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Abstract

In this paper, a Fisher information analysis is employed to establish some im-

portant physical performance bounds in microwave tomography. As a canoni-

cal problem, the two-dimensional electromagnetic inverse problem of imaging

a cylinder with isotropic dielectric losses is considered. A �xed resolution is

analyzed by introducing a �nite basis, i.e., pixels representing the material

properties. The corresponding Cramér-Rao bound for estimating the pixel

values is computed based on a calculation of the sensitivity �eld which is

obtained by di�erentiating the observed �eld with respect to the estimated

parameter. An optimum trade-o� between the accuracy and the resolution is

de�ned based on the Cramér-Rao bound, and its application to asses a prac-

tical resolution limit in the inverse problem is discussed. Numerical examples

are included to illustrate how the Fisher information analysis can be used to

investigate the signi�cance of measurement distance, operating frequency and

losses in the canonical tomography set-up.

1 Introduction

Although imaging and inverse scattering problems have been thoroughly studied
during the last century there is only a partial understanding of these complex prob-
lems. Most of the e�orts have been placed on the development of e�cient inversion
algorithms and mathematical uniqueness results. In comparison, there are very
few results and a limited knowledge about the information content in the inversion
data. Inverse scattering and imaging are topics with a variety of applications in
e.g., medicine, non-destructive testing, surveillance, quantum mechanics, acoustics
and optics. These problems are in general ill-posed, i.e., they are not well-posed in
the sense of existence, uniqueness, and the solution being a continuous function of
the data [1, 5, 9, 11, 13, 15, 25]. The Radon transform inversion used in computerized
tomography (CT) is an elegant example of the solution to an ill-posed problem of
great importance in industry and medicin [1, 25].

Microwave tomography has several promising applications in e.g., non-invasive
medical imaging and early detection of breast tumors [8], and non�destructive test-
ing [3, 9]. Besides the analytical and computational challenges of the inversion al-
gorithms, the basic understanding of the microwave tomography set-up is not ad-
equate. There is a need to improve the understanding of the signi�cance of the
number, positions, and radiation patterns of the antennas. The used signal spec-
trum, the in�uence of the noise statistics, and partial knowledge of the objects (a
priori information) are also very important issues in this respect.

The mathematical theory is well developed concerning the uniqueness of inverse
scattering problems [5, 11, 13, 25]. The uniqueness theorems typically show that the
solution is unique if the data is available from all possible measurements. This is
very important but not su�cient from a practical point of view. Further, since the
solution of ill-posed problems does not generally depend continuously on the data,
the e�ect of noise is ampli�ed in a way that calls for proper control. For this purpose,
regularization theory [1] is often used to control the imaging error. Typically, the
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number of degrees of freedom (NDF) pertaining the number of signi�cant singular
values of a linear operator is a very useful tool, see e.g., [1, 2, 22]. The NDF, which
is virtually independent of the noise level, can be used to estimate the number of
retrievable parameters of an object, and hence the resolution. However, these ap-
proaches are rather coarse and do not give a qualitative measure on the information
content of the inversion data with respect to the accuracy and the resolution of
images. We are seeking a measure that can furnish a deeper understanding about
the physics of the measurement problem.

Estimation theory is a classical and well developed area within signal process-
ing research and mathematical statistics. Over several decades the Cramér-Rao
bound (CRB) has been subjected to many revivals and has become the dominating
tool in areas such as statistical signal processing [12], array signal processing [14]
and systems and control theory [24]. Signal models typically rely on certain geo-
metrical assumptions about the wave propagation [14], or a rational or polynomial
description of the systems or signals under consideration [24]. However, physically
based mathematical models are oftenly not considered even though the signals un-
der consideration are related to physical phenomena. On the other hand, we have
also observed that estimation theory such as Fisher information and Bayesian esti-
mation [12], are tools that have not been fully exploited in the traditional inverse
scattering or imaging literature. One of the very few overviews on this subject is
given in [25].

A Fisher information analysis and the Cramér-Rao bound provides a very useful
instrument for sensitivity analysis of various wave propagation phenomena, and
which facilitates valuable physical interpretations, see e.g., [4, 6, 7, 10, 17, 20, 21, 23,
26]. Cramér-Rao bounds for the location, size and orientation of a known object
has been studied in the context of di�raction tomography and Maximum Likelihood
(ML) estimation in [6, 17, 26]. Previously, the Cramér-Rao bound has been employed
as an analytical tool to investigate the one-dimensional inverse scattering problem
of multilayer structures [10]. The Fisher information analysis has also been used
with electromagnetic inverse source problems, see e.g., [20, 21]. In [10, 20, 21], the
Cramér-Rao bound is employed as an analytical tool to quantify the ill-posedness
of the reconstruction and to explicitly describe the inherent trade-o� between the
accuracy and the resolution.

The purpose of the present paper is to provide a general framework for sensi-
tivity analysis which is useful for establishing some important physical performance
bounds in microwave tomography. As a canonical problem, the two-dimensional
electromagnetic inverse problem of imaging a cylinder with isotropic dielectric losses
(modelled with a complex valued permittivity) is considered. However, we antici-
pate that the presented technique can be useful also in more general settings such
as with anisotropic material parameters, see e.g., [18, 19]. A �xed resolution is ana-
lyzed by introducing a �nite basis, i.e., pixels representing the material properties.
The corresponding Cramér-Rao bound for estimating the pixel values is computed
based on a calculation of the sensitivity �eld which is obtained by di�erentiating
the observed �eld with respect to the estimated parameter. Here, the resemblance
with Fréchet di�erentials and sensitivity analysis should be observed [25]. For the



3

a

Measurement
(b, φ)

Excitation
(b, ψ)

ε

ε = 1

Figure 1: Measurement set-up with a cylindrical object of radius a and relative
permittivity ε. Measurement cylinder of radius b in free space with excitation at
(b, ψ) and measurement at (b, φ).

canonical problem, the domain as well as the discrete calculation- and pixel grids are
circularly symmetrical. This condition greatly simpli�es the interpretation as well as
the calculation of the Cramér-Rao bound which is based on the background Greens
function. An optimum trade-o� between the accuracy and the resolution is de�ned
based on the Cramér-Rao bound, and its application to asses a practical resolution
limit in the inverse problem is discussed. Hence, when the resolution of an imaging
system is improved, the corresponding estimation accuracy in a given measurement
set-up is impaired in the sense that the Cramér-Rao bound is increased. Numerical
examples are included to illustrate how the Fisher information analysis can be used
to investigate the signi�cance of measurement distance, operating frequency and
losses in the canonical tomography set-up.

The rest of the paper is outlined as follows. Section 2 presents the electromag-
netic model as well as the statistical model of the canonical problem. Section 3
presents the Fisher information analysis based on the Cramér-Rao bound and a
calculation of the sensitivity �eld using the background Greens function. Section 4
presents the numerical examples and section 5 the summary and conclusions. An
appendix is also included de�ning the circularly symmetrical background Greens
function.

2 Measurement model

2.1 Electromagnetic model

Throughout the paper, let (ρ, φ, z) denote the cylindrical coordinates, (ρ̂, φ̂, ẑ) the
corresponding unit vectors and ρ = ρρ̂ the two-dimensional radius vector with
coordinates (ρ, φ). We will assume that all �elds have a two-dimensional domain
and that the electric �eld E is vertically polarized, hence E = E(ρ)ẑ where E(ρ) is
the two-dimensional scalar �eld depending on the spatial coordinate ρ. Further, let
eiωt be the time-convention and let k0, c and η denote the wave number, the speed
of light and the wave impedance of free space, respectively.
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We consider the electromagnetic inverse problem of imaging a two-dimensional
circular cylinder with isotropic dielectric losses as depicted in Figure 1. The measure-
ment set-up consists of a cylindrical object of radius a and a measurement cylinder
of radius b in free space with excitation at (b, ψ) and measurement at (b, φ). The
inverse problem is to estimate the relative permittivity ε(ρ) within the cylinder,
based on all measurements of the electric �eld E(b, φ, ψ) for (φ, ψ) ∈ [0, 2π]× [0, 2π].

The electric and magnetic �elds E and H satisfy Maxwell's equations{
∇×E + ik0ηH = 0
∇×H − ik0

η
εE = J s

(2.1)

together with appropriate boundary conditions (see the appendix), and where J s is
the excitation source and ε the complex valued relative permittivity of the cylinder.

It is assumed that the background is homogenous and the corresponding per-
mittivity ε is known (either modelled or measured) as we analyze the optimum
performance of estimating its deviation at a particular background level. A simple
conductivity model is to employ a real valued relative permittivity ε∞ (instantaneous
response) and a conductivity σ to get ε = ε∞− i σ

ωε0
. More sophisticated models such

as the Debye and Lorentz models, or combinations thereof, can be straightforwardly
incorporated in the sensitivity analysis below.

Assuming that the source is vertically polarized with J s = J ẑ, Maxwell's equa-
tions (2.1) yield the following wave equation for the scalar �eld E

LE =

{
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

}
E = ik0ηJ (2.2)

together with appropriate boundary conditions (see the appendix), and where k2 =
ω2µ0ε0ε = k2

0ε. The corresponding Greens function G(ρ,ρ′) = G(ρ, φ, ρ′, φ′) for a
point source at ρ′ = (ρ′, φ′) satis�es LG(ρ,ρ′) = −δ(ρ − ρ′) and is given in the
appendix for the homogenous and circularly symmetrical background. Assuming
that the source is a point source at (b, ψ) and the measurement is performed at
(b, φ), the observed quantity is hence given by

E(b, φ, ψ) = −ik0ηG(b, φ, b, ψ). (2.3)

2.2 Statistical model

We now adopt the following statistical measurement model

E(m)(b, φ, ψ) = E(b, φ, ψ) +N(φ, ψ) (2.4)

where (φ, ψ) ∈ [0, 2π] × [0, 2π] and N(φ, ψ) is additive measurement noise. Here,
N(φ, ψ) is modelled as a two-dimensional uncorrelated zero mean complex Gaussian
random process [16] with autocorrelation function

E {N∗(φ+∆φ,ψ +∆ψ)N(φ, ψ)} = (2π)2σ2
Nδ(∆φ,∆ψ) (2.5)
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where E {·} denotes the expectation operator, (·)∗ the complex conjugate and δ(·)
the Dirac δ-function (here with period 2π × 2π). The strength of the noise is given
by the spatial spectral density σ2

N.
It is natural to examine the 2π × 2π periodic function E(b, φ, ψ) by its two-

dimensional Fourier series representation

Ẽmn(b) =
1

(2π)2

∫ 2π

0

∫ 2π

0

E(b, φ, ψ)e−imφ−inψ dφ dψ (2.6)

yielding the discrete measurement model

Ẽ(m)
mn (b) = Ẽmn(b) + Ñmn (2.7)

where the autocorrelation function of the noise is given by

E
{
Ñ∗
mnÑm′n′

}
= σ2

Nδmm′δnn′ , −∞ < m,n <∞ (2.8)

and where δnn′ denotes the Kronecker delta.
Let G̃m(ρ, ρ′, φ′) denote the one-dimensional Fourier series representation of the

Greens function G(ρ, φ, ρ′, φ′). We have then for the homogenous and circularly

symmetrical background that Ẽmn(b) = −ik0ηG̃m(b, b, 0)δ−m,n since G̃m(b, b, ψ) =

G̃m(b, b, 0)e−imψ, see the appendix. The signal-to-noise ratio is now de�ned as

SNR =
Ps(b, k0)

σ2
N

(2.9)

where Ps(b, k0) is the average squared signal amplitude

Ps(b, k0) =
1

(2π)2

∫ 2π

0

∫ 2π

0

|E(b, φ, ψ)|2 dφ dψ

=
∞∑

m=−∞

∞∑
n=−∞

|Ẽmn(b)|2 = k2
0η

2

∞∑
m=−∞

|G̃m(b, b, 0)|2 (2.10)

where the average is taken over all measurements with (φ, ψ) ∈ [0, 2π]× [0, 2π].

3 Fisher Information Analysis

3.1 The Sensitivity Field

Assume that the cylinder region S = ∪Ii=1Si is decomposed into a �nite set of disjoint
image cells or pixels Si corresponding to some speci�c scale of resolution, see Figure
4 for an example. The complex valued relative permittivity within the cylinder is
hence discretized according to the �nite expansion

ε =
I∑
i=1

εiχi (3.1)



6

where εi are complex parameters and χi is the set function for pixel Si (χi(ρ) = 1 if
ρ ∈ Si and χi(ρ) = 0 if ρ /∈ Si).

The Fisher information matrix [12] for the parameters εi based on the statistical
measurement model (2.7) is given by

I ij =
1

σ2
N

∞∑
m=−∞

∞∑
n=−∞

∂Ẽ∗
mn(b)

∂ε∗i

∂Ẽmn(b)

∂εj
. (3.2)

By Parseval's theorem, the Fisher information (3.2) is also given by

I ij =
1

σ2
N(2π)2

∫ π

−π

∫ π

−π

∂E∗(b, φ, ψ)

∂ε∗i

∂E(b, φ, ψ)

∂εj
dφ dψ. (3.3)

The di�erentiated �eld, or sensitivity �eld, satisfy Maxwell's equations (2.1){
∇× ∂E

∂εi
+ ik0η

∂H
∂εi

= 0

∇× ∂H
∂εi

− ik0
η
ε∂E
∂εi

= ik0
η
χiE

(3.4)

as well as the wave equation (2.2)

L∂E
∂εi

=

{
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

}
∂E

∂εi
= −k2

0χiE (3.5)

where the solution E of (2.1) and (2.2) now appears in the source term −k2
0χiE.

The sensitivity �eld can hence be expressed as

∂E(b, φ, ψ)

∂εi
= k2

0

∫
S
G(ρ,ρ′)χi(ρ

′)E(ρ′) dS ′ = k2
0

∫
Si

G(ρ,ρ′)E(ρ′) dS ′

= −ik3
0η

∫
Si

G(b, φ, ρ′, φ′)G(b, ψ, ρ′, φ′) dS ′ (3.6)

where we have employed the symmetry of the Greens function G(ρ,ρ′) = G(ρ′,ρ).
Taking the two-dimensional Fourier transform of (3.6) we get the di�erentiated
Fourier coe�cients

∂Ẽmn(b)

∂εi
= −ik3

0η

∫
Si

G̃m(b, ρ′, φ′)G̃n(b, ρ
′, φ′) dS ′. (3.7)

The expression (3.7) can be greatly simpli�ed by exploiting the symmetry proper-
ties of the Greens function corresponding to the homogenous and circularly symmet-
rical background, see the appendix. Hence, by using G̃m(ρ, ρ′, φ′) = G̃m(ρ, ρ′, 0)e−imφ′

we get
∂Ẽmn(b)

∂εi
= −ik3

0η

∫
Si

G̃m(b, ρ′, 0)G̃n(b, ρ
′, 0)e−i(m+n)φ′ dS ′ (3.8)

displaying the signi�cant quantity G̃m(b, ρ′, 0). Furthermore, by considering (3.6)
and assuming that the pixel Si is rotated an angle ∆φi with respect to the pixel Si0 ,
we obtain the rotational invariance

∂E(b, φ+∆φi, ψ +∆φi)

∂εi
=
∂E(b, φ, ψ)

∂εi0
(3.9)
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and hence
∂Ẽmn(b)

∂εi
=
∂Ẽmn(b)

∂εi0
e−i(m+n)∆φi . (3.10)

These properties clearly indicate the simpli�cations that can be made in the mod-
elling of the Fisher information matrix when the object as well as the discretization
are circularly symmetrical.

3.2 Circularly Symmetrical Discretization

In order to get a rotational invariant de�nition of the resolution we employ a circu-
larly symmetrical calculation grid with Nρ×Nφ grid points in the ρ and φ directions,
respectively. In order to decimate the calculation grid for e�cient calculation of the
Cramér-Rao bound corresponding to a particular resolution, we chose Nρ and Nφ to
contain as many factors as possible, e.g., Nρ = p4! and Nφ = 6Nρ (≈ 2πNρ) where
p is an integer. The pixel grid is then de�ned by nρ × nφ points, where nρ = Nρ/q,
nφ = Nφ/q and q is the decimation factor.

The calculation grid is uniform in the φ-direction with increments ∆φ = 2π/Nφ

whereas it is non-uniform in the ρ-direction. The circularly symmetrical unit cells
are de�ned to have the same area ∆A = πr2/(NρNφ) where r is the radius of the
circular domain under consideration. The radius rn of the outher boundary of any

unit cell is given by rn =
√

2n∆A
∆φ

for n = 1, . . . , Nρ where rNρ = r. The radial grid

points ρn are de�ned by the center of gravity of the unit cells, yielding

ρn = 2 sin(
∆φ

2
)
r3
n − r3

n−1

3

1

∆A
(3.11)

for n = 1, . . . , Nρ and where r−1 = 0.
The pixel grid is de�ned in the same way as the calculation grid with ∆A0 =

πa2/(nρnφ), and we de�ne the resolution parameter r∆ by

r∆ =

√
A0

λ
(3.12)

where λ = 2π/Re{k} is the wavelength inside the cylinder. Observe that the pixels
are circularly symmetrical in the sense that one can be rotated into another, see
Figure 4 for an example.

The Fourier coe�cients of the sensitivity �eld (3.7) can now be e�ciently cal-
culated by approximating the integral in (3.8) by a summation over an o�set pixel

Si0 and by employing the rotational invariance (3.10). Hence, let ∂ eEmn

∂ε0
denote the

nρ × 1 vector containing pixel samples of (3.8) at an o�set radial direction and let
∆φ = 2π/nφ be the angular resolution on the pixel grid. The nρnφ × nρnφ Fisher
information matrix (3.2) is then given by

I =
1

σ2
N

∞∑
m=−∞

∞∑
n=−∞

Φmn ⊗

(
∂Ẽmn
∂ε0

)∗(
∂Ẽmn
∂ε0

)T

(3.13)
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where Φmn is an nφ × nφ matrix containing the elements ei(m+n)(i−j)∆φ for i, j =
1, . . . , nφ, ⊗ denotes the Kronecker product and (·)T the transpose. It is observed
that the Fisher information matrix I has a block Toeplitz structure.

The Cramér-Rao bound (CRB) [12] for estimating the complex parameter εi is
�nally given by

E
{
|ε̂i − εi|2

}
≥
[
I−1

]
ii
. (3.14)

The usefulness of the CRB with nonlinear problems is strongly motivated by the
asymptotic properties of the Maximum Likelihood (ML) estimator [12]. Thus, as-
suming very general regularity conditions on the noise statistics, the ML estimate
is asymptotically Gaussian distributed (for large data records) with an asymptotic
error covariance equal to the CRB. Hence, the ML estimator is said to be asymptot-
ically e�cient and the CRB is asymptotically achievable, cf., [12] for further details.

3.3 Cramér-Rao bound, accuracy and resolution

Next, we de�ne an optimum trade-o� between the accuracy and the resolution based
on the Cramér-Rao bound and discuss how it can be used to asses a practical resolu-
tion limit in the inverse problem. In many respects, the idea resembles the concept
of the number of degrees of freedom (NDF) of a linear operator, which is a useful tool
in inverse scattering applications, see e.g., [1, 2, 22]. The NDF, which is virtually
independent of the noise level, can be used to estimate the number of retrievable
parameters of an object, and hence the resolution. Typically, the NDF is de�ned
as the number of signi�cant singular values of a linear operator up to the point
where their behaviour changes from �almost constant� to �exponentially decaying�.
For an inverse source problem with a simple cylindrical or spherical geometry, this
property is closely related to the behaviour of the cylindrical or spherical Bessel
and Hankel functions at the transition from evanescent to propagating regions, see
e.g., [1, 2, 22]. However, the NDF approaches are rather coarse and do not give a
qualitative measure on the information content of the inversion data with respect
to the accuracy and the resolution of images. In contrast, the Cramér-Rao bound
is a performance measure which is qualitatively related to the information content
of the inversion data.

The Cramér-Rao bound can be used to de�ne an optimum trade-o� between the
accuracy and the resolution which is useful for linear as well as for nonlinear inverse
problems. Hence, when the resolution of an imaging system is improved by decreas-
ing the resolution parameter r∆, the corresponding accuracy in a given measurement
set-up is impaired in the sense that the Cramér-Rao bound is increased. Formally,
we may de�ne the optimum trade-o� between the accuracy and the resolution by
the performance measure PM(r∆){

PM(r∆) = max
i

[
I−1

]
ii

r∆ fixed
(3.15)

where the maximization is taken over all pixels. Note that the resolution parameter
r∆ de�nes the number of pixels and hence the number of retrieved parameters.
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Figure 2: Illustration of the Greens function at external excitation. The electrical
size of the object cylinder is k0a = 20, the measurement cylinder radius is b = 2.0a
and the background parameters are ε = 3− i0.1.

Precisely as is the case with the NDF for linear operators, the relation (3.15) will
in many cases show a very sharp �knee� as the resolution parameter r∆ decreases.
The point at which this occur, i.e., the point at which the Cramér-Rao bound starts
to increase excessively, may be taken as the resolution limit of the imaging system.
It will be possible, but clearly very impractical to estimate parameters beyond the
resolution limit. Hence, the Cramér-Rao bound and the relation (3.15) can be used
as an alternative de�nition of the �number of degrees of freedom� of a nonlinear
inverse problem.

Eventhough the de�nition of the resolution limit based on the Cramér-Rao bound
as described above is not precise unless we exactly specify the �knee� at which the
Cramér-Rao bound starts to increase excessively, the optimum trade-o� (3.15) is a
useful tool for investigating the main characteristics of a given inverse problem with
respect to the accuracy and the resolution. Moreover, the Cramér-Rao bound is a
precise measure of accuracy, and is hence very useful for comparison studies such
as e.g., when investigating the e�ect (loss or gain in performance) of varying the
measurement radius b (near-�eld e�ects), the operating frequency (electrical size
k0a) or losses (complex permittivity ε). Numerical examples which illustrate the
analysis procedure are given in the next section .

4 Numerical examples

The numerical examples described below illustrate how the Fisher information analy-
sis can be used to investigate the signi�cance of measurement distance, operating
frequency and losses in a canonical two-dimensional microwave tomography set-up.
In the numerical examples below, we have employed two electrical sizes of the object
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Figure 3: Illustration of the Greens function at internal excitation. The electrical
size of the object cylinder is k0a = 20, the measurement cylinder radius is b = 2.0a
and the background parameters are ε = 3− i0.1.

cylinder corresponding to k0a ∈ {5, 20}, three radii b of the measurement cylinder
b ∈ {1.1a, 1.5a, 2.0a} and four di�erent loss levels corresponding to the background
parameters ε = ε′− iε′′ where ε′ = 3 and ε′′ ∈ {0, 0.1, 0.3, 1} In Figure 2�5 described
below, the background parameters are ε = 3− i0.1. In order to get a fair comparison
of the di�erent measurement conditions (distance, frequency and loss), we employ
the same signal-to-noise ratio SNR = 0 dB in all examples below.

Figure 2 and 3 illustrate the external and internal Greens functions at a calcu-
lation grid consisting of Nρ×Nφ = 72× 432 = 31104 grid points corresponding to a
resolution parameter r∆ = 0.11 inside the cylinder. The electrical size of the object
cylinder is k0a = 20 and the radius of the measurement cylinder is b = 2.0a. Wave
scattering phenomena such as di�raction, interference patterns etc., are clearly vis-
ible. Note, however, that the apparent distortion close to the origin is due to the
discretization in a case where the pixels become extremely thin. In Figure 4 is il-
lustrated the corresponding Cramér-Rao bound (3.14) for pixels inside the object
cylinder with the resolution parameter r∆ = 0.33. Figure 4 also illustrates the
geometry of the circularly symmetrical pixels having equal area and varying radial
dimension. Obviously, it is much harder to estimate pixels in the interior of the
object in comparison to the outer boundary, particularly in the case where there are
losses. In order to get good estimation performance, wave energy must be allowed to
propagate from the transmitter to the pixel as well as from the pixel to the receiver
without excessive loss.

Figure 5 displays the rapid decay of the Fourier coe�cients G̃m(b, ρ′, 0) when
the object cylinder electrical size is k0a = 20, measurement cylinder radius b ∈
{1.1a, 2.0a} and source positions at k0ρ

′ ∈ {1.6, 10.1, 19.9} (center, intermediate,
surface). In the calculation of (3.14), we have employed as many Fourier coe�cients
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Figure 4: Cramér-Rao bound for pixels with resolution parameter r∆ = 0.33. The
electrical size of the object cylinder is k0a = 20, the measurement cylinder radius is
b = 2.0a and the background parameters are ε = 3− i0.1.

that we could retrieve with numerical stability. Figure 5 also illustrates how the
higher order modes become active (and hence increase the information content) as
the measurement cylinder is getting smaller.

Figure 6 shows the Cramér-Rao bound for pixels at di�erent positions k0ρ and
resolution parameters r∆. The electrical size of the object cylinder is k0a = 20,
the measurement cylinder radius is b = 2.0a and the background parameters are
ε = 3 − i0.3. In this case, we can see that the resolution parameter r∆ = 0.33 is
clearly below the resolution limit due to the excessive Cramér-Rao bound implying
poor estimation performance. Note also that the radial variation in the Cramér-Rao
bound diminishes as the resolution parameter r∆ is increased above the resolution
limit.

Figure 7 shows the Cramér-Rao bound for pixels at di�erent positions k0ρ, res-
olution parameters r∆ and measurement cylinder radius b ∈ {1.1a, 1.5a, 2.0a}. The
electrical size of the object cylinder is k0a = 20 and the background parameters are
ε = 3 − i0.3. The �gure clearly illustrates the near-�eld e�ect, i.e., a signi�cant
improvement in the estimation performance for pixels close to the circular object
boundary when the radius of the measurement cylinder is decreased.

Figure 8 shows the Cramér-Rao bound for pixels at di�erent positions k0ρ, res-
olution parameters r∆ and background parameters ε = ε′ − iε′′ where ε′ = 3 and
ε′′ ∈ {0, 0.1, 0.3}. The electrical size of the object cylinder is k0a = 20 and the mea-
surement cylinder radius is b = 1.1a. This �gure clearly illustrates the high losses
in estimation performance that is associated with high dielectric losses ε′′.

Figure 9 shows the Cramér-Rao bound ratio CRB(b)/CRB(2.0a) relative to b =
2.0a for pixels at di�erent positions k0ρ, resolution parameters r∆ ∈ {0.44, 0.50, 0.67}
and measurement cylinder radius b ∈ {1.1a, 1.5a}. The electrical size of the object
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Figure 5: Fourier coe�cients G̃m(b, ρ′, 0) for source positions at k0ρ
′ ∈

{1.6, 10.1, 19.9}. The electrical size of the object cylinder is k0a = 20, the mea-
surement cylinder radius is b = 2.0a (solid line) and b = 1.1a (dashed line) and the
background parameters are ε = 3− i0.1.

cylinder is k0a = 20 and the background parameters are ε = 3 − i0.3. This �gure
clearly illustrates the near-�eld e�ect, i.e., the relatively high gain in estimation
performance that can be achieved when the measurement cylinder is close to the
object. This e�ect is relatively independent of the resolution parameter r∆.

Figure 10 shows the Cramér-Rao bound ratio CRB(ε)/CRB(3) relative to ε = 3
(lossless case) for pixels at di�erent positions k0ρ, resolution parameters r∆ ∈
{0.44, 0.50, 0.67} and background parameters ε = ε′ − iε′′ where ε′ = 3 and ε′′ ∈
{0.1, 0.3, 1}. The electrical size of the object cylinder is k0a = 20 and the measure-
ment cylinder radius is b = 1.1a. This �gure clearly illustrates the high losses in
estimation performance that is associated with high dielectric losses ε′′. This e�ect
is relatively independent of the resolution parameter r∆.

Figure 11 shows the maximum Cramér-Rao bound (3.15) for pixels with di�erent
resolution parameters r∆. The electrical size of the object cylinder is k0a ∈ {5, 20}
and the radius of the measurement cylinder is b ∈ {1.1a, 1.5a, 2.0a}. The background
parameters are ε = 3− i0.1. In this example, we can see that the resolution limit in
terms of the resolution parameter r∆ is between 0.3 and 0.5 wavelengths, and that
it is smaller when the electrical size of the object is smaller. This e�ect is relatively
independent of the measurement distance b.

Figure 12 shows the maximum Cramér-Rao bound (3.15) for pixels with di�erent
resolution parameters r∆. The electrical size of the object cylinder is k0a ∈ {5, 20}
and the background parameters are ε = ε′− iε′′ where ε′ = 3 and ε′′ ∈ {0, 0.1, 0.3, 1}.
The radius of the measurement cylinder is b = 1.1a. In this example, we can see
again that the resolution limit in terms of the resolution parameter r∆ is between
0.3 and 0.5 wavelengths, and that it is smaller when the electrical size of the object
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Figure 6: Cramér-Rao bound
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for pixels at di�erent positions k0ρ and reso-

lution parameters r∆. The electrical size of the object cylinder is k0a = 20, the mea-
surement cylinder radius is b = 2.0a and the background parameters are ε = 3− i0.3.

is smaller. The e�ect is relatively independent of the loss parameter ε′′. However,
the �knee� determining the resolution limit tends to be less pronounced as the losses
increase.

Finally, we conclude with an example where the losses are �xed and the real
part of the relative permittivity is varied. Figure 13 shows the Cramér-Rao bound
for pixels at di�erent positions k0ρ and background parameters ε = ε′ − iε′′ where
ε′′ = 0.1 and ε′ ∈ {1, 1.5, 2, 2.5, 3}. The electrical size of the object cylinder is
k0a = 20 and the measurement cylinder radius is b = 1.1a. Note that the estimation
performance is rapidly increasing (CRB decreasing) when ε′ is increasing and k0ρ
is small. This can be understood from a resolution limit perspective where the
sequence ε′ ∈ {1, 1.5, 2, 2.5, 3} corresponds to the increasing resolution parameters
r∆ ∈ {0.29, 0.35, 0.41, 0.46, 0.5}, cf., also Figure 6. Figure 14 shows the maximum
Cramér-Rao bound (3.15) for pixels with di�erent resolution parameters r∆. The
electrical size of the object cylinder is k0a ∈ {5, 20} and the background parameters
are ε = ε′−iε′′ where ε′′ = 0.1 and ε′ ∈ {1, 1.5, 2, 2.5}. The radius of the measurement
cylinder is b = 1.1a. Note that the estimation performance as a function of the
(wavelength normalized) resolution parameter r∆, does not depend signi�cantly on
ε′. However, for k0a = 5, we can see very clearly that the e�ect of increasing ε′ is
very similar to the e�ect of increasing the frequency (decreasing the wavelength).

5 Summary and conclusions

We have presented a general framework for sensitivity analysis which is useful for
establishing some important physical performance bounds in microwave tomogra-
phy. As a canonical problem, the two-dimensional electromagnetic inverse problem
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for pixels at di�erent positions k0ρ, resolution

parameters r∆ and measurement cylinder radius b. Here, b = 1.1a (solid line),
b = 1.5a (dashed line) and b = 2.0a (dashdotted line). The electrical size of the
object cylinder is k0a = 20 and the background parameters are ε = 3− i0.3.

of imaging a cylinder with isotropic dielectric losses is considered. A �xed resolu-
tion is analyzed by introducing a �nite basis, i.e., pixels representing the material
properties. The corresponding Cramér-Rao bound for estimating the pixel values is
computed based on a calculation of the sensitivity �eld which is obtained by di�er-
entiating the observed �eld with respect to the estimated parameter. An optimum
trade-o� between the accuracy and the resolution is de�ned based on the Cramér-
Rao bound, and its application to asses a practical resolution limit in the inverse
problem is discussed. Hence, when the resolution of an imaging system is improved,
the corresponding estimation accuracy in a given measurement set-up is impaired in
the sense that the Cramér-Rao bound is increased. Numerical examples are included
to illustrate how the Fisher information analysis can be used to investigate the sig-
ni�cance of measurement distance, operating frequency and losses in the canonical
tomography set-up. Hence, the Cramér-Rao bound can be used to quantitatively
characterize the gain in estimation performance that is associated with a decrease
in the measurement distance (the near-�eld e�ect) as well as a decrease in the di-
electric losses, all at a �xed signal-to-noise ratio. Furthermore, the results show
that a decrease in the operating frequency may in fact improve the resolution limit
normalized to the wavelength. Finally, in an example where the losses are �xed and
the real part of the relative permittivity is increased, it is illustrated how the corre-
sponding increase in estimation performance can bee understood from a resolution
limit perspective.
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Appendix A Greens function for the homogenous

cylinder

The Greens function for the homogenous and circularly symmetrical background
satis�es the scalar wave equation LG(ρ,ρ′) = −δ(ρ− ρ′), or{

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ k2

}
G(ρ, φ, ρ′, φ′) = −δ(ρ− ρ′)

ρ
δ(φ− φ′) (A.1)

together with appropriate boundary conditions. By introducing the Fourier series
expansion

G(ρ, φ, ρ′, φ′) =
∞∑

m=−∞

G̃m(ρ, ρ′, φ′)eimφ (A.2)

the wave equation (A.1) transforms to{
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+ k2 − m2

ρ2

}
G̃m(ρ, ρ′, φ′) = −δ(ρ− ρ′)

ρ

e−imφ′

2π
. (A.3)
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pixels at di�erent positions k0ρ, resolution parameters r∆ and measurement cylinder
radius b. Here, b = 1.1a and b = 1.5a, respectively, and the resolution parameter
is r∆ = 0.44 (solid line), r∆ = 0.50 (dashed line) and r∆ = 0.67 (dashdotted line).
The electrical size of the object cylinder is k0a = 20 and the background parameters
are ε = 3− i0.3.

Assume that the source is within the cylinder, i.e., ρ′ < a. The solution to (A.3)
is then given by

G̃m(ρ, ρ′, φ′) =


AmJm(kρ) 0 < ρ < ρ′

BmH
(1)
m (kρ) + CmH

(2)
m (kρ) ρ′ < ρ < a

DmH
(2)
m (k0ρ) ρ > a

(A.4)

where Jm, H
(1)
m and H

(2)
m are the Bessel function and the Hankel functions of the �rst

and second kind, respectively, all of order m. The appropriate boundary conditions
related to the tangential �elds E‖ and H‖ are given by

G̃m(ρ′+, ρ
′, φ′)− G̃m(ρ′−, ρ

′, φ′) = 0
∂
∂ρ
G̃m(ρ′+, ρ

′, φ′)− ∂
∂ρ
G̃m(ρ′−, ρ

′, φ′) = − 1
ρ′

e−imφ′

2π

G̃m(a+, ρ
′, φ′)− G̃m(a−, ρ

′, φ′) = 0
∂
∂ρ
G̃m(a+, ρ

′, φ′)− ∂
∂ρ
G̃m(a−, ρ

′, φ′) = 0

(A.5)

where the arguments ρ+ and ρ− denotes a limit to ρ from the right and left, respec-
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tively. The boundary conditions (A.5) yield the linear system of equations
−Jm(kρ′) H

(1)
m (kρ′) H

(2)
m (kρ′) 0

−kJ′m(kρ′) kH
(1)′
m (kρ′) kH

(2)′
m (kρ′) 0

0 −H
(1)
m (ka) −H

(2)
m (ka) H

(2)
m (k0a)

0 −kH(1)′
m (ka) −kH(2)′

m (ka) k0H
(2)′
m (k0a)



×


Am
Bm

Cm
Dm

 =


0

− 1
ρ′

e−imφ′

2π

0
0

 (A.6)

which is solved for the constants Am, Bm, Cm and Dm de�ned in (A.4).
Assume now that the source is outside the cylinder, i.e., ρ′ > a. The solution to

(A.3) is then given by

G̃m(ρ, ρ′, φ′) =


AmJm(kρ) 0 < ρ < a

BmH
(1)
m (k0ρ) + CmH

(2)
m (k0ρ) a < ρ < ρ′

DmH
(2)
m (k0ρ) ρ > ρ′.

(A.7)

The appropriate boundary conditions related to the tangential �elds E‖ and H‖ are
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now given by 
G̃m(a+, ρ

′, φ′)− G̃m(a−, ρ
′, φ′) = 0

∂
∂ρ
G̃m(a+, ρ

′, φ′)− ∂
∂ρ
G̃m(a−, ρ

′, φ′) = 0

G̃m(ρ′+, ρ
′, φ′)− G̃m(ρ′−, ρ

′, φ′) = 0
∂
∂ρ
G̃m(ρ′+, ρ

′, φ′)− ∂
∂ρ
G̃m(ρ′−, ρ

′, φ′) = − 1
ρ′

e−imφ′

2π
.

(A.8)

The boundary conditions (A.8) yield the linear system of equations
−Jm(ka) H

(1)
m (k0a) H

(2)
m (k0a) 0

−kJ′m(ka) k0H
(1)′
m (k0a) k0H

(2)′
m (k0a) 0

0 −H
(1)
m (k0ρ

′) −H
(2)
m (k0ρ

′) H
(2)
m (k0ρ

′)

0 −k0H
(1)′
m (k0ρ

′) −k0H
(2)′
m (k0ρ

′) k0H
(2)′
m (k0ρ

′)



×


Am
Bm

Cm
Dm

 =


0
0
0

− 1
ρ′

e−imφ′

2π

 (A.9)

which is solved for the constants Am, Bm, Cm and Dm de�ned in (A.7). Note that

the circular symmetry implies that G̃m(ρ, ρ′, φ′) = G̃m(ρ, ρ′, 0)e−imφ′ for both cases
above.
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