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Correspondence 
On the Distribution of the Number of Computations 

in Any Finite Number of Subtrees for the 
Stack Algorithm 

ROLF JOHANNESSON AND KAMIL SH. ZIGANGIROV 

Abstract-Multitype branching processes have been employed to de- 
termine the stack algorithm computational distribution for one subtree. 
These results are extended here to the distribution of the number of 
computations in any finite number of subtrees. Starting from the computa- 
tional distribution for K-l subsequent subtrees, a recurrent equation for the 
distribution for K subsequent subtrees is determined. 

I. INTRODUCTION 

It is well known [l]-[3] that the curse of sequential decoding is 
that its behavior is limited by a computational distribution (con- 
ditioned on correct decoding), which is asymptotically Pareto. 
Until now little attention has been paid to the problem of 
determining the computational distribution for a small number of 
computations. In our previously published papers [4], [5] we 
employed multitype branching processes to determine the stack 
algorithm computational distribution for the first incorrect sub- 
tree. The results in [5] were obtained for random tree codes, while 
in [4] we considered the class of binary, rate l/2, complementary 
+ random tree codes, a fictitious entity that is a reasonable 
model for constant convolutional codes that have column dis- 
tance d, = 2. 

In a complementary + random tree code the channel input 
symbols on the transmitted path are all zeros, and the channel 
input symbols on the incorrect branches stemming from nodes on 
the correct path are all ones. For all other branches, each channel 
symbol is chosen independently and according to a specified 
probability distribution. In this work we extend the results in [4] 
and determine the probability distribution for the number of 
computations in any finite number of subsequent subtrees. 

II. PRELIMINARIES 

Let C,, n = 1,2,3;.., denote the number of computations 
made by the sequential decoder in order to decode the n th 
correct node. In Fig. 1 we show a partially explored code tree 
with C, = 4. For a tree of unbounded length the random vari- 
ables C1,C2,C3;.. have the same distribution, but they are 
certainly not independent. 

Let M,, be the cumulative metric for the first n branches of the 
correct path; i.e., 

M,= izk, (1) 
k=l 

where zk is the branch metric for the k th branch. Let D,, 
n = 0, 1,2,. . . , be the difference between the cumulative metric 
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Fig. 1. Part of a complementary + random code tree partially explored by a 
sequential decoder. 

and the smallest succeeding value; i.e., 

where 

The nonnegative random variables D,, all have the same well- 
known distribution [4], [6] since the metrics for the correct path 
stemming from the n th node have the same statistical character 
for all n. 

Finally, let C,” be the total number of computations in the 
n th, (n + 1)th; . ., Nth subtree 

N 
cHN = c c, . 

k=n 

III. RECURRENT EQUATION FOR DETERMINING THE 
DISTRIBUTION OF C,” 

Let F,N(r, i, k) be the conditional distribution for the random 
variable CnN on the condition that D, = i and z, = k; i.e., 

cN(r,i,k)=P[Cz=rJD,=i,z,=k]. (5) 

By dividing the number of computations in the n, n + 1,. . , Nth 
subtrees into two parts, C,, and C,Ni, we have 

r-1 

FnN( r, i, k) = c P[ C, = slDn = i, z, = k] 
s=l 

+2L = r - slD, = i, z, = k]. (6) 

The conditional probability distribution for C,“,i can be ex- 
panded as 

p[cL = r - slD, = i, z, = k] 

= r - sID~+~ =j, z,+ 1= ,D,,=i,z,= 1 4 
.P[ Dn+l =j, z,+~ = /ID, = i, z, = k 
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where the variable I is summed over all branch metric values. 
The random variable Cn” i condit ioned on  D,,+ 1  and  z,+ i is 

independent  of D, and  z,. Furthermore, the random variables 
D n+l and  z,+l condit ioned on  D,, are independent  of z,. Hence 
we obtain the recurrent equat ion for F,N( r, i, k) 

CN(r,i,k) =cccf< s,i,k) -4il(r - s,j,l)g(j,l,i), 
s j I 

(8) 

where n  < N, 

f(s,i,k) =  F’(s,i,k) (9) 
and  

g(j, 1, i) =  P[D,+l =j,z,+l =  !ID, =  i]. (10) 
The conditional probability distribution g(j, I, i) is easily calcu- 
lated as follows: 

g(j,l,i) =  PIDn+l =j, z,+~ = [ID, =  i] 

=  P[ D, =  iJDn+1 =j, z,+l =  ~]f’[D,+, =jl 

.P[Z,,l =  I]/P[ D, =  i], (11) 
where we have used the fact that the random variables Dn+l and  

are statistically independent.  Let us assume that we have the 
k&h metric set { +  1, - 4, - 9}, cf. [4]; then 

1, i=j=O,[=l 

P[D, =  ilD,+1 =j, z,+1 = I] =  1, i=j-120 

P 
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\ 0, elsewhere. 
(12) 

Starting from the conditional probability distribution f(s, i, k), 
which can be  determined by the methods given in [4], we can use 
(8) and  recursively obtain the conditional probability distribution 
el;“( r, i, k) for any n, 0  <  n  < N. Finally, we calculate the prob- 
ability distribution for the number  of computat ions in K 2  1  
subtrees as 

where 

P[CF=r] =~~F~(r,i,k)h(i,k), (13) 
i k 

h(i,k) =  P[D, =  i, z, =  k] =  P[D, =  i]P[z, =  k]. (14) 

IV. DISCUSSIONOFNUMERICALRESULTSAND 
SIMULATIONS 

The problem of resolving ties among the cumulative metrics is 
discussed in detail in [4]. When  there was no  obvious way to 
resolve ties the pessimistic policy “in case of ties extend an  
incorrect node  first” was used to obtain an  upper  bound  on  the 
distribution function for C,, and  the optimistic policy “in case of 
ties extend the correct node  first” was used to obtain a  lower 
bound.  Because of the close agreement  between the simulated 
Ct-curves and  the corresponding lower bounds in [4], we will use 
these lower bounds as our conditional distribution f (s, i, k) in 
(0 

By combining the branching processes methods described in [4] 
and  the recurrent equat ion (8), we evaluate theoretical lower 
bounds on  the distribution function of the random variable Ci”, 
P[Ci’ 2  r] for the case where transmission takes place over a  
binary symmetric channel  (BSC) with crossover probability p  =  
0.045. Since we are only considering rate R = l/2 codes,  this 
crossover probability corresponds to transmission at the compu- 
tational cutoff rate R,. The bounds are evaluated for the Fano 

Fig. 2. Computational distribution functions obtained from simulations and 
branching processes bounds for the metric set ( + 1, -4, - 9}, uiz. the Fano 
metric. 
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Fig. 3. Computational distribution functions obtained from simulations and 
branching processes bounds for the metric set ( + 1, - 5, - 11). 
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Fig. 4. Computational distribution functions obtained from simulations and 

branching processes bounds for the metric set { +l, -3, -7). This set is 
pessimistic for the simulated channel. 

metric set { +l, - 4, - 9} and  for the “unmatched” sets 
{+l,-5,-11) and  {+l,-3,-7). The  bounds are shown in 
Figs. 2-4 together with lower bounds on  the distribution function 
of the random variable C,, P[ C, 2  r] and  simulations of P[ Cl 
2  r], P[C:’ 2  r]; and  P[C,, 2  r] for the fixed nonsystematic 
opt imum distance profile (ODP) convolutional code with mem- 
ory length M = 23  and  d, =  25  [7]. As many as 100000  frames 
consisting of 500  information symbols augmented by a  tail of 
M = 23  zeros were transmitted at rate R = R, and  decoded with 
different metrics. 

Since our fixed code has a  better distance profile than a  
random code, the simulated curves are slightly below the corre- 
sponding calculated values. W e  also notice the close agreement  
between all curves for the Fano metric set { +  1, - 4, - 9} and  the 
well-known Pareto asymptote (slope - 1). 

Finally, it is interesting to notice the wide gap  between the C, 
and  CA, curves for the metric set { +  1, - 3, - 7). When  estimat- 
ing the crossover probability it does not pay to be  pessimistic! 
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A New Class of Check-Digit Methods for Arbitrary 
Number Systems 

H. PETER G U M M  

Ahsrract-For arbitrary number systems we present a new check-digit 
method that detects all single-digit errors and all transpositions of adjacent 
digits using a single check digit from the given number system. In previous 
methods at least one type of transpositional error had to remain unde- 
tected. The key to this method lies in using the dihedral groups together 
with appropriate transformations in the important cases, where the num- 
bers are represented in base 2r with r odd. 

I. INTRODUCTION 

Empirical studies have shown [9], [lo] that the most common 
typing errors that occur when data are entered on  a  keyboard are 

. single-digit errors (one digit wrong) 

. format errors (one digit inserted or left out) 

. transposit ions ( interchanging of two adjacent digits). 

To  detect such errors, the original string of data is supplied with 
one  check digit, where digit now means a  “digit” in the chosen 
number  system, i.e., the check digit is numerical for numerical 
data and  may be  alphanumeric for alphanumeric data. Various 
check-digit methods have been  designed for the decimal number  
system. Each method is able to detect all “single-error mistakes,” 
but they fail to detect all transposit ion errors. At least one  (and 
often not more than one)  erroneous transposit ion is undetectable 
with those methods, see [l]-[3].l 

The  format errors principally cannot  all be  detected by only 
one  check digit, and  every method that detects single-digit errors 
will automatically detect about  90  percent of all format errors. 
The use of two check digits as proposed in [3] and  [ll] is not 
advised since the previously ment ioned studies have also shown 
that the absolute number  of errors that occur roughly doubles 
when the number  of digits increases by two. Thus generally 
specifying and  checking for a  fixed format seems appropriate to 
detect format errors. W e  therefore concentrate on  methods to 
detect single-digit errors and  transposit ion errors. 

Clearly, for numbers to the base 2  such a  check digit method is 
impossible since the numbers 00, 01, 10  would have to be  
supplied with mutually different check digits from the set (0, 1). 

If a  number  n  has the digits d,, d,-,; . ., d, in base r, i.e., 
n  =  Cd,r’-‘, then using p  = -Cd, (in modulo r arithmetic) for 
a  check digit will detect every single-digit error. The  secured 
number  then has the digit representat ion d, , d, _  1,. . . , d, , p, and  
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