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Abstract

In this paper, an extension of Modelica, entitled Opti-
mica, is presented. Optimica extends Modelica with
language constructs that enable formulation of dy-
namic optimization problems based on Modelica mod-
els. There are several important design problems
that can be addressed by means of dynamic optimiza-
tion, in a wide range of domains. Examples include,
minimum-time problems, parameter estimation prob-
lems, and on-line optimization control strategies. The
Optimica extension is supported by a prototype com-
piler, the Optimica compiler, which has been used suc-
cessfully in case studies.
Keywords: Optimica, Language extension, Dynamic

optimization, The JModelica compiler

1 Introduction

Modelica is becoming a standard format for describ-
ing and communicating high-fidelity models of large-
scale dynamic systems. Expert knowledge is being en-
coded into Modelica libraries, both in industry and in
academia. The growing body of Modelica models also
represents significant capital investments, and accord-
ingly, Modelica models and libraries represent valu-
able assets for many companies. As a consequence,
Modelica models are turning into legacy code, which
cannot easily be replaced, simply because the cost of
re-encoding the models in a different format is too
large.
While the primary usage of Modelica models today is
simulation, several other usages are emerging. Since
it is not feasible, for the reasons mentioned above,
to re-encode models for each new model usage, fu-
ture Modelica tools, and also the Modelica language
itself, should accommodate and promote new usages

of Modelica models. This requirement has profound
consequences for software design of Modelica tools,
and also for the language design itself. In particular,
some new usages may require new constructs, at the
language level, in order to enable modeling of particu-
lar design problems.

One example of an emerging usage of Modelica mod-
els is dynamic optimization. A characteristic feature
of realistic dynamic optimization problems is that the
procedure of formulating such problems is highly iter-
ative. It is common that extensive tuning of the cost
function and constraints is required in order to ob-
tain an acceptable solution. If a numerical algorithm
is used to solve the dynamic optimization problem,
there is an additional dimension that requires attention:
the design of the transcription scheme. The scheme
used to discretize the control and state variables often
strongly influences the properties of the resulting solu-
tion. The choice of discretization method also affects
the execution time for solving the problem, which is an
important aspect in on-line applications. For these rea-
sons, dynamic optimization problems are very rich in
the sense that there are several aspects that require at-
tention. Also, the user needs, and should be enabled to,
model, using high-level language constructs, the opti-
mization problem both in terms of cost functions and
constraints and at the transcription level.

Sophisticated numerical optimization algorithms often
have cumbersome APIs, which do not always match
the engineering need for high-level description for-
mats. For example, it is not uncommon for such nu-
merical packages to be written in C, or in Fortran, and
that they require the dynamic system to be modeled
as an ODE/DAE, which is also encoded in C or For-
tran. In addition, it may be required to also encode
first and second order derivatives. Although there are
efficient tools for automatic differentiation, encoding



of dynamic optimization problems in low-level lan-
guages1 like C or FORTRAN is often cumbersome and
error-prone. An important goal of developing high-
level languages for dynamic optimization is therefore
to bridge the gap between the engineering need for
high-level descriptions and the APIs of numerical al-
gorithms.

There are several software packages supporting dy-
namic optimization, for example Dymola [6] and
gPROMS [12]. However, most available software
tools are restricted in the sense that they usually only
support a particular optimization algorithm. While a
particular algorithm may work well in some cases, the
appropriate choice of numerical algorithm is usually
dependent on the particular problem at hand. An anal-
ogy with differential equation solvers can be made.
Stiff systems call for sophisticated, but potentially
computationally demanding solvers, whereas less dif-
ficult systems may be more efficiently solved by a sim-
pler algorithm. An additional goal in the development
of tools supporting high-level formulation of dynamic
optimization problems is therefore to provide an open
architecture, where several different algorithms can be
integrated.

In this paper, an extension of Modelica, entitled Opti-
mica, will be presented. Optimica consists of a num-
ber of new language elements, which enable high-level
formulation of dynamic optimization problems based
on Modelica models. The syntax as well as the se-
mantics of Optimica will be described. In addition,
a prototype implementation of an Optimica compiler,
which is a modular extension of the JModelica com-
piler [2, 1], will be presented.

The paper is organized as follows. In Section 2, issues
related to extensions of languages are discussed. Dif-
ferent options regarding language extensions in Mod-
elica are also treated. In Section 3, the scope of Opti-
mica is discussed, i.e., the class of optimization prob-
lems that can be expressed using Optimica is defined.
In Section 4 the syntax and the semantics of the Optim-
ica extension are presented. Implementation issues re-
lated to the modular Optimica extension of the JMod-
elica compiler are discussed in Section 5. The paper
ends with a summary and conclusions in Section 6.

1The term low-level is relative, but is here used in relation to
domain-specific languages like Modelica.

2 Motivation of the Optimica Exten-

sion

2.1 Isn’t Modelica Enough?

Although being a very rich language in terms of ex-
pressive power for describing complex hybrid dynam-
ical systems, Modelica lacks important features de-
sirable for expressing optimization problems. This
is quite natural, since Modelica was not developed
with optimization in mind. For example, the notion
of cost functions, constraints, variable bounds and ini-
tial guesses are not included in the Modelica language.
Some of these quantities may indeed be modeled us-
ing standard Modelica, to some extent. For example, a
particular variable may be given the meaning of cost,
and the min and max attributes may be interpreted as
variable bounds. However, while this approach may
work in simple cases, it becomes intractable for more
complex optimization problems. For example, com-
plicated constraints, several use cases, and tailoring
of the transcription method would be difficult to ex-
press. Further, the min and max attributes are usually
used to express regions of validity for a model, and
giving them a new semantic meaning would be poten-
tially misleading.

2.2 What About Annotations?

Modelica offers a mechanism for adding information
to model, which may not be part of the actual math-
ematical description, but which is convenient to store
in the model. Typical examples include graphical an-
notations and documentation. Annotations can also be
used to supply information that can be used by a par-
ticular tool, for example, in order to influence proper-
ties of the translation process. In principle, it would
be possible to specify parts of an optimization prob-
lem by introducing suitable annotations. For example,
a variable could be marked as a cost function, and the
semantic meaning of the equality operator in an equa-
tion could be changed to that of the inequality opera-
tor. There are two reasons why it is not a good idea
to strictly use this approach. Firstly, and most impor-
tantly, annotations are designed to supply complemen-
tary information, whereas in this case, the elements of
an optimization problem are rather primary informa-
tion, that is essential for solving the actual problem.
Also, since annotations are not intended for formula-
tion of design problems, they do not provide a con-
venient modeling environment for the user. Secondly,
annotations cannot currently be changed by means of



modifications. Since modification is one of the corner-
stones of Modelica, this is a severe restriction. Also,
it is not currently well defined how annotations are
treated in the case of inheritance. Since one of the
main objectives of the Optimica extension is to enable
convenient formulation of dynamic optimization prob-
lems using high-level constructs, using only annota-
tions does not seem to be a feasible alternative.

Whereas the above arguments are applicable to core
elements of an optimization problem, such as cost
function and constraints, annotations may well be used
to specify a solution algorithm, and associated param-
eters. This type of information is not part of the actual
optimization formulation, but it might still be essential
in order to efficiently solve the problem numerically.
By introducing annotations for specifying, for exam-
ple, the collocation scheme used in a direct method,
the user is able to model both the actual optimization
problem at hand and the transcription method in a uni-
fied high-level description language. This approach is
also in line with the intentions of Modelica annota-
tions, because of the separation between formulation
of the actual problem (by means of dedicated language
constructs), and specification of the solution technique
(by means of annotations).

2.3 Tool-oriented Support for Optimization?

Another potential strategy for enabling dynamic op-
timization of Modelica models is to develop tool-
oriented solutions, for example Graphical User Inter-
faces (GUIs), within a simulation-based software tool.
This approach is used, for example, to enable opti-
mization of Modelica models in Dymola. The user
would then set up the optimization problem by enter-
ing information in dedicated fields in the GUI. Using
this approach, the software tool needs to maintain an
internal model of the optimization problem, as spec-
ified by the user. While this solution may be an at-
tractive choice for interfacing a particular optimization
method with existing simulation-based tools, it does
not offer the flexibility, or portability, which is inher-
ent in the Modelica language. It is therefore desirable
to define, at the language level, a generic extension,
which has a well defined syntax and semantics. Nev-
ertheless, it may still be desirable to offer GUIs, in
order to increase productivity in the design process, in
the same way as current Modelica tools typically offer
GUIs to simplify critical modeling tasks.

2.4 To Extend or to Complement?

A key issue is whether to extend Modelica by introduc-
ing new language constructs, or to define a new, sep-
arate, language which complements Modelica. By in-
troducing a new language, the syntax and semantics of
Modelica would be kept entirely intact, which may be
advantageous since it makes design and maintenance
of the language simpler. Also, if several extensions are
introduced, defining the interaction between the ex-
tensions, both at a syntactic and semantic level, may
be difficult. On the other hand, Modelica has many
generic built-in constructs, e.g., classes, functions and
declarative equations, which are widely applicable in
many contexts. Reinventing such constructs in new
languages does not seem to be an attractive alterna-
tive. Another argument in favor of language extension
is that Modelica offers strong support for modulariza-
tion of models. In the case of dynamic optimization,
the user may construct the model separately from the
formulation of the optimization problem, in which the
model is used. In this way, the same model may still
be used for other purposes than optimization, such as,
for example, simulation.
It is essential, however, that language extensions tar-
geted at particular usages of Modelica models do
not interfere unnecessarily with the original language.
Preferably, extensions should be modular, in the sense
that the new constructs are only allowed in a well de-
fined language environment.

3 Scope of Optimica

3.1 Information Structure

In order to formulate a dynamic optimization prob-
lem, to be solved by a numerical algorithm, the user
must supply different kinds of information. It is natu-
ral to categorize this information into three levels, cor-
responding to increasing levels of detail.

• Level I. At the mathematical level, a canonical
formulation of a dynamic optimization problem
is given. This include variables and parameters to
optimize, cost function to minimize, constraints,
and the Modelica model constituting the dynamic
constraint. The optimization problem formulated
at this level is in general infinite dimensional, and
is thereby only partial in the respect that it cannot
be directly used by a numerical algorithm without
additional information, for example, concerning
transcription of continuous variables.



• Level II. At the transcription level, a method for
translating the problem from an infinite dimen-
sional problem to a finite dimensional problem
needs to be provided. This might include dis-
cretization meshes as well as initial guesses for
optimization parameters and variables. It should
be noticed that the information required at this
level is dependent on the numerical algorithm that
is used to solve the problem.

• Level III. At the algorithm level, information
such as tolerances and algorithm control parame-
ters may be given. Such parameters are often crit-
ical in order to achieve acceptable performance in
terms of convergence, numerical reliability, and
speed.

An important issue to address is whether information
associated with all levels should be given in the lan-
guage extension. In Modelica, only information cor-
responding to Level I is expressed in the actual model
description. Existing Modelica tools then typically use
automatic algorithms for critical tasks such as state se-
lection and calculation of consistent initial conditions,
although the algorithms can be influenced by the user
via the Modelica code, by means of annotations, or
attributes, such as StateSelect. Yet other informa-
tion, such as choice of solver, tolerances and simula-
tion horizon is provided directly to the tool, either by
means of a graphical user interface, a script language,
or alternatively, in annotations.
For dynamic optimization, the situation is similar, but
the need for user input at the algorithm level is more
emphasized. Automatic algorithms, for example for
mesh selection, exist, but may not be suitable for all
kinds of problems. It is therefore desirable to include,
in the language, means for the user to specify most
aspects of the problem in order to maintain flexibil-
ity, while allowing for automatic algorithms to be used
when possible and suitable.
Relating to the three levels described above, the ap-
proach taken in the design of Optimica is to extend
the Modelica language with a few new language con-
structs corresponding to the elements of the mathemat-
ical description of the optimization problem (level I).
The information included in levels II and III, however,
may rather be specified by means of annotations.

3.2 Dynamic System Model

The scope of Optimica can be separated into two parts.
The first part is concerned with the class of models
that can be described in Modelica. Arguably, this

class is large, since very complex, non-linear and hy-
brid behavior can be encoded in Modelica. From a
dynamic optimization perspective, the inherent com-
plexity of Modelica models is a major challenge. Typ-
ically, different algorithms for dynamic optimization
support different model structures. In fact, the key to
developing efficient algorithms lies in exploiting the
structure of the model being optimized. Consequently,
there are different algorithms for different model struc-
tures, such as linear systems, non-linear ODEs, gen-
eral DAEs, and hybrid systems. In general, an algo-
rithm can be expected to have better performance, in
terms of convergence properties and shorter execution
times, if the model structure can be exploited. For ex-
ample, if the model is linear, and the cost function is
quadratic, the problem can be obtained very efficiently
by solving a Riccati equation. On the other hand, op-
timization of general non-linear and hybrid DAEs is
still an area of active research, see for example [3].
As a result, the structure of the model highly affects
the applicability of different algorithms. The Optim-
ica compiler presented in this paper relies on a direct
collocation algorithm in order to demonstrate the pro-
posed concept. Accordingly, the restrictions imposed
on model structure by this algorithm apply when for-
mulating the Modelica model, upon which the opti-
mization problem is based. For example, this excludes
the use of hybrid constructs, since the right hand side
of the dynamics is assumed to be twice continuously
differentiable. Obviously, this restriction excludes op-
timization of many realistic Modelica models. On the
other hand, in some cases, reformulation of disconti-
nuities to smooth approximations may be possible in
order to enable efficient optimization. This is particu-
larly important in on-line applications. The Optimica
extension, as presented in this paper, could also be ex-
tended to support other algorithms, which are indeed
applicable to a larger class of models.

3.3 The Dynamic Optimization Problem

The second part of the scope of Optimica is concerned
with the remaining elements of the optimization prob-
lem. This includes cost functions, constraints and vari-
able bounds. Consider the following formulation of a
dynamic optimization problem:

min
u(t),p

ψ(z̄, p) (1)

subject to the dynamic system

F(ẋ(t),x(t),y(t),u(t), p, t) = 0, t ∈ [t0, t f ] (2)



and the constraints

cineq(x(t),y(t),u(t), p) ≤ 0 t ∈ [t0, t f ] (3)

ceq(x(t),y(t),u(t), p) = 0 t ∈ [t0, t f ] (4)

c
p
ineq(z̄, p) ≤ 0 (5)

cpeq(z̄, p) = 0 (6)

where x(t) ∈ Rnx are the dynamic variables, y(t) ∈ Rny

are the algebraic variables, u(t) ∈ Rnu are the con-
trol inputs, and p ∈ Rnp are parameters which are
free in the optimization. In addition, the optimiza-
tion is performed on the interval t ∈ [t0, t f ], where t0
and t f can be fixed or free, respectively. In addi-
tion, the initial values of the dynamic and algebraic
variables may be fixed or free in the optimization.
The vector z̄ is composed from discrete time points
of the states, controls and algebraic variables; z̄ =
[x(t1), ..,x(tNp ),y(t1), ..,y(tNp ),u(t1), ..,u(tNp )]

T , ti ∈
[t0, t f ], where Np denotes the number of time points
included in the optimization problem.

The constraints include inequality and equality path
constraints, (3)-(4). In addition, inequality and equal-
ity point constraints, (5)-(6), are supported. Point con-
straints are typically used to express initial or terminal
constraints, but can also be used to specify constraints
for time points in the interior of the interval.

The cost function (1) is a generalization of a terminal
cost function, φ(t f ), in that it admits inclusion of vari-
able values at other time instants. This form includes
some of the most commonly used cost function formu-
lations. A Lagrange cost function can be obtained by
introducing an additional state variable, xL(t), with the
associated differential equation ẋL(t) = L(x(t),u(t)),
and the cost function ψ(t f ) = xL(t f ). The need to in-
clude variable values at discrete points in the interior
of the optimization interval in the cost function arises
for example in parameter estimation problems. In such
cases, a sequence of measurements, yd(ti), obtained at
the sampling instants ti, i ∈ 1 . . .Nd is typically avail-
able. A cost function candidate is then:

Nd

∑
i=1

(y(ti)− yd(ti))
TW (y(ti)− yd(ti)) (7)

where y(ti) is the model response at time ti andW is a
weighting matrix.

Another important class of problems is static optimiza-

tion problems on the form:

min
u,p

ϕ(x,y,u, p)

subject to

F(0,x,y,u, p, ts) = 0

cineq(x,u, p) ≤ 0

ceq(x,u, p) = 0

(8)

In this case, a static optimization problem is derived
from a, potentially, dynamic Modelica model by set-
ting all derivatives to zero. Since the problem is static,
all variables are algebraic and accordingly, no tran-
scription procedure is necessary. The variable ts de-
notes the time instant at which the static optimization
problem is defined.

3.4 Transcription

In this paper a direct collocation method (see for ex-
ample [4]) will be used to illustrate how also the tran-
scription step can be encoded in the Optimica exten-
sion. The information that needs to be provided by
the user is then a mesh specification, the collocation
points, and the coefficients of the interpolation poly-
nomials.

4 The Optimica Extension

In this section, the Optimica extension will be pre-
sented and informally defined. The presentation will
be made using the following dynamic optimization
problem, based on a double integrator system, as an
example:

min
u(t)

∫ t f
0
1dt (9)

subject to the dynamic constraint

ẋ(t) = v(t), x(0) = 0

v̇(t) = u(t), v(0) = 0
(10)

and
x(t f ) = 1, v(t f ) = 0

v(t) ≤ 0.5, −1≤ u(t) ≤ 1
(11)

In this problem, the final time, t f , is free, and the ob-
jective is thus to minimize the time it takes to transfer
the state of the double integrator from the point (0,0)
to (1,0), while respecting bounds on the velocity v(t)
and the input u(t). A Modelica model for the double
integrator system is shown in Listing 1.
In summary, the Optimica extension consists of the
following elements:



model DoubleIntegrator

Real x(start=0);

Real v(start=0);

input Real u;

equation

der(x)=v;

der(v)=u;

end DoubleIntegrator;

Listing 1: A Modelica model of a double integrator
system.

• A new specialized class: optimization

• New attributes for the built-in type Real: free
and initialGuess.

• A new function for accessing the value of a vari-
able at a specified time instant

• Class attributes for the specialized class
optimization: objective, startTime,
finalTime and static

• A new section: constraint

• Inequality constraints

• An annotation for providing transcription infor-
mation

4.1 A New Specialized Class

It is convenient to introduce a new specialized
class, called optimization, in which the proposed
Optimica-specific constructs are valid. This approach
is consistent with the Modelica language, since there
are already several other specialized classes, e.g.,
record, function and model. By introducing a
new specialized class, it also becomes straightfor-
ward to check the validity of a program, since the
Optimica-specific constructs are only valid inside an
optimization class. The optimization class cor-
responds to an optimization problem, static or dy-
namic, as specified in Section 3.3. Apart from the
Optimica-specific constructs, an optimization class
can also contain component and variable declarations,
local classes, and equations.
It is not possible to declare components from
optimization classes in the current version of Op-
timica. Rather, the underlying assumption is that an
optimization class defines an optimization problem,
that is solved off-line. An interesting extension would,
however, be to allow for optimization classes to be

instantiated. With this extension, it would be possible
to solve optimization problems, on-line, during sim-
ulation. A particularly interesting application of this
feature is model predictive control, which is a control
strategy that involves on-line solution of optimization
problems during execution.
As a starting-point for the formulation of the optimiza-
tion problem (9)-(11), consider the optimization

class:

optimization DIMinTime

DoubleIntegrator di;

end DIMinTime;

This class contains only one component representing
the dynamic system model, but will be extended in the
following to incorporate also the other elements of the
optimization problem.

4.2 Attributes for the Built-in Type Real

In order to superimpose information on variable decla-
rations, two new attributes are introduced for the built-
in type Real2. Firstly, it should be possible to spec-
ify that a variable, or parameter, is free in the opti-
mization. Modelica parameters are normally consid-
ered to be fixed after the initialization step, but in the
case of optimization, some parameters may rather be
considered to be free. In optimal control formulations,
the control inputs should be marked as free, to indi-
cate that they are indeed optimization variables. For
these reasons, a new attribute for the built-in type Real,
free, of boolean type is introduced. By default, this
attribute is set to false.
Secondly, an attribute, initialGuess, is introduced
to enable the user to provide an initial guess for vari-
ables and parameters. In the case of free optimiza-
tion parameters, the initialGuess attribute provides
an initial guess to the optimization algorithm for the
corresponding parameter. In the case of variables, the
initialGuess attribute is used to provide the numer-
ical solver with an initial guess for the entire optimiza-
tion interval. This is particularly important if a simul-
taneous or multiple-shooting algorithm is used, since
these algorithms introduce optimization variables cor-
responding to the values of variables at discrete points
over the interval. Notice that such initial guesses may
be needed both for control and state variables. For
such variables, however, the proposed strategy for pro-
viding initial guesses may sometimes be inadequate.

2The same attributes may be introduced for the built-in type
Integer, in order to support also variables of type Integer in the
optimization formulation



In some cases, a better solution is to use simulation
data to initialize the optimization problem. This ap-
proach is also supported by the Optimica compiler. In
the double integrator example, the control variable u is
a free optimization variable, and accordingly, the free
attribute is set to true. Also, the initialGuess at-
tribute is set to 0.0.

optimization DIMinTime

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

end DIMinTime;

4.3 A Function for Accessing Instant Values

of a Variable

An important component of some dynamic optimiza-
tion problems, in particular parameter estimation prob-
lems where measurement data is available, is variable
access at discrete time instants. For example, if a mea-
surement data value, yi, has been obtained at time ti, it
may be desirable to penalize the deviation between yi
and a corresponding variable in the model, evaluated
at the time instant ti. In Modelica, it is not possible to
access the value of a variable at a particular time in-
stant in a natural way, and a new construct therefore
has to be introduced.
All variables in Modelica are functions of time. The
variability of variables may be different—some are
continuously changing, whereas others can change
value only at discrete time instants, and yet others are
constant. Nevertheless, the value of a Modelica vari-
able is defined for all time instants within the simula-
tion, or optimization, interval. The time argument of
variables are not written explicitly in Modelica, how-
ever. One option for enabling access to variable val-
ues at specified time instants is therefore to associate
an implicitly defined function with a variable declara-
tion. This function can then be invoked by the stan-
dard Modelica syntax for function calls, y(t_i). The
name of the function is identical to the name of the
variable, and it has one argument; the time instant at
which the variable is evaluated. This syntax is also
very natural since it corresponds precisely to the math-
ematical notation of a function. Notice that the pro-
posed syntax y(t_i) makes the interpretation of such
an expression context dependent. In order for this con-
struct to be valid in standard Modelica, y must refer to
a function declaration. With the proposed extension,
y may refer either to a function declaration or a vari-
able declaration. A compiler therefore needs to clas-
sify an expression y(t_i) based on the context, i.e.,

what function and variable declarations are visible. An
alternative syntax would have been to introduce a new
built-in function, that returns the value of a variable at
a specified time instant. While this alternative would
have been straightforward to implement, the proposed
syntax has the advantages of being easier to read and
that it more closely resembles the corresponding math-
ematical notation. This feature of Optimica is used in
the constraint section of the double integrator example,
and is described below.

4.4 Class Attributes

In the optimization formulations (1)-(6) and (8), there
are elements that occur only once, i.e., the cost func-
tion and the optimization interval in (1)-(6), and in the
static case (8), only the cost function. These elements
are intrinsic properties of the respective optimization
formulations, and should be specified, once, by the
user. In this respect the cost function and optimization
interval differ from, for example, constraints, since the
user may specify zero, one or more of the latter.
One option for providing this kind of information is
to introduce a built-in class, call it Optimization,
and require that all optimization classes inherit from
Optimization. Information about the cost function
and optimization interval may then be given as modi-
fications of components in this built-in class:

optimization DIMinTime

extends Optimization(

objective=cost(finalTime),

startTime=0,

finalTime(free=true,initialGuess=1));

Real cost;

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

equation

der(cost) = 1;

end DIMinTime;

Here, objective, startTime and finalTime are as-
sumed to be components located in Optimization,
whereas cost is a variable which is looked up in the
scope of the optimization class itself. Notice also
how the cost function, cost, has been introduced,
and that the finalTime attribute is specified to be
free in the optimization. This approach of inheriting
from a built-in class has been used previously, in the
tool Mosilab [11], where the Modelica language is ex-
tended to support statecharts. In the statechart exten-
sion, a new specialized class, state, is introduced,
and properties of a state class (for example whether
the state is an initial state) can be specified by inherit-



ing from the built-in class State and applying suitable
modifications.
The main drawback of the above approach is its lack
of clarity. In particular, it is not immediately clear
that Optimization is a built-in class, and that its con-
tained elements represent intrinsic properties of the
optimization class, rather than regular elements, as
in the case of inheritance from user or library classes.
To remedy this deficiency, the notion of class at-
tributes is proposed. This idea is not new, but has been
discussed previously within the Modelica community.
A class attribute is an intrinsic element of a specialized
class, and may be modified in a class declaration with-
out the need to explicitly extend from a built-in class.
In the Optimica extension, four class attributes are
introduced for the specialized class optimization.
These are objective, which defines the cost function,
startTime, which defines the start of the optimiza-
tion interval, finalTime, which defines the end of
the optimization interval, and static, which indicates
whether the class defines a static or dynamic optimiza-
tion problem. The proposed syntax for class attributes
is shown in the following optimization class:

optimization DIMinTime (

objective=cost(finalTime),

startTime=0,

finalTime(free=true,initialGuess=1))

Real cost;

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

equation

der(cost) = 1;

end DIMinTime;

The default value of the class attribute static is
false, and accordingly, it does not have to be set in
this case. In essence, the keyword extends and the
reference to the built-in class have been eliminated,
and the modification construct is instead given directly
after the name of the class itself. The class attributes
may be accessed and modified in the same way as if
they were inherited.

4.5 Constraints

Constraints are similar to equations, and in fact, a
path equality constraint is equivalent to a Model-
ica equation. But in addition, inequality constraints,
as well as point equality and inequality constraints
should be supported. It is therefore natural to have
a separation between equations and constraints. In
Modelica, initial equations, equations, and algorithms
are specified in separate sections, within a class

body. A reasonable alternative for specifying con-
straints is therefore to introduce a new kind of section,
constraint. Constraint sections are only allowed in-
side an optimization class, and may contain equal-
ity, inequality as well as point constraints. In the dou-
ble integrator example, there are several constraints.
Apart from the constraints specifying bounds on the
control input u and the velocity v, there are also termi-
nal constraints. The latter are conveniently expressed
using the mechanism for accessing the value of a vari-
able at a particular time instant; di.x(finalTime)=1
and di.v(finalTime)=0. In addition, bounds may
have to be specified for the finalTime class attribute.
The resulting optimization formulation may now be
written:

optimization DIMinTime (

objective=cost(finalTime),

startTime=0,

finalTime(free=true,initialGuess=1))

Real cost;

DoubleIntegrator di(u(free=true,

initialGuess=0.0));

equation

der(cost) = 1;

constraint

finalTime>=0.5;

finalTime<=10;

di.x(finalTime)=1;

di.v(finalTime)=0;

di.v<=0.5;

di.u>=­1; di.u<=1;

end DIMinTime;

4.6 Annotations for Specification of the Tran-

scription Scheme

The transcription scheme used to transform the
infinite-dimensional dynamic optimization problem
into a finite-dimensional approximate problem usu-
ally influences the properties of the numerical solu-
tion. Nevertheless, transcription information can be
considered to be complimentary information, that is
not part of the mathematical definition of the optimiza-
tion problem itself. Also, transcription information is
closely related to particular numerical algorithms. It
is therefore reasonable not to introduce new language
constructs, but rather new annotations for specifica-
tion of transcription schemes. This solution is also
more flexible, which is important in order easily ac-
commodate transcription schemes corresponding to al-
gorithms other than the direct collocation method cur-
rently supported.
Following the guidelines for vendor-specific annota-



Figure 1: The transformation fromModelica/Optimica
code to optimization result.

tions in the specification of Modelica 3.0 [13, p. 147],
a hierarchical annotation for supplying the informa-
tion needed to specify a direct collocation method
based on interpolation polynomials has been intro-
duced. This annotation is defined by the following
Modelica record:

record DirectCollocationInterpolationPolynomials

parameter Real mesh[:];

parameter Real collocationPoints[:];

parameter Real

polynomialCoefficientsAlgebraic[:];

parameter Real

polynomialCoefficientsDynamic[:];

end DirectCollocationInterpolationPolynomials;

This annotation enables the user to influence the par-
ticular properties of the corresponding transcription
scheme. For additional details, see [1].

5 The Optimica Compiler

A new Modelica compiler, entitled the JModelica
compiler is currently under development [2, 1]. The
compiler is developed in the compiler construction
framework JastAdd, see [9], and in Java. One of the
primary targets of the JModelica compiler is to provide
an extensible compiler, which is suitable for modular
implementation of new language features. A funda-
mental design concept is that of modular extensibility,
which enables the core JModelica compiler to be kept
intact, since new extensions may be implemented fully
modularized.
A prototype implementation of the JModelica com-
piler, that also supports the Optimica extension has
been developed. The extended compiler will be re-
ferred to as the Optimica compiler in the following. In
terms of the front-end, the compiler supports a subset
of Modelica, and an early version of Optimica. The

syntax of Optimica that is supported by this compiler
is different than the one presented in this paper, al-
though the functionality is essentially the same. The
new, improved syntax and semantics that have been
presented in this paper, were defined based on the
comments and experiences from the users of the very
first version of Optimica. A new version of the Optim-
ica compiler, supporting the revised Optimica syntax
is currently under development, with the intention of
replacing the initial prototype.

5.1 Code Generation to AMPL

One of the main features of the Optimica compiler is
that it performs automatic transcription of continuous
variables, using a direct collocation method. The user
is thus relieved from the burden of encoding the col-
location equations, which is a tedious and error-prone
procedure. Whereas the prototype version of the Op-
timica compiler supported one particular collocation
scheme, future versions will support the annotation in-
troduced above to specify the transcription method.
In order to solve the transcribed optimization prob-
lem by means of a numerical algorithm, the Optim-
ica compiler generates AMPL [7] code. The tran-
scribed problem is purely static, and can therefore be
encoded using the constructs available in AMPL. The
AMPL representation of the optimization problem can
be viewed as an additional intermediate representa-
tion format. The purpose of using AMPL is twofold.
Firstly, AMPL provides an additional debugging level,
that is very useful during compiler development. In
particular, the AMPL tool offers a shell, where vari-
ables and constraints can be inspected. Secondly, the
AMPL solver interface provides solvers with sparsity
information, as well as first and second order deriva-
tives. This information may be essential for perfor-
mance and convergence of a numerical optimization
algorithm. The numerical algorithm IPOPT [14] has
been used to solve the non-linear program resulting
from the transcription procedure. The result is then
written to file for further analysis or implementation.
See Figure 1 for an illustration of the transformation
steps involved when using the Optimica compiler and
AMPL to solve a dynamic optimization problem.

6 Summary and Conclusions

In this paper an extension of the Modelica language,
Optimica, that enables high-level formulation of dy-
namic optimization problems, has been presented. The



Optimica extension enables the user to specify impor-
tant elements of a dynamic optimization problem such
as cost functions, constraints and optimization inter-
val. The dynamic model, upon which the dynamic op-
timization problem is based, is expressed using stan-
dard Modelica. Optimica also supports an annotation
that enables the user to specify the properties of a tran-
scription method, based on direct collocation. Because
of these properties, Optimica supports formulation of
dynamic optimization problems, using high-level con-
structs, both at the mathematical level and at the nu-
merical transcription level.
A prototype implementation of the Optimica compiler
has been used in the work on start-up optimization of
a plate reactor [8], in two master’s thesis projects (see
[5] and [10]) and in the PhD course “Optimization-
Based Methods and Tools in Control”, that was given
at the Department of Automatic Control, Lund Univer-
sity in September 2007.
An important objective of the JModelica compiler is
to offer a modularly extensible Modelica compiler. In
this respect, the experiences and results from devel-
oping the Optimica extension are very promising. In
particular, the coding effort needed to implement the
extension of the compiler front-end, including exten-
sion of the name analysis framework and the flattening
algorithm, was very moderate.
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