Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Bladder activation: afferent mechanisms.

Andersson, Karl-Erik LU orcid (2002) In Urology 59(5 Suppl 1). p.43-50
Abstract
The major function of the lower urinary tract is to store and periodically evacuate urine from the bladder. This requires coordination of the smooth muscles of the bladder and urethra, and of the striated muscles of the outflow region and pelvic floor by a complex neural control system. Lumbosacral afferent fibers (pelvic afferents), but also afferents in the hypogastric and pudendal nerves, are of major importance for the regulation of the mechanisms for continence and micturition. In the bladder, afferent nerves have been identified suburothelially as well as in the detrusor muscle. Suburothelially, they form a plexus that lies immediately beneath the epithelial lining. This plexus is particularly dense in the bladder neck and the... (More)
The major function of the lower urinary tract is to store and periodically evacuate urine from the bladder. This requires coordination of the smooth muscles of the bladder and urethra, and of the striated muscles of the outflow region and pelvic floor by a complex neural control system. Lumbosacral afferent fibers (pelvic afferents), but also afferents in the hypogastric and pudendal nerves, are of major importance for the regulation of the mechanisms for continence and micturition. In the bladder, afferent nerves have been identified suburothelially as well as in the detrusor muscle. Suburothelially, they form a plexus that lies immediately beneath the epithelial lining. This plexus is particularly dense in the bladder neck and the trigone. The most important afferents for the micturition process are myelinated Adelta-fibers and unmyelinated C-fibers. Immunocytochemical and tracing studies have revealed that numerous peptides, including substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, enkephalins, and cholecystokinin are localized either alone, or in combination, in afferent pathways of the bladder and urethra. The receptors on these nerves include: vanilloid receptors, purinoceptors, tachykinin, and prostanoid receptors. Extracellular adenosine triphosphate (ATP) has been found to mediate excitation of small-diameter sensory neurons via P2X3 receptors, and it has been proposed that in the bladder, distention causes release of ATP from the urothelium. ATP, in turn, can activate P2X3 receptors on suburothelial afferent nerve terminals to evoke a neural discharge. However, it is most likely that a cascade of inhibitory and stimulatory transmitters/mediators, as well as ATP, are involved in the transduction mechanisms underlying the activation of afferent fibers during bladder filling. (Less)
Please use this url to cite or link to this publication:
author
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
Afferent Pathways : physiology, Adenosine Triphosphate : physiology, Animal, Bladder : innervation, Bladder : physiology, Human, Nerve Fibers : physiology, Nerve Fibers, Myelinated : physiology, Neurotransmitters : physiology, Receptors, Drug : physiology, Prostaglandin : physiology, Purinergic : physiology, Purinergic P2 : physiology, Tachykinin : physiology, Urination : physiology
in
Urology
volume
59
issue
5 Suppl 1
pages
43 - 50
publisher
Elsevier
external identifiers
  • wos:000175489900008
  • pmid:12007522
  • scopus:0036240324
ISSN
1527-9995
DOI
10.1016/S0090-4295(01)01637-5
language
English
LU publication?
yes
id
d828b74a-7bb5-41c0-a1f9-eed9f4e30231 (old id 108175)
alternative location
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12007522&dopt=Abstract
date added to LUP
2016-04-01 11:46:00
date last changed
2022-04-05 04:44:38
@article{d828b74a-7bb5-41c0-a1f9-eed9f4e30231,
  abstract     = {{The major function of the lower urinary tract is to store and periodically evacuate urine from the bladder. This requires coordination of the smooth muscles of the bladder and urethra, and of the striated muscles of the outflow region and pelvic floor by a complex neural control system. Lumbosacral afferent fibers (pelvic afferents), but also afferents in the hypogastric and pudendal nerves, are of major importance for the regulation of the mechanisms for continence and micturition. In the bladder, afferent nerves have been identified suburothelially as well as in the detrusor muscle. Suburothelially, they form a plexus that lies immediately beneath the epithelial lining. This plexus is particularly dense in the bladder neck and the trigone. The most important afferents for the micturition process are myelinated Adelta-fibers and unmyelinated C-fibers. Immunocytochemical and tracing studies have revealed that numerous peptides, including substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, enkephalins, and cholecystokinin are localized either alone, or in combination, in afferent pathways of the bladder and urethra. The receptors on these nerves include: vanilloid receptors, purinoceptors, tachykinin, and prostanoid receptors. Extracellular adenosine triphosphate (ATP) has been found to mediate excitation of small-diameter sensory neurons via P2X3 receptors, and it has been proposed that in the bladder, distention causes release of ATP from the urothelium. ATP, in turn, can activate P2X3 receptors on suburothelial afferent nerve terminals to evoke a neural discharge. However, it is most likely that a cascade of inhibitory and stimulatory transmitters/mediators, as well as ATP, are involved in the transduction mechanisms underlying the activation of afferent fibers during bladder filling.}},
  author       = {{Andersson, Karl-Erik}},
  issn         = {{1527-9995}},
  keywords     = {{Afferent Pathways : physiology; Adenosine Triphosphate : physiology; Animal; Bladder : innervation; Bladder : physiology; Human; Nerve Fibers : physiology; Nerve Fibers; Myelinated : physiology; Neurotransmitters : physiology; Receptors; Drug : physiology; Prostaglandin : physiology; Purinergic : physiology; Purinergic P2 : physiology; Tachykinin : physiology; Urination : physiology}},
  language     = {{eng}},
  number       = {{5 Suppl 1}},
  pages        = {{43--50}},
  publisher    = {{Elsevier}},
  series       = {{Urology}},
  title        = {{Bladder activation: afferent mechanisms.}},
  url          = {{http://dx.doi.org/10.1016/S0090-4295(01)01637-5}},
  doi          = {{10.1016/S0090-4295(01)01637-5}},
  volume       = {{59}},
  year         = {{2002}},
}