
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Fundamental limitations for polarization estimation with applications in array signal
processing

Nordebo, Sven; Gustafsson, Mats; Lundbäck, Jonas

2005

Link to publication

Citation for published version (APA):
Nordebo, S., Gustafsson, M., & Lundbäck, J. (2005). Fundamental limitations for polarization estimation with
applications in array signal processing. (Technical Report LUTEDX/(TEAT-7137)/1-14/(2005); Vol. TEAT-7137).
[Publisher information missing].

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/0f5912aa-5117-4b22-a82b-b879a19c2a10


Department of Electroscience
Electromagnetic Theory
Lund Institute of Technology
Sweden

CODEN:LUTEDX/(TEAT-7137)/1-14/(2005)

Fundamental Limitations for
Polarization Estimation with
Applications in Array Signal
Processing

Sven Nordebo, Mats Gustafsson, and Jonas Lundbäck
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Abstract

In this paper we demonstrate that the combination of statistical signal process-
ing, electromagnetic theory and antenna theory yields simple and very useful
tools for analyzing fundamental physical limitations associated with polariza-
tion and/or DOA estimation using arbitrary multiport antennas. By using
spherical vector modes as a generic model for the scattering, we show how
the corresponding Cramer-Rao lower bounds can be calculated for any real
antenna system. The spherical vector modes and their associated equivalent
circuits and Q factor approximations are used together with the broadband
Fano theory as a general framework for analyzing electrically small multiport
antennas. Finally, we employ a principal parameter analysis based on the SVD
of the Fisher information matrix to evaluate the performance of an ideal mul-
timode antenna processor with respect to its ability to estimate the state of
polarization of a partially polarized plane wave coming from a given direction.

1 Introduction

The Direction of Arrival (DOA) estimation using antenna arrays has been the topic
for research in array and statistical signal processing over several decades and com-
prises now well developed modern techniques such as maximum likelihood and sub-
space methods, see e.g. [19, 27, 31] and the references therein. Recently, there has
been an increased interest in incorporating properties of electromagnetic wave propa-
gation with the statistical signal estimation techniques used for sensor array process-
ing and there are several papers dealing with direction �nding and polarization esti-
mation using electromagnetic vector sensors and diversely polarized antenna arrays,
tripole arrays, etc., see e.g. [11�14, 20, 21, 28, 32�35].

The classical theory of radiation Q uses spherical vector modes and equivalent
circuits to analyze the properties of a hypothetical antenna inside a sphere, see e.g.
[2, 3, 6, 7, 9, 10, 22, 29]. An antenna with a high Q factor has electromagnetic �elds
with large amounts of stored energy around it, and hence, typically low bandwidth
and high losses [9]. From a radiation point of view, the high-order vector modes
give the high-resolution aspects of the radiation pattern. As is well known, any
attempt to accomplish supergain will result in high currents and near �elds, thereby
setting a practical limit to the gain available from an antenna of a given size, see
also [17]. The classical theory of broadband matching shows how much power that
can be transmitted between a transmission line and a given load [5], i.e. the antenna.
Hence, by considering an antenna of a given size and bandwidth, together with the
Q factors which are computable for each vector mode [3], the broadband Fano-
theory [5] can be used to estimate the maximum useful multipole order, and to
calculate an upper bound for the transmission coe�cient of any particular vector
mode, see also [8, 25, 26].

In this paper we show how the Cramer-Rao lower bounds for DOA and/or polar-
ization estimation can be derived for arbitrary multiport antennas by using spherical
vector modes as a generic model for the scattering. In particular, by using the clas-
sical theory of radiation Q together with the broadband Fano theory, we evaluate
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the performance of an ideal multimode antenna processor with respect to its ability
to estimate the state of polarization of a partially polarized plane wave coming from
a given direction.

2 Signal Model for Receiving Antennas

2.1 Spherical Vector Waves, Radiation Q and Broadband

Fano Theory

Assume that all sources are contained inside a sphere of radius r = a, and let k = ω/c
denote the wave number, ω = 2πf the angular frequency, eiωt the time-convention,
and c and η the speed of light and the wave impedance of free space, respectively.
The transmitted electric and magnetic �elds, E(r) and H(r), can then be expanded
in outgoing spherical vector waves uτml(kr) for r > a as [1, 15, 24]

E(r) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτml(kr) (2.1)

H(r) = − 1

iη

∞∑
l=1

l∑
m=−l

2∑
τ=1

fτmluτ̄ml(kr) (2.2)

where fτml are the expansion coe�cients or multipole moments and τ̄ denotes the
complementary index. Here τ = 1 (τ̄ = 2) corresponds to a transversal electric (TE)
wave and τ = 2 (τ̄ = 1) corresponds to a transversal magnetic (TM) wave. The
other indices are l = 1, 2, . . . ,∞ and m = −l . . . , l where l denotes the order of that
mode. It can be shown that in the far �eld when r →∞, the electric �eld is given
by

E(r) =
e−ikr

kr
F (r̂) (2.3)

where F (r̂) is the far �eld amplitude given by

F (r̂) =
∞∑
l=1

l∑
m=−l

2∑
τ=1

il+2−τfτmlAτml(r̂) (2.4)

and where Aτml(r̂) are the spherical vector harmonics [1, 15, 24]. Furthermore, it can
also be shown that the total power Ps transmitted by the antenna can be expressed
in terms of the expansion coe�cients as

Ps =
1

2ηk2

∞∑
l=1

l∑
m=−l

2∑
τ=1

|fτml|2. (2.5)

For further details about the spherical vector mode representation we refer to the
appendix and [1, 15, 24].

Next, we assume that the antenna(array) can be represented by a multiport
model where a �nite number of modes (multipoles) M is employed, see Fig. 1. Here,
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Figure 1: Multiport model of an arbitrary antenna inserted inside a sphere of radius
r = a. The depicted series RCL resonance circuit is a Q factor approximation of the
exact equivalent circuit of order l.

x+
i and x−i denote the incident and re�ected voltages at the antenna waveguide

connections for i = 1, . . . , N where N is the number of antenna ports. These voltages

are normalized so that the power delivered to a particular antenna port is
|x+

i |
2

2Zg

and the corresponding re�ected power is
|x−i |

2

2Zg
where Zg is the impedance of the

propagating wave guide mode. Each antenna port is assumed to be connected to a
lossless matching network as depicted in Fig. 1. In the left end of Fig. 1, we let the
equivalent voltage fα

k
represent the propagated wave amplitude where fα denotes

the expansion coe�cients for the spherical vector waves as in (2.1) and (2.5). Here,
the multi-index α = (τ, m, l) is chosen to simplify the notation.

On transmission from the input terminals with incident voltage waves x+
i , the

transmitted wave �eld fα is given by[
fα

k

]
= Sx+

√
η

Zg

(2.6)

where S = [Sαi] is the properly scaled transmission matrix which maps the vector of
incident voltages x+ = [x+

i ] to propagated multipoles fα. The re�ected voltages are
given by x− = Γx+ where Γ is the re�ection matrix. Conservation of total power
yields the relationship

ΓHΓ + SHS ≤ I (2.7)

where equality holds for lossless antennas. Hence, we have for the singular values of
these scattering matrices σ(S) ≤ 1 and σ(Γ) ≤ 1.

Now, considering one single incident wave x+
i , the antenna reciprocity theorem [4]

yields

x−i x+
i = −i

λ2

2π

Zg

η
F (k̂0) ·E0 (2.8)

where E0 is the complex vector amplitude of an incoming plane wave E0e
−ikk̂0·r

from direction k̂0 and x−i the corresponding received signal. Further, F (r̂) is the far
�eld amplitude corresponding to the transmitted signal x+

i . Hence, by using (2.4)
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the received vector signal is obtained from the reciprocity theorem (2.8) as

x− =

√
Zg

η

2π

k
TAE (2.9)

where T = ST = [Siα], A is an M × 2 matrix where each row corresponds to the
spherical components of the spherical vector harmonics il+1−τAα(k̂0), and E is an
2×1 vector containing the corresponding signal components of the electric �eld E0.
Observe that σ(T) ≤ 1.

Observe that the signal model given in (2.9) is in principle valid for any multiport
antenna system. Given that we can calculate the far�eld F (r̂) from the incident
voltage waves x−, the scattering matrix T = ST is obtained by calculating the
multipoles fα = iτ−l−2

∫
A∗

τml(r̂) · F (r̂) dΩ by integrating over the unit sphere and
by exploiting the orthonormality of the spherical vector harmonics.

As was originally described by Chu [2], an arbitrary antenna inside a sphere
of radius r = a can be modeled using a coupling network connecting independent
equivalent circuits representing each spherical mode, see Fig. 1. The propagated
power for each mode is represented by the power loss over the terminating resistance
η and the wave impedance as seen by the spherical mode at radius a is equal to the
input impedance of the equivalent circuit for all frequencies.

In theory, the equivalent circuits for the multipoles can be used to derive a Fano
limit for any TE or TM mode. However, instead of using the analytic expressions of
the impedance it is common to use the Q factor to get an estimate of the bandwidth
[2, 3, 6, 7, 9, 10, 22, 29]. At and around the resonance frequency, ω0, the antenna is
modeled as a series RCL circuit as depicted in Fig. 1, and the impedance of the
antenna is only matched to the feeding network at the resonance frequency. By
considering an antenna of a given electrical size ka, fractional bandwidth B, and the
Q factors which are computable for each mode order l [3], the Fano-theory [5] can
be used to calculate the following upper bound for the transmission coe�cient tl for
a particular mode, cf. e.g. [5, 8, 25, 26]

|tl| ≤
√

1− e
− 2π

Ql

1−B2/4
B . (2.10)

For all practical purposes the maximum useful order lmax is �nite and can be
coarsely estimated from (2.10) as follows. Suppose e.g. that we are only interested in
the modes (τ, m, l) contributing to the far �eld with power Pτml ≤ ε. The maximum
useful order lmax then satis�es

Pτml =
1

2ηk2
|fτml|2 ≤ |tl|2Pin ≤ ε (2.11)

where Pin is the (appropriately scaled) input power.
Although any real multiport antenna may be analyzed using the signal model

in (2.9), it is particulary interesting to investigate the fundamental physical limi-
tations associated with a hypothetical ideal mode-coupled antenna for which there
is no coupling between the antenna input terminals and the transmission matrix T
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contains the optimum transmission coe�cients (2.10) on its main diagonal. Such
an idealized antenna, even though it is not physically realizable, will constitute an
important Benchmark for any real antenna system.

2.2 The Cramer-Rao Lower Bound for Polarization Estima-

tion

Now, considering an array of J similar antennas modeled as in (2.9) and positioned
at locations rj, a complex baseband model [30] for the received signal is given by

x = VE + n (2.12)

where

V =

√
Zg

η

2π

k
a⊗TA (2.13)

and where a is the J × 1 steering vector of complex phases e−ikk̂0·rj and ⊗ denotes
the Kronecker product, cf. [30]. Further, the sensor noise n is modeled as zero
mean white complex Gaussian noise [23] with variance σ2

n and covariance matrix
σ2

nI. We assume a narrowband signal model where k corresponds to the carrier
frequency ω0 and the fractional bandwidth B = ∆ω

ω0
is reasonable low. Here ∆ω

denotes the absolute bandwidth and σ2
n = N0ω0B where N0 is the spectral density

of the noise process. We consider a situation where the received electric �eld is
partially polarized and the electric �eld E can be modeled as a zero mean complex
Gaussian random process with covariance matrix

R = E
{
EEH

}
=

1

2

(
s0 + s1 s2 + is3

s2 − is3 s0 − s1

)
(2.14)

where E denotes the expectation operator and s0, s1, s2, s3 denotes the Stoke's para-
meters [10]. We are interested in the estimation accuracy of the Stoke's polarization
parameters1 as well as the noise variance, which we write as a vector parameter
ξ = [s0 s1 s2 s3 σ2

n]
T
. For our complex Gaussian case, the Fisher information ma-

trix I(ξ) is given by [18]

[I(ξ)]ij = tr

{
C−1∂C

∂ξi

C−1∂C

∂ξj

}
(2.15)

where C is the covariance matrix for the measurements, given by

C = E
{
xxH

}
= VRVH + σ2

nI. (2.16)

Now, it is readily veri�ed that the expression (2.15) is invariant to an arbitrary phase
scaling eiϕi of the elements xi of x in (2.12). Hence, with the ideal mode-coupled
antenna, the Cramer Rao lower bound for estimating ξ is explicitely computable via
the expressions (2.13) through (2.16) with the phase scaling eiϕi chosen such that

the optimum tα in (2.10) are real, that is tα =

√
1− e

− 2π
Ql

1−B2/4
B .

1If we are interested also in the DOA parameters θ and φ, the model is straightforwardly

extended with ξ =
[
θ φ s0 s1 s2 s3 σ2

n

]T
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3 Array Processing for Polarization Estimation

We introduce the concept of a probing multimode array with the purpose of es-
timating the state of polarization when the direction of arrival k̂0 is given. Let
wi = C−1

i a/aHC−1
i a be the weights of N independent Capon beamformers [30]

where a is the steering vector corresponding to the given (probing) direction k̂0,
and Ci = E{xix

H
i } where xi is the array input vector corresponding to a particular

antenna mode i in (2.12). Here, xi = ViE+ni where Vi =
√

Zg

η
2π
k
a⊗ tiA where ti

and ni are the ith rows of T and n, respectively.
It is readily seen that the signal model for the processed signals y =

{
wH

i xi

}
becomes

y = V0E + ny (3.1)

where V0 =
√

Zg

η
2π
k
TA and ny =

{
wH

i ni

}
, and where the covariance matrix is given

by
Cy = V0RVH

0 + σ2
nG (3.2)

where G is a diagonal matrix with diagonal entries wH
i wi. Hence, it is assumed that

the processor is able to reject a limited number (less then J) of interferers coming
from discrete directions k̂j, and the remaining noise is sensor noise colored by the
processor weights.

The Maximum Likelihood (ML) estimator for the situation above can be derived
by extending the results in e.g. [16, 30] which are given for the case when the noise
is white and G = I. It is assumed here that the matrix V = V0 has dimension
n ×m with n > m. Further, let R̂y be the sample covariance matrix based on K
independent measurements yk

R̂y =
1

K

K∑
k=1

yky
H
k . (3.3)

By extending the derivation in [30] to include a general positively de�nite coloration
matrix G as above, the ML estimator for (R, σ2

n) can be found as

σ̂2
n =

1

n−m
trG−1P⊥

V R̂y (3.4)

R̂ = V+
(
R̂y − σ̂2

nG
)

(V+)H (3.5)

where

P⊥
V = I−V

(
VHG−1V

)−1
VHG−1 (3.6)

V+ =
(
VHG−1V

)−1
VHG−1 (3.7)

are the orthogonal projector onto {R{V}}⊥ and the pseudoinverse of V, respec-
tively, where the weighted norm based on G−1 is used.
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Figure 2: Optimum transmission coe�cient |tl|2 as a function of electrical size ka
for the �rst 3 mode orders l = 1, 2, 3. Fractional bandwidth is B = 1, 5, 10 %.

4 Numerical examples

In Fig. 2 is shown the optimum transmission coe�cients |tl|2 from (2.10) with Q
factors corresponding to the �rst 3 mode orders l = 1, 2, 3, cf. [3], as the electrical
size ka as well as the fractional bandwidth B is varied. The �gure illustrates the
di�culty to match higher order modes, as well as the fact that all modes will ulti-
mately become useful (useless) as the electrical size increases (decreases), or as the
bandwidth decreases (increases).

Consider now a single, ideal tripole antenna with a = 1 and

A =

√
3

8π

 cos θ cos φ − sin φ
cos θ sin φ cos φ
− sin θ 0

 (4.1)

corresponding to the three fundamental TM modes of lowest order l = 1, or equiva-
lently, the three ideal electrical dipoles in the cartesian base vector directions x̂, ŷ, ẑ.

In Fig. 3 is shown the Cramer-Rao bound for the polarization parameters s0,
s1, s2 and s3 versus electrical size ka. The diagonal elements of I−1(ξ) are based
on (2.15) with the optimum transmission coe�cients tα calculated as in (2.10) with
B = 5 % and Q = 1

ka
+ 1

(ka)3
, cf. [3]. The Stoke's parameters are parameterized as

s1 = Ps0 cos(2α) cos(2β)
s2 = Ps0 cos(2α) sin(2β)
s3 = Ps0 sin(2α)

(4.2)

where 0 ≤ P ≤ 1 is the degree of polarization. The signal-to-noise ratio is de�ned
as SNR = s0

σ2
n

Zg

η
(2π

k
)2 and was chosen to 50 dB. In this example we have chosen a
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Figure 3: Cramer-Rao bound for the polarization parameters s0, s1, s2 and s3

versus electrical size ka. Circular polarization with s0 = 1, s1 = 0, s2 = 0 and
s3 = 1. The solid, dashed-dotted, dashed and dotted lines correspond to P = 0, 0.9,
0.99 and 1, respectively. SNR is 50 dB and B = 5%.

situation with circular polarization with s0 = 1, s1 = 0, s2 = 0 and s3 = 1. The
solid, dashed-dotted, dashed and dotted lines correspond to P = 0, 0.9, 0.99 and 1,
respectively. The result in Fig. 3 is invariant to the directional parameters θ and φ
but depends strongly on polarization. In particular, only s1 and s2 can be e�ciently
estimated in this example, and the performance improves drastically as the degree
of polarization P approaches unity.

Although the result above should be expected, it can be better understood by
performing a principal parameter analysis. We de�ne the principal parameters η to
be the linear transformation

η = UHξ (4.3)

where U are the left singular vectors from the Singular Value Decomposition (SVD)
of the Fisher information, I(ξ) = UΣVH. The principal parameters ηi are uncou-
pled, and their corresponding Cramer-Rao bounds are the reciprocal of the singular
values σ−1

i .
Fig. 4 a) shows the Cramer-Rao bounds σ−1

i for the principal parameters ηi,
as well as − log det I plotted as a function of the degree of polarization P . Fig. 4
b) shows the corresponding results for the original parameters ξi. The parameter
situation is the same as above, except now SNR is 30 dB and ka = 1.

Note that the performance results for the principal parameters in Fig. 4 a) are
invariant not only to the directional parameters θ and φ, but are also invariant
to the polarization parameters α and β. In other words, the performance of the
principal parameters ηi depends only on the degree of polarization P , whereas the
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Figure 4: a) Cramer-Rao bound for the principal parameters η1, η2, η3, η4, η5 versus
degree of polarization P . b) Cramer-Rao bound for the polarization parameters
s0, s1, s2, s3 and σ2

n versus degree of polarization P . Circular polarization with s0 =
1, s1 = 0, s2 = 0 and s3 = 1. SNR is 30 dB, ka = 1 and B = 5%.

performance of the original parameters ξi depends also on the actual situation with
polarization parameters α and β.

In this example situation with circular polarization, it is concluded that the
relevant parameters to measure are s1 and s2 whereas s0 and s3 cannot be measured
as e�ciently. By studying the left singular vectors in U which are plotted in Fig.
5 for P = 1, we can identify the principal parameters as linear combinations of
the original parameters. The �best� parameter η1 corresponds directly to the noise
parameter σ2

n which is thus a relevant parameter to measure. Further, η2 ∼ s3 − s0

and η5 ∼ s3 + s0 are �good� and �poor� parameters to estimate, respectively. It is
furthermore �appropriate� to estimate s1 and s2 since (s1, s2) belongs to the subspace
spanned by the singular vectors corresponding to the two principal parameters η3

and η4 sharing the same singular value (and hence the same Cramer-Rao bound).
It should also be noted that the SVD produces here a decomposition which has a
direct physical signi�cance. Thus, η2 ∼ s3 − s0 and η5 ∼ s3 + s0 correspond also
to the power in the left and right circularly polarized components, respectively, see
e.g. [24]. Hence, given that the wave is right circularly polarized (as in our example),
the (absolute) performance of estimating the power of a weak left circularly polarized
signal component is much better than for estimating the power of the dominating
right circularly polarized signal component.

In conclusion, the study shows that the estimation performance of the tripole
antenna as measured by the functional log det I(ξ) is invariant to the directional
parameters θ and φ as well as to the polarization parameters α and β. However,
the functional log det I(ξ) depends strongly on the degree of polarization P , as well



10

−1

0

1

�������
�
����

��	
 �

�


 �
��
�

Projection onto the complex plane

Figure 5: Visualization of the complex left singular vectors in U showing the linear
dependence between the original (s0, s1, s2, s3, σ

2
n) and principal (η1, η2, η3, η4, η5)

parameters. Circular polarization with s0 = 1, s1 = 0, s2 = 0, s3 = 1 and P = 1.
SNR is 30 dB, ka = 1 and B = 5%.

as on the electrical size ka of the antenna and the bandwidth B of the system. The
principal parameter analysis is a useful technique to investigate the signi�cance of
di�erent parameters.

5 Summary

Fundamental physical limitations associated with polarization and/or DOA estima-
tion using antennas or antenna arrays are analyzed. By using spherical vector modes
as a generic model for the scattering, we show how the corresponding Cramer-Rao
lower bounds can be calculated for any real antenna system. The spherical vec-
tor modes and their associated equivalent circuits and Q factor approximations are
used together with the broadband Fano theory as a general framework for analyzing
electrically small multiport antennas. The concept of a probing multimode array is
introduced which is equivalent to one single multimode antenna without interferers
but with colored noise, and the explicit form of the corresponding ML estimator for
the state of polarization is given. A principal parameter analysis using the SVD
of the Fisher information matrix is employed to evaluate the performance of the
ideal multimode antenna processor with respect to its ability to estimate the state
of polarization of a partially polarized plane wave coming from a given direction.
Our study shows that the estimation performance of the ideal multimode antenna
is invariant to the directional parameters as well as to the polarization parameters
for a given degree of polarization. However, the estimation performance depends
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strongly on the degree of polarization, as well as on the electrical size of the antenna
and the bandwidth of the system.

Appendix A Spherical Vector Waves

The outgoing spherical vector waves are given by

u1ml(kr) = h
(2)
l (kr)A1ml(r̂)

u2ml(kr) =
1

k
∇× u1ml(kr) =

(krh
(2)
l (kr))′

kr
A2ml(r̂) +

√
l(l + 1)

h
(2)
l (kr)

kr
A3ml(r̂)

(A.1)

where Aτml(r̂) are the spherical vector harmonics and h
(2)
l (x) the spherical Hankel

functions of the second kind, see [1, 15, 24]. The spherical vector harmonics Aτml(r̂)
are given by

A1ml(r̂) =
1√

l(l + 1)
∇× (rYml(r̂))

A2ml(r̂) = r̂ ×A1ml(r̂)
A3ml(r̂) = r̂Yml(r̂)

(A.2)

where Yml(r̂) are the scalar spherical harmonics given by

Yml(θ, φ) = (−1)m

√
2l + 1

4π

√
(l −m)!

(l + m)!
Pm

l (cos θ)eimφ (A.3)

and where Pm
l (x) are the associated Legendre functions [1]. For negative m-indices,

the scalar waves satis�es the symmetry Y−m,l(r̂) = (−1)mY∗
ml(r̂), and hence

Aτ,−m,l(r̂) = (−1)mA∗
τml(r̂). (A.4)
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