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DIRECT AND INVERSE SCATTERING FOR TRANSIENT
ELECTROMAGNETIC WAVES IN NONLINEAR MEDIA

Daniel Sjoberg, Gerhard Kristensson
Department of Electromagnetic Theory, Lund University, P.O. Boz 118, 5-221.00 Lund, Sweden
' David J.N. Wall
Department of Mathematics and Statistics University of Canterbury, Christchurch, New Zealand

Abstract:- This paper discusses a time domain approach to the solution of the inverse scattering problem in
nonlinear materials. Two different reconstruction algorithins are presented.

PREREQUISITES
In a source-free environment the Maxwell equations in one dimension are
9,E(z,t) + 8, B(z,t) =0
8. H(z,t) + 8, D(z,t) = 0,
where E, B, H and D denotes the field amplitudes. In this paper we assume that the nonlinear
constitutive relations are :
' D(z.t) = goFu( E(z.1))

1
B(z.t}) = (—Dva(r]oH(z.f)).

The functions Fe and £, are assumed to model a passive medium. For a non-magnetic material, a

sufficient condition on F is {1}
Fl(z)2a>0.

In this paper we also assume that Fio(z) = b > 0. It is convenient to transform the dynamics into
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PROPAGATION ALONG CHARACTERISTICS )
We can solve the propagation problem via the method of characteristics. A characteristic curve is
defined by (z,t) = ({*(7), 7). where ¥ satisfy

d ~t
—37_— =% clut. u ”(;,ﬂ:(ct(ﬂj) .
The fields w*(z,t) are constant along these curves ¢ * The characteristic curve ¢* is a straight line
provided the field «™ is constant in the slab. and vice versa.

A numerical example of one-way wave propagation is depicted in Figure 1. Notice that the pulse
steepens at the trailing edge, as a consequence of a wave speed which decreases with increasing field
strength.
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Figure 1: The propagation of an incident pulse u*(0.¢) = 3H(¢t)exp{—(t — 3)?}. The material
model is a Kerr saturation model F(E) = E + 4E3/(E? + 1). Three different propagation distances.
z = £, values are shown, with ¢ = 0,0.3, and £ = 0.6. In this example, we are using a numerically
scaled field, which is the reason for large parameter values.

RECONSTRUCTIONS USING INTERNAL FIELDS'

Provided the medium only supports one type of waves. e.g., u” waves. the wave speed depends on
only one field, and an explicit reconstruction algorithm can be found for pulses with no shocks {1].
The explicit result is

(&) = /(@) ~h7HE)). > E/cl&o)-

Here, the incident field at z = 0 is denoted «™(0.¢) = h(t) and the internal field at 2 = ( is denoted
u*(€,t) = T(t). Moreover, the time ¢ and the parameter £ are related by ¢ = % ~1(€) and & = h(0).

RECONSTRUCTIONS USING EXTERNAL FIELDS
In the previus section the reconstruction of the wave speed from the internal field was presented. The
undertying assumption there was the one-way wave propagation. In this section. we consider a slab
located between z =0 and z = £ o

The internal felds, u*, on the boundary of the slab can be related to the external incident.
reflected, and transmitted fields, E*. E”. and E', respectively. The explicit expressions when the field
impinges from the left are, for z = 0 and z = £, respectively

E'+ E" = g7 u* +u7) E'=g7Nut +u7)
Ei—E" = gt — ™) E' = g- (™ —u7).

Provided the left-going field inside the slab can be neglected, i.e., u~ = 0, we essentially have wave
propagation along straight characteristics. In this section we assume that this is the case, which is
reasonable if the scattering properties at the edges are small, and it also seems to be connected to the
strength of the nonlinearity. An important consequence of this assumption is that equal amplitudes
of the u™ field travel with equal speeds. Since there is a one to one correspondence between internal
and external fields, this observation can be used to obtain the wave speed from transmission data.

If we denote the measurable quantities E' + E™ and E* — E” by e and h, and neglect the left

propagating field at the left boundary (0 = u™ = ge(e) ~ gm(h) at z = 0), we can experimentally
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Figure 2: Reconstructed functions, from external fields. The circles are the reconstructed values,
and the lines are the true functions.

determine the functions

e(h) = gz H{gm(h))

el = e

The derivative of e with respect to h is g—g = %‘a‘%ﬂh—)) corresponding to the wave impedance. We can

thus find ¢,(e)? = Fl(e) and ¢/ (h)? = F! (e) by combining these relations:
g(. € m m

dh h{c} 1h’
L ey [T A
File) cle, hie)) = Rl /0 cle(h’). h')
de e} de'
o _ dh = R L
Fm(h') - C(e(’l), h) = F‘m(h) /0 [‘((’.’. II(C')).

The inverse problem is thus seen to be well posed, and an explicit numerical illustration showing the
performance of the inverse algorithm is depicted in Figure 2.
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