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Abstract

In this paper, physical limitations on antennas are presented based on the

holomorphic properties of the forward scattering dyadic. As a direct conse-

quence of causality and energy conservation, a forward dispersion relation for

the extinction cross section is established, and isoperimetric inequalities for

the partial realized gain and partial directivity are derived for antennas of

arbitrary shape. Closed-form expressions for the prolate and oblate spheroids

are compared with Chu’s classical result for the sphere, and the effect of invok-

ing metamaterials in the antenna design is discussed. The theory is illustrated

by numerical simulations of a monopole antenna with a finite ground plane.

1 Introduction

Two questions of fundamental nature are addressed in this paper. For an arbitrary
geometry, what is the upper bound on the performance of any antenna enclosed
by this volume? Can electrically small broadband antennas exist unless directive
properties are sacrificed for bandwidth? The history of these questions traces back
to Chu and Wheeler in Refs. 1 and 9 more than half a century ago. Since then,
much attention has drawn to the subject and numerous papers have been published,
see Ref. 4 for a recent summary of the field. However, as far as the authors know,
few successful attempts have been made to solve these problems rigorously for other
geometries than the sphere. This restriction is mainly due to the failure of extending
the spherical vector waves to form a set of orthogonal eigenfunctions on non-spherical
surfaces. In this paper, physical limitations on antennas are presented which apply
to arbitrary geometries without introducing orthogonal eigenfunctions.

The present paper is based on Refs. 2, 3, and 7, and the forward dispersion rela-
tion for the extinction cross section in Ref. 6. The theory has also successfully been
applied to metamaterials in Ref. 8 to yield physical limitations on scattering and
absorption by artificial materials over a frequency interval. The underlying mathe-
matical description is influenced by the theory of dispersion relations for scattering
of waves and particles in Ref. 5.

2 Physical limitations on GKB and D/Q

It is advantageous to picture the schematic antenna in Fig. 1 from a scattering point
of view, i.e., consider an antenna of arbitrary shape surrounded by free space and
subject to a plane wave with time dependence e−iωt impinging in the k̂-direction.
The material of the antenna is assumed to be lossless and satisfy the principles of
reciprocity, linearity and time-translational invariance. The material properties are
modeled by general anisotropic and heterogeneous constitutive relations in terms
of the electric and magnetic susceptibility dyadics χe and χm, respectively. The
bounding volume of the antenna is naturally delimited by a reference plane at which
a unique voltage and current relation is defined, see Fig. 1. Note that the present
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Figure 1: Illustration of a hypothetic antenna subject to a plane wave impinging
in the k̂-direction. The incident wave is perturbed by the antenna and a scattered
field is detected in the x̂-direction.

analysis is restricted to single port antennas with a frequency dependent scalar
reflection coefficient Γ .

The scattered field caused by an incident plane wave with Fourier amplitude E0

and electric polarization p̂e = E0/|E0| has the asymptotic behavior of an outgoing
spherical wave, see Ref. 8, i.e.,

Es =
eikx

x
S(k, x̂) · E0 + O(x−2) as x → ∞,

where x denotes the position vector with respect to some origin, and x̂ = x/x
with x = |x|. Here, S is independent of x and represents the scattering dyadic in
the x̂-direction. Introduce the scattering cross section σs and the absorption cross
section σa as the scattered and absorbed power divided by the incident power flow
density, respectively. The principle of energy conservation then takes the form of a
relation between the extinction cross section σext = σs + σa and the imaginary part
of the complex-valued function ̺ = p̂∗

e · S(k, k̂) · p̂e/k
2. This relation is known as

the optical theorem and states that σext = 4πk Im ̺ for k ∈ [0,∞).
Since the inverse Fourier transform of S is causal in the forward direction with

respect to time ordered events, i.e., the forward scattered field cannot precede the
incident field, it can be shown that ̺ is a holomorphic function of k for Im k > 0.
Based on the optical theorem and the static limit of ̺ as k → 0, Plemelj’s formulae
in Ref. 5 can be used to derive a forward dispersion relation for the extinction cross
section. The result is

∫

∞

0

σext(k)

k2
dk =

π

2

∑

i=e,m

p̂∗

i · γi · p̂i, (2.1)

where p̂m = k̂× p̂e, and γe and γm denotes the electric and magnetic polarizability
dyadics, respectively. For details on the derivation of (2.1) including definitions of
the pertinent boundary value problems for γe and γm, see Refs. 2 and 6.
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The forward dispersion relation (2.1) can be used to establish upper bounds on
the partial realized gain G and the relative bandwidth B of the schematic antenna
in Fig. 1. In fact, for any finite interval K ⊂ [0,∞),

∫

∞

0

σext(k)

k2
dk ≥

∫

K

σa(k)

k2
dk = π

∫

K

(1 − |Γ |2)
G(k)

k4
dk, (2.2)

where 1 − |Γ |2 represents the impedance mismatch of the antenna. In the last
equality, it has been used that the absorption cross section is related to the partial
realized gain as σa = π(1− |Γ |2)G/k2, see Ref. 2. The estimate in (2.2) is generally
not isoperimetric but can be sharpened by a priori information of the scattering
properties of the antenna. For this purpose, introduce the quantity

ηK =

∫

K

σa(k)

k2
dk

/
∫

K

σext(k)

k2
dk , (2.3)

which is related to the absorption efficiency η = σa/σext via ηK ≤ supk∈K η. In
particular, minimum scattering antennas defined by supk∈K η = 1/2 contribute with
at most an additional factor two on the right hand side of the inequality in (2.2).

Introduce the minimum partial realized gain GK = infk∈K(1 − |Γ |2)G and the
relative bandwidth B =

∫

K
dk/k0, where k0 denotes the center wave number in K.

Then the integral on the right hand side of (2.2) is estimated from below by

∫

K

(1 − |Γ |2)
G(k)

k4
dk ≥ GK

∫

K

dk

k4
=

GKB

k3
0

1 + B2/12

(1 − B2/4)3
≥

GKB

k3
0

. (2.4)

The inequality on the right hand side of (2.4) is motivated by the fact that B ≪ 1
in many applications. Based on this observation, (2.2) and (2.4) inserted into (2.1)
yields the fundamental inequality

GKB ≤
k3

0

2

∑

i=e,m

p̂∗

i · γi · p̂i. (2.5)

The corresponding physical limitation for the partial directivity D and the Q-factor
Q is obtained from a resonance model for the absorption cross section, see Ref. 2.
Under the assumption of a perfectly matched antenna at k = k0, the upper bound
on D/Q differs only by a factor π from (2.5), viz.,

D

Q
≤

k3
0

2π

∑

i=e,m

p̂∗

i · γi · p̂i. (2.6)

Recall that GK and D both depend on the incident direction k̂ and the electric
polarization p̂e.

It is intriguing that it is just the static response of the antenna that bound the
quantities GKB and D/Q. From the right hand side of (2.5) and (2.6), it is clear
that the upper bounds on GKB and D/Q are independent of any coupling between
electric and magnetic effects. Instead, electric and magnetic properties are seen to
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be treated on equal footing both in terms of material parameters and polarization
description. For non-magnetic materials, i.e., γm = 0, the sum on the right hand
sides of (2.5) and (2.6) is simplified to only include electric quantities. Moreover,
since both γe and γm are proportional to the volume V of the antenna, it follows
that the bounds in (2.5) and (2.6) scale as k3

0a
3, where a denotes the radius of, say,

the volume-equivalent sphere.
In many antenna applications, it is desirable to bound GKB and D/Q inde-

pendently of both polarization states and material parameters. For this purpose,
introduce the high-contrast polarizability dyadics γ

∞
as the limit of either γe or

γm when the elements of χe and χm become infinite large. From the variational
properties of γe and γm discussed in Ref. 6, it then follows that

sup
p̂

e
·p̂

m
=0

GKB ≤
k3

0

2
(γ1 + γ2), sup

p̂
e
·p̂

m
=0

D

Q
≤

k3
0

2π
(γ1 + γ2), (2.7)

where γ1 and γ2 denote the largest and second largest eigenvalue of γ
∞

, respectively.
The interpretation of (2.7) is polarization matching, i.e., the polarization of the
antenna coincides with the polarization of the incident wave. For non-magnetic
material parameters, γ2 vanishes in (2.7), and the upper bounds on GKB and D/Q
are sharpened by at most a factor of two. Recall that γ1 and γ2 are easily calculated
for arbitrary geometries using either the finite element method (FEM) or the method
of moments (MoM).

3 Comparison with classical limitations

Closed-form expressions of γ1 and γ2 exist for the homogeneous ellipsoids, viz., γ1 =
V/L1 and γ2 = V/L2, where L1 and L2 denotes the smallest and second smallest
depolarizing factor, respectively. The depolarizing factors satisfy 0 ≤ Lj ≤ 1 and
∑

j Lj = 1 and are defined by

Lj =
a1a2a3

2

∫

∞

0

ds

(s + a2
j)

√

(s + a2
1)(s + a2

2)(s + a2
3)

, j = 1, 2, 3. (3.1)

Closed-form expressions of (3.1) in terms of the semi-axis ratio ξ = minj aj/ maxj aj

exist for the ellipsoids of revolution, i.e., the prolate (L2 = L3) and oblate (L1 = L2)
spheroids.

The eigenvalues γ1, γ2 and γ3 (smallest eigenvalue γ3 = V/L3) are depicted in
Fig. 2 for the prolate and oblate spheroids as function of ξ. The solid curves on the
right hand side of Fig. 2 correspond to the combined electric and magnetic case,
while the dashed curves represent pure electric material parameters. Non-magnetic
material parameters with minimum scattering characteristics, i.e., supk∈K η = 1/2,
is depicted by the dotted curves. In fact, the three curves for the prolate spheroid
in the right figure vanish as ξ → 0, while the corresponding curves for the oblate
spheroid approach 16/3π, 8/3π, and 4/3π, respectively.

A simple example of the upper bound on D/Q in (2.7) is given by the sphere
of radius a for which γ1 = γ2 = 4πa3. In this case, D/Q is bounded from above
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Figure 2: The eigenvalues γj (left figure) and the quotient D/Q (right figure) for
the prolate and oblate spheroids as function of the semi-axis ratio ξ. Note the
normalization with the volume Vs of the smallest circumscribing sphere.

by 4k3
0a

3, which is sharper than the classical limitation 6k3
0a

3 when both TE- and
TM-polarizations are present, see Ref. 4. For omni-directional antennas with non-
magnetic material parameters, the upper bound on D/Q is still slightly sharper than
Chu’s limit 3k3

0a
3/2 in Ref. 1 when minimum scattering characteristics (MSA) are

assumed. Recall however that the classical results 6k3
0a

3 and 3k3
0a

3/2 are restricted
to the sphere in the limit as k0a → 0, which is not the case for the theory set forth
in this paper.

4 The effect of metamaterials

The fact that (2.5) and (2.6) are independent of any temporal dispersion implies
that there is no difference in the upper bounds of GKB and D/Q if metamateri-
als are invoked in the antenna design instead of ordinary materials with identical
static material parameters. In fact, it is well known that passive metamaterials are
temporal dispersive since the Kramers-Kronig relations imply that limω→0+ χe(ω)
and limω→0+ χm(ω) elementwise are non-negative in the absence of a conductivity
term, see Ref. 8. When an isotropic conductivity term iς/ωǫ0 (scalar conductivity
ς > 0 independent of ω) is present in χe, the Kramers-Kronig relations is modified
due to the singular behavior of χe in the static limit. In the presence of a conduc-
tivity term, the analysis in Ref. 8 shows that the right hand side of (2.5) and (2.6)
instead should be evaluated in the limit as the eigenvalues of χe approach infinity
independently of χm. Metamaterials may have the ability to lower the resonance
frequency, but from the point of view of maximizing GKB and D/Q, such materials
are believed to be of limited use.
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Figure 3: The extinction and absorption cross section for the monopole antenna
(left figure) and the corresponding absorption efficiency (right figure). The different
curves in the left figure correspond to a MoM solution (solid curves), Q-factor ap-
proximation (dashed curves), and limitation on the extinction cross section (shaded
box).

5 A numerical example: the monopole antenna

The monopole antenna in Fig. 3 with a wire ground plane is used to illustrate the
physical limitations introduced in Sec. 2. A monopole antenna behaves similar to a
dipole antenna and the method of images can be used to analyze the antenna if the
ground plane is sufficiently large, see Ref. 3. Here, a monopole antenna with height
ℓ and ground plane radius ℓ/2 is considered. The wires are cylindrical with radius
2.5 · 10−5ℓ. A MoM solution together with a gap feed model is used to determine
the cross sections and impedance of the antenna.

The antenna is first considered as a passive scatterer loaded with 25 Ω in the gap
feed. The extinction and absorption cross sections for an incident wave polarized
matched at θ = 90◦ are depicted in the left figure in Fig. 3. It is observed that the
antenna is resonant for ℓ ≈ 0.27λ, where λ = 2π/k denotes the wavelength in free
space. The corresponding absorption efficiency is depicted on the right hand side of
Fig. 3. It is observed that η ≈ 0.5 at the resonance frequency, with ηK ≈ 0.5 for
ℓ/λ ∈ [0, 1]. Note that the rather small ground plane gives a dipole-like radiation
pattern at the quarter wavelength resonance.

The maximal gain, the partial gain at θ = 90◦, and the partial realized gain at
θ = 90◦ for the antenna are depicted in the left figure in Fig. 4. At the resonance
frequency, it is observed that the gain (and directivity) is 1.52 and that the radiation
resistance is 25 Ω. The Q-factor is estimated to Q = 22 by numerical differentiation
of the reflection coefficient. The MoM solution is also used to determine the forward
scattering properties of the antenna in terms of the extinction volume ̺ on the right
hand side of Fig. 4.

The physical limitations in (2.7) require calculation of the eigenvalues γ1 and γ2.
An electrostatic MoM simulation of the monopole antenna with a ground plane in
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Figure 4: The maximal gain, the partial gain at θ = 90◦, and the partial real-
ized gain at θ = 90◦ (left figure), and the extinction volume ̺ (right figure) for the
monopole antenna. The different curves in the right figure correspond to a MoM
solution (solid curves) and Q-factor approximation (dashed curves). The low fre-
quency estimates of the monopole antenna with wire ground plane is indicated by
the cross.

the form of a circular disk yields γ1 = 0.2ℓ3 and hence Q ≥ 19 if D = 1.52 and
ηK = 0.5 are used in (2.7). Note that γ2 vanishes from the upper bounds in (2.7)
since no magnetic materials are present. As the circular ground plane contains more
material than the wire ground plane it is clear that γ1 for the monopole antenna
with wire ground plane is smaller than γ1 for the corresponding antenna with circular
disk ground plane, cf., the variational results in Ref. 6. The eigenvalue γ1 for the
monopole with the wire ground plane can either be determined by an electrostatic
MoM solution or estimated by the forward dispersion relation (2.1). The latter
method yields γ1 ≥ 0.18ℓ3, and assuming γ1 = 0.18ℓ3 in (2.7) implies Q ≥ 22.

In Figs. 3 and 4 it is observed that the single resonance model (dashed curves)
with Q = 22 is a good approximation of the cross sections, extinction volume, and
partial realized gain. Note also that the dipole antenna has a circumscribing sphere
with ka > 1 and is therefore not considered electrically small according to the
classical limitations in Ref. 1. In summary, the monopole antenna with wire ground
plane show excellent agreement with the theory introduced in Sec. 2.

6 Conclusion

In this paper, physical limitations on reciprocal antennas of arbitrary shape are
presented based on the holomorphic properties of the forward scattering dyadic.
Upper bounds on GKB and D/Q are derived in terms of the electric and magnetic
polarizability dyadics, γe and γm, respectively. Since these bounds are proportional
to the volume of the antenna, it is clear that for electrically small antennas, partial
realized gain or partial directivity must be sacrificed for bandwidth or Q-factor.
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Based on the limitations, it is also concluded that metamaterials and other exotic
material models do not contribute to the upper bounds of GKB and D/Q in any
larger extent than naturally formed substances.

The inequalities introduced in this paper are isoperimetric in the sense that
equality in (2.5) and (2.6) hold for some physical antennas. For example, it is well
known that the impedance of a cylindrical dipole antenna posses a reversed logarith-
mic singularity as the radius of the cylinder vanishes. In Ref. 2, this singularity is
shown to coincide with the corresponding behavior of γ1 for the prolate spheroid as
ξ → 0. In fact, numerical simulations of the dipole antenna in Ref. 3 show excellent
agreement with the bounds presented in this paper. The present limitations are
believed to be isoperimetric for a large class of antennas if a priori information of
ηK from antenna simulations is taken into account.

The analysis in this paper generalizes in many aspects the classical results by
Chu and Wheeler in Refs. 1 and 9. The main advantages of the new formulation
are sixfold: 1) they hold for arbitrary geometries; 2) they are formulated both in
terms of gain and bandwidth as well as directivity and Q-factor; 3) they include
polarization effects with applications to diversity in MIMO communication; 4) they
successfully separate electric and magnetic antenna properties in terms of the nature
of the intrinsic materials; 5) they are isoperimetric; 6) a priori information about
the scattering characteristics in the form of ηK improves the bounds.
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