LUND UNIVERSITY

Exception Handling in Recipe-Based Batch Control

Olsson, Rasmus

2002

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Olsson, R. (2002). Exception Handling in Recipe-Based Batch Control. [Licentiate Thesis, Department of
Automatic Control]. Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/8d320b01-5ccc-4db9-a7a8-bfb6509fcbc0

Exception Handling in
Recipe-Based Batch Control

Rasmus Olsson

Department of Automatic Control
Lund Institute of Technology
Lund, December 2002

Department of Automatic Control
Lund Institute of Technology

Box 118

S-221 00 LUND

Sweden

ISSN 0280-5316
ISRN LUTFD2/TFRT--3230--SE

©2002 by Rasmus Olsson. All rights reserved.
Printed in Sweden,
Lund University, Lund 2002

Contents

Acknowledgments
1. Introduction
1.1 Background and Motivation
1.2 Research Approach
1.3 Contributions
1.4 Outline of thethesis
2. Batch Control
2.1 Introduction and Motivation
2.2 S88 - Batch Control Standard
3. JGrafchart.
3.1 Introduction
3.2 JGrafchart.,
3.3 JGrafchart and Batch Control
4. Exception Handling
4.1 Introduction
4.2 Unit Supervision
4.3 Recipe Level Exception Handling
4.4 Synchronization
5. ACaseStudy
5.1 Introduction
5.2 Control and Exception Handling
5.3 Exception Handling Example
54 Integration

11
12
15

16
16
19

24
24
26
50

54
54
55
68
75

80
80
81
86
89

Contents

6. A Modular Batch Laboratory Process 91
6.1 Introduction 91
6.2 Process Description 92
6.3 A Batch Process Laboratory Exercise 93
6.4 A Laboratory Batch Plant 96
7. Conclusions and Future Work 102
7.1 Conclusions 102
7.2 Future Work 103
8. Bibliography 105

Acknowledgments

I would like to thank my supervisor Karl-Erik Arzén for all the help
and stimulating discussions during the work, which has led to this
thesis. Karl-Erik is always able to make things work on the fly. If you
come to him with a problem it will be solved in real-time.

I would like to thank all my colleagues at the Department of Auto-
matic Control for making it a pleasure to go to work every day. Henrik
Sandberg, Rolf Braun, and Anders Blomdell for the cooperation and
help during the development of the laboratory batch process. Johan
Eker for proof reading this thesis.

The cooperation with the Department of Chemical Engineering at Uni-
versitat Politecnica de Catalunya (UPC), Barcelona, Spain, has been
very fruitful. Thanks to Jordi Canton, Diego Ruiz, Estanislao Musulin
and Professor Luis Puigjaner for letting us use the Procel plant.

All the people outside the world of automatic control, who have con-
tributed to my life in different ways, also deserve some credits. A spe-
cial thanks goes to my Mother, my Father, and my Sister for being
there for me my whole life. Props go to Cia, Ylva, the guys in LBWS
and all my friends in Skane, GBG, and the rest of the world.

The development of JGrafchart is funded by LUCAS — Center for
Applied Software Research at Lund Institute of Technology and the
EC/GROWTH project CHEM aimed at developing advanced decision
support systems for different operator-assisted tasks, e.g., process mon-
itoring, data and event analysis, fault detection and isolation, and op-
erations support, within the chemical process industries. The CHEM
project is funded by the European Community under the Competi-
tive and Sustainable Growth Programme (1998-2002) under contract
G1RD-CT-2001-00466.

This work has been supported by the Center for Chemical Process
Design and Control, CPDC, and the Swedish Foundation for Strategic
Research, SSF, which I'm very grateful for. The CPDC graduate school
has been a good environment for discussions and exchange of ideas

between disciplines.

1

Introduction

1.1 Background and Motivation

In a batch process a certain amount of material is transformed, often
in several steps, to reach a new state or form. An everyday example
is baking bread. A recipe in a cookbook states the following steps for
making your own delicious loaf of bread.

* Mix flour, water and yeast in a bowl.

Form the dough to a loaf.

Let the dough to rise for thirty minutes.

Bake the bread in an oven at 225° C for 45 minutes.

Let the loaf cool down.

e Put the loaf in a plastic bag or eat it right away.

In the same fashion a lot of products can be manufactured in large
quantities in factories. A recipe for making a batch of pharmaceuti-
cals looks very much the same as the one for baking bread. Of course
there are a lot of more restrictions and regulations, which need to be
considered when producing pharmaceuticals.

Batch processes are becoming more and more important in the
chemical process industry. Batch processes are used in the manufac-
ture of specialty materials, which are highly profitable. Some examples

9

Chapter 1. Introduction

where batch processes are important are the manufacturing of phar-
maceuticals, polymers, and semiconductors. In continuous processes
grade and product changes, as well as start-up and shut-down phases
can also be seen as batch processes.

The formal definition of a batch process in the batch control stan-
dard S88.01 [18] is:

“A process that leads to the production of finite quanti-
ties of material by subjecting quantities of input material
to an ordered set of processing activities over a finite period
of time using one or more equipment units.”

From a control point of view a batch process combines the character-
istics of continuous-flow production with those of discrete, part-based
production. A batch can be viewed as a discrete entity, which during
production moves between different production units. However, dur-
ing the transition phase from one unit to the next unit and during
certain operations within a unit, e.g. fed-batch operations, the batch is
more naturally described as a continuous process. The mixed discrete-
continuous nature and the recipe-driven production of batch processes
make batch control a challenging problem. A batch control system must
support a large number of functions in addition to the basic regulatory
control. Some examples are production planning, production schedul-
ing, recipe management, resource arbitration and allocation, batch re-
port generation, unit supervision, and exception handling. A graphical
approach is convenient to illustrate the different steps of batch pro-
cesses. Both which actions could or should be taken at a certain in-
stant in time and which history of operations led to the current state
of the process can be depicted in a clear way.

The focus of this thesis is exception handling in batch control. Ex-
ception handling is a critical element for achieving long-term success
in batch production. It is reported to constitute 40-60 percent of the
batch control design and implementation effort [8]. Some examples of
exception handling situations could be:

* A valve that fails to respond to an Open or Close command.

* A chemical reaction that does not begin as expected after ingre-
dients have been added.

10

1.2 Research Approach

* A recipe that requires a shared resource which is already in use.

* An equipment unit that is not ready for charging when the pre-
ceding vessel expects to transfer material.

* An emergency stop that must be performed due to a potentially
hazardous situation.

Correct handling of exceptions of these type is a key element in
process safety, consistent product quality, and production cost mini-
mization.

Recently a lot of focus has been put on standardization of the models
and terminology used in batch control, e.g. NAMUR [29] and S88 [18].
However, so far very little has been specified in the area of exception
handling.

Different discrete-event formalisms has been used for research of
the discrete nature of batch control, see e.g. [12, 15, 38]. However, most
of this work has been concerned with scheduling, resource allocation
and simulation.

1.2 Research Approach

The work presented in this thesis has been performed within the
Grafchart group at the Department of Automatic Control, Lund In-
stitute of Technology. The aim of this group is to develop improved
domain-specific graphical programming languages for control applica-
tions, in particular applications of a discrete and sequential nature.
The aim is to extend the languages that are commonly used for this
purposes within automation, especially Grafcet/Sequential Function
Charts, with better support for structuring, abstraction, encapsulation,
re-use, and user interaction. With these extensions it becomes easier
to implement complex applications. It is easier for the programmers
and process operators to get an overview of the application and the
probability of programming errors decreases. The research approach
is complementary to the work on formal verification methods for lan-
guages of the above type, e.g., [6] [13].

Recipe-based batch control systems is used as the major example
domain in the work. The main reason for this is the high complex-

11

Chapter 1. Introduction

ity of these systems. The research approach is to investigate different
language extensions and how these language extensions simplify the
development of batch control systems and allow more and more func-
tions in a batch control system to be implemented within the same
programming language framework. As far as possible our ambition is
to follow the batch control standard S88 (IEC 61512) or to suggest
additions to the standard. In previous work [26] the focus has been
recipe representation and resource arbitration and allocation. In this
thesis the focus is exception handling on both the recipe level and the
equipment level.

The work is based on two new language features: MIMO macro
steps and step fusion sets. A MIMO macro step is a macro step with
multiple input ports and multiple output ports. It can be conveniently
used to represent hierarchical states in state-machine based control
systems. The functionality is similar to the super-states in Statecharts
[16]. Step fusion sets [24] provide a way to have multiple graphical
representations, or views, of the same step. Using step fusion sets it
is possible to separate the exception-handling logic from the normal
operation sequences in a way that improves usability.

1.3 Contributions

In this thesis the previous work on Grafchart for sequential program-
ming, batch process recipe handling and resource allocation [26] is
extended to also include exception handling. An internal model ap-
proach is proposed where each equipment object in the control system
is extended with a state-machine based model that is used on-line to
structure and implement the safety interlock logic. The exception de-
tection logic associated with a certain state is only active when the
state is active. The internal model provides a safety check to ensure
that recipe operations are performed in a correct order. An operation is
only allowed to be activated if the state of the equipment unit is within
a certain set of allowed states associated with the operation. The the-
sis treats exception handling both at the unit supervision level and
at the recipe level. The goal is to provide a structure, which makes
the implementation of exception handling in batch processes easier.
The proposed approach uses the MIMO macro step functionality to

12

1.3 Contributions

implement the state machines and step fusion sets to provide sepa-
ration between the exception handling logic and the logic for normal,
fault-free operation.

The exception handling approach has been implemented and tested
both in the G2-language implementation of Grafchart and in JGrafchart,
a reimplementation of Grafchart in Java. As a test plant Procel, a
batch pilot plant, at the Universitat Politecnica de Catalunya (UPC)
in Barcelona, Spain, has been used. Procel consists of three tanks with
agitators, heaters, and sensors. The tanks are connected in a highly
flexible way to be able to run several different types of recipes in the
plant.

A good control engineering course should include hands-on experi-
ments. A number of laboratory control processes are available commer-
cially, e.g., inverted pendulums, helicopter processes, level-controlled
water tanks, etc. These are commonly used in laboratory exercises in
different basic and advanced control courses. However, very few pro-
cesses exist that illustrate the typical problems associated with batch
control.

An inexpensive, portable, and flexible laboratory batch process has
been developed. The process is used within the chemical engineering
education at Lund Institute of Technology. The process can be used
for teaching sequential, PID, multi-variable, and recipe-based control.
The students implement sequential control and discrete PID control of
the batch process in JGrafchart. Since the process is modular, several
processes can be connected together to form a low cost batch pilot plant
with the same functionality as the Procel pilot plant described above
but much more compact.

The main contributions presented in this thesis are:

* A new approach to equipment supervision in recipe-based batch
control systems has been proposed. The approach uses hierar-
chical state machines represented in JGrafchart to model the
equipment status and the status of the procedures executing in
the equipment.

* A new approach for representing exception-handling logic at the
recipe-level has been proposed. The approach gives a clear sep-
aration between exception handling logic and the logic for the

13

Chapter 1. Introduction

normal operation.

Different possibilities for combining the two above approaches
have been suggested.

The proposed approaches have been implemented in JGrafchart.

The combined approach has been experimentally verified on a
realistic batch pilot plant.

A new inexpensive and modular batch laboratory process has
been developed. The process is used in chemical-engineering con-
trol courses as a single-unit process. By connecting several pro-
cesses a flexible multi-purpose batch cell can be constructed.

Publications

The thesis is based on the following publications:

14

Olsson, R. and K-E. Arzén: “Exception Handling in Recipe-Based
Batch Control”. Proc. of ADPM2000 The 4th International Con-
ference on Automation of Mixed Processes, Dortmund, Germany,
2000.

Olsson, R., H. Sandberg and K-E. Arzén: “Development of a Batch
Reactor Laboratory Process”, Reglermotet 2002, Linkoping, Swe-
den, 2002.

Olsson R. and K-E. Arzén: “Exception Handling in S88 using
Grafchart”. Proc. of World Batch Forum North American Confer-
ence 2002, Woodcliff Lake, NJ, USA, 2002.

Arzén, K-E., R. Olsson and J. Akesson: “Grafchart for Procedural
Operator Support Tasks”. Proc. of the 15th IFAC World Congress,
Barcelona, Spain, 2002.

Olsson R. and K-E. Arzén: “A Modular Batch Laboratory Pro-
cess”. Submitted to International Symposium on Advanced Con-
trol of Chemical Processes ADCHEM 2003, Hong Kong, June,
2003.

1.4 Outline of the thesis

1.4 Outline of the thesis

In Chapter 2 batch control in general is discussed. Some contents of the
batch control standard S88 are described. Chapter 3 describes the pre-
vious work on Grafchart for batch control and the re-implementation of
Grafchart in Java. The state-machine based approach to exception han-
dling in recipe-based batch control is described in Chapter 4. The topic
of Chapter 5 is the testing and verification of the exception handling
approach on the Procel pilot plant. The developed batch laboratory pro-
cess and its use in an laboratory exercise for students is described in
Chapter 6. How the laboratory process can be used as a module for
building a plant structure is also described in Chapter 6. In the last
chapter of the thesis, Chapter 7, some conclusions and suggestions for
future research are made.

15

2

Batch Control

2.1 Introduction and Motivation

The control of a batch process is quite different from the control of a
continuous process. A continuous process usually operates at a certain
set point and the control system tries to keep the process at that point.
A batch process involves both continuous and sequential parts. For ex-
ample, when filling a tank, see Fig. 2.1, to a certain level the flow
to the tank is continuous. When the desired level is reached the flow
is turned of and the next sequential control part can take place, e.g.
heating of the tank. The mixed discrete-continuous nature and recipe-
driven production of batch processes make batch control a challenging
problem. A batch control system must support a large number of func-
tions in addition to the basic regulatory control. The batches need to
be scheduled to meet the production plan, recipes should be developed
and maintained, shared resources need to be allocated during process-
ing, production reports of batches should be generated and stored, and
exceptions need to be detected and taken care of.

Why use automatic control for batch processes at all? On the sur-
face it seems easy to control the sequential part of batch processes
manually. The task is just to fill a tank and then start to heat it as in
the example above. The procedure is just to wait until a certain goal
is reached and then start the next part. However, once there is more
than one option of which unit to use, there are common resources to be

16

2.1 Introduction and Motivation

L2

=y

Figure 2.1 Single tank.

shared between different units, or operations need to be synchronized,
the task becomes unmanageable.

One of the benefits of automatic control is that the routine op-
erations become fewer for the operators so they can concentrate on
more important issues, e.g. exception handling and optimization of the
process. Controlling a batch process also leads to repeatability (i.e.
consistent product quality batch after batch) and flexibility (i.e. man-
ufacturing of different products and different grades). Another reason
are the properties of feedback as such and its capabilities of handling
disturbances and uncertainties in the process.

The most complex batch process structure is a network-structured,
multi-product plant, see Fig. 2.2. In these kind of plants it is possible
to produce multiple products at the same time using a finite set of
equipment units. The units are organized in a network structure with
a high degree of connectivity. The information about the sequential or-
dering of the operations, the equipment requirements for the different
operations, and the product specific parameters for the manufacturing
of a certain product are captured in a recipe. In order to execute an
operation in an equipment unit, the batch control system must allocate

17

Chapter 2. Batch Control

Storage A
tanks

m
——

O
—

—
Mixers E
=

Buffers

Reactors [H]

Product
tanks D M E D] F U

=
| S

Figure 2.2 Scheme of a network-structured, multi-product plant.

the resource that the equipment unit constitutes. A control system for
recipe-based batch production must, hence, include substantially more
functions than what is needed in a control system for continuous pro-
duction. There are a number of books on the subject of control of batch

processes, e.g. [11] and [32].

18

2.2 S88 - Batch Control Standard

2.2 S88 - Batch Control Standard

During the last decade there have been several initiatives with the
aim to standardize batch control systems. The most successful of these
attempts is the S88 standard initiated by ISA [22]. The standard is
divided into two parts: Part 1 (S88.01) deals with models, terminology
and functionality and Part 2 (S88.02) deals with data structures and
language guidelines. The ISA S88.01 standard is also known under the
names SP88 and TEC 61512-1 [18]. ISA S88.02 is now in the standard
IEC 61512-2 [20]. A book that from the user’s perspective describes
how to implement S88 for an ice-cream factory is [31].

The S88.01 standard describes batch control from two different
viewpoints: the process view and the equipment view. The process view
corresponds to the view of the chemists, and is modeled by the process
model. The process model is hierarchically decomposed into the fol-
lowing layers: process, process stage, process operation, and process
action. The equipment view corresponds to the view of the produc-
tion personnel and is represented by the physical model. The physical
model is also a four-layer hierarchical model containing the following
four layers: process cell, unit, equipment module, and control mod-
ule. A process cell contains one or several units. A unit performs one
or several major processing activities. The unit consists of equipment
modules and/or control modules. An equipment module carries out
a finite number of minor processing activities, i.e. phases (described
below). In addition to being a part of a unit, an equipment module
can also be a stand-alone, shared or exclusive usage, entity within a
process cell. The control module, finally, implements a basic control
function, e.g., a PID-controller or the logic handling a valve battery.

The process model and the physical model are linked together by
recipes and equipment control. S88 specifies four different recipe types:
general, site, master, and control recipes. Here only master recipes and
control recipes are considered. Both types of recipes contain four types
of information: administrative information, formula information, re-
quirements on the equipment needed, and the procedure that defines
how a batch should be produced. The master recipe is targeted towards
a specific process cell. It includes almost all information necessary to
produce a batch. Each batch is represented by a control recipe. It can be
viewed as an instance or copy of the master recipe, that has been com-

19

Chapter 2. Batch Control

Control Recipe Equipment
Procedure Control
.
Recipe |
Procedure | Procedure |
C |
r —l
| Unit
| Procedure |
L__ N
T I’ T
N /
I
I Operation |
C |
I__ - —l '
| Phase | Equipment
| | Phase
S

Figure 2.3 Control recipe/Equipment control separation.

pleted and/or modified with scheduling, operational, and equipment
information.

The procedure in a recipe is structured according to the procedu-
ral model in S88. The model is hierarchical with four layers: proce-
dure, unit procedure, operation, and phase. A procedure is decomposed
into unit procedures, i.e., sets of related operations that are performed
within the same unit. The unit procedures are decomposed into oper-
ations, which in turn are decomposed into phases. The phase is the
smallest element that can perform a process-oriented task, e.g. open a
valve or set an alarm limit.

The procedural model on the recipe level is mirrored by the same
model on the equipment control level, see Fig. 2.3. The dashed levels
could either be contained in the control recipe or in the equipment
control. The linkage between an element in the recipe procedure (unit
procedure, operation or phase) and the corresponding element in the
equipment control (equipment unit procedure, equipment operation,

20

2.2 S88 - Batch Control Standard

equipment phase) can be viewed as a method call to the equipment
unit object that has been allocated to execute the specific recipe proce-
dure element. S88 offers great flexibility concerning at which level the
linkage should take place. It is also possible to collapse one or several
levels.

Exception Handling in S88

Surprisingly enough S88 mentions very little about exception handling
and how this should be integrated with recipes and equipment control.
The only thing that is briefly discussed is that modes and states may
be affected.

Equipment entities and procedural elements may have modes, which
determine how they respond to commands and how they operate. Pro-
cedural elements have three modes: automatic, semi-automatic, and
manual, and equipment entities have two modes: automatic and man-
ual. For procedural elements, in the automatic mode the transitions
take place as soon as the transition conditions are fulfilled. In semi-
automatic mode, the procedure requires manual approval to proceed
after the conditions are fulfilled, and in manual mode the execution of
the procedural elements is determined manually. One important issue
is how mode changes will propagate. An open question is, e.g., if a unit
procedure goes to manual mode should all the lower-level procedural
elements within the unit also go to manual mode? The standard does
not specify propagation rules. Propagation may be from higher to lower
level or vice versa.

Procedural elements and equipment entities may also have states.
As an example the following twelve procedural states are mentioned:
idle, running, complete, pausing, paused, holding, held, restarting,
stopping, stopped, aborting, and aborted, see Fig. 2.4. If a procedure
is in the idle state, i.e. it is available, it may be started, and the state
will change to running. From the running state the procedure may be
stopped, aborted, held, and paused or the procedure will reach its end
and return to the idle state through the complete state. The state of,
e.g., a valve can be: open, closed, and error. The error state would be
reached if the valve fails to respond to an open or close command from
the control system.

An exception is defined as an event that occurs outside the normal
or desired behavior of batch control. A few examples of events that

21

Chapter 2. Batch Control

might need exception handling are stated: control equipment malfunc-
tion, fire or chemical spills, or unavailability of raw materials or plant
equipment. Exception handling may occur at all levels in the control
activity model. However, how this should or could be done is not men-
tioned. The exception handling can be incorporated in any part of the
control system.

Although there are no specific safety standards for batch processes,
general process industry safety standards, such as IEC 61508 [19] and
IEC 61511 [21], also apply to batch processes. A Safety Instrumented
System! (SIS) [2] of a batch process need a number of additional func-
tionalities, which are different from an SIS of a continuous process. For
more info on process safety issues specific to batch reaction systems
see [1].

IThe instrumentation, controls, and interlocks provided for safe operation of the sys-
tem.

22

"88S UI PAqLIISOp juswoe [einpadoid € jo saje)s oy, ¥'g oaInSig

€¢

Complete Holding

Restart /\
Restarti_ng/ @/

Hold

Reset

I dle\ Start

Pause

Running

Pausing
)

\

Abort Resume

Aborting Stopping

Reset

Reset

p4ppUDIS' 104U0Y YoIDg - 88S GG

3

JGrafchart

3.1 Introduction

Grafchart is a graphical programming language for sequential control
applications. It is based on Grafcet, or Sequential Function Charts
(SFC), together with ideas from Petri nets, Statecharts [16], high-level
programming languages and object-oriented programming. A thorough
presentation of Grafcet and Petri Nets is given in [9]. Grafcet/SFC
is one of the languages specified for PLC (Programmable Logic Con-
troller) programming in the standard IEC 61131-3 [17], and it is widely
used as the representation format for the sequential part of supervisory
control. Grafchart has been developed at the Department of Automatic
Control at Lund Institute of Technology since 1991 [3, 4, 5].

Two different versions of Grafchart exist. The first and ordinary
version is based directly on Grafcet whereas the second version, called
High-Level Grafchart, also incorporates ideas from high-level Petri
nets. Grafchart is described and defined in [26]. Grafchart has a similar
syntax to that of Grafcet/SFC, i.e. the basic building blocks are steps,
representing states and containing actions, and transitions, represent-
ing the change of states. An active step is indicated by the presence
of a token in the step. In ordinary Grafchart the tokens are simple
boolean indicators, whereas the tokens in High-Level Grafchart are
objects that may contain information, e.g. attributes and methods. A
step may contain several tokens, of the same or of different classes.

24

3.1 Introduction

Each step action and each transition condition is associated with a
token class. The basic and high-level version of Grafchart has been
implemented in G2, a graphical programming environment from Gen-
sym Corp, see [26].

Grafchart contains three hierarchical abstractions: macro steps,
procedures, and workspace objects. Macro steps are used to represent
steps that have an internal structure. The internal structure of the
macro step is encapsulated within the macro step. A new feature of
the macro step is that it may have more than one enter and exit port.

To re-use sequences in a function chart, a sequence can be placed
on the sub-workspace of a procedure. Procedures can be stand-alone
entities or methods of objects. For example, an object representing a
batch reactor could have methods for charging, discharging, agitating,
heating, etc. A method is called through a procedure step. The method
that will be called is determined by an object reference and a method
reference. The call to a procedure is represented by a procedure step.
The procedure step has an attribute containing the name of the pro-
cedure that should be called. The procedure is active as long as the
procedure step is active. A process step is similar to a procedure step.
The difference is that the procedure is started as a separate execution
thread.

To easier organize programs one can use an workspace object. A
workspace object contains a sub-workspace that can be used in the
same way as a top-level workspace. Using workspace objects it is pos-
sible to create complex variables, e.g. structs.

An open problem in Grafcet is how the logic for the normal operat-
ing sequence best should be separated from the exception detection and
exception handling logic and sequences. Grafchart contains a number
of assisting features for this. An exception transition is a special type
of transition that may only be connected to macro steps and procedure
steps. An ordinary transition connected after a macro step will not be-
come active until the execution has reached the last step of the macro
step. An exception transition is active all the time that the macro step
is active. If the exception transition condition becomes true while the
corresponding macro step is executing the execution will be aborted,
abortive actions, if any, are executed, and the step following the ex-
ception transition will become active. Macro steps “remember” their
execution state from the time they were aborted and it is possible to

25

Chapter 3. JGrafchart

resume them from that state. Exception transitions have proved to be
very useful when implementing exception handling. Using connection
posts, it is possible to break a graphical connection between, e.g., a step
and a transition. In this way it is possible to separate a large function
chart into several parts that may be stored on different workspaces.
This enhances the readability of the chart. The connection post can be
used to separate the the normal operating sequence from the exception
detection and exception handling logic and sequences. A new language
element to separate function charts is the step fusion set. Steps in
a step fusion set represents different views of the same step. All the
steps in a step fusion set become active when one of the steps becomes
active.

3.2 JGrafchart

JGrafchart is an implementation of Grafchart written in Java using
Swing graphics, JGo, a class package for graphical object editors from
Northwoods Corporation [30], and JavaCC [42], a Java parser genera-
tor initially developed by Sun Microsystems. Only the basic version of
Grafchart has been implemented so far. JGrafchart consists of an in-
tegrated graphical editor and run-time system. In the graphical editor
the user creates Grafchart function charts by copying language ele-
ments from a palette using drag-and-drop. The language elements are
placed on a workspace and connected together graphically. After com-
pilation the function charts are executed by the runtime system within
the JGrafchart editor. Storage to file is provided in the form of XML us-
ing the Java API for XML Processing (JAXP) [36]. For the complete de-
scription of JGrafchart, see http://www.control.lth.se/~grafchart,
where JGrafchart also will be available for download.

The Graphical Editor

Grafchart function charts are created interactively using drag-and-
drop from a palette containing the different Grafchart language ele-
ments. The function charts are stored on JGrafchart workspaces, see
Fig. 3.1.

Workspaces can be stored to a file and loaded from a file. It is possi-
ble to store all top-level workspaces as a single XML file. Workspaces

26

3.2 JGrafchart

File Edit Execute Misc.

FEEIPIEIDE

-Palette

[

Initial Step

m2lelse

Step

==0

Transition

Parallel Split

Parallel Join

7N AN 5
. L. 4 *
M1
N/
MacTo Step

I

0

:ception Trans.

[

Figure 3.1 JGrafchart, with the palette (left) and a workspace (right).

support scroll, pan, and zoom. It is possible to change their size, to
iconize them, etc. If multiple workspaces are used, only one of them is
the current focus for menu choices. This is indicated through a blue
workspace border, rather than the ordinary gray border. The focus is
changed by clicking on a workspace. On the workspace it is possible to
select an object or an area containing multiple objects in the standard
fashion. A selected object can be moved, cut, deleted, or copied to the
clipboard. The contents of the clipboard can be pasted to a workspace
at the location where the latest mouse-click took place.

Grafchart objects are connected together graphically, to form a func-
tion chart, by clicking on a connection port and dragging the connection

27

Chapter 3. JGrafchart

line to the connecting port of the next Grafchart object. The rules of
Grafcet has to be followed: A step cannot be connected to a step, etc.
The steps and transitions can be edited. Variables and inputs and out-
puts are defined by dragging and dropping them on a workspace. After
the function chart has been built the workspace has to be compiled and
if there are no errors the function chart can be executed.

Drawing Capabilities In addition to the Grafchart language el-
ements the editor also supports graphical objects, e.g. rectangles, el-
lipses, and icons, see Fig. 3.2. The graphical objects can be used to
design graphical user interfaces (GUIs). Text comments can be added
to a workspace by drag-and-drop of the Free Text object on the palette.
By single-clicking on the object the text string can be edited. There
is also a plotter object, which can be used to plot different variables.
Which variables to be plotted and the properties of the axis can be set
in the edit menu.

===

Bfelm o] (x s[ala[s]c Po@RR]

[GraphicalObjects =

——

g\ . Free Text

L]
7

Figure 3.2 Graphical objects!.

1At the bottom the author can be seen windsurfing at Lomma Beach.

28

3.2 JGrafchart

Grafchart Elements

JGrafchart supports the following Grafchart elements: steps, initial
steps, transitions, parallel splits, parallel joins, macro steps, proce-
dure steps, process steps, enter steps, exit steps, exception transitions,
connection posts, workspace objects, step fusion sets, internal variables
(real, boolean, string, and integer), and action buttons.

Steps Grafchart steps have action blocks, where the actions of the
step is implemented. The action block can be made visible or hidden,
see Fig. 3.3. Step actions are entered as text strings. The text string
should be ended with a semi-colon. Multiple step actions are separated
by semi-colons. Five different action types are supported:

S Pump = 1;
52 52 X Pump = [;

Figure 3.3 A step with the action block hidden and shown.

* Stored actions (impulse actions) are executed when the step is
activated. A stored action text string starts with ‘S’.

» Periodic actions (always actions) are executed periodically, once
every scan cycle, while the step is active. A periodic action text
string starts with ‘P’.

» Exit actions (finally actions) are executed once, immediately
before the step is deactivated. An exit action text string starts
with ‘E’”.

* Normal actions (level actions) associate the truth value of a
digital output or a boolean variable with the activation status of
the step. A normal action text string starts with ‘N’.

» Abortive actions are executed once when the step is aborted.
An abortive action text string starts with ‘A’

29

Chapter 3. JGrafchart

Actions can be variable assignments or method calls to objects, such
as setting and getting the location, height, and width. Basic math func-
tions such as sin, cos, abs, efc. are also available. Basically any Java
method can with a small effort be made available in JGrafchart. For
the full list of implemented functions consult the documentation of
JGrafchart [34] or the On-Line Help.

The expression syntax follows the ordinary Java syntax, with some
minor exceptions. One important exception is that the literal 0 (1) is
used both to represent the boolean literal false (true) and the integer
literal 0 (1). The context decides the interpretation.

Expressions may contain references to inputs, outputs, and vari-
ables. JGrafchart uses lexical scoping based on workspaces. For ex-
ample, a variable named X on workspace W1 is different from a vari-
able named X on workspace W2. References between workspaces are
expressed using dot-notation. For example, a step action in a step on
workspace W1 can refer to the variable X on workspace W2 using W2.X.

The abstract grammar for actions is:

action — actionStmt 4’ (actionStmt ¢)*

actionStmt — storeStmt | periodicStmt | exitStmt |
normalStmt | abortStmt

storeStmt — ‘S’ (assignment | methodCall)
periodicStmt — ‘P’ (assignment | methodCall)
exitStmt — ‘X’ (assignment | methodCall)
normalStmt — ‘N’ id

abortStmt — ‘A’ (assignment | methodCall)

assignment — id ‘=" exp

30

methodCall — id ‘C [argumentList | ¢)’
argumentList — exp (¢’ exp) *

exp — exp ‘&’ exp |
exp ‘| exp |
exp ‘==" exp |
exp ‘1=’ exp |
exp ‘<’ exp |
exp >’ exp |
exp ‘<=’ exp |
exp “>=" exp |
exp ‘+’ exp |
exp ‘-’ exp |
exp “*’ exp |
exp exp |
“’ exp |
‘v exp |
string |
number |
methodCall |
id |
c(9 exp D%

3.2 JGrafchart

id—>(‘a’-‘z’|‘A’-‘Z’)(‘a’-‘z’|‘A’-‘Z’|‘_’|‘.’|‘A’|‘O’-‘9’)*

string — ¢ arbitrary characters ’

number — digit (digit)*

digit — 0’ - 9’ | <

Clarifications to the abstract grammar:

* [Jstands for 0 or multiple occurrences.
e (...] ...) means OR.

31

Chapter 3. JGrafchart

e [...] means OPTIONAL.

Steps receive names as they are created from the palette. The de-
fault name is ‘S’+<integer> (i.e. S1, S2, efc). In most cases the names
are unique within the workspace. However, in certain cases, especially
involving paste from the clipboard, non-unique names can be obtained.
The name can, however, always be changed by click-and-edit.

Initial Steps Initial steps are ordinary steps that become active
when the execution of the function chart starts, see Fig. 3.4. Initial
steps may have actions in the same way as ordinary steps.

21

Figure 3.4 Initial step.

Transitions 'Transitions represent conditions that should be true in
order for the Grafchart to change state. The transition expression is
represented by a text string associated with the transition, see Fig. 3.5.

51

Q:Sl.s > 5

52

Figure 3.5 Transition with its condition.

32

3.2 JGrafchart

The transition expression should return a boolean value. The op-
erators supported in conditions are similar to the operators supported
in actions.

Three special step attributes can be used in a transition expression:

* stepName + ‘.x’
* stepName + ‘.t’
* stepName + ‘.s’

The expression S1.x returns true if the step S1 is active and false
otherwise. The expression S1.t returns the number of scan cycles and
S1.s returns the absolute time, in seconds, since the step S1 last was
activated. The expression /a represents a positive trigger event of a
digital input. It is true if the value of the digital input a was false in
the previous scan cycle and is true in the current cycle. Similarly, the
expression \a represents a negative trigger event of a digital input.
For example, the expression (/a | \a) is true whenever the digital
input a changes its value.

The abstract grammar for transitions is:

condition — condexp

condexp — condexp ‘&’ condexp |
condexp ‘|’ condexp |
condexp ‘==" condexp |
condexp “!=" condexp |
condexp ‘<’ condexp |
condexp “>’ condexp |
condexp ‘<=’ condexp |
condexp “>=" condexp |
condexp ‘+’ condexp |
condexp ‘-’ condexp |
condexp “*’ condexp |
condexp “’ condexp |
‘2 condexp |
‘’ condexp |
‘\’ id |
Vid |

33

Chapter 3. JGrafchart

string |
number |
methodCall |
id |

‘C condexp ¢)’

Parallel Splits and Joins Parallel branches are created and ter-
minated with parallel splits and parallel joins. The parallel objects only
allow two parallel branches. If more branches are needed, the parallel
elements can be connected in series, see Fig. 3.6.

51

52 53 54
-

Figure 3.6 Parallel branching with three branches.

Macro Steps A macro step represents a hierarchical abstraction.
The macro step contains an internal structure of steps, transitions, and
other Grafchart elements represented on a separate (sub-)workspace.
The sub-workspace is made visible and hidden by double-clicking on
the macro step and using the pop-up menu. The first step in the macro
step is represented by a special enter step. Similarly the final step of
the macro step is represented by a special exit step. Both the enter

34

3.2 JGrafchart

step and exit step are ordinary steps and may, e.g., have actions. The
situation is shown in Fig. 3.7. A macro step itself may have actions, e.g.
a stored action of the macro step will be executed before the actions of
the enter step are executed and a periodic action of the macro step will
be executed all the time while the macro step is active. An exception
transition can be connected to the left side of the macro step. For the
description of the use see the section on exception transitions.

Macro steps remember their execution state from the time they
were aborted and it is possible to resume them from that state by
using the history port on the right side.

The sub-workspace of a macro step has a local name-space lexi-
cally contained within the name-space of the macro step itself. For
example, the sub-workspace of the macro step M1 may itself contain a
macro step named M1, without causing any ambiguities. Variables are
distinguished by dot-notation.

A macro step with several enter and exit steps is known as a multi-
ple input multiple output (MIMO) macro step, similar to the superstate
in Statecharts [16]. By adding more than one enter and exit step within
the macro step additional ports will be added to the step, see Fig. 3.8.

A E
IJ"
’,r" «— Enter Step
#
Exception Port ’/" 51
\ v a— " History Port
> * / ==
M1
N
AN «—Exit Step
Y 52
\\
“\ ‘L}
\\ 4

Figure 3.7 Macro step with internal structure.

The MIMO macro step have the same functionality as the superstate
in Statecharts. An example with a superstate (adopted from [16]) is
shown in Fig. 3.9. The signals and changes of state are:

* d exit from J = (B, E)

35

Chapter 3. JGrafchart

¥ Emimol =
,l'
l'I.l'
’
!.F
f’
N 51 53 3]
L ™
§ " é:
MIMO1
A yd
—r
LY
A
‘I
\ sz 54
“
LY
‘\
\‘ |
\
\.\ —
L 1]

Figure 3.8 MIMO macro step with three enter steps and two exit steps.

a exit from K = (C, F)
v exit from J = (B, F)

b exit from L = (C,most recently visited state in D)
w exit from (B,G) = K

n exit from (B, F) = H

t exit from (C,D) = K

e exit from (A,D) = L

The example implemented with MIMO macro steps is shown in the
Figures 3.10, 3.11, and 3.12. In Fig. 3.11 the connection post vA1l is
connected to vA2, Aw1 is connected to Aw2, efc. The step t1, in Fig. 3.11,
is needed because an exception transition is only allowed to be con-
nected to an exception port. Using MIMO macro steps it is possible to
implement hierarchical states with the same functionality as in Stat-
echarts, but currently not as user-friendly. With minor modifications
the latter could be improved, e.g. support for diagonal connections.

Procedures 'To reuse sequences in a function chart, a sequence can

be placed on the sub-workspace of a procedure, see Fig. 3.13. An enter
step indicates the start of the procedure and an exit step indicates the

36

3.2 JGrafchart

Figure 3.9 Superstate in Statecharts.

end of the procedure. A procedure may have parameters. The param-
eters can be called by value or by reference. If a parameter is called
by reference the procedure can also return values, i.e. the procedure
can write to variables external to the procedure. The procedures are
reentrant and a copy of the procedure is created for every call. This
makes it possible to make recursive calls to a procedure. A procedure
can be called in two different ways: from a procedure step or a process

step within a sequential function chart, or directly by the user through
the GUL

Procedure Steps A procedure step, Fig. 3.14, is used for calling a
procedure, see Fig. 3.15. The procedure step contains a reference to the
procedure to be called and either references or values for the procedure
parameters.

The syntax for a parameter call by value is:
e ‘V’ id ‘=’ exp ‘3’

37

Chapter 3. JGrafchart

—— U
Cytl
]
== VRN
- ‘/‘ Al

b | s— | —= !
mt [z [m=

Figure 3.10 MIMO macro step with superstate functionality.

The syntax for a parameter call by reference is:
« ‘R’ id ‘=’ id ;’

When a parameter is called by value the parameter gets the value
of the exp. When a parameter is called by reference the procedure can
change the value of both the procedure parameter and the variable
outside the procedure.

An example of a procedure call from a procedure step, where one
variable is called by value and one parameter is called by reference,
can be seen in Fig. 3.14-3.16.

A procedure step itself may have actions, e.g. a periodic action of
the procedure step will be executed all the time while the procedure
step is active. An exception transition can be connected to the left side
of the procedure step, see the section on exception transitions.

38

H ap

52

53

Qe Qe Qg

Amf.l.l IEAQ

N . A

4

R-g-0-

L

Qs Qo Qo o Qs Qs Qs Qo

? bDz

N

e;é

"L

Figure 3.12 The macro steps A and D in Fig. 3.11.

JGrafchart

39

Chapter 3. JGrafchart

r4 Procl
’(
L
r
+
7
,:" Int 0
! 51
,-' Warl
§ %— 51s > Varl
\ Int 0 S5var?2 =10;
Procl *, oz
* Warz
by
A Y
‘\
~ -
" R 4

Figure 3.13 A procedure with its sub-workspace.

=|= = | Procedure Step |Q|E|E
r = = Procedure:
- Procl
P1
5] =] o Procedure Parameters:
W Yarl = Van
E var? = Var;

Figure 3.14 A procedure step with a reference to the procedure Proc1. The
parameter Varl in the procedure is called by value, and gets the value of the
variable Var. The parameter Var2 in the procedure is called by a reference to
the variable Var.

Process Steps A process step is similar to a procedure step. It is
used for calling a procedure, but it starts the procedure as a separate
thread. This means that the procedure will continue to run even though
the process step is no longer active. A process step may have more than
one process running at the same time. The process step has a list over
the procedure calls it has made, see Fig. 3.17. The process step contains
a reference to the procedure to be called and either references or values
for the procedure parameters just like the procedure step.

40

3.2 JGrafchart

Call to Procl

< -
Int50 .
Warl ol
Int 50
Pl == 515 > Varl
War —
e _S'tfar2—ll,
War2 s

Figure 3.15 In the call to the procedure Proc1, both the variable Var1l and
Var2 gets the value of Var.

Call to Procl

<
Int50
Warl 51
Int 0 -_—
F1 = 515 > Varl
Var It ® Svar? = 0
War2 52

~~

Figure 3.16 The procedure Proc1 changes the value of the parameter Var2 and
hence the value of the variable Var outside the procedure, since the parameter
is called by reference.

Exception Transitions An exception transition is a special type
of transition that may be connected to a macro step or a procedure
step. The exception transition is connected to the left hand side of the
macro (procedure) step. An ordinary transition connected to a macro
(procedure) step does not become enabled until the execution of the
macro (procedure) step has reached the exit step. An exception tran-
sition, however, is enabled all the time while the macro (procedure)
step is active. When the transition is fired the execution inside the
macro (procedure) step is aborted and the step succeeding the excep-
tion transition becomes activated. Exception transitions have priority

41

Chapter 3. JGrafchart

Procedure Calls ||Q|E|E

Pl

Procedure Calls:

Call to Procl
Call to Procl
Call to Procl
Call to Procl

Figure 3.17 A process step with a list of procedure calls.

over ordinary transitions in cases where both transitions are fireable
at the same time. An exception transition connected to a macro step
is shown in Fig. 3.18. The exception transition will fire when M1 has
been active longer than 5 seconds.

Ml.s > 5

21

ZFEln

52

—]
4
e
NS

Figure 3.18 An exception transition connected to the macro step M1.

Connection Posts Connection posts are used to break the graph-
ical connection between the ports of, e.g., steps and transitions, see
Fig. 3.18. In the figure CPIn and CPOut are logically connected by cross-
references. This makes it possible to avoid mixing up connections that

42

3.2 JGrafchart

run the same path, and to break up sequences and store them on dif-
ferent sub-workspaces in the editor. By placing the mouse pointer on a
connection post the logically connected connection post is high-lighted.

Workspace Objects A workspace object can be used to organize
programs in JGrafchart. A workspace object on a top-level workspace
contains a sub-workspace that can be used in the same way as the top-
level workspace, see Fig. 3.19. Using workspace objects it is also pos-
sible to create complex variables, e.g. structs, see Fig. 3.20. Workspace
objects can also be used to encapsulate procedures. In this way it is
possible to mimic simple object structures. A workspace object on the
top-level workspace is the object itself. The sub-workspace contains the
attributes and procedure (methods) of the object. The attributes can
be simple attributes or objects.

; e
¥ 3 wOo1l
J'J e
J" ey
/s Ii
F
i
#
JJ‘
o sl
|
O
—
|
wol %
LY
' 52
%
LY
LY
%
%
LY
A Y
%
: T |

Figure 3.19 A workspace object used as a sub-workspace.

Step Fusion Sets Step fusion sets [24] make it possible to have
different graphical representations of the same step. The steps in a

43

Chapter 3. JGrafchart

/| £ object

.
F
/! simple Attributes: Object Attributes:
’.f
Il
;.f
[
f; tr 0
Marme -
D .
O Okjl
O Bool O
Object Y, Aargilable O
\‘ O
"\‘ Real 0.0 =
" =
‘\‘ BES Obj2
LY
A1
"\
\ Int 0
%
i
X Mir
LY
%

Figure 3.20 A workspace object used as a struct.

step fusion set can be seen as different views of the same step, which
are separated and put at different locations as shown in Fig. 3.21. This
way sequences can be divided into smaller, easier to read, parts. The
steps in a step fusion set do not have to be of the same sort. When one
of the steps in the set become active, all the steps in the set become
active.

A step fusion set can be either abortive or non-abortive. If the step
fusion set is abortive an exit transition of a step becomes enabled when
the step reaches its exit step. If the transition condition becomes true
the transition fires and all the steps in the step fusion set becomes
inactive. Procedure and macro steps will abort their execution and the
steps’ abortive action will be executed. The abortive actions have to be
taken in to account when designing macro steps and procedures.

If the step fusion step is non-abortive all the steps in the step fusion

set have to reach their exit step before the exit transitions become
enabled.

14

3.2 JGrafchart

=
2| @
| | 54
53 56 +
T SFs1 |
Step Fusion Set
2a|l @ e » 50| @
| | 54
53 6 +

=

Figure 3.21 Step S2 separated into S2a and S2b using a step fusion set. If the
transition after S2b fires S2a and S2b becomes inactive and S4 becomes active.
If the transitions after S4 and S4 become true, S2a and S2b become active again.

Internal Variables Internal variables are variables that can be
both read from and written to. Four types of variables are available:

e Real

* Boolean

45

Chapter 3. JGrafchart

* Integer
* String

A value and a name is associated with each variable, see Fig. 3.22.
The value of a variable can be changed by click-and-edit.

Bool O Int 7

boolVar Intwar

Figure 3.22 Boolean variable (left) and integer variable (right).

String variables can be used as name pointers. The expression
‘stringVariable "’ returns the value of the variable named by the
string variable.

Action Buttons An action button performs an action when clicked
on during execution. The syntax of the action is the same as for stored
actions of a step, see Fig. 3.23.

= Action Bution [=I[E]
Marme:
o o ;
o ActionButton E |A£t|DnEuttDn |
. Action:
|S Pump = 1; |
[ok | | cane |

Figure 3.23 Action Button with edit frame.

I/O Capabilities

JGrafchart can interact with the external environment in four dif-
ferent ways: using digital I/O, using analog I/O, using sockets, and
using XML based communication. Using digital inputs and outputs
JGrafchart can be used directly as a logical controller. Using analog
input and output blocks JGrafchart can communicate with A-D and

46

3.2 JGrafchart

D-A converters. Each top-level workspace can act as a client in a TCP
socket connection connecting to a server, e.g. a simulator. Using socket
input and output blocks it is possible to read and write variable val-
ues using a simple text-based protocol. Finally, using XML [40] input
and output blocks, JGrafchart can communicate with xmlBlaster [43],
an XML-based message-oriented middleware (MOM) layered on top
of XML-RPC or CORBA. XmlBlaster is a publish/subscribe and point
to point MOM server, which exchanges messages between xmlBlaster
clients.

Digital Inputs and Outputs Digital inputs represent boolean vari-
ables that can be read by the steps and transitions in a function chart.
Similarly, digital outputs represent boolean variables that can be writ-
ten to by the step actions in the function chart. The digital outputs
can also be read from. Each input and output has an associated value
(0 or 1), a name, and a channel number, see Fig. 3.24. Digital inputs
have the initial value 0. Two types of digital inputs and outputs exist.
One with ordinary logic and one with inverted logic.

Oln -— Name — . po)y

Figure 3.24 Digital input (left) and output (right).

Analog Inputs and Outputs Analog inputs represent real vari-
ables that can be read by the steps and transitions in a function chart.
Similarly, analog outputs represent variables that can be written to
and read from by the step actions in the function chart. Each input
and output has an associated value, a name, and a channel number,
much like the digital ones in Fig. 3.24.

Socket Inputs and Outputs Socket inputs and outputs can be of
four different types: real, boolean, integer, and string. The text-based

47

Chapter 3. JGrafchart

protocol for the sockets have the following structure:
variable-identifier ’|’ value. The identifier for the socket object
is given by an optional text-string. If no explicit identifier is given, the
name of the socket object is used as the identifier. The host and port
to connect to are specified in the top-level workspace properties.

Sln S0ut

Figure 3.25 Socket input (boolean) and output (string).

XML Inputs and Outputs XML inputs and outputs send and re-
ceive XML messages through an xmlBlaster server. The XML inputs
and outputs have a sub-workspace containing the elements of the mes-
sage. The XML inputs and outputs are powerful when sending large
data and object structures.

Execution

Grafchart function charts are executed by a periodic thread associated
with each top-level workspace. The thread cyclically performs three
operations:

1. Read Inputs. The values of the inputs are read.

2. Execute Diagram. All the transitions in the function chart are
checked. Steps are activated and deactivated.

3. Write Outputs. The values of the outputs are written.

A Grafchart function chart can be executed in two different modes.
In simulated mode the inputs and outputs are only connected to the
graphics on the screen. In on-line mode (non-simulated mode), addi-
tionally, inputs are read from the different kinds of I/O and outputs

48

3.2 JGrafchart

Syntax tree

Equal Node

-

Java Name Constant
reference | __-- reference node
- node
- \
Into |+ \
|

Figure 3.26 Syntax tree for the expression y == 5.

are written to the different kinds of I/0O. The execution mode and the
thread sleep interval determining the scan rate may be changed using
the Properties menu choice or by using the toolbar icon.

Before a function chart can be executed it must be compiled. Dur-
ing compilation two things are performed. First, for every transition
two lists are built up. One list contains references to all the steps pre-
ceding the transition, and one list contains references to all the steps
succeeding the transition. Second, the transition expressions and step
actions are compiled.

The syntax for transition expressions and step actions are expressed
by formal grammars. The parser generator tool JavaCC [42] is used to
generate Java parsers for these text expressions. During the parsing,
an abstract syntax tree is built up. During compilation the syntax tree
is traversed, and all nodes representing name references are replaced
by Java references to the corresponding Grafchart objects. The expres-
sions are evaluated on-line, again by traversing the syntax tree. For
example, assume that a transition contains the transition expression
y == 5 and that y is the name of an integer variable. During parsing
the syntax tree in Fig. 3.26 is generated and during compilation the
symbol reference is created.

Two types of problems may arise during compilation: parsing errors
and symbol table lookup errors. For example, the transition expression
(y OR z) would generate a parsing error. (The syntactically correct
expression should be (y | z)). Symbol table lookup errors occur if a

49

Chapter 3. JGrafchart

name reference does not exist, e.g., if there does not exist any variables
named y or z in the previous example. In the editor both parsing errors
and symbol table lookup errors are indicated by a change in the text
color of the transition expression or step action from black to red. There
will also be an error message written in the field on the toolbar, see
Fig. 3.1.

During the Execute Diagram part of the execution cycle the fol-
lowing operations are performed. For each transition in the chart, the
transition expression is evaluated. If it is false, the transition icon is
changed to red. If it is true, the transition icon is changed to green.
If, additionally, all steps preceding the transition are active, then the
steps preceding the transition is marked to become deactivated in the
next cycle, and all the steps succeeding the transition are marked to
become activated in the next cycle. When all transitions have been
checked, the change of step state is effectuated. In addition to the
things above, step actions are executed and the step timing informa-
tion is updated.

3.3 JGrafchart and Batch Control

Grafchart has been used for batch control recipe handling and resource
allocation, see e.g. [27, 28, 26]. Different possibilities for represent-
ing recipes and combining recipe execution with resource allocation
have been explored using both versions of Grafchart. Grafchart can
be used at all levels in the hierarchical procedure model, from the
programmable logic controller (PLC) level sequence control to the rep-
resentation of entire recipes. Grafchart makes it possible to use the
same language both at the local control level and at the supervisory
control level, see Fig. 3.27.

Physical Model

The physical model in S88 describing the hierarchical relationships
between the physical objects involved in batch control can be mod-

eled using workspace objects in JGrafchart. The structure is shown in
Fig. 3.28.

50

3.3 JGrafchart and Batch Control

Supervisory Control Level
[]

Grafchart for recipe structuring,

monitoring, diagnosis, n

and exception handling
L]

Events 4
v Alarms
Local Control Level

Grafchart for sequential

control [o]
L]

Actions
Measurements

Figure 3.27 Supervision of a sequential process

Procedural Model

The hierarchical structure of the S88 procedural model is straightfor-
ward to model in Grafchart using macro steps, see Fig. 3.29. Grafchart
has had a considerable impact on the definition of Procedure Function

Charts (PFC) in S88.02 [10].

Recipes

Recipes can be represented by procedures or workspace objects in
JGrafchart. Procedures can be called from procedures or process steps
and workspace objects can be copied to become control recipes after
completing the recipe with parameters.

The linking between the control recipe and the equipment con-
trol is implemented using methods and message passing according to
Fig. 3.30. The element in the control recipe where the linking should
take place is represented by a procedure step. Depending on at which

51

52

Chapter 3. JGrafchart

Process
Cell

Must contain

May contain

Equipment
Module

May
contain

May contain

Control
Module

May
contain

Figure 3.28 The physical model in S88 (left) and JGrafchart (right)

Process Cell
Unit2
Units ‘;‘ -
I
Vi Equipment Modules
EI I
[m] 7
=] J m]
/ o
Unitt o -
L EquipmentModule2 & “ @ [F
[m] Equipmentiodulel "
-
EID -~ Control Modules
]
]
unitz % o] m]
\ O O
\ N O O
DEI] EquipmentModuI’Q%
O ‘n‘ ‘\ ContralModulel ControlModulez
-,
1 Y
1 O hY
) \ \
Unit3 \ O
1
1
‘1‘ EquipmentModule3
\
1
1
1
1}
\
\
i
\
\
'

level the linking takes place, the procedure step could represent a

recipe procedure, recipe unit procedure, recipe operation or recipe phase.

The procedure step calls the corresponding equipment control element,

which is stored as a method in the corresponding equipment object.

A number of different ways to represent recipes were proposed in

[26] using both the basic and high-level versions of Grafchart. In this
thesis only the approach based on basic Grafchart has been used.

Procedure

consists of an
ordered set of
Unit procedure

consists of an

ordered set of

Operation

consists of an

ordered set of
Phase

Step

consists of an

ordered set of

(right).

Grafchart for representing

the recipe procedures

| Reacto N
‘\
A}
A}
‘\
sStrR1 Real 50.0 L5
AY
A}
MName Size N\
‘\
AY
Charge_Reactor Procedure Call| .
3=
Charge Dizcharge

Heat

:

[}

LIES

(]

O

i
g Reactor
i’
i/
I
I
/
I
i
I
I
I
i
r
L
!
I
L3

Figure 3.30 Control Recipe/Equipment Control linking.

!
y

Function chart =
Procedure

3.3 JGrafchart and Batch Control

I:I Subworkspace
/ Subworkspace
+ ,+ /
Macro Step
Unit Procedure| @ Macro Step
Operation o Macro Step
I+ \ + Phase
\
\
I

Figure 3.29 S88 Procedural Model (left) and its representation in Grafchart

e H-

\

| \
\
Subworkspace \

Step

Grafchart for representing

equipment sequence logic
e EH

53

4

Exception Handling

4.1 Introduction

An exception is an event that occurs outside the normal or desired
behavior of the process. Exception handling is a critical element for
achieving long-term success in batch production. It is reported to con-
stitute 40-60 percent of the batch control design and implementation
effort [8]. Correct handling of exceptions is a key element in process
safety, consistent product quality, and production cost minimization. In
short there is money to be made with well structured and automated
exception handling.

In this chapter the work on Grafchart for batch process recipe han-
dling and resource allocation is extended to also include exception han-
dling. An internal model approach is proposed where each equipment
object is extended with a state machine-based model that is used on-
line to structure and implement the safety interlock logic, and to pro-
vide a safety check to ensure that recipe operations are performed in
a correct order. The goal is to make the exception handling easier to
design and maintain.

As mentioned is Section 2.2 there is no specific safety standard for
batch processes, although a number of problems arise especially for
these processes. Some of these problems are [39]:

» Separation between the basic process control system (BPCS) and

54

4.2 Unit Supervision

the safety instrumented system (SIS).

» Synchronization of the process steps between the BPCS and the SIS.
* Operator interaction.

* Implementation of variable (recipe dependent) alarm levels.

* Frequent operational state changes.

* Frequent recipe changes.

How some of these problems can be solved using Grafchart will be
discussed in this chapter.

4.2 Unit Supervision

The proposed method for unit supervision is based on augmenting each
equipment object (i.e. units, equipment modules, control modules, etc)
with a finite state machine as shown for the reactor unit in Fig. 4.1.
The reactor unit contains three parts: a set of attributes, Grafchart
procedures representing equipment unit operations or phases, and the
equipment state machine. The attributes could either be attributes
of simple types, e.g. max-capacity, or they could be objects, e.g., rep-
resenting the equipment/control modules within the equipment unit.
In the latter case the proposed structure applies recursively, i.e. the
equipment/control modules also contain the same three parts.

The equipment state machine is used to model the behavior of the
physical object, i.e. there are states for normal operation and there
are states for faults. See Fig. 4.2 for the equipment state machine
of a valve, with the states Opening, Open_0K, Closing, Closed_OK,
Error_Open, and Error_Closed.

The equipment state machine could either be a single automaton
modeling, e.g., the behavior of a unit and all its equipment modules,
or consist of several smaller parallel automata describing each of the
equipment modules in the unit. If the parallel automata are composed
they will form the single automaton, see Fig. 4.3. Several smaller par-
allel automata are probably easier to overview and more user-friendly.
This is the approach used in the rest of this chapter. Hierarchical state
machines, where each state can contain a whole state machine recur-
sively, can be used to get a better overview of the model.

When using multiple parallel equipment state machines the state

55

Chapter 4. Exception Handling

Control Recipe Level Equipment Logic level

—1

Reactor
Equipment Unit

/ T~
Recipe /
Phase

Method
call

Attributes:
Simple attributes:

Object attributes:

oroley

N

Recipe i : : ?:(5‘:;9

Figure 4.1 Equipment unit with finite state machine.

of an equipment/control module will propagate up to the equipment
state machine of the unit, e.g. if a level sensor breaks the state of the
unit should go to an error state to indicate there is something wrong
within the unit.

The normal execution of an operation causes the equipment state
machine to change state, see Fig. 4.4. For example, when the control
system sends a signal to a valve to open, the equipment state machine
of the valve will go from the state Closed to the state Open.

The equipment state machine serves two purposes. The first pur-
pose is to be able to check that all the equipment objects are in a
consistent state when a method is invoked. For example, it should
not be allowed to open a valve if the valve already is open, and it
should not be allowed to fill an equipment vessel that is already full.

56

4.2 Unit Supervision

Closed

Error_Open
open
Error_Closed

Figure 4.2 The equipment state machine of a valve.

B1 B2 "T--7- >

A2B1 A2B2

Figure 4.3 Two automata composed to a single automaton.

In a properly designed batch control system, which always executes
in automatic mode, one could argue that consistency checking of this
type is already performed through off-line validation and verification of
recipes, equipment logic, and production schedules. However, in prac-
tice batch processes are often run in manual mode for substantial parts
of time. Then, it is the operator that manually invokes different equip-
ment phases and a consistency check of the proposed type could be
very useful. The consistency check is realized by associating a set of
allowed states (or one state if a single state machine is used) with
each operation in the equipment control. It is only allowed to start the
execution of an operation if the state of the equipment unit belongs to
the allowed set of states. The consistency check is implemented as a

57

Chapter 4. Exception Handling

Figure 4.4 The execution of an operation, implemented with a Grafchart pro-
cedure, changes the state of an equipment state machine.

Start

@O

OK Not_OK

Figure 4.5 The start state machine of an operation for the consistency check
for the start of the operation.

start state machine associated with each operation, see Fig. 4.5. In the
figure the Start state machine is in the Not_0K state, which means
that the operation, which the start state machine belongs to is not
allowed to start if it was called at this instance. For example, if the
operation is a Heat operation, the reason that it is not allowed to start
might be that the temperature of the unit is too high.

The second purpose of the equipment state machine is to provide a
structure for organizing the safety and supervision logic at the equip-
ment control level. This is done by implementing the safety logic as
transitions or guards in the equipment state machine, as in Fig. 4.6.
The safety logic expressed in a transition is only enabled when its pre-
ceding state is active. If a fault occurs, the safety logic causes a state
transition from a normal state to a fault state. For example, when the
valve in Fig. 4.2 receives a signal from the control system to open,
the state changes to Opening. The error transitions of this state will

58

4.2 Unit Supervision

Fault
state

Error condition

Normal

condition Error condition

Fault
state

Figure 4.6 State machine with safety and supervision logic.

become active. One of the transition conditions is that the valve does
not respond to the signal within a given time, and sends back a signal
that it is physically open, the equipment state machine of the valve
will go to the Error_Closed state, representing that the valve is stuck
in the closed position. There is a large difference if the valve fails to
respond to a command when it is in the Open state compared to if the
same problem occurs when it is in the Closed state. Which is the most
severe state depends on the process, e.g. if the valve is for cooling wa-
ter a failure in the Closed state is probably worse than a failure in the
Open state.

The state machines can be implemented in several ways. In the
implementation in this thesis multiple input multiple output (MIMO)
macro steps have been used, see Fig. 4.7. Using the MIMO functional-
ity of the macro step it is possible and convenient to model hierarchical
state machines of the proposed type in JGrafchart.

A hierarchical state machine is convenient when modeling the er-
rors of an equipment object. For example, when producing a product
in a reactor it might be important not to exceed a given temperature
to maintain quality. The reactor tank have hard constraints on what
its operating range is, e.g. maximum pressure and temperature. This
results in different levels of severity of exceptions. A bad product is
not nearly as important as the risk of causing human injury. The dif-
ferent error states would typically result in different alarms to the
operator. If there is a risk that the quality will go out of the specifica-

59

Chapter 4. Exception Handling

& [E

Start Bool 0 j' Error
errar !
‘.—/JI-‘:,I l\ / Error_Cpen Error_Closed
* ‘ Closed ‘;
N A E % %
J:\q / |
| | / =
V' N
* ‘ Errar |
N/
;—' k. lerror & EV1.0pen lerror & {EY1.0pen)
LN N,
e L N 56 oy
N A Qpen \“\

Figure 4.7 Equipment state machine of a valve implemented in JGrafchart
using MIMO macro steps.

tions there will be a warning to the operator, but if the unit is going
to a safety-critical state the unit needs to be taken to a safe state by
the exception handling. The equipment state machine of a tempera-
ture sensor would typically look as in Fig. 4.8. The High state of the
state machine contains the two states Quality and Danger, which cor-
responds to the states described above. The same state machine for the
temperature sensor implemented in JGrafchart is shown in Fig. 4.9.
The conditions in the transitions of the state machines are dependent
on the recipe. How the conditions can be set is described in Section 4.3.
The equipment state machine of a temperature sensor may also have
error states, but they are not part of this example.

60

4.2 Unit Supervision
Normal

High
Quality Danger
Figure 4.8 Equipment state machine of a temperature sensor
S Esm e H|
Real 72.3 / = o
;
i !
Walue ",’ Real 70.0 Real 100.0 ”; D
‘," Qualhax Unitht ax Fy
/ ‘a' &
O 7
] ’t'
- Morrmal /!
SM

Quality
’
’
i
’
’
=
~
> L
. High

1

\

\ °
1

1

1

1

‘\

[’

\ /

\‘ /

1

\

1

1

1

1

1

1

1

)

1

1

1}

1

1]

1

1
1

m= T1.Value »= UnitMax
\ Danger
\\“‘
.

b

m= T1Value <= QualMax

52
=
T1.Value <= UnitMax
~ 1|:1:1:1

Figure 4.9 Equipment state machine of a temperature sensor (T1) imple-
mented in JGrafchart using MIMO macro step.

Exception Handling Structure

In the proposed structure for exception handling most of the function-
ality is associated with the equipment operations. Each equipment
operation, e.g. Charge, Heat, and Clean, is a workspace object on the
workspace of a unit in JGrafchart, see Fig 4.10.
Each operation workspace object contains a procedure (i.e. the se-
quential control), the procedure state machine describing the procedu-

ral state, the start state machine (for the consistency check), and an
exception handling workspace object, see Fig 4.11.

61

Chapter 4. Exception Handling

Unit
State Machine
O O
O Boall Baoal 0 O
O O
Ayailable Error
S ExceptionHandling
Equipment Operations /Phases Equipment/Control Modules
| O O O O
O O O O O
O O O O O
Charge Discharge Ewl El Tl
O O O O O
| O O | (|
O O O O O
Heat AQgitate Ewz Wizl T4
O O O O O
| O O | O
O O O O O
Clean Circulate EW3 R1 LT1 —

Figure 4.10 A workspace of a unit with equipment state machine, equipment
operations/phases, equipment/control modules, and unit exception handling.

Equipment Operation a
State Machine
O O O
O O O
O O O
S Start ExceptionHandling
Frocedure

1 3

Figure 4.11 Equipment operation workspace.

62

4.2 Unit Supervision

The procedure of an equipment operation holds not only the equip-
ment sequential control, but also contains several checks, which need
to be performed when a procedure is called from a recipe. First it
checks if the unit is available (in S88 only one operation at a time is
allowed to be active in a unit). It reserves the unit if it is available
and then checks if the procedure itself is in the Idle state and if so
changes the state to Running. The check if the unit is in a consistent
state at the start of the operation is also checked here by using the
start state machine. This could be implemented in several ways, one
way is to implement it in JGrafchart according to Fig 4.12. In the fig-
ure the unit’s name is U1, the operation called is Charge, the signal
to reserve the unit is reserve, SM is the name of the equipment state
machine describing the state of the unit, LT1 is a level sensor, EV1 is a
valve, and the check if the unit is in a consistent state when starting
the operation is a start state machine named Start. The implementa-
tion of the start state machine in JGrafchart is shown in Fig 4.13. The
start state machine consists of only two steps, 0K and Not_OK. The two
states are mutually exclusive and if the OK state is active the operation
is allowed to start. In this small example the unit is not allowed to be
full and the out-valve (EV1) is not allowed to be open for the operation
Charge to start.

The procedure state machine of the operation can be implemented
in the same way as the state machine of an equipment object using
MIMO macro steps. The procedure state machine can be used by an op-
erator to, e.g., pause the execution of the operation or just as a display
object to depict in which state an operation is. The following twelve
procedural states from S88 and Fig 2.4 are modeled in Fig 4.14: idle,
running, complete, pausing, paused, holding, held, restarting, stop-
ping, stopped, aborting, and aborted.

In this implementation a large part of the exception handling is
specific to an operation. The exception handling workspace of the op-
eration holds both the recipe level, and the equipment level exception
handling logic, see Fig 4.15. Both of these would be running in the
Safety Instrumented System in a control system implementation for a
real plant. The recipe level exception handling logic will be discussed
in Section 4.3.

In the equipment level exception handling logic, two types of oper-
ations can be identified:

63

Chapter 4. Exception Handling

5l
Charge.SM.Idle.X
M Charge.Sh.start;
54
.J:. Unit.5M.Available.X
M UnitSM.reserve;
52
é: Charge.Start.OK.X
M EY1.0pen;
53

Q: LT1l.Value >= height

M Unit.ShM.rejease;
M Charge.Shi.stop;

55

~~

Figure 4.12 Checks and control in the Charge operation implemented in
JGrafchart. The procedure checks if the state of the operations is Idle, changes
the state of the state of the operation to running by sending the signal start. It
reserves the unit if it is available, checks if the start of the operation is allowed
by the state of the unit and then opens the in-valve EV1. When the level is above
the specified height the valve is closed and the unit released.

* Detection logic, based on the equipment state machines of the
equipment/control modules.

* Logic to handle the exceptions.

Both kinds of operations will be called from the recipe level excep-

64

4.2 Unit Supervision

[stan e
Init .
| m—
614
Q: LT1.5M.Full.X | E¥1.5M.Open.X
Mot _Ok
-_r- KLT1.SM.Full.X | E¥Y1.5M.Open.X) =
I —)

Figure 4.13 The start state machine of the Charge operation. The two states
important to the start of this operation is that the unit is not full and that the
in-valve (EV1) is not already open.

tion handling logic. The detection logic, Detection in this example,
checks the state of the unit by looking at either only the unit’s equip-
ment state machine, or at the equipment objects’ individual equipment
state machines depending on how the states of the equipment objects
propagate to the unit. One way to implement the propagation of ex-
ceptions is to let the unit’s equipment state machine only consist of
the states OK and Error, and let the detection logic be trigged by the
unit’s equipment state machine, see Fig. 4.16.
The operations to handle the exceptions in Fig. 4.16 are:

* StartExc - the sequence, which takes the unit back to a state
where the operation is allowed to start.

* Emergency - emergency shut-down (could be the same for all op-
erations in a unit).

65

Chapter 4. Exception Handling

Holding

Restarting
Stopping

Aborted

!
3
I

Idle
.

Aborting

L
e

Start

Figure 4.14 The states of an equipment operation modeled with MIMO macro
steps.

66

4.2 Unit Supervision

Exception_Handling

Recipe Level Logic
1

fait

Dretection

L L

l I StartExc I Emergency l I Excl l Exc2

ALL_ Ok

T

Equipment Level Logic

Sl | E] BB

Detection StantExc Emergency Excl ExcZ

Figure 4.15 Exception handling associated with an operation.

* Exc1-Exc2 - handling of exceptions 1 and 2, which can be any
exceptions specified.

The unit exception handling is running all the time, see Fig. 4.17.
There is, e.g., exception detection logic checking the state of the equip-
ment modules even though there is not any operation running in the
unit. The unit-specific exception handling and the operation-specific ex-
ception handling logic need to be synchronized to avoid false alarms.

67

Chapter 4. Exception Handling

Reactor Detection Procedure
<1

] Statemachine JF
@ < ----------- N

[
OK Error %— Reactor.StateMachine.Error.x
< -

51

52

Figure 4.16 Detection logic of an operation controlling a reactor.

4.3 Recipe Level Exception Handling

In the proposed approach the main responsibility for fault detection
and exception handling lies at the equipment control level. However,
exception handling is also needed at the recipe level. For example, an
exception that has occurred must be fed back to the control recipe,
recorded in the batch report, and appropriate actions must be taken.

An important consideration is how to separate the recipe informa-
tion from the exception handling logic and operations. If the latter is
included in the recipe, it becomes difficult to develop, maintain, and
use. The exception handling would probably be larger than the recipe
itself. Grafchart provides several features that simplify the represen-
tation of exception handling logic at the recipe level.

It is possible to use exception transitions for recipe level exception
handling. The exception transitions are connected to the procedure
steps representing the the control recipe operations, see Fig. 4.18. At
least two extra graphical objects, an exception transition and a con-
nection post, are needed for each procedure step in the control recipe.
The structure for the recipe level exception handling is lost and it is
spread out in the control recipe.

68

4.3 Recipe Level Exception Handling

ExceptionHandling

n"Ei'IZI’iI

g Exc3
fj'
'I
'l'
= » » [
Unit Exception Handling /
A Detection
J"
‘l'
! ExcCond3
O O O
O O O
O | O
.
Fecover

Figure 4.17 Unit detection and exception handling logic. Three different
workspace object for the exceptions Exc1-Exc3 are shown. ExcCond3 is the con-
dition that triggers the exception handling for Exc3. The detection is based on
the equipment state machines for the equipment/control modules in the unit.

Reactor Control Recipe

] Statemachine

=

D SRR T E
Reactor.StateMachine.Error.X

OK Error

*

Figure 4.18 Exception transitions for recipe level exception handling.

69

Chapter 4. Exception Handling

Another possibility, to avoid the extra graphical objects in the op-
eration, is to use step fusion sets [24]. The approach is to have the
procedure step that calls an operation in the control recipe be in the
same step fusion set as the procedure step that calls the detection logic
of the operation, see Fig 4.15.

Consider a control recipe consisting of a sequence of procedure steps
(I) making procedure calls to different equipment operations (II), see
Fig. 4.19. The transition after the procedure step in the control recipe
(III) becomes enabled when the execution of the corresponding oper-
ation is finished. The procedure step in the control recipe has a cor-
responding procedure step in the recipe level exception handling logic
(IV), these two steps are in the same step fusion set. The procedure
step in the recipe level exception handling logic calls the detection op-
eration at the equipment level (V). If an exception occurs before the
operation in the control recipe is finished, the equipment level excep-
tion handling logic detects it. The detection of an exception enables the
transitions connected to the out-port of the detection procedure step
(VI Error Exits). The transition associated with the specific excep-
tion that has occurred becomes true, and the operation for the han-
dling of the specific exception starts. If the step fusion set is abortive
the execution of the operation called from the control recipe is aborted
and the abortive actions of the procedure step in the control recipe are
executed.

The first two error exits would typically be the exit for emergency
shutdown of the unit (VII) and the exit for when the starting state
is not a member of the allowed starting states (VIII). Other error
exits would be for the malfunction of a valve, a sensor, or any other
equipment belonging to the unit. A default operation, which takes the
unit to a fail-safe state if an unspecified exception occurs should also
be implemented. The operations would generate the operator alarms
and other information during the execution of the exception handling
logic. The operations for the exception handling may be automatic,
semi-automatic, or manual.

The nature of the actions that must be taken depends on the ap-
plication. In a few very special cases it might be possible to “undo”
an operation and rollback the execution of the recipe to a safe execu-
tion point, and from there continue the execution using, e.g., a new
unit. This is similar to the check-pointing and rollback employed in

70

4.3 Recipe Level Exception Handling

233

TI%3

m

Aduabuawg

:

JHIUELS

:

uonaeag

Hoeqriod X

XTI

IHFUELS _ _

2 | «

A

J1507 [oAo] uswdmbyg

23%3 T3%3 Auabiawg
ITA ITTA
. _ A _ 14
e R uolaziag
S3ITXH I0IXF TA I
i AT
]
i
i
:
[1eD aInpadold
|
JLS07T [eAa] adoy
Surpueq uondeoxy

HOTTTY

unlEIad0

B — > |09 ememmmmmmmeeee- > m

195 uoisng dois

I

UEN,

adey [onuo)

uonedadn

12D aanpadold

IT

[onuo) yuswdimby

Figure 4.19 Step fusion sets for exception handling: recipe view and exception

view.

71

Chapter 4. Exception Handling

fault-tolerant real-time systems [23]. One situation where it would be
natural to be able to rollback the execution is when an operation is
called and the equipment object is not in a allowed state for the oper-
ation to start. When the state of the equipment object is changed into
one of the allowed states, the operation would be called again and the
execution of the recipe would be able to continue.

If Fig. 4.19 is used as an example, the steps of the exception han-
dling would be:

* The detection logic in Detection (V) is triggered by that the
state of the unit is inconsistent with the start of the operation.

* The condition of the error exit for the start exception would be-
come true and the StartExc (VIII) operation is called from the
recipe level exception handling.

* The StartExc (VIII) operation takes the unit to an allowed state
for the start of the original operation, called from the control
recipe, and the step ALL_0K (IX) will become active.

* The exception recipe would make a Rollback (X) and restart the
detection operation and the operation in the control recipe, since
the two steps are in the same step fusion set.

However, due to the nature of chemical batch processes a rollback
is in most cases not a viable alternative. For example, it is very seldom
possible to undo a chemical reaction. Also in the more common case
where the batch cannot be produced as intended there are several
alternatives. In certain situations it might be possible to still make use
of the batch to produce a product of a different grade or quality. In other
situations it is possible to recirculate the batch ingredients for later
reuse. Also in the case where the batch cannot be used as a product,
special actions must be taken. Due to environmental regulations the
partly produced batch must be taken care of in an appropriate way.
This may include further processing to separate or destroy the batch
ingredients.

One problem, which occurs when an operation is restarted after an
exception is taken care of, and the normal execution should continue,
is that in the implementation described above the operation will start
from the beginning. It will try to reserve the unit again, etc. Since the

72

4.3 Recipe Level Exception Handling

unit is already reserved by the operation itself the check need to be
overridden and some manual control by the operator is necessary. One
way to take care of this problem is to change the linking between the
recipe and the equipment logic to a lower level. The recipe operation
is divided into several recipe phases or even smaller parts (e.g. the
reservation of the unit), see Fig. 4.20. Each of the recipe phases makes
a procedure call to the corresponding phase at the equipment control
level. In this approach the number of exception views is increased. One
view per phase is needed, the views will only contain the exception
handling needed for the phase. It is not necessary to have the logic
that deals with the reservation of a unit once it is reserved, etc. The
detection procedure becomes more specific and the number of error
exits are decreased in each exception view.

If the operations are divided into smaller parts some of the phases
can be reused by other operations. For example, the procedures for
reserving and releasing a unit are unit specific and could be reused by
all the operations belonging to the same unit.

In the implementation described above the separation between the
recipe level and the equipment control exception is made on the oper-
ation level using procedure steps and procedures in JGrafchart. The
separation of the exception handling is on the same level as the sepa-
ration in the procedural control. The separation could be at any level
specified in S88, see Fig. 2.3.

Another way to implement the exception handling is to have the
exception detection logic in the equipment operations, see Fig. 4.21. If
an exception occurs it will be detected by the exception conditions in the
operation. The exception conditions are based on the equipment state
machines of the unit and the equipment/control modules. The normal
execution of the operations is aborted and the operation will finish.
The transition in the control recipe will not be fireable. Instead the
error exit corresponding to the exception will be fired and the exception
handling will try to recover from the exception, see Fig. 4.22.

Recipe Dependent Conditions

Units are usually used for the manufacturing of several different prod-
ucts and different grades of the products. The recipe parameters, e.g.
size, temperature of reaction, duration of mixing, and catalyst, are
therefore changed according to the specifications of the product. How-

73

Chapter 4. Exception Handling

=
/ 1 Fin
K
l‘r :
1
i
!
/ s1
Recipe J
1
[
i
I
!
L 7
I
I
Start ':’ Reservellnit
]
7
[
I
I
I
]
1
== ,’
‘l'
Fi Startok
i
3 +
\ / Fill
!
4
H Openvalve
1
== |i
1
1
!
1
1
N
\
]
3 L 1
\ / Heat" Closevalve
1
\
IJ'__I ‘
]
]
1
1
]
i \
| \
1 \
1
‘. Releaselnit
1
1
[} s
1 i
.
!
1
1
]
\
1
\
1 52
\
i T [
\
i
1 -
1
i
1

1 »
Figure 4.20

A recipe operation divided into phases and smaller parts. Each
of the procedure steps calls a procedure at the equipment control level.

ever, it is equally important to change the parameters of the exception
handling, i.e. the conditions in the equipment state machines of the
different equipment/control modules. For example, what was consid-
ered a normal temperature when producing one product might lead to

a run-away reaction when producing another product. The conditions
of the transitions can easily be changed by using stored actions in the

procedure step, which calls an operation, to change the variables used
in the conditions of the transitions in the state machine. In the same

way exit actions can set the variables to, e.g., the default values of
74

4.4 Synchronization

[operation

0

51

== ExcCondl

Mormall Excl

==} == —= ExcCond2

Mormal2 Exc2

52

[4]

[»]

Figure 4.21 Exception detection logic in an equipment operation. If an excep-
tion occurs the execution of the operation will finish but by following the normal
path. The condition of transition after the procedure step in the control recipe
will not be true. Instead the error exit in Fig. 4.22 corresponding to the error,
which has occurred is fired.

the unit, when a procedure is finished. When the procedure step in
Fig. 4.23 is activated the variable QualMAx in the state machine will
get the value 90.0. This means that if the temperature is not changed
the state will go to Normal, since the value of the temperature sensor
1s less than the value of QualMAx.

4.4 Synchronization

One important, and often hard to implement part, in batch control
systems is the synchronization between units. In the recipe, two op-
erations seem to be simultaneous, but on the equipment control level
synchronization is needed. For example to make sure that valves and
pumps are opened/closed and started/stopped in the correct order dur-
ing a transfer from one unit to another, the units need to perform some

75

Chapter 4. Exception Handling

:4 N
f =0
g5
2 4511 |-
o -
W/ —
=1 y gg
£ nj
Y 3
04 o5
(YIS re 3
TR 5
6o B 5
=) - \ & c
—_ a ™, ¥ =
=] A Y N =
: - o
-]
am N o /
o -
i= 4
2
-]
S
= L A |
(&) v U
b =] P
A g | —
: & =L —
ol 2
v | M
1
g i >
£ i
=
=
g1 s
e 1 - —
" 2i. 3
15
=) | -
o 3 =
g 54
=)
[SR | SN D S | SE—
'
5 D
v o
= | H
B
<o
— 1
5 £
Tt = 1
= & |
= [*]
= g |
() a1
— ¥
= H
= H
= 5
= o
=3 5
]

Figure 4.22 A procedure step (I) calls the operation (II) with the detection
logic, see Fig. 4.21. The transition (III) after the procedure step will only fire if
no exception is detected. If an exception is detected the corresponding error exit
(1IV) will fire and the exception handling will try to recover from the exception.

76

4.4 Synchronization

Procedure: "Operation_A"
Actions: S TemperatureSensor.SM.QualMax = 90.0;]
\
X TemperatureSensor.SM.QualMax = 70.0; \
= \
|
/
/
TemperatureSensor 7

.

SM

Value

\/
7
7

~

-

High

70.0

L

100.0

g

~

QualMax

UnitMax

Normal

_

Value <= QgpalMax

oWrOoEre

Quality

Dan

ger

\\

/)

Figure 4.23 Conditions in state machine set by a procedure step.

sort of handshake. If the pump is a displacement pump and the pump
is started before the valve is opened, there is a risk that the pipe will
burst. The handshake works as an interlock to make sure the actions
are taken in the right order. In Fig 4.24 an implementation of a hand-
shake between a transfer operation and a receive operation in two

different units is shown.

The task becomes even harder when also the recipe level excep-
tion handling should be synchronized with the normal parallel recipe

operations, i.e. concurrent operations in the recipe.

In Fig 4.25 the transfer operation of Unit1 and the receive opera-

77

Chapter 4. Exception Handling

Tran 2 Rec :
Transfer phase:; Ul -> U2 Receive phase: Ul - U2
H 5 U2Vvalve 5 1;
51 51
|=|= stant €= = = = - - | =f| U2.valve.Open.X
1
S start = 0; PR (R S ULTranstan = 1
93 5 ULPump = 1; g3 X 2Valve = 0;
=|= Ul.Level < min Tt -t > ==stop
1
S Ul.Pump = 0; 1
54 X U2ZRecstop = 1= — 5 stop = 0;
5 U2Vvalve 5 0;
52
Jrl ULl.Pump.Stopped.X ~
52

Figure 4.24 Synchronization using handshake between operations in two
units.

tion of Unit2 are shown at the recipe level as well as the procedure
step representing the detection operations in the recipe level exception
handling in both units. The four procedure steps in the figure will be
activated at the same time instance.

If an exception occurs in Unit1 during the execution, the exception
handling for Unit1 will be activated. If Unit2 does not receive this
information it will continue to try to transfer material. Unit2 needs to
know which kind of fault has occurred in Unit1. The two units need
to perform a controlled abortion of the two operations in a handshake
manner just like when starting and stopping the normal execution of
the two operations.

The result is that the exception logic for the errors in the receive op-

78

4.4 Synchronization

Exception Handling Control Recipe Exception Handling

Unit1 Unit2

SFS SFS
mmmm——— - e .
Exc_Hand TransferTol2 RecepefrromUl Exc_Hand

T % T

Figure 4.25 Transfer and receive operations in a recipe with exception han-
dling.

eration must mirror the exception handling logic for the corresponding
transfer operation (and the other way around) to perform a controlled
abortion of the two operations. Exception handling logic for exceptions
occurring in Unit1 must be part of the exception handling logic of Unit2
and vice versa.

79

5

A Case Study

5.1 Introduction

The Department of Chemical Engineering at Universitat Politecnica
de Catalunya (UPC) in Barcelona, Spain, has developed a small batch
pilot plant called Procel. The plant consists of three reactors of glass
with agitators, heaters, level sensors and temperature sensors. The re-
actors are connected in a highly flexible way using pumps, pipes, and
magnetic valves, see Fig. 5.1. The plant also has a system of heat ex-
changers. Currently these are only used when the plant is running in
continuous mode. However, they could be used during the transfer of a
batch from one reactor to another or during circulation within a unit.
The physical plant is located in Barcelona, but there also exist a realis-
tic simulation model of the plant implemented in MATLAB/Simulink.
The simulation model has been used to develop a batch control system
for the real plant. The system includes recipe management, a graphi-
cal user interface, and exception handling. The batch control system is
implemented in JGrafchart. The communication between the Simulink
model and JGrafchart is accomplished using Java TCP sockets. The
socket server is running in Matlab and JGrafchart acts as a client.
Procel has been used as a test pilot plant in the research of moni-
toring, control, on-line fault diagnosis and reactive scheduling of batch
processes, see for example [33, 7]. In this work the pilot plant has been
used as a realistic example to test the exception handling scheme de-

80

5.2 Control and Exception Handling
y L
L 4
R]
Tk

Figure 5.1 A schematic overview of the Procel plant (from [33]).

scribed in Chapter 4, and for testing how to close the information loop
within a plant.

5.2 Control and Exception Handling

The original control system for the Procel plant is ABB’s Sattline [25],
which is still running underneath JGrafchart in the new control sys-
tem. In this way safety is achieved and the use of JGrafchart becomes
more flexible. Sattline is used as a safety net and has several safety and
equipment interlocks, which would have been needed to re-implement
otherwise. JGrafchart sends commands over TCP/IP to an OPC server
connected to Sattline, which then changes the states of the physical
equipment. Socket inputs and socket outputs are used in JGrafchart.
The communication is shown in Fig 5.2. In the rest of this chapter
Sattline will be considered as a part of the Procel plant instead of a
control system.

A batch control system for the Procel pilot plant following the S88
standard has been implemented in JGrafchart including a graphical

81

Chapter 5. A Case Study

JGrafchart

¢ TCP/IP T

OPC Server

v 1

Sattline

Figure 5.2 Communication from JGrafchart to Procel

user interface of the plant for operators, see Fig. 5.3. Currently the
interface only displays the current values of the sensors and the state of
the different equipment objects, but this could be extended with dialogs
to make it more interactive. For example, the graphical interface could
link to the workspaces of the equipment units.

The control system includes recipe management and exception han-
dling. The plant is divided into four units according to the physical
model in S88. See Fig. 5.3 for the names of the equipment. The first
three, U1-U3, represent the three reactors and the fourth, U4, consists
of auxiliary equipment not part of any of the other units and should
maybe not be considered as a unit at all, but as shared resources. The
valves and sensors, i.e. flow meters and temperature sensors, used in
the heat exchanger network are part of U4. The pump B2 is also in U4
since it is used in different ways and is not directly part of any of the
other units. Since B2 is used to pump from both U2 and U3 it contains
its own operation for pumping.

Each of the units representing the reactors consists of equipment

82

5.2 Control and Exception Handling

Fd E

Cooling Water
—

27.3C

B 6

M
EV15 .;i

uz
< I VC2
2

EV10
EV16
HE2

EVY EVE EvVil B2
271 C

vl

1.

A
LU} §
EV

Falette

o u
g
-

Logic

] prant ;

Figure 5.3 Operator interface for the Procel plant in JGrafchart

83

Chapter 5. A Case Study

and control modules such as agitators, valves, level, and tempera-
ture sensors. The modules are stored on sub-workspaces of the units’
workspaces. The units also contain the equipment control. In the im-
plementation the recipe/equipment control separation is on the op-
eration level in S88. This means that the recipe makes a procedure
call from a procedure step representing a recipe operation to a pro-
cedure representing the corresponding equipment operation belonging
to a unit. The operations are stored on sub-workspaces on the units’
sub-workspace. In Fig. 5.4 the sub-workspace of U1 is shown with its op-
erations, e.g charge, heat, clean, transfer, and discharge and its equip-
ment/control modules representing the valves, heater, agitator, and
sensors. Also the unit’s state machine, which is modeling the state of
the unit is located on the unit’s sub-workspace. The state machine has
the states Available, Reserved, and Error. The unit’s state machine
will reach the Error state if any of the equipment/control modules
reach their Error state.

The workspace of the Charge operation of U1 is shown in Fig. 5.5. On
the workspace are the state machine SM, the start state machine named
Start, the exception handling EH, and the procedure Proc. The state
machine models the charge operation according to Fig. 4.14. Start
holds the logic for allowing the operation to start, according to Fig. 4.13.
The exception handling workspace holds both the recipe level excep-
tion handling logic and the equipment level exception handling logic,
according to Fig. 4.15.

The workspace of EV1, a valve, is shown in Fig. 5.6. It contains the
state machine of the valve, and two boolean variables, Open and Error.
The Open variable is the current control signal to the valve. The Error
attribute becomes true if the error detection logic detects any error
with the valve, e.g. it fails to respond to an open command within a
certain time. On the Logic workspace object is a function chart, which
reads from socket inputs and writes to socket outputs, located.

The control system for Procel in JGrafchart consists of 4 units, 30
equipment/control modules, 25 operations/phases, and 30 exception
handling workspaces.

Recipes

Several different recipes can be used in the Procel plant. One of the
recipes contains the following sequential operations:

84

5.2 Control and Exception Handling

U1 o E B
State Machine]
O
O Bool 1 Bool O
O -
Aoyrailable Error
M
Operations;/Phases Equipment/ Control Modules
O [O | O
O O O O |
O [O | O
Charge Discharge Evl Bl T1
O O O [O
O O O O [
| | O O |
Heat Afitate Ew'z WiZl T4
O O O O O
O O O O [
O O O O O
Clean Circulate Ev3 R1 LT1
O [O | O
O O O O [
O [O | O
Reclz Tranlz Ev4 AC1 F1
| O
[O
| O
Recl3 Ev'S ||
4]
Figure 5.4 Control system configuration for Ul.
e Charge U2.

e Hold the content in U2 for X time units.

* Transfer the content in U2 to Ul using pump B2 in U4.

85

Chapter 5. A Case Study

=] Charge i
State Machine Exception Handling Pro |
!
I
} } O i <
} O [} / Real 0.0
)) O / i
Vi height 51
i/
Sh Star EH rd

Charge.SM.Idle.X

N ChargeSMstart;

§ 4 |

\ % Unit.5M.Available.X
Proc

A
“ N UnitSMres erve;
52 —

\ % Charge.Start.OK.X

1 N EV1.0pen;
53 —

)
\ %— LT1.Value >= height
1]

=

N UnitsMrélease;
|— N ChargesMstop;

Figure 5.5 Workspace of the Charge equipment operation of U1.

e Heat the content of Ul.
* Empty out the content of U1.
e (Clean U1.

Each recipe is implemented as a procedure in JGrafchart. The im-
plementation of the recipe in JGrafchart is shown in Fig. 5.7.

5.3 Exception Handling Example

The recipe in Fig. 5.7 is used as an example of the exception handling.
The exception is chosen to be that the in-valve EV8 for filling U2 is not
responding to an Open command from the Charge operation. The steps
of the recipe execution and the exception handling are:

* The recipe is started from the scheduler.

* The Charge operation checks if U2 is available.

86

5.3 Exception Handling Example
[Eva

Boaol O

Bool @
Qpen

Error

4

State Machin'.e’

stant Baal 0
Brrar
O a
0 = =
a
. -
Logic sMo Closed
\ [Ny 1
" j:
\
1]
1
1
\]
1
' N

9 E
rrar
AN

M
415

Open

Figure 5.6 Workspace of the control module EV1, a valve.

* U2 is reserved by the Charge operation.

e The state of U2 is checked to be consistent with the start of
Charge.

state.

* The procedural state of the Charge operation goes to the Running

* The Charge operation sends an Open command to the EV8 equip-
ment module.

* The control signal of EV8 is written to the IO.
* The state machine of EV8 detects that the physical valve is not

responding to the control signal and it goes to the Error state.

» The Error state propagates to the state machine of unit .

87

Chapter 5. A Case

Study

-

Start

E? Chargell2

Haldl2

r

\—\

g

1 Transferll2 I 1 Receivelll

I—\

I 1 Pumpll4

HeatU1

Dischargell

Cleanll

Finished

Figure 5.7 A recipe for the Procel plant.

* The recipe level exception handling logic detects that the state
machine of U2 is in the Error state.

* The Error Exit, in the recipe level exception handling, for the
valve not responding is fired.

88

5.4 Integration

* The Charge operation is aborted and the procedural state of the
Charge operation goes to the Aborted state.

* The exception handling operation for the valve not responding
tells the operator that the valve is not responding.

* A technician is probably able to fix the valve.

* The state machines of all the equipment objects are reset from
the Error state.

* Since no actions were taken that cannot be restarted, the recipe
level exception handling makes a rollback and the exception de-
tection and the Charge operation is restarted.

* The procedural state of the Charge operation goes to the Running
state.

* When the correct amount of reactants are filled in U2 the Charge
operation sends the Close command to EV8, which now closes.

e U2 is released.

e The procedural state of the Charge operation goes to the Idle
state.

* The rest of the recipe is continued.

5.4 Integration

As described in Section 3.3 Grafchart can be used at the local control
level and at the supervisory control level. At UPC we have extended
Grafchart to include the management of batch schedules, see Fig. 5.8.
JGrafchart receives a list of scheduled batches from MOPP, a scheduler
package developed at the UPC [14, 33]. MOPP sends the schedule us-
ing xmlBlaster, see Section 3.2. JGrafchart unpacks the schedule and
starts each batch as a control recipe that waits for its start-time to oc-
cur. The communication protocol used between MOPP and JGrafchart
is the Batch Markup Language (BatchML) [41] specification. BatchML
provides a set of XML schemas based upon the S88 family of standards.
BatchML may be used to design interfaces in control, MES and ERP

89

Chapter 5. A Case Study

Planning and Scheduling

OPP for scheduling

]

Schedules/ '
Reports :

1

1

1

Supervisory Control Level
[J

Grafchart for recipe structuring,
monitoring, diagnosis,
and exception handling

Events/
Alarms

Local Control Level
[]

Pp| Historical Data

Grafchart for sequential
control

Actions/
Measurements

Figure 5.8 Integration of supervision, planning, and scheduling

systems as well as the basis for documenting requirements, designs
and actual product and process data.

Since each batch is a control recipe carrying the whole information
about the development of the batch a report can be sent back to the
scheduler once the batch is finished. If an exception occurs and, e.g., the
batch has to be canceled this information could be used to reschedule
the batches. The historical data of every batch should be stored for
documentation and the possibility to use the data for optimization of
the process. The historical data base is important to be able to detect
problems frequently occurring and to be able to concentrate resources
to eliminate these.

90

o

A Modular Batch
Laboratory Process

6.1 Introduction

A good control engineering course should include hands-on experi-
ments. In the basic course in process control at the Department of
Automatic Control, Lund Institute of Technology, a batch reactor pro-
cess had been used in one of the laboratory exercises. The old process
had not been working to satisfaction and a new process was needed.
A number of laboratory control processes are available commercially,
e.g., inverted pendulums, helicopter processes, level-controlled water
tanks, etc. These are commonly used in laboratory exercises in differ-
ent basic and advanced control courses. However, very few processes
exist that illustrate the typical problems associated with batch control.

These led to the design of a new modular batch laboratory process.
The process should be a tank of approximately half a liter in volume.
The tank should be able to be heated, cooled, and agitated. The level
and temperature of the tank should be measured. There should be an
in-pump and an out-pump to be able to fill and empty the tank. The
process should be inexpensive, portable, and with an easy to use I/O
connection to the control system.

91

Chapter 6. A Modular Batch Laboratory Process

In—Pump

Agitator
Heater

Temperature Sensor

7

—>

Level Sensor

| @:]

Out-Pump

AN
o N\ \

LS
lif &

Peltier Element

Fan——> X ——= Air

Figure 6.1 Outline of the laboratory process.

6.2 Process Description

The batch tank consists of a plexi-glass tube with a brass bottom. The
volume of the tank is approximately 0.5 liter. Connected to the tank is
an agitator, an in-pump, an out-pump, a level sensor, a temperature
sensor, a heater, and a cooler, see Fig. 6.1. The cooler consists of a 40 W
Peltier element cooled by a fan.

The outputs from the level and temperature sensors are in the
range 0-10 V, which corresponds to Empty-Full tank and 0 — 100°C
respectively. The resolution can be up to 10-bit in microcontroller.

The pumps, heater, and cooler can either be controlled with digital,
i.e. On/0ff, signals or analog signals. The analog signal is transformed
using an integrated microcontroller for pulse width modulation. The
batch reactor has a built-in 8-bit microcontroller, ATmega8, from Atmel
for this purpose. The microcontroller works with the GNU Compiler
Collection [37]. The agitator only has a digital control signal, but to

92

6.3 A Batch Process Laboratory Exercise

overcome the problem with friction the microcontroller may be pro-
grammed to give a higher control signal right when the agitator is
turned on. The heater is a 24 V, 150 W heating element. There are
three light-emitting diodes (LED) on the front of the process: one red
for showing if the heater is on, one blue for showing if the cooler is on,
and one red/green LED, which is red if there is some error and green
if the power is on and the process is OK.

The microcontroller is also used for safety interlocks, e.g. it is not
possible to turn the heater on if the tank is empty, the in-pump will
stop once the tank is full, and there is a protection against over heating.

The microcontroller enables communication over RS-232. This makes
it possible to control the process with a laptop, e.g. at presentations
and lectures, without using an I/O card.

The water container of the tank consists of an off the shelf plastic
tank with the size: 15 cm high, 30 cm wide, and 40 cm deep. The
container also becomes a protection for the front part of the process
during transportation. The real batch process can be seen Fig 6.2.

The process is made from standard components and therefore quite
inexpensive. The cost of building one process, without the development
cost, is approximately US$1200, of which half is material and half is
work cost. The process is also small, so small that it fits easily on the
desktop on the side of the standard PC used for the control system.
The connection between the process and the PC is an ordinary RS-
232 serial line. This means, that it is straightforward to control the
process from an ordinary laptop PC at lectures or presentations. The
final design of the batch laboratory process is only 40 cm high, 30 cm
wide and 25 cm deep.

6.3 A Batch Process Laboratory Exercise

The process is used in a laboratory exercise in the course “Automatic
Process Control”, a fourth-year course for chemical engineering stu-
dents at the Lund Institute of Technology. The laboratory exercise in-
troduces the students to discrete-event control of a batch reactor and
it also requires the students to implement a discrete PID-controller.
Both the sequential control and the PID-controller are implemented in
JGrafchart. The sequential control consists of the following steps:

93

Chapter 6. A Modular Batch Laboratory Process

Figure 6.2 The batch laboratory process.

I) Fill the reactor.

IT) Heat the reactor, during simulation of an endothermic reaction,
to a specified temperature using PID-control.

IIT) Empty the reactor.
IV) Clean the reactor.

The sequence should then be restarted and a new batch made. A
solution in JGrafchart can look like in Fig. 6.3.

In the exercise, the cooler is used to simulate an endothermic reac-
tion in the reactor. This way the simulation of the rate of the reaction

94

6.3 A Batch Process Laboratory Exercise

= JGrafehart H =

File Edit Execute Misc.
® ¢

FEEIFMNEORGEL

[GFC|’VAR|’MISC| Lah
Palette Editor
] |
Jr Start
NInPump;
Filling —
JF Full
NPID_On;
Heating —
%— Ready
N OutPump;
E mptying —
]]
]]] (=
]]]
Signals PID LevelSensor
Real 1.0 ool O ool O
Scale Start Ready |

Figure 6.3 A solution to the laboratory exercise in JGrafchart.

can be made temperature dependent, non-linear, or constant.

Process Simulator

During the design of the hardware the time constant of the temper-
ature dynamics was estimated to be a first order system with time
constant 7" ~ 1000s (if the temperature step is not too large). The ex-
ercise would take a very long time if all the experiments should be done
on the real process and therefore a simulation model has been devel-
oped. The simulation model can be used for development of controller
schemes and parameter adjustments. The speed of the simulation can

95

Chapter 6. A Modular Batch Laboratory Process

be changed.

To also be able to plot signals in real time for the real process it
was decided to construct a server program that offers the following
services:

a) A simulated batch process with the same interface as the real
batch process.

b) Possibilities to plot temperature measurements, control and ref-
erence signals.

c) An animation of the batch process.

d) A socket interface so that clients can acquire all of the above ser-
vices.

It was decided to implement the server in Java. Two communication
threads were implemented. One that sends measurement signals from
the virtual tank to clients connected to the server, and one that receives
commands from clients.

The simulated batch process was implemented as a subclass of
an existing process simulation class package. The class package pro-
vides methods to simulate systems that are described by differential
or difference equations in real time. The coefficients for the differen-
tial equations were identified from the real process. The class also
provides methods to animate the process with the public Graphics2D-
class package. A screen-shot from the simulation is shown in Fig. 6.4.

A client, which connects to the server’s socket can switch the simu-
lation on and off. If the simulation is on the virtual process will react
to the client’s command signals and visualize the effect in the anima-
tion window. Moreover the signals will be plotted. If the simulation is
turned off only the animation and plotting capabilities of the server
are used to plot the signals from the real process.

6.4 A Laboratory Batch Plant

One of the main problems working with the Procel plant was the fact
that the plant is located in Spain. The size of Procel (4 m wide, 2 m

96

6.4 A Laboratory Batch Plant

=i Tark Animation [l o x|

=

&

Levell

Water Tank Status: OPERATING
Pump 1: OFF

Pump 2: OFF

Heater: ON

Agitator: ON

Mode: Simulation ON

Figure 6.4 Animation of the tank used both for the simulated and the real
process.

high, and 1 m deep) prohibits the plant from being moved. Therefore,
the development of the control system for Procel was based on the
control of the simulated process.

The laboratory batch process is built in modules, which makes it
possible to connect several processes together with extra pipes and
valves to form a batch pilot plant. As a test, three processes have been
connected together using plastic pipes and manual valves, see Fig. 6.5
and Fig. 6.6. This plant has the same functionality as the Procel plant
and it is 55 cm high, 100 cm wide, and 40 cm deep.

The plant is controlled by one computer running JGrafchart in the
laboratory at the department. Two of the processes are connected to a
computer using RS232 and one is connected using an I/O card. The
plant is highly flexible and connected in such a way that each of the

97

Chapter 6. A Modular Batch Laboratory Process

processes can transfer its product to any of the other processes or
empty it out to the tank beneath it.

The control system is implemented in JGrafchart according to the
S88 batch control standard [22]. Each tank is modeled as an equipment
unit in the control system.

To include the manual valves in the control system, dialog win-
dows requesting the operator to manually open and close the valves
have been added. Instead of opening the valve automatically it brings
up the dialog and waits for the operator to confirm that the valves
are in the correct position. A dialog window can be seen in Fig. 6.7.
How JGrafchart can be used for operator support is described in [35].
If automatic magnetic valves are added to the plant they can either be
considered to be a part of the existing units or they can form a separate
valve-battery unit. If the valves are grouped as a new unit, the con-
trol system for the single tank process can be re-used without change.
New operations need to be added for the transfer from one process to
another, but to a large degree this could be part of the valve-battery
unit. This way the plant could easily be extended to more units over
time, only the control of the valve battery needs to be changed.

A major advantage of the modularity and size of the process is that
it can easily be disconnected and stored or transported. Once discon-
nected each process can be fitted into a bag and easily carried by one
person.

98

6.4 A Laboratory Batch Plant

Figure 6.5 Outline of the batch pilot plant.

99

Chapter 6. A Modular Batch Laboratory Process

Figure 6.6 Batch processes connected together to a small batch pilot plant.

100

6.4 A Laboratory Batch Plant

u1
Procedures Equipment Modules
! | B Transferu2
L
O O ’
= o | / Dial
/ | Dialog
O O / p
I 'l
Charge Discharge i
I
! | Close Valve V11
| O |:|D Boal
O O
O O v Cant
Dialog
Heat Transferuzt“ “,‘ Close Valve V13
\ \
O m| \ % A
O O 1 Y Continua |
O O ! \‘
) Proc '
Cool Transferlz “| 1\ z
4 W »
[A}
EID HE »
o L= 1 L=
Agitator W2
Process
O O
O O
O O
Cooler W3
L] I |_
i . i window u valves 1
Figure 6.7 Dialo ndow for manual control of valves in the batch plant

101

7

Conclusions and Future
Work

7.1 Conclusions

Exception handling is an important area of batch control that so far
has received little interest from the standardization organizations. In
this thesis a new approach to equipment supervision in recipe-based
batch control systems is proposed. The approach is integrated with
recipe execution, resource allocation, and scheduling. The approach
uses hierarchical state machines represented in JGrafchart to model
the equipment status and the status of the procedures executing in
the equipment. A new approach for representing exception-handling
at the recipe-level is proposed. The approach gives a clear separation
between exception handling logic and the logic for the normal oper-
ation. Different possibilities for combining the two above approaches
have been suggested. The proposed approach fits nicely into the S88
batch control standard.

The proposed approaches have been implemented in JGrafchart
and tested on a realistic pilot plant, Procel, at UPC in Barcelona. The
approach has proven to be able to structure exception handling in an
easy to use way.

A new inexpensive and modular batch laboratory process has been
developed. The process is used in the basic process control course for

102

7.2 Future Work

Closed G
° Error

Open Q

Figure 7.1 A high-level state machine for valves.

chemical-engineering students at Lund Institute of Technology to teach
sequential control and discrete PID control. By connecting several pro-
cesses a flexible multi-purpose batch cell can be constructed. The plant
is small enough to fit on a desk in an officeg.

7.2 Future Work

The state machine based structure for modeling equipment objects
could be implemented in High-Level Grafchart. The state machine
would model the behavior of a class, e.g. a certain type of valves, and
each token in the state machine would be an instance of the class, e.g.
a specific valve, see Fig. 7.1.

The use of the procedure state machine for operator support has
not been fully investigated. In the same way as for the equipment
state machines the procedure state machines could be implemented in
High-Level Grafchart.

The strategy proposed on how to close the information loop between
the scheduling and control of batches can be further investigated and
implemented in JGrafchart. A lot of work can be made on how to im-
plement the ideas for different scenarios and plants. The batch labora-

103

Chapter 7. Conclusions and Future Work

tory process developed at the department makes it possible to configure
these scenarios and plants.

The methods described in the thesis rely on the fact that the faults
are correctly detected. One topic for future work would be to see how
the detection of faults can be integrated in the proposed structure for
exception handling.

104

3

Bibliography

[1] American Institute of Chemical Engineers - AIChE. Guidelines
for Process Safety in Batch Reaction Systems. AIChE, 1999.

[2] ANSI/ISA. “ISA S84.01 Application of Safety Instrumented Sys-
tems for the Process Industries.” Instrument Society of America,
1996.

[3] K.-E. Arzén. “Sequential function charts for knowledge-based,
real-time applications.” In Proc. Third IFAC Workshop on Al in
Real-Time Control, Rohnert Park, California, 1991.

[4] K.-E. Arzén. “Grafcet for intelligent real-time systems.” In
Preprints IFAC 12th World Congress, Sydney, Australia, 1993.

[5] K.-E. Arzén. “Grafcet for intelligent supervisory control applica-
tions.” Automatica, 30:10, pp. 1513-1526, 1994.

[6] H. Brettschmeider, H. Genrich, and H. Hanisch. “Verification and
performance analysis of recipe based controllers by means of
dynamic plant models.” In Second International Conference on

Computer Integrated Manufacturing in the Process Industries,
Eindhoven, The Netherlands, June 1996.

[7] J. Cantén, D. Ruiz, C. Benqlilou, J. Nougués, and L. Puigjaner.
“Integrated information system for monitoring, scheduling and
control applied to batch chemical processes.” In Proceedings of
the 7th IEEFE International Conference on Emerging Technologies
and Factory Automation, 1999.

105

Chapter 8. Bibliography

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

106

D. Christie. “A methodology for batch control implementation - a
real world lesson.” In Proc. of World Batch Forum, 1998.

R. David and H. Alla. Petri Nets and Grafcet: Tools for modelling
discrete events systems. Prentice-Hall International (UK) Ltd,
1992.

D. Emerson. “What Does a Procedure Look Like? - The
ISA S88.02 Recipe Representation Format.” WBF home page,
http:/ /www.wbf.org/, SP88 Part Two Overview - Paper 6, 1999.

T. G. Fisher. Batch Control Systems: Design, Application, and
Implementation. Instrument Society of America, Research Park,
NC., 1990.

M. Fritz, A. Liefeldt, and S. Engell. “Recipe-driven batch pro-
cesses: event handling in hybrid system simulation.” In Proc. of
the 1999 IEEFE International Symposium on Computer Aided Con-
trol System Design, 1999.

H. J. Genrich, H.-M. Hanisch, and K. Woéllhaf. “Verification of
recipe-based control procedures by means of predicate/transition
nets.” In 156th International Conference on Application and Theory
of Petri nets, Zaragoza, Spain, 1994.

M. Graells, J. Cantén, B. Peschaud, and L. Puigjaner. “General
approach and tool for the scheduling of complex production
systems.” Computers and Chemical Engineering, 22, pp. 395-402,
1998.

H.-M. Hanisch and S. Fleck. “A resource allocation scheme for
flexible batch plants based on high-level petri nets.” In Proc. of
CESA96 IMACS Multiconference, 1996.

D. Harel. “Statecharts, a visual formalism for complex systems.”
Science of Computer Programmming, 8:3, pp. 231-274, 1987.

IEC. “IEC 61131 programmable controllers - part 3: Programming
languages.” Technical Report, International Electrotechnical Com-
mission, March 1993.

IEC. “IEC 61512-1: Batch control, Part 1, Models and ter-
monology.” Technical Report, International Electrotechnical Com-
mission, August 1997.

[19] IEC. “IEC 61508: Functional safety of electrical /electronic/programmable
electronic safety-related systems.” Technical Report, International
Electrotechnical Commission, December 1998.

[20] IEC. “IEC 61512-2: Batch control, Part 2, Data structures and
guidelines for languages.” Technical Report, International Elec-
trotechnical Commission, November 2001.

[21] IEC. “IEC 61511: Functional safety instrumented systems for
the process industry sector.” Technical Report, International Elec-
trotechnical Commission, 2002. Work in progress.

[22] ISA. “ISA S88.01 batch control.” Instrument Society of America,
1995.

[23] P. Jalote. Fault tolerance in distributed systems. Prentice Hall,
USA, 1994.

[24] K. Jensen and G. Rozenberg. High-level Petri Nets. Springer
Verlag, 1991.

[25] G. Johanneson. Object-oriented Process Automation with Sat
tLine. Chartwell-Bratt Ltd, 1994.

[26] C. Johnsson. A Graphical Language for Batch Control PhD
thesis ISRN LUTFD2/TFRT-1051-SE, Department of Automatic
Control, Lund Institute of Technology, Sweden, March 1999.

[27] C. Johnsson and K.-E. Arzén. “Grafchart and batch recipe struc-
tures.” In WBF'98 — World Batch Forum, Baltimore, MD, USA,
April 1998.

[28] C. Johnsson and K.-E. Arzén. “Grafchart and recipe-based batch
control.” Computers and Chemical Engineering, 22:12, pp. 1811—
1828, 1998.

[29] NAMUR. NAMUR- Emphehlung: Anforderungen an Systeme zur
Rezeptfaheweise (Requirements for Batch Control Systems). NA-
MUR AK 2.3 Funktionen der Betriebs- und Produktionsleitebene,
1992.

[30] Northwoods Software. “JGo: Java Graphics Library.” Nortwoods
home page, http://www.nwoods.com/, 2002.

107

Chapter 8. Bibliography

31]

32]

[33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

42]

108

J. Parshall and L. Lamb. Applying S88 - Batch Control from a
User’s Perspective. ISA - Instrument Society of America, Research
Triangle Park, NC, USA, 2000.

H. P. Rosenhof and A. Ghosh. Batch Process Automation, Theory
and Practice. Van Nostrand Reinhold, 1987.

D. Ruiz, J. Cantén, J. Nougués, A. Espuina, and L. Puigjaner.
“On-line fault diagnosis system support for reactive scheduling in
multipurpose batch chemical plants.” Computers and Chemical
FEngineering, 25, May, pp. 829-837, May 2001.

K.-E. Arzén. “JGrafchart.”
Grafchart home page,
http:/ /www.control.lth.se/~grafchart/, 2002.

K.-E. Arzén, R. Olsson, and J. Akesson. “Grafchart for Procedural
Operator Support Tasks.” In Proceedings of the 15th IFAC World
Congress, Barcelona, Spain, 2002.

Sun Microsystems, Inc. “Java API for XML Processing (JAXP).”
JAXP home page, http://java.sun.com/xml/downloads/jaxp.html,
2002.

The GCC Team - Free Software Foundation. “GCC Home Page.”
GNU home page, http://www.gnu.org/software/gcc/gcc.html,
1999.

M. Tittus and K. Akesson. “Deadlock avoidance in batch pro-
cesses.” In Proc. of IFAC World Congress, Beijing, China, 1999.

I. van Beurden and R. Amkreutz. “Emergency Batch Landing.”
InTech, August, pp. 30-32, August 2002.

W3C - World Wide Web Consortium. “Extensible Markup Lan-
guage (XML).” W3C home page, http://www.w3.org/XML/, 1997.

WBF’s XML Working Group. “Batch Markup Language -
BatchML.” WBF home page, http://www.wbf.org/, Markup Lan-
guages, 2002.

Webgain. “JavaCC - The Java Parser Generator.” Webgain home
page, http://www.webgain.com /products/java_cc/, 2000.

[43] xmlBlaster.org. “xmlBlaster - Message Oriented Middleware.”
xmlBlaster home page, http://www.xmlblaster.org/, 1999.

109

