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1

Introduction

1.1 Motivation

Over the last decades, cameras have emerged as useful sensors for
measuring position of objects. In the field of robotics, cameras have
reached a widespread usage, in the research community as well as in
industry. Many commercial packages for vision processing have been
developed, for use in calibration, positioning and inspection, and sev-
eral other tasks. Additionally, vision sensors will be crucial components
in the development of future flexible, mobile and autonomous robot sys-
tems. In these applications, there will be a need for robots which are
able to work in unstructured, uncalibrated environments, with space-
sharing between robots and human users and operators.

In parallel with the developments of new camera sensing tech-
niques for position measurement and calibration, there has been an
interest in using camera measurements for closed-loop position con-
trol. As early as in the seventies, it was realized that camera feedback
could be used to correct the trajectories of a robot, thereby increasing
the task accuracy. The term visual servoing was introduced for the use
of cameras for feedback positioning. In later years, the emergence of
cheap, powerful computing power has increased the potential of visual
servoing systems dramatically. A review of the research and history
of visual servoing from the start until the mid 90s can be found in
[Hutchinson et al., 1996].

9



Chapter 1. Introduction

Two key issues that need to be considered in a successful visual ser-
voing system are reliability and performance. By reliability we mean
the ability of the system to function in any situation that can occur
during operation, with respect to changes in the environment such as
lighting, (temporary) signal loss due to occlusion of objects, reflections,
or rapid unpredicted motions, or internal factors such as singularities.
In addition, robustness to uncertainties in the environment or model-
ing need is an important part of a reliable system. Performance is the
ability to achieve tasks when additional timing constraints are present,
such as a required cycle-time in a flexible manufacturing system. From
a control perspective, performance requirements may be translated
into closed-loop bandwidth constraints, in addition to requirements on
the servoing capabilities of the system, that is, the ability to follow fast
reference trajectories within a given tolerance. Reliability and perfor-
mance are often conflicting objectives, a reliable system may require
extremely large processing power, which may conflict with performance
specifications. Conversely, high performance is more easily achieved in
well structured, accurately known environments, which have been set
up to minimize the risk for disturbances or sensor failures. This con-
flict makes reliable real-time visual servoing an extremely challenging
task.

In order to increase the reliability and performance, it is crucial to
exploit all available information. Dynamic and geometric models can
be used to increase reliability, by increasing the predictive capabilities
of the visual processing and thereby decreasing the risk for signal loss,
as well as for improving performance. By suitable parameterizations of
the state space, we can avoid singularities and incorporate geometric
constraints on the states, thereby making the vision processing more
robust. However, perhaps the most important improvements in relia-
bility and flexibility can be achieved by using multiple sensors. Stereo-
and multi-camera systems will improve tracking reliability and accu-
racy considerably, compared to single camera systems, due to both sen-
sor redundancy and geometric factors. Similarly, other sensors such as
range- and force sensors, may complement the vision system. In this
thesis, two methods for combined force/vision control are presented
and analyzed.

10



1.2 Outline and Related Publications

1.2 Outline and Related Publications

This section contains a brief outline of each chapter in the rest of the
thesis, with references to related publications.

Chapter 2: Background
This chapter gives a short introduction to the subjects of vision based
control, estimation, and combined force/vision control.

Chapter 3: Interface for External Control
This chapter presents the interface developed for external control, de-
signed by extending an ABB S4CPlus industrial robot control system.
Results from experiments, where the designed interface was used for
force controlled grinding and deburring, are presented.

Publications
Blomdell, A, ; Bolmsjö, G. ; Brogårdh, T ; Cederberg, P. ; Isaksson, M.

; Johansson, R. ; Haage, M ; Nilsson, K ; Olsson, M. ; Olsson, T. ;
Robertsson, A. ; Wang, J.J (2004): “Extending an industrial robot
controller with a fast open sensor interface - implementation and
applications” In Robotics and Automation Magazine, to appear.

Johansson, R. ; Robertsson, A. ; Nilsson, K. ; Brogårdh, T. ; Cederberg,
P. ; Olsson, M ; Olsson, T. ; Bolmsjö, G. (2004): “Sensor Integration
in Task-level Programming and Industrial Robotic Task Execution
Control” In Industrial Robot: An International Journal, 31:3, pp.
284-296.

The interface described in this chapter is the result of the efforts
of several people. Anders Robertsson and Klas Nilsson were responsi-
ble for the overall design of the interface, supported by Mats Isaksson
and many others. Anders Blomdell, among many other contributions,
developed the software for the Linux PowerPC platform running the
external controllers. Mathias Haage and Klas Nilsson designed and
implemented the force control extensions to the robot programming
language RAPID. J.J. Wang provided most of the code for the kine-
matics library, as well as other software. Tomas Olsson and Anders
Robertsson developed and tested force- and impedance controllers, and
performed most of the experiments together with Klas Nilsson.
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Chapter 1. Introduction

Chapter 4: Image-Based Hybrid Vision/Force Control
In this chapter a methods for image-based hybrid vision/force control is
presented. An image-based visual servoing technique is used together
with force feedback to perform experiments with drawing on a planar
surface, while the position of the surface is simultaneously estimated
using the available sensor data.

Publications
Olsson, T. and Bengtsson, J. and Johansson, R. and Malm, H.
(2002): “Force Control and Visual Servoing Using Planar Surface
Identification” In Proceedings of the IEEE International Conference
on Robotics and Automation. Washington D.C., USA.

Chapter 5: Position-Based Hybrid Vision/Force Control
In this chapter, methods and experiments using a position-based hy-
brid force/vision control algorithm are presented. An observer using
point-to-contour error meaurements is used to estimate the states of a
linear system, with a computational complexity which is considerably
smaller than for an EKF. Impedance control with inner motion control
is used to obtain compliant behavior in the force controlled directions.

Publications
Olsson, T. and and Johansson, R. and Robertsson, A. (2004): “Flexible

Force-Vision Control for Surface Following using Multiple Cam-
eras” In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. Sendai, Japan.

Chapter 6: Rigid-Body Tracking using Dual Quaternions
In this chapter we present methods for real-time rigid body tracking
with simultaneous calibration and tracking of intrinsic parameters,
based on a dual quaternion parameterization of the object pose.

Publications
Olsson, T. and Bengtsson, J. and Robertsson, A. and Johansson, R.
(2003): “Visual Position Tracking using Dual Quaternions with
Hand-Eye Motion Constraints” In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation. Taipei, Taiwan.

12



1.2 Outline and Related Publications

Chapter 7: Multi-Camera Feedback Control with Time Constraints
In this chapter we present methods for multi-camera real-time rigid
body tracking with time constraints. A simple algorithm is presented,
which attempts to select active cameras and feature searches to min-
imize the effective measurement covariance. Simulations are used to
validate the approach.

Publications

Henriksson, D. and Olsson, T. (2004): “Maximizing the Use of
Computational Resources in Multi-Camera Feedback Control” In
Proceedings of the 10th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS04). Toronto, Canada.
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2

Background

2.1 Introduction

The use of external sensing in robotics has been an active research
topic for many years. Sensors in general, and vision sensors in partic-
ular, are used in the research community as well as in industry, for
tasks such as calibration, positioning and inspection.

Although current industrial robot systems have very limited sup-
port for external sensor feedback, much research on vision feedback
has been presented within the research community. In this chapter we
present some background on the use of cameras and other external
sensors for feedback control, with special focus on visual tracking and
feedback, and combined vision/force control.

2.2 Visual Sensing and Vision Based Control

A general dynamical model for visual servoing is given by

ẋ = f (x, u, v) (2.1)
y = h (x) + e (2.2)

where f is a function of the state x, the control input u, and the distur-
bance v, and the image-space output y is disturbed by additive noise

15



Chapter 2. Background

input e. The output y may be the entire image, or a vector of posi-
tions of key image features, such as corners, edges or other points of
interest.

It is common to assume that the manipulator is velocity controlled,
and to let the visual servoing system close the position loop. The open-
loop system will then contain “integrating” action. It is then possible
to partition the state vector, and in some cases to rewrite the dynamics
(2.1)-(2.2) as

ẋp = fp (xd, vp) (2.3)
ẋd = fd (xp, xd, u, vd) (2.4)
y = h (xp) + e (2.5)

where xp is a parameterization of the position, and xd describes ad-
ditional dynamic states, for instance velocities, accelerations and the
states of the actuator dynamics.

Control
Two fundamentally different choices for the controller structure ex-
ist, corresponding to image-based and position-based visual servoing
[Hutchinson et al., 1996]. In image-based visual servoing, the image
space output y is controlled directly to a desired position yr defined in
the image. In position-based visual servoing, an additional pose esti-
mation step is used in order to obtain an estimate of xp or the entire
state vector, which is used to compute the control signal u.

Image-Based Control. In image based techniques, the dynamics
of xd is often assumed to be considerably faster than the closed-loop
system. In this case, it is common use a model

ẋp = f(u) (2.6)
y = h (xp) + e (2.7)

where u is a commanded velocity. In many cases we can choose a
parameterization of u such that u = ẋp with f as the identity function.
A controller

u = f−1
(

KJ†(xp) (yr − y)
)

(2.8)

16



2.2 Visual Sensing and Vision Based Control

where J = Vh/Vxp is the image Jacobian or interaction matrix, and
where K is a positive definite matrix, will in general drive the system
so that y → yr, see [Hutchinson et al., 1996; Espiau et al., 1992].

The advantage of image-based techniques is that positioning ac-
curacy is independent of calibration accuracy, especially if the image-
space reference trajectory has been defined in a teach-by-showing ap-
proach [Hutchinson et al., 1996]. Therefore, image-based techniques
are suitable in situations where less information about the system pa-
rameters and environment is available. It should be noted however,
that the image Jacobian J(xp) is in general a function of the task-
space coordinates xp, specifically the depth (the Z-coordinate as shown
in Fig. A.1) of the features with respect to the camera. Therefore, some
task-space quantities need to be estimated or approximated, just as for
the position-based methods, described in the next section. Additionally,
in more complex servoing tasks the desired trajectories are often more
naturally defined in task space, and Cartesian models of the environ-
ment may be required for proper task and trajectory planning.

Position-Based Control. In position based techniques, the control
signal is computed based on a value of xp, computed from the image
data y by for instance so called pose estimation. In some situations,
such as for a small number of point features, there exist analytic so-
lutions to the pose estimation problem. Alternatively, non-linear least-
squares and other optimization based methods may be used. Usually,
the controllers are implemented in discrete time, and the value of xp
from the previous step may be used as a starting point for the iteration.

For control purposes, or if predictive capabilities are desired for
increased reliability of feature tracking, observer-based tracking are
useful. Traditionally, such methods are based on the Extended Kalman
Filter (EKF) or other linearized observers. In recent years, alternative
methods based on Sequential Monte Carlo methods, usually referred
to as Particle Filters, have generated substantial research interest
[Doucet et al., 2001]. In visual tracking, the most well known of these
methods is the CONDENSATION algorithm [Isard and Blake, 1998].

The main advantage of position-based methods is that the reference
trajectory, the measured position, as well as the control signal, can all
be defined in task-space coordinates. This simplifies the control prob-
lem, as the dynamic model is usually expressed in task-space, usually

17



Chapter 2. Background

Cartesian space. The main drawback of position-based control is that
it is less robust to calibration errors. Errors in camera calibration pa-
rameters will lead to errors in estimated pose, and consequent errors
in trajectories [Hutchinson et al., 1996].

Calibration
In almost all applications using vision based control, some calibration
procedure is required in order to find estimates of system parameters.
The most common examples of such parameters are camera positions
and internal camera parameters. Many different techniques exist for
off-line and online calibration of these parameters, here we will give a
brief review of the calibration techniques used in this work.

Intrinsic Camera Parameters. The intrinsic, or internal, cam-
era parameters describe the internal structure of the camera. For the
pinhole camera, as described in Appendix A, the intrinsic camera pa-
rameters are the focal length, skew, principal point, aspect ratio, and
possibly radial- and tangential distortion coefficients. Many methods
for camera calibration use a number of images of a special calibration
object to estimate the intrinsic and extrinsic camera parameters. The
extrinsic, or external, parameters describe the object position with re-
spect to the camera coordinate system. The calibration often consists
of one or several planar surfaces, covered with accurately placed mark-
ers. The images are taken from several different positions and orienta-
tions. In [Zhang, 1999], a method is presented in which both intrinsic
and extrinsic camera parameters are estimated using a linear method
followed by a nonlinear minimization step, based on several images
of a planar pattern. The method will find the set of parameters that
minimizes the reprojected image errors in a least-squares sense.

Extrinsic Camera Parameters and Hand-Eye Calibration. In
addition to the internal camera parameters, it is required to establish
the geometric relations between the sensor- and actuation coordinate
systems. The calculation of the relative position and orientation be-
tween the robot end-effector and a camera, which is mounted rigidly
on the end-effector, is referred to as hand-eye calibration. Finding this
relationship between the positions of the sensor- and actuator frames
is a standard problem in vision guided robotics, and many different

18



2.2 Visual Sensing and Vision Based Control

methods exist. The problem is usually formulated as finding the un-
known transformation X from the hand-eye equation

AX =XB, (2.9)

which is a special case of the Sylvester equation [Andreff et al., 2001],
where A = A−1

2 A1 and B = B2B
−1
1 are given by measurements of

the position and orientation of the robot hand, and of the camera with
respect to some object in the world, see Fig. 2.1. Typically a number
of movements are performed to get measurements of different A and
B, and use them to solve for X in Eq. (2.9). Both linear [Tsai and
Lenz, 1989a; Daniilidis, 1999] and non-linear methods [Horaud and
Dornaika, 1995] have been suggested. In [Tsai and Lenz, 1989a], it
was shown that at least two motions with non-parallel rotation axes
are required, and the problem was solved by dividing Eq. (2.9) into
two equations for rotation and translation, respectively. The method
of [Daniilidis, 1999] uses a dual quaternion representation of A and
B to simultaneously solve for the rotation- and translation parts of X
using linear methods.

For a multi-camera system, we also need to find the relative posi-
tions of the sensors. When the cameras are fixed in the workspace, we
can attach the calibration object to the robot end-effector itself. In Ap-
pendix B, the method used for multi-camera calibration in this thesis
is presented.

Robust Image Processing and Data Correspondence
In all visual servoing methods, the raw image data from the cameras
need to be compressed into a more compact representation in order for
the controller to be able to compute the control signal. The first step is
the image processing, where relevant image data is extracted into the
measurement y.

The raw image data is usually obtained in several channels, each
consisting of an array of data of dimensions height�width, with height
and width typically somewhere between 200 and 1600. For a digital
camera, such as the ones considered in this thesis, the number of chan-
nels is usually one, for pure intensity or grayscale images, or three,
for YUV or RGB color space images. The amount of data for a single
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Chapter 2. Background

PSfrag replacements

A1

A2

B1

B2

XX

Figure 2.1 Two different positions of the robot, with the frames relevant to
hand-eye calibration.

image is generally in the range between 100 kB and 4 MB, and pro-
cessing the entire image at a sufficiently fast sample rate may require
very large computational resources. Methods that process the entire
image have been developed, such as methods based on optical flow
[Allen et al., 1991], and eigenspace methods, in which the image space
is represented by a small number of eigenimages, see [Schuurman and
Capson, 2004; Deguchi and Noguchi, 1996].

For real time applications however, most methods work by extract-
ing positions of image features. Features are either parts of the image
with sharp changes in intensity, such as edges, corners or markers,
or textured and/or colored surface patches. The first type can often
be detected and localized using convolutions with suitably chosen ker-
nels, while textured surface patches can be found and tracked using
area correlation based methods, such as the SSD (Sum of Squared
Differences) method.

20



2.2 Visual Sensing and Vision Based Control

Robustness. In all visual processing systems, there exists a risk
for false matches. In order to design the system to be robust to such
image processing errors, methods such as RANSAC (Random Sampling
Consensus) [Fischler and Bolles, 1981] or ICP (Iterated Closest Point)
[Besl and McKay, 1992], are often used to match features and eliminate
outliers from data sets. Such data association methods are useful for
robust pose estimation and 3D-reconstruction in the presence of large
numbers of outliers.

In order to minimize the number of false matches, feature based
methods are often combined with window-based tracking, in which
features are followed through the image sequence frame by frame. By
searching for the feature only in a small image window around the pre-
dicted position, we increase efficiency and decrease the risk for false
matches [Hutchinson et al., 1996]. If an observer-based pose estima-
tion technique is used, the position of the feature search windows can
be obtained from the predicted position xp computed at the previous
sample.

Nonlinear Estimation for Visual Tracking
In dynamic vision problems, it is often desired to estimate the states
of a general nonlinear system

x(k+ 1) = fd (x(k), u(k), v(k)) (2.10)
y(k) = hd (x(k), e(k)) (2.11)

usually expressed in discrete time. The main difficulties in such prob-
lems are the nonlinearities of the system, together with potentially
complex noise models and parameterizations of the state space.

Kalman Filtering Methods. Traditionally, the most common method
for nonlinear estimation in dynamic vision problems has been the Ex-
tended Kalman Filter (EKF). The EKF is obtained by using a standard
Kalman Filter and linearizing the process model around the current
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Chapter 2. Background

estimates. The equations for the EKF are given by the equations

x̂(k+ 1hk) = fd(x̂(k), u(k), 0) (2.12)
P(k+ 1hk) = AkP(k)AT

k +WkQkWT
k (2.13)

Kk = P(khk−1)HT
k (HkP(khk−1)HT

k + EkRkET
k )−1(2.14)

x̂(k) = x̂(khk−1) +Kk(y(k) − hd(x̂(khk−1), 0)) (2.15)
P(k) = (I−KkHk)P(khk−1) (2.16)

where Qk and Rk are the covariance matrices for v(k) and e(k), and
where

Ak = Vfd

Vx
(x̂(k), u(k), 0) (2.17)

Wk = Vfd

Vv
(x̂(k), u(k), 0) (2.18)

Hk = Vhd

Vx
(x̂(k), 0) (2.19)

Ek = Vhd

Ve
(x̂(k), 0) (2.20)

(2.21)

the Jacobians of fd and hd from the process model in Eq. (2.10) and
Eq. (2.11).

Although the EKF works well in many vision applications, it has
several important problems. A practical problem is that in many ap-
plications the measurement y ∈ IRn is a very high-dimensional vector.
The most computationally expensive part of the EKF computations
is then the update of the Kalman gain Kk in Eq. (2.14), which will
have a time complexity of O(n3). In [Wunsch and Hirzinger, 1997] it
was suggested to use to EKF with the measurement defined in task
space instead of image space, thereby decreasing the dimension of y.
For systems with linear state dynamics but a nonlinear measurement
equation h, it is often possible to use a Kalman filter with O(n) that
linearizes only the measurement equation and uses a covariance esti-
mate (HT

k Hk)−1σ 2, as shown in Chapter 5.
The linearized and approximative nature of the EKF is also a prob-

lem in vision applications, where both the state dynamics and the
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2.2 Visual Sensing and Vision Based Control

measurement equations are usually highly nonlinear. Recently, the so
called unscented transformation has been introduced as a method to
propagate mean and covariance information through nonlinear trans-
formations. The resulting Unscented Kalman Filter (UKF) has been
reported to perform significantly better than the EKF in many appli-
cations, both in accuracy and in computational efficiency [Julier and
Uhlmann, 2004]. The UKF has also been interpreted as a special case
of the so called linear regression Kalman Filter (LRKF), in which the
nonlinear process and measurement functions f and h by statistical
linear regression, see the note by [Lefebvre et al., 2002] and the reply.

Particle Filter. Particle filtering was presented in [Gordon et al.,
1993] as an alternative to the EKF. The key idea in particle filtering
is to use a sample based representation of the conditional probabil-
ity density function p(xkhy1:k) of the state given the measurements.
This pdf is represented by a set of random samples or particles with
associated weights, which are updated based on the current measure-
ments and particle likelihoods. As the number of particles increases,
this characterization approaches that of the optimal Bayesian estimate
[Arulampalam et al., 2002].

The main advantage of particle filters is their ability to handle
non-Gaussian, non-linear systems without explicit linearization. This
makes them suitable for problems in computer vision, where nonlin-
ear motion models and complex state and position representations are
common. Handling multi-modal probability distributions is especially
important for robustness in visual tracking. In many situations, se-
vere background clutter can easily cause the EKF to lose track, due to
the unimodal nature of the probability distributions [Isard and Blake,
1998]. A drawback is the large computational power required, as the
number of particles needed in practice increases rapidly with the di-
mension of the state space. Fewer particles may be used if particles are
chosen according to some suitable proposal distribution [Arulampalam
et al., 2002]. Better proposal distributions may be generated by com-
bining the particle filter with Kalman filter or unscented filters, into a
Kalman particle filter or unscented particle filter [Li et al., 2003].

23



Chapter 2. Background

2.3 Force Control and Sensor Fusion

The nature and limited accuracy of vision based control makes it dif-
ficult to control interaction with objects in the environment. An in-
teresting solution is to combine force control and visual servoing in a
multi-sensor control system. Perhaps the most obvious approach to the
problem is to combine the measurements from the cameras and force
sensor using multi-sensor fusion methods. However, force- and visual
sensors are fundamentally different in that they measure very differ-
ent physical phenomena, which could make such an approach difficult
to use in practice.

Over the last decade, some work on image based vision/force control
has been presented. In [Nelson et al., 1995] three different strategies
are presented, traded control, hybrid control, and shared control. In
traded control each degree of freedom is controlled by both force- and
visual control, with switching between the sensors based on the sensor
signals. In hybrid control the task space is divided into orthogonal
force- and vision controlled directions, so that each degree of freedom
is controlled by one sensor only. Finally, in shared control both sensors
are used simultaneously in each degree of freedom. In this case, the
stability analysis must take coupling effects between the force control
and vision control actions into account, such as the effects of inertial
forces on the force sensor [Nelson et al., 1995].

In [Zhou et al., 1998] an application of image-based vision/force
control in micro-manipulation is demonstrated. They use a traded con-
trol law which switches between proportional force control and optimal
image-based visual servoing. The method presented in [Baeten et al.,
1999] uses Mason’s task frame and a high level task description to de-
termine how to use each sensor in hybrid force/vision control. [Hosoda
et al., 1996] present a shared adaptive technique, where the image
Jacobian and the slope of the constraint surface are estimated online
from sensor data. Another hybrid and adaptive technique has been
presented in [Pichler and Jägersand, 2000].

An application of position based force/vision control in flexible as-
sembly is presented in [Jörg et al., 2000], with a demonstration of
mating of moving parts. The pose estimation was based on features
extracted with the Hough Transform [Trucco and Verri, 1998], using
a non-linear Kalman filter for estimation of the circular motion of the
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2.3 Force Control and Sensor Fusion

moving target. Experimental results with a hybrid technique which
takes the robot dynamics into account was presented in [Xiao et al.,
2000].

As an alternative to direct force control, impedance control aims
to achieve a certain dynamical behavior of the end-effector position
and orientation in response to external forces [Hogan, 1985; Siciliano
and Villani, 1999]. Using an inner motion control structure, the motion
controller is made to track the pose of the so called compliant frame,
denoted by Σc. The impedance relation is a relation on the form

MI
d2x
dt2 +DI

dx
dt
+KIx = f (2.22)

where x is the relative position of the compliant frame with respect
to the reference frame Σd, f is the external force, and MI , DI and KI
are positive definite matrices which can be interpreted as the effective
mass, damping, and stiffness, respectively. In [Morel et al., 1998] the
use of vision/impedance control is proposed, and demonstrated in a
peg-in-the-hole insertion task. The target impedance was chosen as
a pure damping. It was shown that for low bandwidth a separation
property holds, so that overall stability is guaranteed if the force- and
impedance controllers are stable separately.
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3

Interface for External
Control of an Industrial
Robot

3.1 Introduction

In general, industrial robots are designed to handle repetitive tasks
in well-known, well structured environments. There are many types
of tasks however, in which time-consuming calibration procedures or
large workpiece variations make it difficult for standard industrial
robots to operate efficiently. In several cases, external sensors and
feedback can be used in order to overcome these difficulties. Examples
of such tasks are polishing and other material removal procedures,
in which some type of mechanical compliance is required in order to
avoid damage to the workpiece. As an alternative to passive compli-
ance, active force sensing and feedback control can be used in order
to accurately control the interaction between the robot and the work-
piece. Unfortunately, even in modern robot control systems, there are
no interfaces which can be used for feedback control with sufficient
performance from external sensors.

This chapter presents an interface developed for external control,
designed by extending an ABB S4CPlus industrial robot control sys-
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Chapter 3. Interface for External Control of an Industrial Robot

Figure 3.1 Structure of the extended ABB S4CPlus control system, with sup-
port for external control from JR3 force sensors. The references of the S4CPlus
system are modified at a 4 ms sampling rate.

tem. Results from experiments, where the designed interface was used
for force controlled grinding and deburring, are presented.

3.2 Structure of S4CPlus Extensions

In this section a brief description of the structure of the extended ABB
S4CPlus control system is given. A more detailed desription of the
complete system, together with a discussion of other issues considered
in the design and implementation, is given in [Blomdell et al., 2004].

The structure of the extended ABB S4CPlus control system can
be seen in Fig. 3.1. In standard S4CPlus, the high-level task descrip-
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tion is converted into program code written in the robot programming
language RAPID. The RAPID program execution will then convert the
instructions into trajectories for the internal arm and motor controllers
responsible for the low-level motion control. The standard S4CPlus con-
troller does not permit low-level external sensor feedback. On a high
level there is a possibility to read sensors via customer IO, and in-
fluence the robot task according to instructions written in the RAPID
language. However, since the sampling frequency is limited to around
10 Hz, and large time delays are present in the trajectory generation
step, the achievable bandwidth on the RAPID level is far too low for
most force control applications.

In the extended system, the RAPID program is extended with in-
structions for the external control, such as references, parameters, and
activation/deactivation commands for the force controllers. The exter-
nal instructions are encoded as xml-style tags and added as comments
in the RAPID code. The part of the RAPID program without the ex-
tended instructions is then sent to and interpreted by the S4CPlus sys-
tem and used in the trajectory generation, while the extended instruc-
tions are processed by a Master PC, responsible for communication
and synchronization between the S4CPlus and the external controller.

For safety and efficiency reasons, the external controllers are imple-
mented on a separate Motorola PPC-G4 PrPMC-800 processor board,
mounted on an Alpha-Data PMC-to-PCI carrier board with a local PCI
bus. In each sample, the references and parameters necessary for the
external control are copied from the S4CPlus to the external controller
board over the PCI bus, using a shared memory interface between the
the built-in motion control and the external controller. The external
controller modifies the references for position, velocity and torque ac-
cording to sensor data and the active control algorithm, and values are
copied back to the S4CPlus system, where safety checking is performed
on the updated references.

To accomplish interrupt driven hard real-time execution of the con-
trollers with shared memory communication, the external controller
is run as a Linux kernel module on the PowerPC board. All parts of
the force controller were implemented as Simulink block diagrams, see
Fig. 3.7. The Simulink models were converted into C code using Real-
Time Workshop from MathWorks, and cross compiled to the target
computer and incrementally linked to form the Linux kernel module.
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The Controller Interface
Fig. 3.2 shows the Simulink interface between the external controller
and the S4CPlus system. This interface was developed primarily for
force control applications, but can easily be used or extended for other
types of sensor feedback. The following is a description of all input-
and output signals currently defined. The inputs are obtained from the
S4CPlus system at a 4 ms sampling rate, giving an effective sampling
frequency of 250 Hz for the external control.

Irb2Ext_vect is the input vector signal from the S4CPlus system,
generated in the interface to the controller. This signal is divided
into a number of subsignals as described below.

parKp, parKv, parKi, parTrqMin, parTrqMax are internal con-
troller parameters of the S4CPlus motion control, and are
currently not used.

posRaw, posFlt are the raw and filtered motor angle position
measurements, respectively.

velRaw, velFlt are the raw and filtered motor angular velocity
measurements, respectively.

velOut is currently not used.
trqRaw, trqFlt are the raw and filtered motor torque measure-

ments, respectively.
trqOut is currently not used.
posRef is the position reference of the internal motion controller.
velRef is the velocity reference of the internal motion controller.
trqRef is the motor torque reference of the internal motion con-

troller.
trqFfw is a motor torque feedforward signal.
trqDis, rP, uP are currently not used.

Ext2Irb_vect is the output vector signal copied back to the S4CPlus
system. This signal is divided into a number of subsignals as
described below.

parKx are the updated internal parameters of the S4CPlus mo-
tion control.
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Figure 3.2 Structure of the signal interface between the external controller
and the S4CPlus system.
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posRef, velRef, trqRef are the updated references for the in-
ternal motion controller.

trqFfw is the updated motor torque feedforward signal.
trqDis is currently not used.
extMode is currently not used.

withForce is an software activation switch for the external control,
set to zero when the external control is deactivated. This is nor-
mally used to allow the external controller to safely reset its
states to safe values.

Optidrive_force is the force measurement from the optional compli-
ant Optidrive force sensor.

forceRef_vect is the force reference, expressed in the coordinate sys-
tem of the tool.

forceSensor_vect is the force measurement from the 6-axis JR3 force
sensor, expressed in the internal coordinate system of the sensor.

tcpFrame_vect is the pose of the tool frame with respect to the flange
of the robot hand, expressed as an orientation quaternion and a
translation vector, and used for conversion of the force vector
signals between the frames.

dynCompData_vect, gravCompData_vect contains data about the
geometry, mass and moments of inertial of the tool. This is used
for compensation of the effects of inertial- and gravity forces on
the force measurement.

impedance_vect is a vector of impedance parameters for the con-
troller, containing the diagonal elements of the matrices MI , DI
and KI in Eq. (3.1) and (3.2).

safetyZone_vect is an optional vector of safety zone parameters, de-
scribing the zone around the nominal robot trajectory in which
the references are allowed to be modified by the external con-
troller.

sensorFrame_vect is the pose of the force sensor frame with respect
to the flange of the robot hand, and is used for conversion of the
force vector signals.

32



3.3 Force Controller Structure

pF_select_vect is a vector describing the directions in the tool frame
in which the external control is activated in a hybrid force/position
controller.

extRef_vect is an external measurement signal from an optional higher
level sensor, such as a vision system or a laser tracker.

dataLog_vect contains up to seven 6-vectors, which are sent to the
Master PC for display or logging.

extData_vect is an output data vector, which is sent to the Master
PC and used for synchronization.

3.3 Force Controller Structure

The Simulink model of the designed impedance controller is seen in
Fig. 3.7. The central part of the controller is the impedance block.
The impedance block is described by the rotational and translational
impedance relations

MItrans

d2tdc

dt2 +DItrans

dtdc

dt
+KItrans tdc = f− fr (3.1)

MIrot

d2φdc

dt2 +DIrot

dφdc

dt
+KIrotφdc = TT(φdc)(τ − τ r) (3.2)

where f and τ are the measured force and torque vectors, which has
been compensated for gravity and expressed in the tool coordinate sys-
tem, fr and τ r is the reference force/torque vector, tdc = tc − td and
φdc = φ(RT

c Rd) are the translation vector and Euler XYZ angles de-
scribing the pose of the compliant frame Σc with respect to the refer-
ence frame Σd. T is a Jacobian matrix relating angular velocities to
time derivatives of Euler angles [Siciliano and Villani, 1999].

In each sample, the contact force and torque are measured using
a force/torque sensor and compensated for the effects of gravity. The
position and velocity of the compliant frame are obtained from inte-
grating Eqs. (3.1) and (3.2), and add them to the position and velocity
of the reference frame. The corresponding positions and velocities of
the robot joints are calculated through the inverse kinematics, and
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Figure 3.3 Grinding with Irb 6400 industrial robot, constant force reference
of 150 N.

used as the new reference for the robot motion control. If necessary,
the effect of the contact force on the motion control can be compen-
sated for by feed-forward from the measured disturbance forces to the
control torque.

Using the impedance controller, the dynamic behavior of the robot
in contact can be influenced directly from the parameters given in a
robot program. Many different types of behaviors can be achieved. By
setting the stiffness parameters KItrans and KIrot to zero, we obtain a
controller with integral action, which will dominate the position con-
trol in order to achieve the desired contact force [Siciliano and Villani,
1999]. Such a controller can be seen as a parallel position/force control
structure, where all available degrees of freedom are controlled by both
position and force control simultaneously. Alternatively, a hybrid posi-
tion/force control structure could be used, where the contact force is
accurately controlled in some degrees of freedom, while the remaining
degrees of freedom are under position control.
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Figure 3.4 The workpiece of aluminum used in the deburring experiments.
The burr height varied between 2 and 7 mm.

3.4 Experiments

The impedance controller was used in force controlled grinding and
deburring as part of the Autofett project (www.autofett.org).

Force Controlled Grinding
The impedance controller was used in grinding experiments on an ABB
Irb6400 robot at the company Kranendonk, the Netherlands. The spe-
cial grinding tool used was developed at KU Leuven, Belgium. Instead
of the 6-axis JR3 force sensor, a compliant Optidrive sensor was used
to measure the contact forces. The results from an experiment with a
force reference of 150 N in the normal direction of the surface, and a
speed along the surface of 10 mm/s, is shown in Fig. 3.5. The distur-
bance that can be seen at time t � 15 s is caused by a resonance, which
occurs when the grinding tool moves across the hole in the workpiece
seen in Fig. 3.3.

Force Controlled Deburring
In order to illustrate the use of the stiff 6-axis JR3 force sensor on a
workpiece with more complex geometry, a deburring experiment was
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Figure 3.5 Top: Contact force during grinding experiment, with force reference
150 N. Bottom: Power spectrum estimate of the resulting force signal, clearly
showing the rotation frequency of the grinding stone at 72 Hz. Additional reso-
nances of the workpiece and fixture can also be seen.
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Figure 3.6 Contact force and during deburring experiment, with force refer-
ence 40 N.

performed using the workpiece shown in Fig. 3.4. The experiments
were performed at the Robot Lab of Lund Institute of Technology, using
an Irb 2400 industrial robot.

An approximate trajectory was programmed along the burr on the
surface of the workpiece, and the force control was programmed to
maintain a desired contact force of 40 N in the normal direction of the
surface. In order to follow the trajectory, both the tool orientation and
the force controlled direction had to be changed at certain points along
the trajectory. The reorientations, together with the high stiffness of
the contact and the roughness of the surface on which the milling tool
is rolling, causes the variations in the measured contact force.

3.5 Summary

In this chapter the interface for external control has been described,
designed by extending an ABB S4CPlus industrial robot control sys-
tem. The system extensions make it possible to modify the references
of the internal motion control on the 4 ms level. This makes it useful
for high bandwidth feedback control, such as contact force control.

Using the extended system, force- and impedance controllers have
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been designed and tested. Results from experiments where the de-
signed controllers were used for force controlled grinding and debur-
ring are presented.

Further experiments, where the force controllers are combined with
feedback from a multi-camera system will be presented in Chapter 5.
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4

Image-Based Hybrid
Vision/Force Control

4.1 Introduction

There are situations where a position-based visual tracking and servo-
ing technique can not be used. One reason could be that the calibration
accuracy of the camera system is insufficient for a reliable computa-
tion of task space position. In other situations the positioning task is
naturally specified in image space, for instance when the robot tool is
to follow a visible structure in the image, such as an edge or a pattern
of markers. In these cases, a possible solution is to use an image based
technique [Hutchinson et al., 1996].

In this chapter, an image-based force/vision control algorithm is
presented and demonstrated, based on a hybrid force/vision control
structure. The control algorithm involves a force feedback control loop
and a vision based reference trajectory as a feed-forward signal. Far
away from any constraints, the robot can be controlled by uncon-
strained visual servoing only. When close to the constraint surface,
one or several degrees of freedom should become force controlled in
order to accurately control the interaction with the constraint surface.
The remaining degrees of freedom should then be controlled by a con-
strained visual servoing algorithm. The unknown constraint equations
can be estimated recursively from the available sensor data.
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4.2 Image Based Visual Servoing

We assume a setup of the camera/robot system as described in Ap-
pendix B. Two fixed cameras are observing the tool, which is rigidly
attached to the end-effector. We assume the dynamic model for a ve-
locity controlled robot

ẋp = f(u) (4.1)
y = h (xp) + e (4.2)

where xp is a parameterization of the robot end-effector position, u is
a vector of the desired translational and angular velocity (a velocity
screw), and y is a vector of image feature measurements.

In an image-based visual servo, the control error is defined directly
in image space as yr −y, where yr is the desired position of the image
features. A simple control law that would drive y → yr is given by

u = f−1
(

kv
[
Jl,r

v (xp)
]† (yr − y)

)
(4.3)

where kv is a constant gain, and
[
Jl,r

v (xp)
]† is the pseudo-inverse of the

stereo image Jacobian, which relates image space velocities ẏ of the
features to the corresponding end-effector velocity in Cartesian space
by

ẏ = Jl,r
v (xp)u. (4.4)

Note that the image Jacobian is in general a function of the Carte-
sian coordinates xp, which means that we need some Cartesian infor-
mation to calculate it exactly, usually the depth of the imaged points in
the cameras. We can obtain approximate depth information by using
the data from the calibration of the camera system and the robot kine-
matics. Alternatively, the depth information could be obtained from the
stereo images. Some care needs to be taken however, as the robustness
to depth estimation errors can be extremely poor in situations where
the image Jacobian is poorly conditioned [Malis and Rives, 2003].

When using stereo cameras, the combined Jacobian for the stereo
system is obtained by stacking the Jacobians for the individual cam-
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eras [Martinet and Cervera, 2001]

Jl,r
v (xp) =

(
Jl

v(xp)Ml
b

Jr
v(xp)Mr

b

)
(4.5)

where Ml
b and Mr

b are the transformation matrices for the screw, from
the robot base frame to the left and right cameras respectively, and
Jl

v(xp) and Jr
v(xp) are the Jacobians for the left and right cameras,

expressed in the camera coordinate systems. The exact form of these
Jacobians for point features can be found for instance in [Hutchinson
et al., 1996]. The screw transformation matrix for the cameras is given
by

Mi
b =

(
Ri

b
[
ti

b�
]

Ri
b

03�3 Ri
b

)
, i ∈ {l, r} (4.6)

where Ri
b and ti

b describe the relative position of camera i with respect
to the robot base frame.

Constrained Motion
The constraint on the reference trajectories is that the motion should
be in the plane p̂ in Cartesian space defined by

pTxp = 0 (4.7)

where p̂ = (p1 p2 −1 p4)T and x̂p = (X Y Z 1)T . Differentiating
this expression leads to an equation

pT ẋp = 0 (4.8)

for the constrained velocity ẋp =
(

Ẋ Ẏ Ż
)T of the end-effector, with

p = (p1 p2 − 1)T .
The purely translational motion on the surface of the plane is now

given by

ẏ = Jl,r
v (xp)




1 0
0 1
p1 p2



(

Ẋ
Ẏ

)
=

= Jl,r
v,c(xp)

(
Ẋ
Ẏ

)
(4.9)
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It is obvious that if Jl,r
v (xp) has full rank, so has the reduced image

Jacobian Jl,r
v,c(xp). The constrained vision based control law becomes

simply

ẋc = kv




1 0
0 1
p1 p2



[
Jl,r

v,c(xp)
]+ (yr − y) (4.10)

As the constraint itself, described by Eq. (4.7), is in general un-
known, a method for its determination is required. A method based on
local estimation of the constraint using measurements of forces and
torques is suggested in [Xiao et al., 1998]. Usually the low signal-to-
noise ratio of the force sensor, in combination with large friction forces,
makes this method less suitable. Instead we estimate the parameter
vector p̂ using a recursive least-squares method and the equations

(
Xm Ym (Zm − Fz/kz) 1

)
p̂ = 0 (4.11)

(p1, p2, − 1)
([

Jl,r
v (r))

]+ (yr − y)
)T
= 0 (4.12)

where Xm, Ym and Zm are the measured Cartesian coordinates for
the end-effector obtained from the robot kinematics. Eq. (4.11) is de-
rived from Eq. (4.7), where the z-coordinate is calculated from the
measured force Fz and the stiffness kz of the spring-mounted tool in
the z-direction, the direction in which the tool is pointing. Eq. (4.12)
is derived from Eq. (4.8) and the fact that in an accurately calibrated
stereo system, the unconstrained Cartesian velocities ẋp obtained from
the control law will produce trajectories that are in the direction of the
target. If the system is moving between two points that both lie in
the constraint plane, then all the velocity vectors ẋp(t) will be approx-
imately parallel to the plane. The purpose of Eq. (4.12) is to use the
predictive capability of the visual information in the estimation of the
slope, which can be expected to speed up the convergence.

Note that in Eq. (4.11) it is required that the stiffness kz is known.
However, it is possible to use just a rough estimation, since the force
control will keep Fz approximately constant. Because of this the slope
of the plane should still be estimated correctly.
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4.3 Hybrid Force/Vision Control

We use a proportional motion rate controller

ẋF =
(

02�1

kF(Fr − F)

)
(4.13)

where Fr is the reference for the force F in the z-direction. If we com-
bine this with the vision based reference trajectory of Eq. (4.10), the
hybrid control law becomes

ẋH = ẋF + ẋc =
(

02�1

kF(Fr − F)

)
+

+ kv




1 0
0 1
p1 p2



[
Jl,r

v,c(xp)
]+ (yr − y) (4.14)

4.4 Example - Vision Supported Drawing

We have set up an experimental system in the Robotics Lab at the
department of Automatic Control at Lund Institute of Technology. The
system consists of a 6-degree-of-freedom ABB Industrial Robot 2000
equipped with a 6DOF JR3 force/torque sensor, and two Sony DFW-
V300 digital cameras working at a frame rate of 30 images/second. The
cameras send image data through a 400 Mbps IEEE-1394 connection
to a standard 450 Mhz WindowsNT PC where the image processing
is performed. The extracted feature point locations are then sent to
a Sun Ultra60 computer running a Matlab/Simulink version of the
vision/force controller. The sampling period of the controller is 67 ms.
The low level joint position control is handled by an open robot control
system, which is described in [Nilsson, 1996].

A simple and illustrative task is chosen to test the performance
of the presented methods. Two objects are placed in the view of both
cameras, a pen and a white-board. The exact position and orientation of
the objects is unknown, but the pen is standing in the vertical position.
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On the white-board, a number of dots are drawn in random positions.
The system should be able to align the end-effector with the pen and
grasp it, and use it to connect the dots on the white-board with lines as
in Fig. 4.5. The control should keep the contact force constant during
the drawing phase. The exact location of the board should be estimated
accurately using available sensor data.

The experiment is divided into an off-line and an online phase.
Off-line, the robot, with the tool replaced by a planar calibration ob-
ject, moves into a number of different positions, and the locations of
48 coplanar features on the object are measured in each image. We
then use the calibration procedure described in Appendix B to find the
intrinsic camera parameters, as well as the sensor-sensor and sensor-
actuator transformations Tc1

c2
and Tc1

b shown in Fig. B.1. Experiments
with real and simulated data show that Tc1

b and Tc1
c2

can be estimated
with an error in translation of approximately 2 cm, and an orienta-
tion error of 1○ in the Euler angles, using four different positions of
the robot end-effector. In theory, more accurate calibration could be ob-
tained by using more calibration positions. In practice, however, other
limiting factors exist, such as the accuracy of the models of the cali-
bration object and camera nonlinearities, such as radial distortion. An
analysis of the effects such errors can be found in [Zhang, 1999].

Online, the robot end-effector is aligned with the pen using 4-
degree-of-freedom visual servoing. Once the pen is grasped, we use
visual servoing to guide the pen to the board, and once contact with
the board is established, the force/vision control makes the robot con-
nect the dots.

Results
In Fig. 4.1 we see the measured force in the force controlled direction.
The force control is switched on at t = 5.3 s and contact is achieved at
t = 5.5 s. Note the large initial influence of the inertial forces during
the acceleration at t = 0.

The final estimation of the plane parameters is

p̂ = (−0.0461 0.0128 − 1 1.235)T ,

which can be compared to the true values

p̂r = (−0.0478 0.0155 − 1 1.237)T
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Figure 4.1 Measured force F and reference Fr = 2 N.

obtained from an accurate measurement where the robot was manually
positioned so that it just made contact with the plane at five different
locations. The recursively estimated parameters can be seen in Fig. 4.2.
The estimation is started at t = 6.7 s. In Fig. 4.3 a), c), and d) we see
the residuals for Eq. (4.11), their autocorrelation, and the histogram
of the residuals. The residuals for Eq. (4.12) can be seen in Fig. 4.3
b). Note that t = 0 in Fig. 4.3 a) and b) corresponds to t = 6.7 s in
Fig. 4.1.

The trajectory of the tip of the pen in Cartesian space can be seen
in Fig. 4.4, and the corresponding image-space trajectories can be seen
in Fig. 4.5.
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Figure 4.2 Plane parameters p1, p2 and p4.

4.5 Discussion

We see from Fig. 4.1 that the force overshoots slightly at the beginning
of the first line at t � 7s. The reason is that the estimate of the plane
parameters p̂ has not yet converged, and the accuracy of the reference
trajectories from the vision system is therefore limited by the relatively
low accuracy of the cameras. The combined stiffness of the environment
and the spring-mounted pen is estimated to 400 N/m, which means
that the overshoot corresponds to an error of approximately 1.5 mm in
the reference trajectory.

Other sources of error are the quantization effects and the noise
resulting from errors in the image feature extraction, most clearly seen
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Figure 4.3 a) Residuals in Eq. (4.11). b) Residuals in Eq. (4.12). c) Autocorre-
lation of the residuals in Eq. (4.11). d) Histogram of the residuals in Eq. (4.11).

in Fig. 4.5. This will result in noise in the reference trajectories and
the resulting contact forces, see Fig. 4.1.

The estimation of the plane parameters changes stepwise, with fast
convergence to the final value at time t = 13.3 s, the start time for
the drawing of the second line. The estimated values at t < 13.3 s
reflect the slope of the plane along the first line. The small error in
the estimation is caused by the noisy data from the force sensor, errors
in the estimation of the stiffness of the spring, and calibration errors.
Another reason is that the board is flexible, and is therefore deformed
slightly by the contact forces.
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Figure 4.4 Trajectory of the pen, Cartesian space.

In Fig. 4.3 c) and d) we see that the residuals of Eq. (4.11) are
approximately uncorrelated, Gaussian white noise. The residuals of
Eq. (4.12) seen in Fig. 4.3 b) are of course not white noise, since they
are affected not only by random image-space errors, but also by the
constant errors in the Cartesian data estimated in the calibration. In
general, the maximum error in ż decrease to a value around 2 ⋅ 10−3

m/s at a velocity in the x-y plane of 0.15 m/s, roughly corresponding
to an error in the slope of the plane of around 1○. This agrees well with
the estimated calibration accuracy.
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Figure 4.5 Pen trajectories in the image planes.

4.6 Conclusion

In this chapter, we have described a method for combining visual ser-
voing methods with force control, based on explicit estimation of the
position of an unknown planar constraint surface. The method differs
from previous work [Xiao et al., 1998] in that it does not rely on as-
sumptions of negligible friction, or the possibility to recover the normal
of the plane from accurate measurements of contact forces and torques.
Instead, we use data from a calibrated robot and camera system to es-
timate the constraint location. The main drawbacks of this approach
are that it requires the constraints to be (piecewise) planar surfaces,
and that calibration is required. The method is shown to work in prac-
tice in experiments involving force controlled, vision guided drawing
on a planar surface.
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5

Position-Based Hybrid
Vision/Force Control

5.1 Introduction

Position-based visual servoing techniques require some type of pose
estimation, since the feedback law is defined in the workspace of the
robot, rather than directly in the image. Accurate and robust track-
ing and estimation of the position of rigid objects using measurements
from one or several cameras has been an active research topic for
many years. Many methods for rigid body tracking work by minimizing
some measure of the image space error as a function of the unknown
position and orientation parameters, using standard non-linear opti-
mization methods [Drummond and Cipolla, 1999; Martin and Horaud,
2002], or Kalman filtering techniques [Lippiello et al., 2002; Olsson
et al., 2003]. In [Wunsch and Hirzinger, 1997] it was suggested that
the output from the pose estimation should be used as input for the
Kalman filter, in order to avoid the high computational complexity
required when the output is a high-dimensional image-space vector.
The position and orientation can be parameterized in different ways,
such as roll-pitch-yaw angles [Lippiello et al., 2002], quaternions or
dual quaternions [Olsson et al., 2003]. There are also various ways to
measure the image space error, the most common measurements are
the positions of point features [Lippiello et al., 2002], lines, or point-
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to-contour errors [Drummond and Cipolla, 1999; Martin and Horaud,
2002]. The point-to-contour method has a major advantage in that it
does not require the exact matching of features, only the error in the
normal direction at a number of points on a contour. This only requires
a one-dimensional search for features (edges).

In this chapter we demonstrate how to achieve high performance six
degree-of-freedom combined vision/force control for interaction with a
stiff uncalibrated environment. It is shown how a process with linear
dynamics in task space, together with a standard formulation for an
edge-based rigid body tracker, can be used to design an observer with
linear error dynamics, which avoids the high O(n3) time complexity of
the Extended Kalman Filter described in Chapter 2.

5.2 Controller for Force/Vision Control

Modeling
Assume that M cameras are placed in fixed locations, viewing a target
object whose position and orientation with respect to some fixed (world)
coordinate system should be estimated. The position and orientation
is parameterized as xp ∈ IRn where typically n = 6. The image data is
compressed into a vector y ∈ IRN , usually the image space coordinates
of corners, edges and other features. If the geometry of the target is
known, xp and y are related by the projection equations of the cameras

y = h(xp) (5.1)

which is usually a very complex non-linear function. The most com-
monly used camera model is the homogeneous form pinhole camera
projection equation, which in our case becomes

yi = hi(xp) =
1
Zi

KTcwTwo(xp)Xi, i ∈ [1, N] (5.2)

where K is a matrix of intrinsic camera parameters, Xi is an object
point expressed in the coordinate system of the object, Zi is the depth
of the point in the camera, and Tcw and Two(xp) are the homogeneous
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coordinate transformation matrices between the target object and the
world coordinate system, and between the world coordinate system
and the camera, respectively. The parameterization xp of Two is the
unknown position/orientation to be estimated. In the following, the
camera position Tcw is assumed to be known. This is not a restriction
in situations where only the relative pose of two tracked objects is to
be controlled, since the position of the world coordinate system is arbi-
trary. Only the relative positions of the cameras need to be accurately
calibrated, in order to be able to relate measurements from different
cameras.

We assume that the task space dynamics of the motion controlled
manipulator can be modeled as a linear system, which together with
the nonlinear measurement equation gives the Wiener-type model

{
ẋ = Fx+Gu
y = h(xp)

(5.3)

where u is the input, and x is the state vector typically consisting
of the position xp and velocity of the end-effector in the task space,
and possibly other states depending on the model of the dynamics. For
relatively low bandwidth systems, such as vision based controllers, the
approximation of the complex closed loop robot dynamics with a linear
system of relatively low order is a reasonable. The output y in Eq. (5.3)
is the vector of image features obtained from the images, and h is given
by Eq. (5.2), for each point.

For the pinhole camera, the task space position xp could in general
be obtained from a pose estimation as

xp = h−1(y) (5.4)

and used in a feedback control law in order to control the task space
position [Wunsch and Hirzinger, 1997]. The pose estimation is typically
performed using some type of iterative least-squares optimization algo-
rithm, using the previous position as a starting point for the iteration.
However, near singular configurations, where the Jacobian of h loses
rank, the pose estimation becomes very inaccurate [Martin and Ho-
raud, 2002]. An example of such a situation is when the relative depth
of the object points is small, for instance when viewing a small object
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at a long distance from the camera. In such cases, a very accurate
estimation of the depth Zi of each point may be required in order to
maintain stability [Malis and Rives, 2003].

Vision-Based Observer
By exploiting the dynamic model in Eq. (5.3), we could obtain extra
robustness and noise suppression. Since almost all real-time pose es-
timation algorithms work by updating an initial guess or prediction of
the state, we use a state observer on the form

dx̂
dt
= Fx̂+Gu+K∆̂p (5.5)

where ∆̂p is an estimate of the relative pose between the prediction and
the real pose. This is found from the linearization of the measurement
equation in (5.3), and gives the estimator

dx̂
dt
= Fx̂+Gu+KJ† (y− h(x̂)) (5.6)

where J† is the pseudo inverse of the image Jacobian J = Vh/Vx. If the
Jacobian could be calculated exactly, Eq. (5.6) would reduce (locally)
to

dx̂
dt
= Fx̂+Gu+ K̄Cn (x− x̂) (5.7)

where Cn =
[

In�n 0
]
. A suitable value for the observer gain K̄

could be determined using techniques from linear control theory, and
the estimated states could be used in a feedback law on the form

u = L(xref − x̂). (5.8)

Eq. (5.2) can be differentiated with respect to x and linearized
around x̂, and the equations for multiple feature points can be stacked
to give the linearized equation

∆y = y− h(x̂) � J(x̂)(x− x̂) (5.9)

where J is the Jacobian of the projection equation, which can now be
used directly in Eq. (5.6).
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Figure 5.1 Edge detection in the normal direction of the predicted edges.

In the case of edge measurements, only the distance between the
predicted and real edges in the normal direction of the contour is mea-
surable. The corresponding equations are obtained by projecting the
image space errors onto the normal as in [Drummond and Cipolla,
1999; Martin and Horaud, 2002], giving us the alternative equations

∆y(N) = NT(y− h(x̂)) � NTJ(x̂)(x− x̂) = J(N)(x̂)(x− x̂) (5.10)

where N is a block diagonal matrix, where the blocks are the edge
normal directions at the n different measurement points along the
contour (Fig. 5.1).

It is clear that in general the accuracy of the estimation will im-
prove with the number of image measurements N. If we assume that
the errors in the image measurements ∆y(N) can be modeled as Gaus-
sian, spatially uncorrelated white noise with variance σ 2, a useful ap-
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proximation of the effective measurement error covariance x̃ = (x− x̂),
can be obtained as

E[x̃x̃T ] = E[J†
(N)∆y(N)(J†

(N)∆y(N))T ] =

= (JT
(N)J(N))−1σ 2 = (

M∑

i=1

JT
i Ji)−1σ 2 (5.11)

where the Jacobian has been partitioned into the individual Jacobians
for each of the M cameras as JT

(N) = [JT
1 , JT

2 , ⋅ ⋅ ⋅ JT
M ]T . In Chapter 7 a

method which attempts to minimize the measurement error covariance
in Eq. (5.11) by a proper selection of active cameras is presented. In ad-
dition, the covariance in Eq. (5.11) could be used as the measurement
error covariance parameter, for instance in a Kalman filter.

Combined Vision/Force Controller
The force/vision controller combines the force- or impedance controller
described in Section 3.3 with feedback from the cameras. The block di-
agram for the system under vision/force control is shown in Fig. 5.2.
The desired trajectory of the tool is defined relative to the target object,
whose position is estimated from the image data. The visual feedback
controller generates a reference position and velocities in order to fol-
low the desired trajectory, based on the estimated relative position
of the end-effector and the target. The force controller updates the
position and velocity according to Eqs. (3.1) and (3.2), and the new
references are sent to the built-in robot motion control.

We assume a decoupled dynamic model of a velocity controlled ma-
nipulator {

ẋ = Fx+Gvc

∆y = h(Cx, Cx̂) � J(Cx̂)(Cx−Cx̂)
(5.12)

where x = [xT
p ẋT

p ]T is the state vector, vc the commanded veloc-
ity, ∆y contains the normal distances between the search points and
the image edges as calculated from the projection equation, x̂ is the
estimated state, and the system matrices are given by

F =
[0 I

0 −ω I

]
, G =

[ 0
ω I

]
, C = [ I 0 ] . (5.13)
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Figure 5.2 Block diagram showing the structure of the combined force/vision
control system. Inputs are the reference signals ∆xr and fr and the output
disturbances ey and e f . The motion of the target is estimated using a nonlinear
least-squares estimator.

By assumption x̃ = x− x̂ is small, and the approximation in Eq. (5.12)
holds locally. A state observer on the form of Eq. (5.6) is given by

dx̂
dt

= Fx̂ + Ĝvc + KĴ†∆y = Fx̂ + Ĝvc + KC (x− x̂) (5.14)

where the estimation Ĵ is assumed to be equal to the true image Ja-
cobian J, and the difference ∆G = G− Ĝ models the calibration errors
in the geometric model of the manipulator object frame. Using a force
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controller given by

dxI

dt
=
[0 I

0 −M−1
I DI

]
xI +

[ 0
M−1

I

]
S f (f− fr) =

= FIxI +GIS f (f− fr) (5.15)

together with the hybrid vision/force controller

vc = SvL(xr − x̂) + S f [ 0 I ]xI , (5.16)

where Sv and S f are the hybrid selection matrices, whose diagonal
elements will be 1 or 0 depending on which degrees of freedom are
activated, and a model of the forces in contact with a surface through
the origin, given by

f = −keCx, (5.17)
we can write down the equations for the closed loop system as

ẋ = Fx+Gvc = Fx+G(SvL(xr − x̂) + [0 S f ]xI) =
= (F−GSvL)x+GSvLx̃+G [0 S f ]xI +GSvLxr (5.18)

˙̃x = Fx+Gvc − (F−KC)x̂− Ĝvc −KCx =
= (F−KC)x̃+ (G− Ĝ)vc = (F−KC+ ∆GSvL)x̃
− ∆GSvLx+ ∆G [0 S f ]xI + ∆GSvLxr (5.19)

ẋI = FIxI +GIS f (f− fr) = FIxI −GIS f keCx− S f GIfr (5.20)

or equivalently

d
dt




x
x̃
xI


 = Fc




x
x̃
xI


+Gc

[xr

fr

]
(5.21)

with

Fc =




F−GSvL GSvL G [0 S f ]
−∆GSvL F−KC+ ∆GSvL ∆G [0 S f ]
−GIS f keC 0 FI


 (5.22)
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and

Gc =




GSvL 0
∆GSvL 0

0 −GIS f


 (5.23)

If the case of perfect calibration ∆G = 0, and the system matrices
reduce to

Fc =




F−GSvL GSvL G [0 S f ]
0 F−KC 0

−GIS f keC 0 FI


 (5.24)

and

Gc =




GSvL 0
0 0
0 −GIS f


 (5.25)

Stability
When ∆G = 0 and Ĵ = J, for small x̃ the observer error dynamics is
locally described by the stable system ˙̃x = (F−KC)x̃. In the force con-
trolled directions, a stable and well-damped response in the measured
contact force is obtained by proper tuning of MI and DI . In practice,
the possible choices of MI and DI are also limited by sensor noise,
unmodeled dynamics, and resonances in the tool and workpiece.

In the case where the estimation of the Jacobian in Eq. (5.14) is not
exact, the state observer (5.14) and the resulting closed loop system
may become unstable. For a purely kinematic robot model ẋp = vc with
x = xp, F = 0 and G = I, local stability of the observer with K = I
is guaranteed as long as the matrix Ĵ†J(x̂) is positive definite. Near
singularities, this is satisfied only if a very accurate estimation Ĵ is
available, and small errors in the intrinsic camera parameters or point
depth distribution can cause the system to become unstable [Malis
and Rives, 2003]. However, an observer for the dynamical system in
Eq. (5.12) will need additional constraints on Ĵ and J for stability, as
stability can not be guaranteed even if Ĵ†J(x̂) is positive definite.

Implementation
The vision controller and observer are designed as a stationary LQG
controller, based on a discretized version of the dynamic model in
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Figure 5.3 Object model with hidden features removed.

Eq. (5.12) sampled at 33 ms. The force controller in Eq. (5.15) is dis-
cretized at a sampling period of 4 ms. The force controller runs on
a PowerPC G4 processor, connected to the internal robot motion con-
troller over the PCI bus [Blomdell et al., 2004]. The image processing,
and calculation and inversion of the image Jacobian runs on a sepa-
rate 2 GHz Pentium 4, which communicates with the controller on the
PowerPC using Ethernet.

The tracking algorithm running on the PC is summarized in Fig. 5.4.
Two objects are tracked, the stationary target and the manipulator ob-
ject, assumed to be rigidly attached to the robot hand. The tracker
states are initialized through an optimization-based pose estimation
algorithm, using only the locations of four or more corners. At each
sample time all images are read from the cameras, the control signal
which was pre-calculated at the previous sample is sent to the main
controller using an Ethernet connection, measurement vectors are ob-
tained and Jacobians are calculated. The total hybrid control signal is
then read back from the PowerPC, and is used to calculate the state
estimate and vision-based part of the control signal. A fast hidden-line
removal technique is used to predict locations of visible edges in the
next set of images, using an object model consisting of a number of pla-
nar surfaces connected at their edges, see Fig. 5.3. No assumptions are
made about the shape of the planar surfaces, although in the experi-
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ments we use an object with only straight edges. Visible object edges
are selected based on the predicted object pose and a pre-generated
Binary Search Partitioning (BSP) tree description of the object, see
[van Dam et al., 1991]. The BSP tree recursively divides the surfaces
in the object into “in front” and “behind”, until we have a perfect front-
to-back ordering. The surfaces are then processed front-to-back, with
each surface clipped against all surfaces in front of it, in order to de-
termine visible edges. A number of search points are selected on each
visible edge. The image position measurements are then obtained from
a one-dimensional edge localization in the local edge normal direction
at each point. The edges are found from the convolution with a differ-
entiated Gauss kernel at three different scale spaces, in order to get a
robust detection/localization. To increase robustness only points where
a clear single edge is detected are used by the tracker.

5.3 Experiment - Surface Following

By combining force control with visual feedback as described in Sec-
tion 5.2, we could achieve surface following that is independent of the
workpiece calibration accuracy. Experiments with this scenario have
been performed using an ABB Irb2400 industrial robot equipped with a
rolling tool, in contact with a metal box with dimensions 40�40�10 cm.
Experiments were first performed using only two Sony digital cameras,
and later repeated with an extra camera, using the resource allocation
algorithm presented in Chapter 7, see Fig. 5.5.

The robot makes stable contact with the workpiece under vision
guided impedance control, and when contact has been established the
control switches to parallel vision/force control as described in Sec-
tion 5.2, while the tool moves across the surface at around 10 mm/s.
The resulting force can be seen in Fig. 5.6. At time t = 3 s the force
reference was changed from 15 N to 25 N in the x-direction of the tool.
At time t = 17 s the tool reaches a corner, and the force reference
changes to 15 N in the negative y-direction. The combined stiffness of
the robot and surface was approximately 10 kN/m, and the transla-
tional controller parameters were chosen as MI = 0.1, DI = 1.5 and
K I = 0.

Fig. 5.7 shows the estimated position of the tool with respect to the

63



Chapter 5. Position-Based Hybrid Vision/Force Control

1. Initialize state and data structures

2. Send pre-computed visual command velocity uv to the main con-
troller on the PowerPC

3. Capture images from each camera and perform image pre-
processing

4. Search for image edges around the predicted edges of the ma-
nipulator and target, and build measurement vectors ∆y and
∆yt

5. For each edge measurement, build one row of the corresponding
Jacobian J or Jt

6. Read effective control signal from PowerPC, given by

vc := Svuv + S f [ 0 I ]xI

7. Update state estimate for the manipulator using the discrete
time dynamic model as

x̂ := Fdx̂+ Ĝdvc +KJ†∆y

8. Update estimated target position using one Gauss-Newton iter-
ation

x̂t := x̂t + J†
t ∆yt

9. Predict visible edges during the next sample, by performing hid-
den line removal based on the predicted positions x̂ and x̂t

10. Calculate xr using the estimated target position x̂t and the de-
sired relative position ∆xr, and pre-calculate the vision based
part of the control signal

uv := L(xr − x̂)

11. Wait for next sample time and repeat from Step 2.

Figure 5.4 Algorithm for tracking and control of relative position.
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5.3 Experiment - Surface Following

Figure 5.5 Simultaneous tracking of tool and workpiece without force control,
using two Sony DFW-V300 and one Basler A602fc digital cameras.

target frame during the same experiment. Fig. 5.8 shows the corre-
sponding estimated velocities. A small control error in the force con-
trolled directions is caused by the force control action, which makes
the position deviate from the nominal trajectory.

Effect of Calibration Errors. In the presence of calibration er-
rors ∆G in Eqs. (5.21)–(5.23), the system properties will change. We
assume that the error can be modeled as

∆G = G− Ĝ = G
[ I−R∆(δ ) 0

0 I−R∆(δ )

]
, (5.26)

where the rotation matrix R∆(δ ) corresponds to an orientation error
δ between the tracked frame and the actuated frame. In practice, the
stability of the system is preserved for all reasonably small δ , but the
servo properties of the system may degrade considerably. Particularly,
in the common situation when the position trajectory is a ramp along
the surface, large force errors may occur in the force controlled direc-
tions, due to the high stiffness of the surface.

We have simulated this effect in a typical scenario, where a hybrid
controller with bandwidth 5 rad/s in the vision controlled direction has
been used, together with an observer bandwidth of 10 rad/s. The force
controller bandwidth was 15 rad/s, and the surface stiffness was 10
N/mm. Force control is applied in the x-direction, while the remaining
degrees of freedom are vision controlled. The calibration error R∆(δ )
is given by a rotation of δ = 1○ around the z-axis. xr was given by
a constant velocity of vy = 10 mm/s in the y-direction. The resulting
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Figure 5.6 Measured contact force during vision guided force control. The
force reference was first changed from 15 N to 25 N in the x-direction, and
finally to 15 N in the negative y-direction.

stationary force error was 0.18 N, an error that scales approximately
linearly with δ and vy.

5.4 Discussion

The combination of force- and visual feedback is ideal for handling
environments with geometric uncertainties on different scales, where
the force controller is responsible for accurate control of the contact
force, while the visual control takes care of the overall guidance of
the tool. Experiments show that the system is able to follow low speed
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Figure 5.7 Estimated tool translation (solid) and reference (dashed) during
vision guided force control.

trajectories with an accuracy of around 1 mm, while accurately control-
ling the contact force. The force controller achieves tracking with rise
times of under 0.2 s in stiff environments, so that the force controller
can quickly compensate for deviations from the nominal geometry. At
higher speeds along the surface, calibration errors may cause large
stationary errors in the contact force, and the effects of geometrical
deviations in the workpiece will become larger.

By tracking multiple objects and controlling the relative position,
we can theoretically achieve surface following with an accuracy that is
independent of the calibration accuracy of the work cell. The price we
pay is the use of external sensors such as cameras for position control.
The robustness of camera sensing is still problematic, since phenomena
such as occlusions, reflections, poor lighting or limited fields of view
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Figure 5.8 Estimated tool velocity during vision guided force control, with
respect to the target frame.

could cause the system to lose track and signal loss, or degradation
of measurement accuracy. Robustness increases considerably with the
number of cameras [Martin and Horaud, 2002], and using multiple low-
cost cameras could potentially be a cost-effective solution for certain
tasks, especially in poorly known or uncalibrated environments.

5.5 Conclusions

In this chapter we have demonstrated how to achieve high perfor-
mance six degree-of-freedom combined vision/force control for inter-
action with a stiff uncalibrated environment. A process with linear
dynamics in task space, is used together with a standard edge-based
rigid body tracker, which gives a locally stable observer with linear
error dynamics. The effect of error sources such as image measure-
ment noise and geometrical calibration errors are considered. Finally,
experiments and simulations were used to validate the approach.
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6

Rigid-Body Tracking Using
Dual Quaternions

6.1 Introduction

In [Drummond and Cipolla, 1999] a method to recursively estimate
not only the position and orientation, but also the intrinsic param-
eters of the camera (focal length, aspect ratio and principal point),
is presented. In [Martin and Horaud, 2002], on the other hand, it is
pointed out that the problem of simultaneously tracking position and
intrinsic parameters is ill-conditioned when the points of the object
lie on a plane parallel to the image plane, which causes the Jacobian
matrix, relating errors in position- and intrinsic parameters to image
errors, to lose rank. Because of noise, this problem extends also to
positions where the relative depth of the object points in the camera
is small. A multi-camera tracking system is suggested as a possible
solution to this problem.

In this chapter we develop methods for real-time rigid body tracking
with simultaneous calibration and tracking of intrinsic parameters. We
intend to show that a dual quaternion parameterization of the object
pose can be used to formulate hand-eye constraints on the estimated
motion, which are expressed as linear equations in the states. We also
show that the data from the tracker can be used for hand-eye calibra-
tion, also when intrinsic camera parameters are allowed to vary during
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the motion sequence.

Quaternions and Dual Quaternions
In this section we briefly introduce the notation and properties of dual
quaternions used in this chapter. For a more detailed description and
introduction to the theory and properties of quaternions and screws,
see for instance [Murray et al., 1994; Daniilidis, 1999; Goddard, 1997].

Quaternions were invented by Hamilton [Hamilton, 1853]. Unit
quaternions are useful for representing rotations in three dimensions.
Quaternions can be represented as a pair q = (q0, Oq), where q0 ∈ IR
and Oq ∈ IR3, with the operations

q1 + q2 = (q0
1 + q0

2, Oq1 + Oq2) (6.1)
kq = (kq0, kOq) (6.2)

q1q2 = (q0
1q0

2 − OqT
1 Oq2, q0

1Oq2 + q0
2Oq1 + Oq1 � Oq2) (6.3)

where k ∈ IR. A quaternion has a norm given by iqi2 = qq̄, where
q̄ = (q0, -Oq) is the conjugate quaternion. It is well known that every
rigid rotation (element of the special orthogonal group SO(3)) with
angle θ about an axis On with iOni = 1 can be represented as a unit
quaternion

q = (cos(θ/2), sin(θ/2)On), (6.4)
which rotates a vector Ox ∈ IR3 to the vector q(0, Ox)q̄.

Dual Quaternions. Similarly to real quaternions, dual quaternions
are defined as q̌ = (q̌0, Ǒq), where q̌0 = q0 + ε q′0 is a dual number with
ε 2 = 0, and where Ǒq = Oq + ε Oq′ is a dual vector. Dual numbers were
invented by Clifford [Clifford, 1873]. The dual quaternion operations
are

q̌1 + q̌2 = (q̌0
1 + q̌0

2, Ǒq1 + Ǒq2) (6.5)
kq̌ = (kq̌0, kǑq) (6.6)

q̌1q̌2 = (q̌0
1 q̌0

2 − ǑqT
1 Ǒq2, q̌0

1Ǒq2 + q̌0
2Ǒq1 + Ǒq1 � Ǒq2). (6.7)

We will often write the dual quaternion as the sum of the real and
dual parts q + εq′. Its norm is given by iq̌i2 = q̌ ¯̌q with ¯̌q = q̄ + ε q̄′,
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and the unity conditions become

qq̄ = 1 (6.8)
q̄q′ + q̄′q = 0. (6.9)

Unit dual quaternions can be used to represent general rigid trans-
formations including translations, similarly to the way rotations can be
represented by real quaternions. In [Daniilidis, 1999], it is shown that
the rigid transformation of a line through the point Op, represented by
its direction On and moment Om = Op� On, is given by q̌(n+ εm) ¯̌q, where
On and Om are expressed as quaternions n = (0, On) and m = (0, Om), re-
spectively. The dual quaternion itself is q+ εq′, where q is the quater-
nion describing the rotation, and where q′ = tq/2 with t = (0,Ot) being
the translation.

Screws and Hand-Eye Constraints

Screws. According to Chasles’ theorem [Murray et al., 1994] a gen-
eral rigid transformation can be modeled as a rotation about an axis
not through the origin and a translation along the rotation axis. The
parameters of the screw are the direction On and the moment Om of
the screw axis line, the rotation angle θ , and the translation (pitch) d
along On. Together with the constraints OnT On = 1 and OnT Om = 0 these
parameters constitute the six degrees of freedom of a rigid transfor-
mation. It can be shown that the dual quaternion corresponding to the
screw with parameters On, Om, θ , and d can be written as

q̌ = (cos(θ̌/2), sin(θ̌/2)Ǒl), (6.10)

where the dual angle is θ̌ = θ+ε d, and the line is given by Ǒl = On+ε Om.

Hand-Eye Constraints. The hand-eye equation (Eq. (2.9) in Sec-
tion 2.2) can be written using dual quaternions as

ǎ = q̌b̌ ¯̌q. (6.11)
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In [Daniilidis, 1999], it is shown that the scalar parts of ǎ and b̌
are equal, which can easily be shown as follows

Sc(ǎ) = 1
2
(ǎ+ ¯̌a) = 1

2
(q̌b̌ ¯̌q + q̌ ¯̌

b ¯̌q) = (6.12)

= 1
2
q̌(b̌+ ¯̌

b) ¯̌q = Sc(b̌)q̌ ¯̌q = Sc(b̌).

From the expression for the dual quaternion in Eq. (6.10), and
using the fact that a function of a dual number can be rewritten as

f (a+ ε b) = f (a) + ε bf ′(a), (6.13)

we can write Eq. (6.12) as

cos
θa

2
− ε da

2
sin

θa

2
= cos

θb

2
− ε db

2
sin

θb

2
. (6.14)

Dividing this equation into real and dual parts, we can see that
the angle and pitch of the camera screw and the robot end-effector
screw must be equal. This is known as the Screw Congruence Theorem,
see [Chen, 1991]. In [Daniilidis, 1999], this equality is used to rewrite
the hand-eye equation using only the vector parts of ǎ and b̌. Each
motion of the robot and camera will give us six linear equations in
the unknowns q and q′, the real and dual parts of the unknown hand-
eye dual quaternion. A minimum of two motions together with the
constraints

qTq = 1, qTq′ = 0 (6.15)
from Eqs. (6.8)–(6.9) are generally enough to solve for the eight un-
knowns. The solution can be obtained by finding the vectors span-
ning the null space of the linear system using SVD, and then finding
the linear combination which satisfies the unity conditions (6.15), see
[Daniilidis, 1999] for details.

6.2 Modeling

Consider a manipulator with a single camera attached to its end-
effector, viewing a stationary object as in Fig. 6.1. Only a very rough
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Figure 6.1 ABB Irb2000 industrial robot with digital camera used in the
experiments.

initial estimation of the intrinsic camera parameters and the posi-
tion/orientation of the objects are known, but we assume that a CAD
model of the object is available. The motion of the robot end-effector
is related to the motion of the camera through the hand-eye equa-
tion (2.9), where the relative sensor-actuator pose X is unknown. We
assume that the camera can be modeled as a four parameter pinhole
camera

λ




u
v
1


 =




f 0 u0

0 γ f v0

0 0 1



(
R t

)




X
Y
Z
1




(6.16)
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with λ corresponding to the depth of the point with respect to the
camera, see Appendix A. The parameters to be estimated are f , γ , u0,
v0, and some parameterization of R ∈ SO(3) and t ∈ IR3.

Extended Kalman Filtering (EKF)
The motion of the system can be written as a non-linear discrete-time
dynamic system

xk+1 = f(xk) (6.17)
n(pk,xk) = 0 (6.18)

with xk ∈ IRn the state of the system, pk ∈ IRm a vector of measured
outputs, f a known vector-valued function describing the system dy-
namics, and g a known function relating the state to the output. The
state vector is chosen as

x =
(
q q′ f γ u0 v0

)T
(6.19)

where q, q′ ∈ IR4 is the vector representation of the object-camera dual
quaternion q̌ = q + εq′.

Measurement Model. In the function g(pk,xk) we have all the mea-
surement equations, and the constraints on the state vector. For a point
feature, denoted by index i, the measurement would be image position
pk,i = (ui, vi)T def= hi(x), which is known from Eq. (6.16) to be related
to the states by the equations

ĥi(x) =




ûi

v̂i

ŵi


 =K



rT

x (q) tx(q̌)
rT

y (q) ty(q̌)
rT

z (q) tz(q̌)



(
X i

1

)

=




f (rT
x (q)X i + tx(q̌)) + u0(rT

z (q)X i + tz(q̌))
γ f (rT

y (q)X i + ty(q̌)) + v0(rT
z (q)X i + tz(q̌))

rT
z (q)X i + tz(q̌)




(6.20)
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where K is the matrix of intrinsic parameters in Eq. (6.16). The image
space coordinates are given by

hi(x) =
(

ui

vi

)
=
(

ûi/ŵi

v̂i/ŵi

)
. (6.21)

The rotation matrix is calculated directly from the unit quaternion q,
see for instance [Goddard, 1997] for details, and the translation can be
obtained from q̌ as

t = 2q′q̄. (6.22)
If pk,i are the measured image coordinates, we can write the measure-
ment equation for this point as

gi(pk,i,xk) = pk,i − hi(xk) = 0 (6.23)

This equation can be linearized around the predicted state x(p)k , which
gives the approximation

gi(pk,i,xk) � gi(pk,i,x
(p)
k ) +

Vgi
Vx (pk,i,x

(p)
k )(xk − x(p)k )

= pk,i − hi(x(p)k ) +
Vgi
Vx (pk,i,x

(p)
k )(xk − x(p)k ) � 0 (6.24)

In our system however, the only image measurements available are
the point-to-contour error in the predicted (local) normal direction of
the contour, which can be approximated with the normal component
of the error

g
(n)
i = nT

i (pk,i − hi(x(p)k )) (6.25)

Eq. (6.24) can then be rewritten as

0 = g
(n)
i (pk,i,xk) � nT

i (pk,i − hi(x(p)k )) +

+ nT
i
Vgi

Vx (pk,i,x
(p)
k )(xk − x(p)k ) (6.26)

which can be expressed on linear form as

yk,i = Ck,ixk (6.27)
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with

Ck,i = nT
i
Vgi

Vx (pk,i,x
(p)
k ) = −nT

i
Vhi

Vx (pk,i,x
(p)
k ) (6.28)

yk,i = −nT
i
Vhi

Vx (pk,i,x
(p)
k )x

(p)
k − nT

i (pk,i − hi(x(p)k ))
(6.29)

The Jacobian
Vhi

Vx (pk,i,x
(p)
k ) (6.30)

can be calculated by direct differentiation of Eq. (6.20) with respect to
the elements of x, combined with the equations

(
u′i
v′i

)
=




û′i
ŵi
− ûiŵ′i

ŵ2
i

v̂′i
ŵi
− v̂iŵ′i

ŵ2
i




(6.31)

where û′i denotes the differentiation of ûi with respect to the relevant
quantity.

The constraints on the dual quaternion in Eq. (6.15) can be included
by linearizing around the prediction x

(p)
k , which gives us two linear

equations in q and q′

1 � q(p)Tq(p) + 2q(p)T (q − q(p)) (6.32)
0 � −q(p)Tq′(p) + q′(p)Tq + q(p)Tq′, (6.33)

which can be included in the output yk.
Including the hand-eye constraints from Eq. (6.14) is also straight-

forward. Consider two different robot poses, represented by the dual
quaternions q̌B1

and q̌B2
, and the corresponding relative object-camera

poses q̌A1
and q̌A2

. We know from Eq. (6.12) that the scalar parts of
q̌A = ¯̌qA2

q̌A1
and q̌B = q̌B2

¯̌qB1
must be equal. Define the scalar part of

the relative robot pose q̌B as q̌(0)B = q(0)B +ε q′(0)B , which can be calculated
directly from the forward kinematics of the robot. The scalar part of
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q̌A can be seen from Eq. (6.7) to be qT
A1
qA2

+ ε (q′TA1
qA2

+ qT
A1
q′A2
), with

the quaternions written on vector form. Setting the scalar parts equal
gives us two more linear equations in the states

qT
A1
qA2

= q(0)B (6.34)
q′TA1
qA2

+ qT
A1
q′A2

= q′(0)B , (6.35)

which can also be added to the system measurement equation, which
can now be formulated as

yk = Ckxk + δk (6.36)

where δk is a sequence of uncorrelated Gaussian noise, and where
the vector yk and time-varying matrix Ck are obtained by stacking
equations (6.27) for each edge search point, and adding constraints
from Eqs. (6.32)–(6.33) and (6.34)–(6.35). Any number of robot mo-
tion constraints can be added to the measurement equation. In general
each position used gives us two independent constraints on the pose,
meaning that three positions are sufficient to completely constrain the
estimated pose. This can be compared to the problem of hand-eye cal-
ibration, where it is well known that three positions are necessary for
the calculation of the hand-eye transformation [Daniilidis, 1999].

State Dynamics Model. We choose to investigate two different ver-
sions of the function f in the state update equation (6.17). First, we
assume the state equation

xk+1 = xk + εk, (6.37)

where εk is an uncorrelated Gaussian noise sequence. The second op-
tion is to extend the state vector xk with velocity Ovk ∈ IR3 and angular
velocity Oωk ∈ IR3, and update the estimate of the dual quaternion using
the equations

q̇ = 1
2
ωq = 1

2
(0, Oω)q (6.38)

and
q̇′ = 1

2
ṫq + 1

2
tq̇ = 1

2
vq + 1

4
tωq (6.39)
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where the details can be found in [Goddard, 1997]. By discretizing
Eqs. (6.38) and (6.39) using sample time h, we obtain the noise-free
state update equation




qk+1

q′k+1

K̃k+1

Oωk+1

Ovk+1



=




I 0 0 h
2Qk 0

0 I 0 h
4T kQk

h
2Qk

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I







qk

q′k
K̃k

Oωk

Ovk




(6.40)

where K̃ = ( f ,γ , u0, v0)T , and where the matrices

Qk =




−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0




(6.41)

and

T k =




0 −tx −ty −tz

tx 0 −tz ty

ty tz 0 −tx

tz −ty tx 0




(6.42)

correspond to the quaternion products with qk = (q0, q1, q2, q3) and tk =
(0, tx, ty, tz) = 2q′kq̄k in Eqs. (6.38) and (6.39). With noise, Eq. (6.40)
can be written as

xk+1 = Akxk + εk. (6.43)

State Estimation
The linearized equations in Eqs. (6.40) and (6.36) will be used to re-
cursively update the state estimate using an Extended Kalman Filter.
The EKF based on Eqs. (6.40) and (6.36) uses image-space measure-
ments to update the state, and will therefore be referred to as the
image based EKF.
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The computational complexity of the EKF grows rapidly with the
dimension of the output vector yk. Similarly to Chapter 5, an EKF
could instead be used to estimate the states of the system

xk+1 = Akxk + εk (6.44)
zk = Ĉ

†
kyk = Ĉ

†
kCkxk + Ĉ

†
kδk �Hnxk + Ĉ

†
kδk (6.45)

where Ĉk is an approximation of the Jacobian C k at the estimated
pose x̂k, and the new output zk ∈ IRn with n = 8 corresponds to a
measurement of the object-camera pose, and Hn =

[
In�n 0

]
. As-

suming that the image space noise covariance matrix Eδkδ
T
k = σ 2I as

before, the new effective output noise vector δ̂k = Ĉ
†
kδk has covariance

matrix
E
[
δ̂kδ̂

T
k

]
= E

[
Ĉ

†
kδkδ

T
k Ĉ

†T
k

]
= σ 2(CT

kCk)−1 (6.46)

which can be used in the EKF. This EKF will be referred to as the
position based EKF.

6.3 Experiments

The algorithm is evaluated in experiments using an image-generation
tool, which generates semi-realistic images of a typical robot work-
cell using OpenGL 3D rendering. This makes it possible to simulate
phenomena such as occlusion, specular reflections and noise due to a
cluttered background.

The object model consists of a number of planar surfaces connected
at their edges, see Fig. 6.2. At each step in the tracking visible ob-
ject edges are selected and image edges are localized as described in
Chapter 5.

Experiments
The experiments are performed in two steps. The tracker is initialized
with a poor initial guess for the intrinsic camera parameters, which is
used to get a very rough estimate of the object-camera pose. We then
run the tracker for a little over a second with the robot stationary
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Figure 6.2 Example of image with superimposed object model, where hidden
features have been removed.

to get a good initial estimate of the state. During the initialization
phase the hand-eye constraints are not used, since they would require
a good initial guess for the object pose. When the state estimate has
converged, the tracker is started, using the initial estimate of the state
as q̌A1

to constrain the position estimate according to Eqs. (6.34)–
(6.35).

In this section the presented methods will be validated. There will
be a comparison between when only using Eqs. (6.32) and (6.33) and
when also using Eqs. (6.34) and (6.35). The first will be referred to as
the two constraints case and the latter as the four constraints case. In
the study we have looked at the mean of the absolute estimation error,
which will be denoted with ∆. The number of search points used in the
edge detections varied between 100 and 250 during the motion.

Visual Position Tracking
Figs. 6.3 and 6.4 show the result of tracking θ and t. The tracking of
the position is satisfactory, both with four and with two constraints.
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Figure 6.3 Tracking of θ. The diagram shows the real orientation (solid),
estimated orientation using four constraints (dashed), and estimated orientation
using two constraints (dotted).

There are some differences in the tracking accuracy, see Fig. 6.5. We
see that with four constraints both the error and the variance of the
estimation of θ and t are reduced.

Table 6.1 shows results using different conditions and number of
constraints in the estimation of the object pose. For case 1 no extra
noise was added to the measured output, but even so we have some
noise due to the image processing. For case 2 extra noise ∈ N(0, 3)
was added. Case 3 is the same as case 1, but with velocity estimation
using the model in Eq. (6.43) instead of the model in Eq. (6.37). Case
4 is the same as case 2, but using velocity estimation. The initial state
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Figure 6.4 Tracking of t. The diagram shows the real translation (solid), es-
timated translation using four constraints (dashed), and estimated translation
using two constraints (dotted).

covariance, P 0, and state noise covariance, Q, for case 1 and 2 were
set to

P 0 = diag(0.12 ⋅ 11�8 502 0.12 402 402)
Q = diag(0.12 ⋅ 11�8 32 0.012 0.22 0.22).

For case 3 and 4, the initial values were set to

P 0 = diag(0.12 ⋅ 11�8 502 0.12 402 402 01�6)
Q = diag(01�8 32 0.012 0.22 0.22 0.12 ⋅ 11�6).

82



6.3 Experiments

0 50 100
−4

−2

0

2

0 50 100
−4

−2

0

2

4

0 50 100
−4

−2

0

2

0 50 100
−10

−5

0

5

0 50 100
−10

0

10

0 50 100
−20

0

20

PSfrag replacements

Time [sample] Time [sample]

∆θ
z
[○ ]

∆θ
y
[○ ]

∆ θ
x
[○ ]

∆
t x
[m

m
]

∆
t y
[m

m
]

∆
t z
[m

m
]

Time [sample]

Figure 6.5 Error in the estimation of θ and t when using four constraints
(solid) and when using two constraints (dashed).

The output noise variance was set to E(δ 2
k) = 1 in case 1 and 3 and to

E(δ 2
k) = 32 in case 2 and 4.

Table 6.2 shows the prediction errors using the two different dy-
namical models described in Section 6.2.

Varying Focal Length.
Fig. 6.6 shows results of when the focal length was varied between 300
and 600 pixels during a different motion sequence. Still the tracking of
the focal length was successful, and the effect on the depth estimation
was small.
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Incorrect Initial Values
Figs. 6.7 and 6.8 show results of when the tracker starts with incorrect
initial values, both for the camera matrix and for the pose of the object.
After approximately 30 samples the camera matrix and the position
have converged to their correct value. The intrinsic camera parameters
in this experiment were f = 400, γ = 1.0, u0 = 320, and v0 = 240.

Hand-Eye Calibration
In Table 6.3 the result of the hand-eye calibration is shown. The esti-
mation is successful even if noise is added, and when the focal length
is varying during the experiment.

Position-Based EKF
In order to compare the performance of the position based and image
based EKF approaches, twenty different simulations were performed
with different random motion of the camera. The resulting estimation
errors in orientation and translation for the two methods are shown
in Fig. 6.9. The covariance matrices and weights on the constraints
were identical for the two methods, and synthetic independent noise

Table 6.1 Comparison between two and four constraints, and with or without
velocity estimation.

Case 1 2 3 4
# constr. 4 2 4 2 4 4
∆θ z (○) 0.122 0.216 0.292 0.541 0.120 0.184
∆θ y (○) 0.317 0.313 0.529 0.632 0.335 0.346
∆θ x (○) 0.130 0.381 0.221 0.777 0.140 0.136
∆tx (mm) 2.105 3.406 2.434 3.310 2.456 2.086
∆ty (mm) 2.390 2.093 2.322 2.878 2.456 1.867
∆tz (mm) 4.857 4.926 5.704 7.228 5.148 5.178
i∆θi (○) 0.364 0.538 0.643 1.138 0.382 0.415
i∆ti (mm) 5.808 6.345 6.622 8.455 6.210 5.887
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∈ N(0, 3) was added to the image space measurement vector. The num-
ber of edge search points varied between 500 and 700 in the experi-
ments. For this number of features, the execution time for the image
based EKF equations was approximately 8–10 times longer than for
the position based EKF in a C implementation. The total execution
time, including image processing and computation of Jacobians, was
around three times longer for the image based EKF.

Real World Experiments.
Fig. 6.10 shows the results of an experiment using images from a Sony
DFW-V300 640x480 pixels digital camera mounted on an ABB Irb2000
industrial robot in an eye-in-hand configuration. The setup is shown
in see Fig. 6.1, see also Fig. 6.2 for an example image. The top figures
in Fig. 6.10 show the estimated focal length and principal point, which
should be compared to the values f = 1020 pixels, u0 = 344 pixels and
v0 = 215 pixels from an off-line camera calibration. The lower figure
shows the estimated position of the camera, where the lines indicate
the direction of the camera z-axis.

6.4 Discussion

The use of the hand-eye constraints showed an improvement in the
estimation of the parameters, even though the hand-eye transforma-
tion was unknown. Additionally, it is a reasonable assumption that the
extra constraints improve the robustness of the tracking against other
error sources, such as errors due to the edge detector locking on to
false edges.

Table 6.2 Errors between measurements and prediction. Case 1 is with no
velocity estimation, case 2 with velocity estimation using the model in Eq. (6.43).

Case ∆θ z ∆θ z ∆θ x ∆tx ∆ty ∆tz

1 0.113 0.151 0.072 1.864 1.210 1.097
2 0.040 0.036 0.024 0.462 0.391 0.519
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The estimated values showed a small improvement when using the
dynamical model in Eq. (6.43), especially in the case with added noise.
Additionally, the prediction was improved, which makes it possible to
track faster motions.

The system is capable of performing a total calibration of all rele-
vant parameters, based on only rough initial values. The use of dual
quaternions and hand-eye constraints in this type of tracker has not
previously been demonstrated. The fact that we are able to track even
during changes in the intrinsic parameters is an advantage, for in-
stance in vision-based control. This gives the practical advantage of
allowing the system to dynamically change its field of view, allowing a
wider range of motions.

One apparent drawback with our EKF-based algorithm is that the
updating of the state covariance estimates is very time consuming
when the number of outputs is large. Effectively, this limits the fea-
sible number of edge search points to a value which is lower than for
optimization based methods. As previously pointed out [Wunsch and
Hirzinger, 1997], the position based EKF algorithm is more suitable
for real time tracking when the number of image features is large. In
our C implementation, a total computation time in each time step of
around 10 ms has been achieved on a Pentium 4 2GHz workstation, for
around 500 search points, making it possible to track multiple objects
independently in multiple cameras, at camera frame rate.

Table 6.3 Hand-eye calibration, with and without additional noise ∈ N(0, 3).
Errors No noise Noise No noise, f varying
∆θ z (○) 0.125 0.190 0.411
∆θ y (○) 0.504 1.474 0.356
∆θ x (○) 1.067 1.491 0.851

∆tx (mm) 0.632 9.624 1.112
∆ty (mm) 5.617 13.72 5.249
∆tz (mm) 3.263 12.96 7.506
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Figure 6.6 Experiment where f is varying between 300 and 600 pixels. The di-
agram shows the real values (solid), estimation using four constraints (dashed),
and estimation using two constraints (dotted.)

6.5 Conclusion

In this chapter we have developed methods for real-time rigid body
tracking, with simultaneous calibration and tracking of intrinsic pa-
rameters. A dual quaternion parameterization can be used to formu-
late linear hand-eye constraints on the estimated states, and these
constraints help to reduce the tracking error. Additionally, it has been
shown how the high computational complexity of the Extended Kalman
Filter can be avoided by defining a new output vector in task space.

The data from the tracker could be used for hand-eye calibration,
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Figure 6.7 Transient responses of estimates of the focal length f , aspect ratio
γ , and principal point (u0, v0) from incorrect initial estimates of the position and
camera matrix.

with an error of approximately 1○ in orientation and 5 − 10 mm in
translation. This is true also when intrinsic camera parameters are
allowed to vary during the ten second long motion sequence.
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7

Multi-Camera Feedback
Control with Time
Constraints

7.1 Introduction

For real-time control applications in general, the importance of min-
imizing the input-output latency, i.e., the delay from the reading of
the sensors to the generation of the control output, is well-known. Un-
less compensated for, the input-output latency will compromise the
performance of the control system, and may even cause instability. In
vision-based control systems the latency is dominated by the image
processing. This chapter presents a method for multi-camera visual
servoing, that aims at maximizing the achieved accuracy of the esti-
mated vision-based feedback information during a predictable compu-
tation time.

In this chapter the problem of on-line resource allocation is consid-
ered. That is, to within a limited time frame maximize the estimation
quality by a proper choice of active cameras and distribution of the
feature points between these cameras. The camera selection algorithm
is based on successive minimization of the measurement error covari-
ance, by adding more cameras to the active camera set, until no more
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Figure 7.1 Measurements for estimating position/orientation from edges by
updating predicted position (solid lines)

improvements of the estimation accuracy can be made. The suggested
algorithm is evaluated in an extensive simulation study, using a setup
of six cameras. The scheme is evaluated both in terms of estimation
variance and control performance using a delay-compensating LQG-
controller.

7.2 Estimation of Object Position and Orientation

We assume that M cameras are placed in fixed locations, viewing a
target object whose position and orientation with respect to some fixed
(world) coordinate system should be estimated. The position and ori-
entation is parameterized as an n-vector x where typically n = 6 or
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n = 7, depending on the selected parameterization of the orientation.
The position x and the image-space position vector y are related by
the projection equations of the cameras

y = h(x) (7.1)

in our case given by the homogeneous form pinhole camera projection
equation

yi = hi(x) =
1
Z

KTcbTbe(x)Xi (7.2)

where K is a matrix of internal camera parameters, Xi is the coordi-
nates of the point in an object centered coordinate system, Z is the
depth of the point in the camera, Tcb and Tbe(x) are the homogeneous
coordinate transformation matrices between the robot base the cam-
era, and end-effector and robot base, respectively.

The estimated position x̂k at sample k can be updated iteratively
as

x̂k = x̂k−1 + J†(x̂k−1)(y− h(x̂k−1)) (7.3)
where J† = (JTJ)−1JT is the pseudo inverse of J = dh/dx ∈ IR2N�n.
In the case of point-to-edge measurements, as explained in Chapter 5,
we get the modified update equation

x̂k = x̂k−1 + (NTJ(x̂k−1))†∆y(N) = x̂k−1 + J†
(N)(x̂k−1)∆y(N) (7.4)

where N is a sparse N � 2N matrix, where the “diagonal” blocks are
the normal directions at the N different measurement points along the
edge, as shown Fig. 5.1. J(N) ∈ IRN�n is the new Jacobian for point-
to-edge measurements. When using edge features, we have significant
freedom in how we choose which features to measure, since any num-
ber of edge searches can be performed anywhere along any object edge,
in each camera. Usually, when using point-to-edge measurements we
will have N ≫ n.

Algorithm for Object Tracking
The algorithm for rigid body tracking is summarized in Fig. 7.2. The
image pre-processing step involves all necessary image conversions and
filtering necessary for each camera. The position at the next sample
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while (true) {

Read camera images;

Perform image pre-processing;

for i=each search point {

dy[i] = edge distance;

}

x_est=x_est+invert(J)*dy;

predict x_est one step ahead;

determine visible features;

place search points;

calculate jacobians;

}

Figure 7.2 Algorithm for object tracking.

is predicted, and the predicted position is used to determine where
interesting image features will be visible next sample. Visible features
are determined as described in Chapter 5, and a large number of search
points are divided between the cameras as described in Section 7.3 and
placed along the predicted edges of the object. Finally, the Jacobians
for each camera are computed.

Timing
The total computation time required in each sample depends on the
number of cameras, M , and the total number of feature search points,
N. The time required for reading and pre-processing all images is pro-
portional to the number of cameras used, whereas the total time used
for finding edges, placing search points, updating the estimation and
building the Jacobians, is proportional to the total number of search
points. The total time Ttot from sampling the cameras until the new
estimation is obtained can therefore be modeled by the equation

Ttot = T0 + TcM + Tf N (7.5)

where T0 is a constant time required for image capture and image
data transfer. The values of the time coefficients depends on many fac-
tors, such as camera sensor type and interface, camera shutter speed,
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platform and implementation. Experimental values of the computation
time have verified the timing model of Equation 7.5. Approximate val-
ues in our implementation have been determined experimentally to
T0 = 6.0 ms, Tc = 1.0 ms and Tf = 0.01 ms.

The implications of the timing model are twofold. First, as the com-
putation time is deterministic and roughly constant, it can be compen-
sated for by the control algorithm. Second, the relation between Tc and
Tf shows a potential of gaining accuracy by switching cameras on and
off, thereby allowing more features search points in the tracking. As-
suming a desired computational delay, Tcomp, and Mk active cameras at
sample k, the number of features search points to distribute between
the Mk cameras is given by

Nk =
Tcomp − To − TcMk

Tf
(7.6)

The delay Tcomp is typically chosen in relation to the dynamics of the
controlled system and the closed-loop bandwidth. With a camera frame
rate of 30 Hz, corresponding to a sample period of 0.033 s, simple
rules-of-thumb [Åström and Wittenmark, 1997] give that a realistic
closed-loop bandwidth should lie between 6 and 18 rad/s.

A delay of 15 ms would then correspond to a phase lag of 5-15
degrees, which can be compensated for without too much performance
degradation. Using the estimated camera timing parameters in our
implementation, Tcomp = 15 ms corresponds to a total of 300 image
features points when using Mk = 6 cameras, and 800 points when
using only one camera.

Thus, depending on the complexity of the scene and the dynamics
of the control system, the relation between computational delay and
number of features search points can be chosen arbitrarily off-line. For
instance, in robotics applications with highly non-linear dynamics it is
non-trivial to compensate for input-output latency. In this case it may
be beneficial to have a small number of feature points and a short
delay.

Estimation Accuracy
In general, it is clear that the accuracy of the estimation will improve
with the number of image measurements N. If we assume that the
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Figure 7.3 Example of six images from he simulated cameras with wireframe

object superimposed, and search point locations indicated.

errors on the image measurements ∆y(N) can be modeled by Gaussian,
independent noise with variance σ 2, the covariance of the estimation
error x̃ = (x− x̂) can be approximated as in Chapter 5 by

E[x̃x̃T ] = σ 2(JT
(N)J(N))−1 = σ 2(

M∑

i=1

JT
i Ji)−1 (7.7)

where the Jacobian has been partitioned into M individual Jacobians
for each camera as JT

(N) = [JT
1 JT

2 ⋅ ⋅ ⋅ JT
M ]T .

The Jacobian for each camera is a function of the current position
x, as well as of the number of search points Ni for that camera, and
how they are distributed. If search points are distributed evenly along
the visible edges of the object, we can use the approximation

JT
i Ji � NiΦi(x) (7.8)

where Φi is a positive semidefinite n�n matrix which does not depend
on Ni. Using Eq. (7.8) in Eq. (7.7) we get

E[x̃x̃T ] = σ 2

(
M∑

i=1

NiΦi(x)
)−1

(7.9)
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which shows that the covariance of the estimation error is a function
of the number Ni of search points placed in each camera.

As can be seen from Eq. (7.7), the estimation error is also a func-
tion of the Jacobians, and therefore also a function of the object po-
sition x. For one camera, Φ i(x) is large and the resulting estimation
error is small when the entire object is visible and close to the cam-
era. Conversely, poorly conditioned situations occur when only part of
the object is visible, or when the object is very far from the camera,
where in extreme cases the problem could become very poorly condi-
tioned. A common example is when all visible image features lie on a
straight line, causing rotations of the object around this line to become
unobservable from the image feature data.

7.3 Resource Allocation

When cameras are used for positioning, for instance in robotics, cam-
eras need to be distributed so that the entire workspace is covered.
Because of the limited resolution and field of view of each camera, it is
usually beneficial to place the cameras so that each camera covers only
a part of the available workspace. Some cameras may be placed so that
they cover a large part of the workspace, giving rough information on
the location of the object, while other cameras cover only part of the
workspace for a more accurate localization. If the object is moving, dif-
ferent cameras will give more or less useful or accurate information at
different times, depending on the current object position.

In general, the most accurate estimation of the position is obtained
when using a subset of the available cameras. When timing is impor-
tant, for instance when the estimated position is to be used for feed-
back control, it would be an advantage to use only the ’best’ subset
of cameras. The reason is the extra processing time required for each
camera, as described in Section 7.2. In addition, each edge detection
takes time, and therefore the edge search point should be distributed
among these well-placed cameras.

Using the covariance of the estimation error as a measure of the
estimation accuracy, we see from Eq. (7.9) that for a given object posi-
tion x, we must choose the numbers of features Ni in each camera in
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the subset {Ck} of all available cameras so that

E[x̃x̃T ] = σ 2


 ∑

i∈{Ck}
NiΦi(x)



−1

(7.10)

is minimized. In general, the covariance decreases with increasing Ni.
Assuming a desired constant control delay Tcomp as in Section 7.2 and
the timing model in (7.5), we see that the total number of search points
N, and the accuracy, decreases with the number M of cameras used.

Finding the optimal camera set and search point distribution from
Eq. (7.10) for a general x is a non-trivial task. Simple heuristic choices
for the optimal camera set, such as the best individual camera or all
cameras, are possible, but can be very far from the optimum. Addition-
ally, using a single camera or a low number of cameras could cause the
problem to become ill-conditioned, for instance in situations where only
a small part of the object is visible in each camera.

Algorithm
Since timing is important, a fast algorithm for selecting a suitable
camera set and feature distribution has been developed. The algorithm
is outlined in Fig. 7.4.

The algorithm updates the active set of cameras and the distribu-
tion of edge search points among the active cameras. This is done by
testing if we can decrease the estimation error covariance by adding
a camera and recomputing the distribution between search points in
the current active set and the added camera. If the covariance can be
decreased, the active set and distributions are updated with the new
camera, and the algorithm tries to decrease the covariance further
by adding another camera. If there is nothing that can be gained by
adding another camera, the algorithm will stop and the current active
set will be used in the next sample.

The algorithm is very robust and easy to implement. It takes negli-
gible time to execute, since all information about the relative accuracy
of the cameras is contained in the small n � n-matrices Φ i. The al-
gorithm will in general not achieve the optimum covariance, but will
find a small subset of cameras which together give a significantly lower
covariance than for the heuristic choices.
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N_feat[N_cam] = number of edge detection points using N_cam cameras;

for i = all cameras

Φ[i] = transpose(J[i])*J[i]/N[i];

clear selected set of cameras and distribution of edge detection points;

set Φ_max = 0, best_val = 0, N_cam = 1, stop_flag = false;

while stop_flag == false {

for k = all cameras not in currently selected set

find the λ∈[0, 1] minimizing new_val[k] = inv(λ*Φ_max+(1-λ)*Φ[k]);

set best_new_cam = the camera cam with smallest new_val[cam];

set best_new_ratio = the minimizing λ for camera best_new_cam;

set Φ_new = best_new_ratio*Φ_max + (1-best_new_ratio)*Φ[best_new_cam];

if (inverse(N_feat[N_cam]*Φ_new) < best_val) {

update selected set by adding best_new_cam;

redistribute edge detection points according to best_new_ratio;

set Φ_max = Φ_new, best_val = inverse(N_feat[N_cam]*Φ_new);

set N_cam = N_cam + 1;

} else stop_flag = true;

}

Figure 7.4 Algorithm for selection of best camera set and edge detection point
distribution.

7.4 Simulations

The accuracy of the tracking is evaluted in simulations using six cam-
eras, where the images are generated using the standard graphics API
OpenGL. The object being tracked is a textured box of dimensions 18
cm�18 cm�18 cm which is moved around in front of a textured back-
ground. Fig. 7.3 shows example images taken from a test sequence.
We have assumed the timing model and values given in Section 7.2,
the sampling period h = 33 ms and a maximum desired control delay
Tcomp = 15 ms.

Tracking Accuracy
The tracking accuracy for a stationary target is evaluated by mea-
suring the estimation error variance for different image sequences,
taken from different camera positions. Three different algorithms for
resource allocation between the cameras are investigated.
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1. Choosing the best camera, i.e., the camera for which Φ i is ’largest’,
according to some chosen criterion.

2. Using all cameras, with equal distribution of edge search points.

3. Choosing the best set of cameras, using the algorithm in Sec-
tion 7.3.

The tracking accuracy was measured for image sequences taken
with several different camera configurations as given by Table 7.1. The
estimated standard deviations for the error in estimated orientation
and translation is shown in Table 7.2.

The estimation using the single-camera method did not converge
for Sequence 2, since the problem becomes very poorly conditioned for
any choice of a single camera. In Sequence 1, the minimum translation
error was obtained by using all cameras, but the price is a significantly
larger orientation error.

Control Performance
The visual feedback was applied in a feedback control setting, where
the textured box was controlled one-dimensionally along the y coordi-
nate axis. The estimated y-position was used as feedback information
to the controller. The simulated dynamics was described by a second or-
der system, which after discretization [Åström and Wittenmark, 1997]

Table 7.1 Camera configurations, distances z (in mm unless otherwise indi-
cated) to target, and percentage of object visible in each camera.

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5 Camera 6

z Vis. z Vis. z Vis. z Vis. z Vis. z Vis.

840 100 840 100 880 100 890 100 870 100 910 100

320 20 4 m 100 4 m 100 445 20 5 m 100 4 m 100

510 100 4 m 100 5 m 100 500 0 6 m 100 7 m 100

550 30 360 10 330 5 450 10 380 5 280 5

600 100 600 100 400 0 600 100 1 m 0 1 m 0

650 100 280 30 450 0 700 0 900 0 940 0

300 30 330 35 500 70 700 0 1 m 0 1 m 0

400 30 350 30 280 20 400 40 370 15 300 25
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with the sampling interval h = 33 ms was given by

x(k+ 1) =
[

1 0.033
0 0.97

]
x(k) +

[
0.55
32.8

]
u(k)

y(k) = [ 1 0 ] x(k)
(7.11)

The controller was a delay-compensating LQG-controller [Åström and
Wittenmark, 1997], designed to maximize the continuous-time cost
function

J(u) =
∫ (

[ x(t) u(t) ]Q
[

x(t)
u(t)

])
dt (7.12)

with

Q =




100 0 0
0 0.1 0
0 0 0.001


 (7.13)

As seen by the process model in Eq. (7.11), only the first state is mea-
surable. Therefore an observer was designed to reconstruct the state

Table 7.2 Tracking error standard deviations, orientation and translation,
when using the best single camera, all cameras and the best selection of cam-
eras, respectively.

# Orientation error [○] Translation error [mm]
Single All Sel. Single All Sel.

1 0.18 0.36 0.18 0.75 0.49 0.68
2 ∞ 0.49 0.17 ∞ 0.37 0.25
3 0.12 1.23 0.10 0.26 1.64 0.21
4 0.22 0.20 0.16 0.97 0.28 0.26
5 0.12 0.29 0.10 0.35 0.36 0.31
6 0.14 0.20 0.08 0.36 0.46 0.17
7 0.22 0.25 0.07 1.10 0.28 0.16
8 0.08 0.09 0.05 0.24 0.14 0.12
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vector. The state and output noise variances used in the design of the
observer where chosen as R1 = 10 ⋅ I and R2 = 0.01.

The real-time simulations of the control system were conducted in
MATLAB/Simulink using the TrueTime simulator [Henriksson et al.,
2002]. This simulator allows for co-simulation of continuous plant dy-
namics and discrete controller implemented as tasks in a computer.
The simulation environment communicated with the 3D-visualization
environment over TCP.

The true position of the continuous-time plant model was used to
update the camera images. The controller was implemented as a pe-
riodic task with the sampling interval 33 ms. In the beginning of the
sample, only the images of the cameras in the active set are read and
processed. The position estimate is then fed into the LQG-control al-
gorithm, whereafter the computed control signal is actuated. After the
control signal actuation, the remaining images are read and the re-
source allocation algorithm is executed to obtain the camera set and
point distribution for next sample.

Two separate simulations were performed, corresponding to sce-
nario 4 and scenario 6 in Table 7.1, and the objective of the control
was steady-state regulation of the position around y = 0, with no ex-
ternal load disturbances. Simulation results are shown in Figs. 7.5–7.8,
showing the control signal and the controlled position variable for the
two scenarios. It is seen that the suggested resource allocation algo-
rithm results in better control performance than the heuristic choices
for both scenarios.

7.5 Discussion

As can be seen from Table 7.2, the proposed method for choosing the
best camera set works well for all camera configurations in Table 7.1.
The heuristic selection of the best single camera works well in situ-
ations where we can find a single camera that gives sufficient infor-
mation, but will fail in many common configurations such as the one
in Sequence 2. Using all cameras works well in most situations, but
is rarely necessary, and may not even be feasible if there are a large
number of available cameras. The best selection algorithm will find
a small set, typically consisting of 1–3 cameras, that will give suffi-
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Figure 7.5 Control signal using the three different tracking algorithms in
scenario #4 of Table 7.1.

cient information to accurately and robustly estimate the position and
orientation. It also scales well with the number of available cameras.

It is important to note that we need the image data in order to
correctly calculate the matrices Φ i and the Jacobians Ji. The reason is
that not all image searches will be able to find a clear single edge, due
to occlusions, specular reflections, noise, object texturing, etc. There-
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Figure 7.6 The controlled output using the three different tracking algorithms
in scenario #4 of Table 7.1.

fore, the pre-processing and edge detection steps in the algorithm in
Section 7.2 need to be performed for every image in every sample.
However, for the cameras not used in the estimation, these steps can
be performed after the estimated position has been obtained, and will
therefore not affect the control delay Ttot.

The assumed model of the image noise as independent and Gaus-
sian is usually not realistic, since there is a spatial correlation between
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Figure 7.7 Control signal using the three different tracking algorithms in
scenario #6 of Table 7.1.

the measurements, particularly for large Ni when the distance between
search points will be small. However, the resource allocation algorithm
will still give good results, as seen in Table 7.2. Another approxima-
tion involves the timing model in Eq. (7.5) and the approximation of
the covariance given from Eq. (7.8), since not all N edge searches will
result in an edge being found. Edges that are not found will not be
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Figure 7.8 The controlled output using the three different tracking algorithms
in scenario #6 of Table 7.1.

used in the state estimation update. Therefore, the computation time
in Eq. (7.5) is a function of the number of searches, rather than the
number of obtained measurements. This could be compensated for by
measuring the percentage of successful edge detections, and assuming
that this ratio is independent of Ni.

108



7.6 Conclusions

7.6 Conclusions

This chapter has presented a method for dynamic resource allocation
in multi-camera based feedback control. It is shown how the covari-
ance of the position estimation error depends on the set of cameras
used and the number of edge detection points in each camera image.
These parameters in turn affect the timing properties of the tracking
algorithm.

An experimentally verified timing model was used to quantify the
relation between the number of active cameras and the number of edge
detection points. Using this timing model, it was possible to obtain a
nearly constant input-output latency of the control loop. The latency
was then compensated for by the controller.

The objective of the resource allocation algorithm was to minimize
the variance of the position estimate within the time specified by the
desired input-output latency. This was obtained by a proper choice of
active cameras and point distribution between these cameras.

Real-time simulations have been conducted to demonstrate the ef-
fectiveness of the algorithm. It was shown that the resource allocation
scheme significantly outperformed the heuristic choices of using only
the best camera, and distributing all edge detection points evenly be-
tween all cameras. The algorithm also scales well with the number of
cameras used.
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A

Camera Model

The most common camera model is the pinhole or perspective cam-
era, and its structure and parameters are therefore described briefly
here. For more information about this and other camera models, see
for instance [Trucco and Verri, 1998]. The perspective camera model
consists of a point O, the center of projection, and a plane π , the im-
age plane. The origin of the camera centered coordinate system is in
O, see Fig. A.1. The distance between O and π is the focal length f .
The line perpendicular to π that goes through O is the optical axis, and
the intersection of this line with π is the origin o of the image coordi-
nate system, the principal point. The projection equations for a point
(X Y Z)T in Cartesian space in the perspective camera are given by

x = f
X
Z

y = f
Y
Z

This can be written using homogeneous coordinates as

λ




x
y
1


 =




f 0 0 0
0 f 0 0
0 0 1 0







X
Y
Z
1




where λ = Z is the depth of the imaged point in the camera.
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Figure A.1 The pinhole camera model.

To transform between image-plane coordinates (x y)T to pixel co-
ordinates in the camera we need to introduce a number of intrinsic
parameters that describe the CCD in the camera. These parameters
allow us to describe non-quadratic pixels (aspect ratio�=1), skew, and
a principal point that is not located at the origin in the pixel grid, see
[Trucco and Verri, 1998] for details. The new camera model becomes
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λ




u
v
1


 =




f s u0 0
0 γ f v0 0
0 0 1 0







X
Y
Z
1



=

=




f s u0

0 γ f v0

0 0 1







1 0 0 0
0 1 0 0
0 0 1 0







X
Y
Z
1



=

def= KR3�4X (A.1)

The matrix K is called the intrinsic camera matrix, and R3�4 is the
extrinsic camera matrix. The intrinsic parameters f and γ describes
focal length and aspect ratio, s is the skew (usually close to 0), and
(u0 v0)T is the principal point.

The matrix R3�4 can be used to change coordinate system in the
world, usually to a coordinate system attached to some object in the
scene:

λ




u
v
1


 = K

(
R t

)
Xo,

where R is an orthogonal rotation matrix and t is a vector, describing
the orientation and position of the camera and object frames respec-
tively. Xo are the object points in the object-centered coordinate system.
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B

Multi-Camera Calibration

For a multi-camera system, in addition to the intrinsic camera param-
eters, we need to find the relative positions of the sensors. When the
cameras are fixed in the workspace, as depicted in Fig. B.1, we can
attach the calibration object to the robot end-effector itself. From the
kinematics of the robot we can get accurate information on the move-
ment of the end-effector between the images. Therefore, the extrinsic
parameters are partially known, and this is used in the algorithm in
order to increase the accuracy and decrease the number of parameters
that need to be estimated.

A calibration procedure in three steps can then be used, which find
all of the necessary internal and external camera parameters shown
in Fig. B.1:

1. Estimate of intrinsic and extrinsic camera parameters according
to [Zhang, 1999].

2. Calculation of Tt
n by hand-target calibration according to [Tsai

and Lenz, 1989b].

3. Calculation of all system parameters simultaneously using non-
linear least squares optimization.

The last step is not strictly necessary, but have been found to im-
prove the accuracy of the calibration. If we choose to perform this
optimization, steps 1 and 2 may be used to obtain suitable starting
values.
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Figure B.1 The most important frames and transformations.

In step 2, a hand-eye calibration method [Tsai and Lenz, 1989b] can
be used if we note that for two different end-effector positions, denoted
by numbers p and q, and camera ck, there holds a relationship

Tck
t (q)−1 Tck

t (p)Tt
n = Tt

n Tnb(q)Tnb(p)−1 (B.1)

which can be solved for the unknown constant Tt
n.

The final optimization is used to minimize, for both cameras, the
errors between the m measured and reprojected image points in each
of the n images

n∑

i=1

m∑

j=1

2∑

k=1

(
xi jk − x̂i jk(K1, K2, Tt

n, Tc1
c2

, Tc1
b )
)2

where k is the camera number, and x̂i jk is given by the projection
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equations

λ1x̂i j,1 = K1Tc1
b Tnb(i)−1(Tt

n)−1X j

λ2x̂i j,2 = K2(Tc1
c2
)−1Tc1

b Tnb(i)−1(Tt
n)−1X j (B.2)

where X j are the model points of the calibration object in its local coor-
dinate system. K1 and K2 are matrices of intrinsic camera parameters,
see [Zhang, 1999]. The minimization is performed with respect to K1,
K2, Tc1

b , Tc1
c2

and Tt
n. Multiplying Eq. (B.2) with the inverses of K1 and

K2 we get projection equations on the form
(

x
y

)
= 1

Z

(
X
Y

)
, (B.3)

for the point (X Y Z)T in camera coordinates.
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