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Abstract

A summation rule or dispersion relation valid for any causal and reciprocal an-
tenna is presented in terms of the electric and magnetic polarizability dyadics.
The identity is based on the holomorphic properties of the forward scattering
dyadic and includes arbitrary shaped antennas modeled by linear and time-
translational invariant constitutive relations. In particular, a priori estimates
on the partial realized gain are introduced, and lower bounds on the onset
frequency is derived for two important archetypes of UWB-antennas. The
theoretical findings are illustrated by the equiangular planar spiral antenna,
and comparison with numerical simulations show great potential for future
applications in antenna theory.

1 Introduction

Since the pioneering ideas introduced by Chu and Wheeler in Refs. 3 and 23 more
than half a century ago, a priori bounds on the directivity and the Q)-factor of elec-
trically small antennas have attracted great attention in the scientific community.
Unfortunately, the results by Chu and Wheeler, and many of the subsequent papers
discussed in Ref. 9, not only overestimate the true antenna performance, but also
show severe restrictions such as the lack of any material description and polarization
dependence. To overcome these imperfections, a new set of isoperimetric bounds are
introduced in Refs. 6 and 8 that apply to a large class of linear and reciprocal an-
tennas. These new bounds are based on the first principles of primitive causality
and power conservation rather than the traditional approach of the spherical vec-
tor waves. Another drawback of the classical formulation is due to the difficulty
of extending the spherical vector waves to accurately model the electromagnetic
field inside the smallest circumscribing sphere. As a consequence, the estimates in
this paper apply to antennas of arbitrary shape without introducing the misleading
concept of the smallest circumscribing sphere.

The classical bounds summarized in Ref. 9 also show severe restrictions with re-
spect to the electrical size and frequency characteristic of the antenna. In particular,
the classical bounds are only meaningful for electrically small and resonant anten-
nas due to the underlying assumption of a dominant lowest order spherical vector
mode. As far as the authors know, no similar bounds to Chu and Wheeler exist
in the literature for non-resonant antennas with a broadband partial realized gain.
An exception is given by Refs. 10 and 22 which address limitations on the band-
width using Fano’s theory of broadband matching. Since non-resonant antennas
show great potential in future communication technologies such as Ultra-Wideband
(UWB), it is of scientific importance to establish a priori estimates to quantify the
tradeoff between the antenna onset frequency and its partial realized gain.

The underlying idea of UWB-systems is the spreading of the transmitted data
over an absolute bandwidth exceeding the lesser of 500 MHz or 20% of the center
frequency, see pp. 30-33 in Ref. 15.) The UWB-system uses a low power spectral

!For example, in North America, [3.1,10.6] GHz is authorized by the Federal Communications



density for short-range communication, implying that frequency bands already as-
signed to other services can be re-used in a cooperative manner without introducing
significant interference. Among other things, UWB-antennas show great potential
for applications in stealth technology, radar imaging and precision positioning. In
the above-mentioned applications, an undesired feature of many UWB-antennas is
the presence of temporal dispersion, i.e., the stretching of a time-domain signal into
a more distorted waveform, in the sense that the phase center or effective origin
of the radiated field varies with frequency. This variation is due to the fact that
small-scale portions of the antenna radiate or receive high-frequency components,
and large-scale portions radiate or receive low-frequency components. The present
paper does not further address the problem of temporal dispersion and its effect on
the antenna performance. Neither does it discuss how to minimize the temporal
dispersion associated with a radiation pattern that varies with frequency.

The bounds presented in this paper follow Ref. 7 by picturing the antenna from
a scattering point of view using the formalism in Refs. 2 and 14. Specifically, the
holomorphic properties of the forward scattering dyadic is employed in Refs. 17
and 18 to derive a summation rule for the extinction cross section. In Ref. 6, this
identity is carried over from the scattering scenario to a large class of antennas
via the effective antenna aperture. In particular, the variational results derived by
Jones in Refs. 11 and 12 play an essential role for the far reaching conclusions that is
established from this new theory. However, the main importance of the theoretical
findings is that they directly can be invoked in antenna design to provide knowledge
of the tradeoff between the partial realized gain and the bandwidth present in a
given structure. The results are also crucial for the understanding of the physical
effects imposed on any antenna by the first principles of primitive causality and
power conservation.

2 The integrated partial realized gain

Consider a linear, lossless and reciprocal antenna embedded in free space as de-
picted in Fig. 1.2 The assumption of a reciprocal material means that either the
transmission case or the reception case may be examined. From a scattering point
of view, the antenna is assumed to satisfy primitive causality in the sense of pp. 17—
22 in Ref. 20, viz., the scattered field in the forward direction cannot precede the
incident field when subject to a plane wave excitation. Let k denote a fixed direc-
tion in space, and consider a radiated field with an electric polarization e satisfying
é-k =0 in the far field region. Introduce the partial realized gain g as a measure of
the antenna’s ability to direct or focus energy. It is defined as the partial gain G in
the k-direction with respect to the e-polarization, weighted with the reflection loss
due to the antenna mismatch (I" denotes the reflection coefficient at the antenna

Commission (FCC) as the appropriate frequency band for UWB-communication.
2The assumption of a lossless material is not a serious restriction since it can be relaxed by
including an ohmic efficiency in (2.1) and the subsequent analysis.
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Figure 1: The radiation pattern of a schematic antenna in terms of the partial
realized gain.

port), i.e., ) A

where k and é are independent of the wave number k € [0, 00).> The definition (2.1)
includes both the TE- and TM-polarizations, or any combination thereof.

Based on the above-stated assumptions, a summation rule or dispersion relation
known as the integrated partial realized gain is derived in Ref. 6 in terms of the
electric and magnetic polarizability dyadics, v, and =, respectively. The result is

glkike) o n-ke) -
/; Tdk—f(@ Ye €+<k><€) Y (kx€)>, (22)

where an asterisk denotes the complex conjugate, and the general absorption effi-
ciency n € [0,1) is defined in Sec. 3. Relation (2.2) also holds for non-reciprocal
antennas if g is interpreted as the partial realized gain in receiving mode.

The identity (2.2) is valid for a large class of bi-anisotropic and heterogeneous
material models including temporal dispersion with or without a conductivity term.
Here, the material of the antenna is quantified in terms of the real-valued and
symmetric polarizability dyadics, 7, and «,,, defined in Sec. 4 by certain electrostatic
and magnetostatic boundary value problems. These dyadics depend on the geometry
of the antenna and its static material parameters, and they are independent of
any matching network. On the other hand, the generalized absorption efficiency 7
depends on the dynamic properties of the antenna (including the matching network),
and it is defined as the ratio of the integrated absorption to the integrated extinction.
The generalized absorption efficiency is a real-valued number in the unit interval

3 According to the IEEE-standard in Ref. 1, the partial gain G in a given direction is defined as
“that part of the radiation intensity corresponding to a given polarization divided by the radiation
intensity that would be obtained if the power accepted by the antenna were radiated isotropically”.
In this way, the partial realized gain (2.1) contains more information than the maximum gain,

Ghax (k) = max G(k; k, &),
k-e=0

which is maximized with respect to both the k- and é-directions.



quantifying the overall scattering and absorption properties of the antenna. Based

on reciprocity, 7 is determined from the scattering of a plane wave e —ikk@g* of ynit
amplitude impinging in the —k-direction, see Sec. 3.

3 Scattering and absorption of antennas

Now, consider the schematic antenna in Fig. 2 subject to a plane wave e ik-@e*

of unit amplitude. A collective measure of the antenna’s scattering properties is
then given by the scattering cross section oy, defined as the scattered power divided
by the incident power flux in the forward direction. A corresponding measure for
the absorbed power in the antenna is the effective antenna aperture or absorption
cross section o,. Recall that o, and o, are real-valued and non-negative. The latter
is determined by integrating the scattering dyadic S over the unit sphere 2 with
respect to & = x/z, viz.,

ou(k: —k, &%) = / S(k: —fe ~ &) - &7[2 dS,
Q

where the notation —k ~ & refers to the scattering of a plane wave incident in
the —k-direction into an outgoing spherical wave in the @-direction. The scattering
dyadic S is related to the scattered electric field E, via?

~

S(k;—k ~ &) - & = zlirgoxe—ikIES(k, @ —k, e,

where = = |x| denotes the magnitude of the position vector. As mentioned in
Sec. 2, it is assumed that the configuration in Fig. 2 is primitive causal in the forward
direction, & = —k, meaning that the inverse Fourier transform of &-S(k; —k ~ —k)-
€* vanishes on the negative real axis. In fact, the assumption of primitive causahty
is crucial for establishing the holomorphic properties of e - S(k; —k~ k:) €* that
are used to derive the summation rule (2.2) in Ref. 6.

An antenna’s ability to intercept an incident wave is often measured by the
effective antenna aperture o,. In terms of the optical theorem on pp. 18-20 in
Ref. 14, the effective antenna aperture is given by

. 4 . . .
ou(k: —k, &%) = % Im {é S(k,—k ~ —k) - é*} — ook —k, &),

implying that the received power in the antenna simply is the product of o, and the
incident power flux. As a consequence of reciprocity, the effective antenna aperture
is related to the partial realized gain via, see pp. 177-179 in Ref. 16,

oa(k; —k, &) = % (3.1)

‘Here, By = Eio; — e_ik’%'mé*, where the total electric field F; satisfies the Maxwell equations
on pp. 3-4 in Ref. 14.
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Figure 2: The resulting scattering pattern when the schematic antenna in Fig. 1 is

illuminated by a plane wave e **%¢&* of unit amplitude.

Relation (3.1) establishes a connection between an antenna’s ability to absorb an
incident wave and its property to direct or focus energy.

The generalized absorption efficiency n € [0,1) introduced in Sec. 2 is an over-
all measure of the scattering and absorption due to the presence of the antenna.
Equivalently, it is a quality measure of the choice of location of the feeding port.
The generalized absorption efficiency is defined as the ratio between the integrated
absorption and the integrated extinction, ¢.e.,

7 > ak;_é;A* > ex k‘;—];},A*
n(—k,é*):/ % dk// Tt — ) ar (3.2)
0 0

where 0. = 0, + 045 denotes the extinction cross section. For a large class of anten-
nas, 7 is close to 1/2 if k and é coincide with the antenna’s main beam and intrinsic
polarization, respectively. The integrated absorption depends on the presence of the
matching network in the antenna, and it is determined experimentally by loading
the antenna with the appropriate radiation resistance and calculating the absorbed
power when the antenna is subject to the plane wave excitation e **®e*,
According to Ref. 17, the denominator in (3.2) can also be formulated in terms

of the electric and magnetic polarizability dyadics, v, and «,,, respectively, viz.,

o ex k;_kaA* Ak 2 L o* L 2
/0 Text = e)dk=g<€"Ye'€+(kxe)'7m'(k’xe)>- (3-3)

The integrated extinction (3.3) is based on the properties of the forward scattering
dyadic S(k; —k ~ —k) when viewed as a holomorphic function in the upper half of
the complex k-plane. In particular, note that the right hand side of (3.3) is invariant
when e is replaced with e*, implying that the integrated extinction is independent
of the left- and right handed properties of the electric polarization.

Following the outline in Refs. 6 and 17, it is convenient to introduce the extinction
volume p as the complex-valued extension of the extinction cross section, i.e.,

5 é-S(k;—kn —k)-e&"

ol —k, &) = - . (3.4)




This quantity defines a holomorphic function for Imk > 0, and it is determined
experimentally by a forward scattering measurement as discussed in Ref. 19. The
extinction volume satisfies o(k; —k, e") = o(k; —k, €), meaning that also g remains
invariant when e and é" are interchanged. For real-valued k, the extinction cross
section is related to the imaginary part of extinction volume via the optical theorem

Oext(k; —k, &) = Amk Im o(k; —k, &").

Analogous to the Kramers-Kronig relations on pp. 15-17 in Ref. 20, the real and
imaginary parts of o are connected by the Hilbert transform. In particular, it follows
that g is real-valued in the static limit and there satisfies the integral identity

5 2 [ Im o(k; —k, &"
0(0; —k, &%) = —/ mo(k =k, &) ). (3.5)
0

T k

Relation (3.5) is useful to check for consistency when p is either measured or deter-
mined from a numerical calculation.

4 The three polarizability dyadics ~,, v, and v

Depending on the nature of the problem, let x, denote either the electric (¢ = e)
or magnetic ({ = m) susceptibility dyadic in the static limit.” Assume that x,
is compactly supported and symmetric at all points & € R3. In the absence of a
conductivity term, the electric and magnetic polarizability dyadics are defined by

vo= 3 (o [[[ a0 @ - voen av)aa,  w

ij=1

where a;, a; and a3 form an arbitrary set of linearly independent unit vectors. Here,
the scalar potential 1); is the unique solution of the static boundary value problem

V(@) £ 1) V@) = V- (6l@) @) lps (g

Yi(x) =O0(z7?) as z — o0 7 '
where I3 denotes the unit dyadic in R3. From (4.1) and (4.2) it is observed that
7, merely is the induced dipole moment when the antenna is subject to an external
electrostatic or magnetostatic excitation of unit amplitude. As a consequence, v, is
independent of the direction of observation k and the electric (¢ = e) or magnetic
(¢ = m) polarization, e and k x é, respectively. Furthermore, from (4.1) and (4.2)
it follows that ~y, is real-valued and symmetric since x, is assumed to be symmetric
at all points & € R®. Due to the absence of any length scale in the static limit, v,
is proportional to the volume V' occupied by the support

A={z eR’: x.(z) #0 or x,(z)# 0},

SHere, x, = € — I3 and x,, = p — I3, where € and p denote the static permittivity and
permeability dyadics relative to free space, respectively.




see Ref. 17. Closed-form expressions of ~, exist for various homogeneous and
isotropic geometries, see Ref. 13 and references therein. Further discussions on
the physical nature of v, are given on pp. 45-47 in Ref. 2 and pp. 6365 in Ref. 21.6

From a modeling point of view it is also interesting to include a static conduc-
tivity in the susceptibility dyadic. For this purpose, assume that x, is isotropic,
i.e., Xy = Xels, and introduce the conductivity ¢ > 0 and free space impedance
Mo = \/Ho/€0- In the presence of an isotropic conductivity term inys/k in yy, the
pertinent definition of 7, must be altered due to the singularity of the conductivity
model in the static limit. Under this assumption, it follows from the discussion
on pp. 49-51 in Ref. 13 that 4, should be evaluated in the high-contrast limit as
X¢ approaches infinity. For this purpose, introduce the high-contrast polarizability
dyadic «,, via the limiting process (i,5 = 1,2, 3)

Xe—00

where the dependence on X, has been omitted on the right hand side of (4.3).
Equivalently, the high-contrast polarizability dyadic is defined by

Yoo = <v +a;- / vi(@)p(x) — zi(x) - (a; + Vi, (x)) dS) aa;, (4.4)
— oA
irj
where the surface integral is taken over the antenna boundary JA with outward-
directed unit normal vector ©. Here, v, is the solution to the exterior problem

{ij () =0 z € R\ A, (4.5)

Yij(x) =—a;-x+ O(x?) as © — 0

with the boundary condition of vanishing total charge, i.e., [ &(x)-Vip;(x) dS =0,
on each non-connected subset of OA.

5 Bounds on the integrated partial realized gain

A drawback of (2.2) is the presence of n on the right hand side of the identity.
As mentioned in Sec. 3, the generalized absorption efficiency is determined from
the overall scattering and absorption properties of the antenna. In contrast to the
polarizability dyadics, n is not the solution of a pure electrostatic or magnetostatic
problem. It is therefore important to observe that the following estimate directly
can be invoked in the subsequent analysis:

~

0<n(—k,e) <1 (5.1)

By introducing (5.1), the equality in (2.2) is turned into an inequality with an upper
bound which solely is the solution an electrostatic and magnetostatic problem.

6Observe that the definition of 7, in (4.1) deviates by a factor of 47 from Ref. 21.



In many cases, it is desirable to bound (2.2) from above independently of the
materials in the antenna. This is achieved by introducing Jones’ variational results,
see Refs. 11 and 12, which are valid for general isotropic and heterogeneous mate-
rial parameters. These variational results state that the eigenvalues of v, increase
monotonically as x, increases at any point « € R?. Hence, it follows from (4.3) that
both v, and =, on the right hand side of (2.2) are bounded from above by v, i.e.,

/ % dk < W (é*-'yoo-éJr(l%xé*)-fyoo-(l%xé)>. (5.2)
0

As a consequence, the parenthesis on the right hand side of (5.2) does not only hold
for A, but also any extended support A, D A, meaning that v, can be estimated
from above by the corresponding solution of (4.4) and (4.5) when A is replaced by
A, . This procedure is particular useful for estimating the high-contrast polariz-
ability dyadic of a complicated antenna. In this case, the parenthesis on the right
hand side of (5.2) is estimated from above by, for example, solving (4.4) and (4.5)
for the smallest circumscribing cylinder with isotropic and homogeneous material
parameters in the high-contrast limit.

The parenthesis on the right hand side of (5.2) is recognized as the Rayleigh
quotients of v, implying that the integrated partial realized gain is further bounded
from above by the eigenvalues of «v_,. When subject to the constraint e - k=0 of
transverse wave propagation, (5.2) implies

0

k4 ’yl + 72)7 (53)

where v; and 7, denote the largest and second largest eigenvalue of v, respectively.
In the non-magnetic case, (k x €*) -4, - (k x &) and 7, vanish from the right hand
sides of (5.2) and (5.3), respectively. For a discussion on the isoperimetric nature of
the inequalities in (5.2) and (5.3), see Refs. 6 and 17.

As mentioned above, the right hand side of (2.2) can be estimated from above
independently of the generalized absorption efficiency. By introducing (5.1) on the
right hand side of (5.2), the upper bound on the integrated partial realized gain
becomes independent of the Igz—direction, dependent only on the state of electric po-
larization é. Analogously, (5.1) inserted into the right hand side of (5.3) yields an
upper bound which is independent of both k and é. In the absence of any conduc-
tivity term in x,, bounds similar to (5.3) can also be derived for the eigenvalues of

7o and 7,,.

6 A priori estimates for UWB-antennas

A priori estimates for two archetypes of UWB-antennas are presented in this section,
viz., antennas characterized by a constant partial realized gain and antennas char-
acterized by a constant effective antenna aperture. Generalizations of these models
to more complex frequency characteristics are also addressed.



6.1 Constant partial realized gain g,(k, &)

Due to the non-negative character of the partial realized gain, the left hand side
of (2.2) can be estimated from below by integrating over K = [k,, c0) rather than
the entire positive real axis. Thus, a straightforward calculation using the threshold
gp(lgz, e) = mingex g(k; k, e) yields

* g(k; k, é A dk k,é
/ g( ) 76) degp(k,é) . gp( 76)' (6].)
0

Combining this estimate with (2.2) implies that

gp<k7é) TI(_’%aé*) ~ % ~ 7 A% 7 ~
3]{;3 < 9 <€ 'Ve'e—i_(kzxe)'Vm'(kzxe))a (62)

with equality if and only if g(k; k, e) = gp(lgz, e) for k € [k,, 00), and zero elsewhere.
The interpretation of (6.2) is that it yields a lower bound on the antenna onset
frequency k,, or, equivalently, an upper bound on the threshold gp(l%, ée), in terms
of the geometry and static material parameters. From a physical point of view, an
antenna with a constant partial realized gain is characterized by receiving less power
as frequency increases since the effective antenna aperture (3.1) then varies inversely
with the square of the frequency. Nearly self-complementary antennas such as the
planar and conical equiangular spiral antennas are often modeled by a constant
partial realized gain, see Sec. 7.

6.2 Constant effective antenna aperture 7g,(k, &)/k2

According to (3.1), a constant effective antenna aperture implies that the partial
realized gain varies with the square of the frequency. For this purpose, introduce
the constant effective antenna aperture Wga(l%, e)/k?, corresponding to the threshold
ga(l%, e) = k2mingex g(k; k, e)/k?, where the frequency interval now is defined as
K = [k,,00). Then,

/ g(k‘; k, e) Ak > ga(ka e) % _ ga<k7 e).
0 k4 k2 x k? k3

a

Analogous to (6.2), it is concluded that

IN

—I% Ak . ~
77( 2’e)<é*"}’eé+(k3xé*)7m(kXé)>’ (63)

with equality if and only if g(k;k,&) = ga(k,e)k?/k2 for k € [ka,0), and zero
elsewhere. Various horn and reflector antennas such as Hertz’s parabolic cylinder
on pp. 6-8 in Ref. 15 are examples of antennas with an approximately constant
effective antenna aperture.
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Figure 3: A comparison between the a priori estimates for a constant partial real-
ized gain, g,(k, ), and a constant effective antenna aperture, wg.(k, e)/k2.

For a given right hand side of (2.2), a comparison between (6.2) and (6.3) shows
that the onset frequencies £, and k, satisfy

. 1/3
ﬁ _ 9o(k, €)
ka 3ga(1%a é) ’
implying that k, > k, for g,(k, &) > 3ga(k, &), and k, < k, for g,(k, &) < 3ga(k,&).
This conclusion is illustrated in Fig. 3 using the following models with identical
values of the integrated partial realized gain (2.2): g(k;l%,é) = gp(l%,é) for k €
[kp, 00), and g(k;k,&) = ga(k,&)k2/k2 for k € [k, 00), and zero elsewhere. In
particular, the orderings g,(k, &) < 3g.(k, &) and g, (k, &) > 3g.(k, &) in Fig. 3 refer
to the onset frequencies &, < k, and k, > k,, respectively. Of course, it is unphysical
to include infinite high frequencies in the models, but it is not a severe restriction

since the damping factor 1/k* implies that the integrated partial realized gain (2.2)
is dominated by the antenna’s low- and intermediate frequency behavior.

6.3 More general models of UWB-antennas

Although many UWB-antennas may be characterized as having a constant partial
realized gain or a constant effective antenna aperture, there are also antennas that
do not fall into this classification. In fact, the UWB-antenna is only one part of a
broadband communication system designed to meet an overall specification. It is
therefore motivated to briefly discuss more general models of UWB-antennas based
on the analysis of the lossy transmission problem on pp. 191-193 in Ref. 4. From
that analysis it is clear that the low-frequency behavior of the effective antenna
aperture is governed by o, (k; k, e) = O(k?*) as k — 0, or equivalently,

g(k;k,e) = O(k') as k — 0, (6.4)

where (3.1) has been used. Relation (6.4) is a natural choice of low-frequency be-
havior to guarantee the existence of (2.2) in the classical sense. Instead of choosing
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a constant partial realized gain or a constant effective antenna aperture, which ob-
viously lacks any continuity properties at k = k, and k = k,, each antenna designer
may choose her own model to fulfill the system requirements. Then, based on this
model, the antenna onset frequency is determined by simply solving an electrostatic
or magnetostatic problem as emphasized in Sec. 4.

6.4 A numerical example for the circular disk

As an example of how the theoretical findings in Secs. 5 and 6 can be used in
modern antenna design, consider an arbitrary planar antenna A circumscribed by
a circular disk A, of radius a. Let © denote the outward-directed unit normal
vector of the disk, and choose k =i and é = p, where p denotes the radial unit
vector in polar coordinates. This choice of k and é correspond to a direction of
observation and an electric polarization which are perpendicular and parallell to
the disk, respectively. Introduce the UWB frequency band f € [3.1,10.6] GHz, or
equivalently k € [0.65,2.22] cm™?, as briefly mentioned in Sec. 1. Assume that A is
specified to have a partial realized gain

glevelo)a ﬁ)k4/kil ke [07 kl]
g(kv IAja b) 2 glevelo)a ﬁ) k € [klv k2] (65)
0 otherwise

where k1 = 0.65cm™! and ky = 2.22cm™!. Then, for a given threshold Gevel (P, P),
it is desirable to determine the smallest radius a such that it is feasible for A C A,
to have a partial realized gain satisfying (6.5).

Based on the specification in (6.5), a straightforward calculation of (2.2) yields

OOg(kle/’ﬁ) PPN 1 /Vk2 dk glevel(ﬁiﬁ) 4k§_k?
L dk > Greval (D, — — | = . 6.6
/0 L4 2 Gievel(V, P) (k:l), + A 3 1Bk (6.6)

1

From the analysis in Ref. 17, it follows that the electric and magnetic polarizability
dyadics of the perfectly electric conducting circular disk are v, = 16a°I, /3 and
Y = 0, where I, = I3 —2o is the projection dyadic in R3. Hence, by inserting (6.6)
into (2.2), one obtain

791“91;:’”) < 0.55n(—2, p). (6.7)
where a now measures the radius of the disk in units of cm. For example, by
invoking the upper bound in (5.1), it is concluded that the minimum radius of the
disk is 1.8 cm for gievel (7, p) = 3 and 1.9 cm for gievel (7, p) = 4. For many antennas,
n is close to 1/2 and a more realistic bound is therefore 2.2cm and 2.4 cm for
Gievel (P, ) = 3 and gieval (P, p) = 4, respectively. Finally, note that various planar
antennas directly can be compared with (6.7) to establish measures of how effective
they make use of their surface areas.
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4 Gain L9(k; 2, éx)
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Figure 4: Left figure: maximum gain, max;, ,_, G(k; k, e) (red dashed line), partial
gain G(k;z,-) (blue dashed-dotted line), and partial realized gain g(k; 2,-) (black
solid line) for both the ég- and ér-polarizations. Right figure: a priori estimates of
g(k; z, ég) derived from electrostatic properties of the antenna using nr = 0.62.

7 The equiangular planar spiral antenna

In this section, numerical results for the equiangular planar spiral antenna is pre-
sented and compared with the estimates introduced in Secs. 5 and 6.

7.1 General properties

Dyson’s equiangular planar spiral antenna in Fig. 4 is an example of a nearly self-
complementary antenna often modeled by a constant partial realized gain. It is
parameterized by the azimuthal angle ¢ in terms of four radial distances according to
Ref. 5. In terms of ¥ = 5/4 and the radius a of the smallest circumscribing disk, the
parameterizations of the two spiral arms are r1(¢) = a¥?~*" and ry(¢) = a?~"/2 for
¢ € [0,47], and r3(¢) = a¥*~°" and r4(¢) = a¥?~1"/2 for ¢ € [, 57]. Introduce the
coordinate system (u, v, 2) with the 2-axis being outward-directed from the plane
of the antenna. Then, according to the IEEE-standard in Ref. 1, the transmitted
waves from the antenna result in right-circularly polarized (RCP or ég-polarized)
radiation in the positive 2-direction, and thus left-circularly polarized (LCP or ép-
polarized) radiation in the negative z-direction. The electric polarizations eg and
ey, are related by e, = ér,, where

én = L(a+iv) (RCP) er = 5(u—iv) (RCP)
e = L(a—iv) (LCP)’ er = J5(a+iv) (LCP)’

for radiation in the positive and negative z-directions, respectively. Here, the partial
realized gain satisfies g(k; 2, €) = g(k; —2, €"), where € denotes any of ég and éy,. As
a consequence, it is sufficient to only treat the radiation in the positive z-direction.
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Figure 5: Left figure: the magnitude of the reflection coefficient I" matched to the
input impedance 250 2. Right figure: the extinction cross section, scattering cross
section and effective antenna aperture, o, 0s, and o,, respectively, in units of 2wa?.

7.2 Numerical results

A numerical solution of the Maxwell equations using the commercial EFIELD method
of moments solver” is employed to illustrate the estimates in Secs. 5 and 6. For this
purpose, the equiangular planar spiral antenna is modeled by perfectly electric con-
ducting material and matched to the input impedance 250 2. It is simulated using
a delta gap feed model and the resulting reflection coefficient I" is depicted on the
left hand side of Fig. 5. Based on the voltage standing wave ratio VSWR < 2,
or equivalently, |I'| < 1/3, the bandwidth of the equiangular planar spiral antenna
is calculated to be 171% relative to the center frequency koa = 10.5. The maxi-
mum gain, Guax(k) = max; ,_, G(k; k, e), the partial gain G(k; 2, -) in the positive
z-direction, and the partial realized gain ¢(k;Z,-) in the positive z-direction are
depicted on the left hand side of Fig. 4. It is observed that g(k; 2z, ég) is approx-
imately constant over a large frequency interval with a main beam in the positive
z-direction. For comparison, the corresponding results for the LCP-radiation are
included in Fig. 4 with an overall partial realized gain g(k; 2, é,) less than unity.
The equiangular spiral antenna is also simulated in plane wave scattering when it
is loaded with 250 €2 in parallel with the feeding port. The resulting extinction cross
section, scattering cross section, and effective antenna aperture, are depicted on the
right hand side of Fig. 5.% It is seen that that the scattering effects are dominant

when the impinging plane wave is e "**%¢g | while the absorption properties are more
—ikz-x )

noticeable for the excitation e ér. The high-frequency limit A(—2) = 0.36 of
the extinction cross section is marked by a star in Fig. 5. In fact, according to the

"More information about this code is available at http://www.efieldsolutions.com.

8The notations (RCP) and (LCP) in Figs. 5 and 6 refer to the polarization of the antenna rather
than the incident wave, i.e., (RCP) and (LCP) should be interpreted as an incident plane being
left- and right-circularly polarized, respectively.
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Figure 6: The pointwise absorption efficiency o, /0e (left figure), and the real and
imaginary parts of the extinction volume g in units of a® (right figure).

extinction paradox in Ref. 17,

klgr;(} Oext(k; —2,+) = 2ma® A(—2),

where A denotes the projected area of the antenna in units of ma?. The corresponding
curves for the pointwise absorption efficiency o, /0y and the extinction volume g are
illustrated in Fig. 6. Recall that the extinction volume is identical for both the ég-
and ep-polarizations. In particular, the star on the right hand side of Fig. 6 indicate
the value of the integral on the right hand side of (3.5). So, for the equiangular
planar spiral antenna in Fig. 4 it is concluded that the integral identity (3.5) holds.

The general absorption efficiency is calculated from the integrated absorption and
integrated extinction in (3.2). The result is ng = 0.62 and 7, = 0.40, where ng =
n(—z,eég) and n, = n(—2, é;) following the notation in Sec. 3. This observation
implies that the quotients nr/(nr + nr,) = 0.61 and nr/(ng + n) = 0.39 may be
interpreted as quality factors for the antenna’s overall ability to intercept any of the
two polarizations.

7.3 Analysis of the electric polarizability dyadic

The electric polarizability dyadic of the antenna is calculated by numerically solv-
ing (4.2) in the perfectly electric conducting limit. Expressed in the basis (u, v, 2),
the dyadic reduces to the symmetric matrix

2.82 —0.63 0
[vJ)=1-063 198 0]ad’ (7.1)
0 0 0

The corresponding magnetic polarizability matrix vanishes, i.e., [v,,] = 0, since no
induced magnetic dipole moment is supported by the antenna. In particular, note
that the elements in the third row and third column in (7.1) are identically zero,
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reflecting the vanishing thickness of the antenna in the z-direction. The largest
eigenvalue 7; = 3.16a> should be compared with the corresponding number 16a/3
for the smallest circumscribing disk with isotropic and homogeneous material pa-
rameters in the high-contrast limit. Having Jones’ variational results from Sec. 5 in
mind, the value 16a/3, or approximately 5.33a?, is a priori known to be an upper
bound on ;. Although the equiangular planar spiral antenna only occupies 36%
of the smallest circumscribing disk (recall that A(—2) = 0.36), this antenna makes
effective use of its surface area since

= ———— =2.7%. 7.2
Ta2A(—%) ¢ (7.2)
The surface area efficiency (7.2) should be compared with the corresponding number
1.70a if the entire circular disk is used as an antenna.
The first Rayleigh quotient on right hand side of (2.2) is obtained from (7.1) by
a straightforward matrix multiplication, viz.,

(1N /282 —063 0\ /1) f
@z*-[fye]-éz5 +i —0.63 198 0| | +i|a®=2.40a° (7.3)
0 0 0 0 0

where a dagger denotes the complex conjugate transpose, and the upper and lower
signs in (7.3) refer to &€ = ég and & = e, respectively.® The result in (7.3) should
also be compared with the corresponding value 5.33a? for the smallest circumscribing
disk. Both 3.16a® and 5.33a® yield upper bounds on the integrated partial realized
gain when inserted into the right hand side of (5.3). For this purpose, recall that ~,
vanishes from the left hand side of (5.3) since the magnetic polarizability matrix is
identically zero.

7.4 A priori estimates of the partial realized gain

Without loss of generality, let € = eég and n = nr throughout this section. Fur-
ther, introduce the scaled partial realized gain f(k) = g(k; 2, ér), where k = ka.
Then, (2.2) implies

> g(k) s [ f(k MR (o : 5 % & 5 % &
/0 %dkz:a‘* i ?)d":?(eﬁ'%'ew(zxeR)-'vm'<Z><eR)>'

Equivalently, by invoking (7.3) and n = 0.62, one obtain the following integral
independent of the radius a of the smallest circumscribing disk:

/OO % dk = 0.74, (7.4)

Any function f satisfying (7.4) with the low-frequency behavior f(k) = O(k*) as
k — 0 is a possible candidate for a partial realized gain of the equiangular spiral

9Recall that (7.3) is independent of the left- and right-handed properties of the polarization
since [v,] is symmetric.
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antenna. Additional knowledge or specification of the performance of the antenna
must then be invoked to further establish a priori estimates on the partial realized
gain. For example, consider the model f(x) = 3.3 for k € [k,,00), and zero else-
where. This model is illustrated by the uppermost dashed line in Fig. 4. The onset
frequency k, = kpa of this bound is then given by (6.2), i.e.,

33\
> — 1.14.
fp = (3 - 0.74)

A more realistic model of the partial realized gain is f(k) = giever*/(a + K1), where
the constant « satisfies the integral equation

< f(k) * dr 2.40-0.62
/0 l£4 drk = Jlevel .« n ,‘14 == 5 = 0.74. (75)

A numerical solution of (7.5) yields o = 8.40, implying that f(k) = 3.3x*/(8.40+~x")
is a potential estimate of the partial realized gain. This estimate is illustrated by the
intervening dashed line in Fig. 4. Finally, a somewhat different bound is obtained
using f(k) = Gieva® /(B3 + £%3)%/2, where the constant 3 is given by

*flw) e dr ~240-0.62
/0 /{4 drk = Jlevel ; (ﬁ T /{8/3)3/2 = 5 =0.74. (76)

A numerical solution of (7.6) yields § = 3.58, and this estimate is illustrated by
the lowermost dashed line in Fig. 4. Note that the three estimates above satisfy the
correct low-frequency behavior (6.4).

& Conclusions

In this paper, a summation rule valid for a large class of linear and reciprocal
antennas is presented. In particular, a priori estimates on the partial realized gain
and antenna onset frequency are derived for two important archetypes of UWB-
antennas: those with a constant partial realized gain, and those with a constant
effective antenna aperture. These estimates are numerically exemplified in Secs. 6
and 7 by the smallest circumscribing disk and the equiangular planar spiral antenna,
respectively. Although the electric and magnetic polarizability dyadics are restricted
to the static or long wavelength limit, the above-mentioned examples suggest that
the polarizability dyadics are crucial for the understanding of an antenna’s ability to
direct or focus energy over a frequency interval. For example, from (4.4) and (4.5) it
is clear that the high-contrast polarizability dyadic is defined as the first moment of
the induced charge density. As a consequence, the further the accumulated charges
are separated by an external applied field, the larger is the corresponding elements
of the polarizability dyadic. Another striking consequence of (4.4) and (4.5) is
that the interior of an antenna has less influence on the polarizability dyadic than
the antenna’s boundary surface. Removing interior parts of the antenna will only
slightly reduce the integrated partial realized gain (2.2), but mainly redistribute
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the integrand along the frequency axis. It is thus concluded that the high-contrast
polarizability dyadic reproduces and quantifies the well known rule of thumb that
the boundary is the critical parameter in antenna design, far more so than its surface
area or interior geometry.

The estimates introduced in this paper are also valuable for comparing existing
antenna designs with various circumscribing geometries. Such a comparison implies
that antennas can be classified in terms of its surface or volume efficiency, cf., the
discussion in Sec. 6.4. Of course, the polarizability dyadics do not completely deter-
mine the antenna performance. For example, the polarizability dyadics are ignorant
of whether it is advantageous to model a given structure as a resonant antenna or
as an antenna having a broadband frequency characteristic.
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