysis of the NS cell cultures showed that the NS cells retain some regional 

differences, but whether they retain it to the same extent as in the neurosphere cultures 
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cannot be determined from our analysis. It is not unlikely that the homogenous population 

of immature cells in the NS cell cultures increases the probability of loosing regional 

immature and mature cell types. However, a comparative and more comprehensive analysis 

would be required to draw any conclusions on this issue, including studies of differentiation 

in the presence of developmental factors, in coculture with primary cells, or on tissue slices.  

Nevertheless, the NS cell culture system appears superior of the neurosphere culture 

system for expansion of fetal neural stem cells with respect to homogeneity, stability of the 

system, and the differentiation potential of the expanded cells.

Expansion of mesDA neuron progenitors

Neural progenitors from the ventral midbrain are known to be expandable in the 

neurosphere culture system, but the multi-passaged cells show limited ability to generate DA 

neurons (Caldwell and Svendsen, 1998; Yan et al., 2001; Roybon et al., 2005; Chung et al., 

2006; Andersson et al., 2007). We show that ventral midbrain progenitors can be expanded 

as NS cell cultures and give rise to 30-40% neurons in cultures after prolonged expansion. 

However, the NS cells are, as previously reported for neurosphere-expanded cells, unable to 

generate DA neurons under standard differentiation conditions. Furthermore, our analysis of 

the expression of Lmx1a and Foxa2 in unpassaged and single-passaged neurospheres and 

NS cell cultures showed that cells with DA neuron progenitor characteristics are lost already 

in generating DA neurons from multi-passaged cultures, and underlines that alternative 

strategies for expansion of mesDA neuron progenitors need to be developed.

If we take a more critical look at the mitogens used, the EGF receptor is undetectable in 

the ventricular zone cells at early stages of the mesDA neuron development (Kornblum et 

mice)(Mytilineou et al., 1992; Bouvier and Mytilineou, 1995). However, at E10.5, when we 

isolate cells for expansion, the cells are bFGF responsive. Unfortunately, bFGF is known to 

promote EGF-responsiveness (Ciccolini and Svendsen, 1998; Santa-Olalla and Covarrubias, 

1999), indicating that the cells we expand in our culture systems are likely to have the 

characteristics of the later-stage expandable progenitors. Therefore, in order to expand the 

mesDA neuron progenitors present in the E10.5 ventricular zone one might have to use 

alternative mitogens. Three FGFs (FGF8, 17, and 18) are expressed at the mid-hindbrain 



51

boundary, and signaling through their receptors is important for the proliferation of the early 

mesDA neuron progenitors during development (Saarimaki-Vire et al., 2007). Additionally, 

Wnt1 mutant mice show a dramatic reduction in the number of proliferating cells in the 

ventral midbrain (McMahon et al., 1992; Prakash et al., 2006). Finally, SHH not only has a 

ventralizing effect but also a mitogenic effect (Agarwala et al., 2001). FGF8 and Wnt1 have 

been shown to increase proliferation of mesDA neuron progenitors in short-termed expanded 

cultures (Studer et al., 2000; Castelo-Branco et al., 2003). However, if any of these proteins 

can maintain dividing mesDA neuron progenitors in a multi-passaged culture system is as 

yet unexplored.

Cells for cell replacement therapy

Transplantable DA neuron precursors from neural stem cell cultures

How can the results of this thesis have any implication for the development of cells for 

knowledge can be used to develop improved protocols for direction of mesDA neuron 

differentiation from expanded neural stem cells. ES cells, which can give rise to all cell types 

in the embryo, are particularly responsive to treatment with different types of specifying 

factors, soluble as nuclear, and have successfully been directed into spinal cord motorneurons 

(Wichterle et al., 2002), cortical pyramidal (Bibel et al., 2004) and DA neurons (Kawasaki 

et al., 2000; Lee et al., 2000). Today, three main protocols exist for generating DA neurons 

from ES cells, all of which include SHH and FGF8 in the culture medium (Lee et al., 2000; 

Barberi et al., 2003; Ying et al., 2003). However, contaminating undifferentiated tumorgenic 

ES cells remain a serious problem after transplantation (Bjorklund et al., 2002; Morizane et 

al., 2006). Secondly, even though DA neurons can be generated from ES cells, few studies 

al., 2006; Rodriguez-Gomez et al., 2007), which can be of major importance for ability 

of the transplanted cells to reinnervate the striatum, and thus have major impact on the 

functional outcome after DA neuron transplantation. Increased knowledge on mesDA neuron 

of the DA neurons formed and possibly also for synchronization of the differentiation process 

to limit the number of undifferentiated ES cells and increase the yield of transplantable neural 

precursors at the time of grafting. One strategy to eliminate the undifferentiated tumorgenic 

ES cells is to isolate the DA neuron precursors by FACS. Our transplantation study showed 
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that the Ngn2

immature to survive the isolation and transplantation procedure, and could thus provide a 

useful tool for isolation of non-tumorgenic transplantable precursors from differentiated ES 

cells. With respect to neural stem cells isolated from the fetal ventral midbrain, our research 

shows that cells with the characteristic of mesDA neuron progenitors are lost upon EGF- 

and bFGF-stimulated expansion in both cultures system tested. Additionally, expanded fetal 

neural stem cells appear less responsive to the native developmental factors (Yan et al., 2001; 

Roybon et al., 2005; Andersson et al., 2007). Therefore, the usefulness of expanded fetal 

neural stem cells as a source of mesDA neurons will most likely depend on the development 

of optimal culture systems for long-term expansion of mesDA neuron progenitors.

Fetal neural stem cells in cell replacement therapy

The coculture differentiation paradigm used in this thesis provides a model for studies 

of striatal neuron differentiation from growth-factor-expanded neural stem cells. In the past, 

studies addressing similar questions for primary cells have successfully been addressed in 

transplantation studies (Gaiano and Fishell, 1998; Campbell and Olsson, 2000). However, 

grafting experiments with expanded fetal cells have been less informative because of the 

limited neuronal yield after transplantation of neurosphere-expanded cells to the brain (Winkler 

et al., 1998; Eriksson et al., 2003). This limitation is not seen in the coculture system. Thus, 

the coculture paradigm can be used as a simple, easy manipulative and timesaving alternative 

to transplantation for studies on striatal neuron differentiation from growth-factor-expanded 

fetal neural stem cells. Such studies could in the longer perspective have implication for the 

development of new therapies for disorders such as Huntington’s disease and stroke, where 

there is a loss of striatal projection neurons.

The low yield of neurons after transplantation of neurosphere-expanded fetal neural stem 

cells to the CNS has been a returning problem (Winkler et al., 1998; Eriksson et al., 2003), and 

has limited their usefulness as a cell source for cell replacement therapy. ES-derived NS cells 

have been reported to generate 40% neurons after transplantation to the adult brain (Conti et 

al., 2005), but the study did not include a description of the neuronal morphologies or any 

functional data. More thoroughly analyses, therefore, need to be performed to determine if 

the NS cell cultures are suitable as a source for cell replacement therapy.

Thus, both ES-derived and fetal neural stem cells harbor the potential to serve as a source 

of transplantable precursors. It is, therefore, important to continue increasing our knowledge 
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diseases to the clinic.
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Methods and Materials

Mouse lines and viral vectors

All animal procedures were conducted in accordance with the guidelines set by the Ethical 

Committee for use of laboratory animals at Lund University. In all four papers 

NRMI mice were used as the wild-type strain.

Ngn2-GFP mice (paper I and II): Heterozygous Ngn2-GFP mice (Seibt et al., 2003) were 

maintained on a CD1/129 background and crossed to produce homozygous embryos or mice. 

For genotyping see paper I and II.

CMV-GFP mice (paper III): Mice expressing GFP under the cytomegalovirus (CMV)-β-

acting promoter (Okabe et al., 1997) were bred on a NMRI background.

VSV-G pseudotyped retroviral vectors:  In paper II and III a VSV-G pseudotyped retroviral 

vector expressing GFP under the CMMPLTR modified from (Ory et al., 1996) was used 

to transfect cells, as a control or to identify neurosphere-expanded cells, respectively. In 

addition a Ngn2-IRES-GFP vector (Falk et al., 2002) was used in paper II to drive ectopic 

expression of Ngn2.

Dissection

Procedure: Following either cervical dislocation or lethal exposure to CO
2
, embryos were 

removed from the uterine horns of timed-pregnant mice (time of vaginal plug was considered 

as E0.5) and placed in ice-cold PBS. The embryos were stored on ice and dissection performed 

in cold Leibovitz’s L-15 medium (Gibco). After dissection and removal of meninges the 

tissue was mechanically dissociated into a single-cell suspension.

Dissections: Dissections were performed at different embryonic stages depending of the 

subregion of interest. In forebrain dissections the brains were dissected out and cortex cut 

open along the dorsal midline exposing the ventral part of the forebrain enclosing the GE at 

E11.5 and LGE and MGE at E13.5. Cortex was isolated at E13.5 (paper III) and E15 (paper 

IV). For the ventral midbrain dissections [E10.5 (paper IV), E11.5 (paper II and IV) and 

E12.5 (paper I and III)] the mesencephalic part of neural tube was cut out of the embryo and 

the ventral part dissected (figure 8).  
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Figure 8. Schematic representation of fore- (A) and midbrain (B) dissections. CTX: cortex.

In vitro expansion

Neurospheres (paper III & IV): Neurospheres were obtained by plating the cells on uncoated 

plastic at 100,000 cells/ml in basic medium [DMEM/F12 (Gibco) with N2 hormone mix 

(25 g/ml insulin, 100 g/ml apo transferrin, 20nM progesterone, 60 M putrescine, 30nM 

selenium chloride (Reynolds et al., 1992)), 2nM L-glutamine, 100 g/ml Pen/Strep, 15mM 

HEPES (only in paper III) and 1.25% sodium bicarbonate (all from Sigma)] supplemented 

with 10ng/ml bFGF and 20ng/ml EGF (both from R&D systems). The neurospheres were 

passaged weekly by mechanical dissociation and replated at 50,000 cells/ml. Experiments 

were done on passage 5-8 neurospheres.

NS cell cultures (paper IV): To establish the NS cell cultures, neurospheres were generated as 

described above. Six-seven days after plating, spheres were colleted and allowed to sediment. 

The medium was replaced with NSA-N2 medium [NSA medium (Euromed, Euroclone) with 

N2 hormone mix, 2nM L-glutamine, 100 g/ml Pen/Strep] supplemented with 20ng/ml bFGF 

4-21 days the spheres had attached and cells migrated out to form a monolayer of bipolar 

NS cells. At this point the cells were passaged. Cells were detached by incubation with 1ml 

Cells were spun 3 min at 1200rpm and replated in 5ml NSA-N2 medium with growth factors 

at a density of approx 2.5x106 cells/T25. Under these conditions cells were split every 2-3 

day, 1:3-1:6.
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In vitro differentiation

Primary cultures: As a standard, primary cells were differentiated for 5-7 days at a density of 

120 cells/cm2 on poly-L-lysine-coated (PLL) chamber slides in basic medium supplemented 

with 1% fetal bovine serum (FBS). To support attachment and DA neuron survival PLL was 

replaced with Matrigel (BD Biosciences), N2 with B27 (Gibco) and the medium further 

supplemented with 10ng/ml glial cell lines-derived neurotrophic factor (GDNF, Biosource), 

and 100 M ascorbic acid (paper II).

Neurosphere cultures (paper III): The neurosphere cultures were differentiated by plating the 

neurospheres at a density equivalent to 60,000 cells/cm2 on PLL-coated chamber slides in 

basic medium containing 1% FBS. The cultures were allowed to differentiate over 3-10 days. 

When differentiated in coculture with primary cells, the primary cells were plated at 120,000 

cells/cm2 and allowed to attach for 24 hours before applying the neurospheres (60,000 cells/

cm2). To identify the neurosphere-expanded cells these were either isolated from mice with 

ubiquitous expression of GFP (Okabe et al., 1997) or transduced with a GFP-expressing viral 

vector prior to coculturing.

NS cell cultures (paper IV): In the optimized differentiation protocol, cells were plated 

at 100,000 cells/cm2 in NSA-N2 supplemented with B27 and 10ng/ml bFGF on laminin-

coated plastic (10μg/ml, Sigma) for differentiation. After 3 days of differentiation the cells 

were dissociated and replated on laminin-coated plastic at a density of approx 10,000 cells/

cm2 in a medium compositioned of NSA-N2:Neurobasal (Gibco)-B27:DMEM-B27 (1:1:1) 

supplemented with 10ng/ml bFGF, 10ng/ml brain-derived neurotrophic factor (BDNF, R&D 

systems), 10ng/ml GDNF and 100 M ascorbic acid. Differentiation was continued for a total 

of 10, 14 and 21 days.

g (FACS)

In paper I cells from Ngn2-GFP heterozygous

intensity. The cell suspensions for FACS were prepared by mechanical dissociation in PBS-

Ca2+/Mg2+ (Gibco) with 1mM EDTA and 0.5% bovine serum albumin at a concentration of 

approximately 3.0x106 cells/μl. To identify and eliminate dead cells, 7-aminoactionomycin-D 

(7AAD, 10μl/ml, Sigma) was included. Gate settings for GFPneg were determined using wild-

type tissue. An ‘unsorted’ cell preparation was generated for transplantation by passing wild-

type cells through the FACS and gating for live cells.
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Table 1. Antibodies used in this thesis.

Antibody   Company   Dilution  Protocol
rabbit -AADC  Chemicon   1:1000  standard
rabbit anti-Aldh11   R.Lindahl   1:500   standard
mouse - III  Promega   1:1000  standard
mouse - III  Sigma   1:500  standard
rabbit - III   Covance   1:2000  standard
mouse - gal  Promega   1:500  standard
rabbit - gal  5’-3’ Inc   1:500  standard
rabbit -BLBP  Chemicon    1:5000  standard
rat -BrdU   Oxford Biotechnology  1:100/1:500* **/***
mouse -Brn3a#  Santa Cruz   1:50  antigen retrieval
rabbit -CalbindinD28k  Chemicon   1:1000  antigen retrieval
rabbit -ChAT  Chemicon   1:1000  standard
mouse -CNPase  Sigma   1:100  standard
mouse -DARPP  P. Greengard  1:20 000  standard
mouse -En1  Hybridomas Bank  1:50  antigen retrieval
rabbit -En1/2  A. Joyner   1:1000  standard
rabbit -Er81  T. Jessel/S Morton  1:2000  standard
goat -Foxa2 (HNF3 )  Santa Cruz   1:600  standard
rabbit -GABA  Sigma   1:250/1:1500* standard
rabbit -GABA  Incstar   1:5000  ##
mouse -GAD65  BDPharMingen  1:1000  standard
rabbit -GFAP  DAKO   1:1000  standard
chicken -GFP  Chemicon   1:5000  standard
rabbit -Girk2  Alomone labs  1:80  antigen retrieval
guinea pig -Glast  Chemicon   1:1000  ###
rabbit -5HT  Incstar   1:5000/1:10000 *standard
mouse -Isl1   Hybridomas Bank  1:100(0.37ug/ml) citrate buffer
rabbit -Isl1   Abcam   1:100  standard
rabbit -Isl1/2  T. Edlund   1:400  standard
rat -mouseKi67  DAKO   1:50  antigen retrieval
rabbit -Lmx1a  M. German   1:10 000  standard
rat -M2   C. Lagenaur   1:50  standard
rat -M6   C. Lagenaur   1:50  standard
mouse -MAP2  Sigma   1:250  standard
mouse -Nestin  BD Bioscience  1:500  standard
mouse -Ngn2  D. Andersson  1:20  standard
mouse -Ngn2  M. Nakafuku  1:1000  standard
mouse -Nkx2.1(TTF1)  Abcam   1:200  standard
mouse -Nkx6.1  Hybridomas Bank  1:100(0.27ug/ml) standard
rabbit -Nurr1  Santa Cruz   1:1000  standard
rabbit -Otx2  Chemicon    1:4000  standard
mouse -Parvalbumin  Sigma   1:2000  standard
rabbit -Pax6  BioSite   1:500  standard
rabbit -Pbx1-3  Santa Cruz   1:400  standard
mouse -PSA-NCAM  Chemicon   1:200  standard
rabbit -Pitx3   P.H. Burbach  1:400  standard
mouse -RC2  Hybridomas Bank  1:50  standard
mouse -Sox2  R&D   1:50  antigen retrieval
rabbit -Tbr1  Chemicon   1:10 000  standard
rabbit -TH   Pel-Freeze Biological  1:1000  standard
mouse -TH  Chemicon   1:4000  standard
rabbit -vGLUT1  SySy   1:2000  standard
rabbit -VMAT   Chemicon   1:1000  standard

* in vivo/in vitro
** For immunohistochemical staining DNA was denaturated in 1M HCl at 65oC for 30min prior to preincubation.
*** Immunocytochemistry was done according to Caldwell et al., 2004. Cells were permeabilize with ice-cold MeOH for 20min at 
-200C, DNA denaturated with 1N HCl for 20min at 370C. The cells were neutralize by washing twice with 0.1M borate buffer prior 
to pre-incubation.
# The blocking solution used for mouse -Brn3A is: 10% normal serum, 1% milk, 1mg/ml BSA in 0.02M KPBS.
## Fixation with  4%PFA and 0.4%glutaraldehyde.
### Only works with bioatinylated secondary antibody followed by streptavidin.
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Transplantation

The transplantation in paper I was performed in P3 Sprague-Dawely rats as described 

by(Nikkhah et al., 2000). The pups were deeply anesthetized by hypothermia and mounted 

in a mouse stereotaxic frame in a flat scull position. Injections were performed with a 5µl 

Hammilton syringe fitted with a thin glass capillary to limit damage at the injection site. The 

cells were resuspended at a concentration of 5x104 cells/µl in HBSS-Ca2+/Mg2+ (Gibco) and 

1µl cell suspension was delivered over 2 min to the right striatum. The capillary was left in 

place for additional 2 min to allow the cells to sediment. Injection coordinates were: 0.7mm 

anterior and 1.9mm lateral to the Bregma, and 2.9mm below the dura surface.

Tissue processing for immunochemical analysis

Embryonic/Neonatal: The embryonic heads were immersion fixed in 4% PFA (in 0.01M 

phosphate buffer) overnight at 4°C. At P0 the brains were removed from the skull prior to 

fixation. The tissue was subsequently cryoprotected overnight in 30% (E11.5-E13.5) or 25% 

(E15.5-P0) sucrose and sectioned on a cryostat (12-16µm, coronal sections, 10 series)

Adult: P18 mice and 4-week old rats received lethal doses of pentobarbitone and were trans-

cardinally perfused with 0.9% saline (1 min of 30-40ml/min) followed by 4% PFA (7 min 

of 30-40ml/min). The brains were post-fixed for 2 hours, cryoprotected overnight in 25% 

sucrose, and sectioned on a freezing-microtome (35µm, coronal sections, 12 series).

Cells: Cultures were fixed in ice-cold 4% PFA for 15 min at room temperature.

Immunohistochemical and immunocytochemical procedures

The standard procedure: Sections (on glass and free-floating) and culture slides were 

pre-incubated for 1 hour in blocking solution containing 2-5% normal serum and 0.25% 

TritonX-100 (Ameresco) in 0.02M KPBS. Primary antibodies diluted in blocking solution 

were applied overnight at room temperature or at 4°C. After rinses, biotinylated (Vector 

diluted 1:200 in blocking solution) or fluorophore-conjugated secondary antibodies (Jackson 

Laboratories diluted 1:400 in blocking solution, Molecular Probes 1:500) were applied for 

1-2 hours at room temperature. Biotinylated secondary antibodies were followed either by 

incubation with streptavidin-horseradish peroxidase complex (ABC elite kit, Vectastain) 

for 1 hour and subsequent exposure to di-amino-benzydine (DAB, 0.5 mg/ml; Sigma) 
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or by fluorophore-conjugated streptavidin for 1 hour (Cy3-streptavidin, 1:400, Jackson 

Laboratories). For DAB staining endogenous peroxidase activity was quenched for 15 min 

with 3% H
2
O

2
 prior to pre-incubation. For primary antibody dilutions see table 1. Cell nuclei 

were visualized by staining with DAPI (1:1000; Sigma). Fluorescence stainings were mounted 

with anti-fading medium PVA-DABCO (recipe from Dr. Peterson, Salk Institute, USA).

Antigen retrieval: Antigen retrieval was performed by boiling in 10mM citrate buffer (pH 

6.0) prior to staining with a subset of antibodies (see table 1).
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