Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Fluid exchanges across the parietal peritoneal and pleural mesothelia

Negrini, D ; del Fabbro, M and Venturoli, Daniele LU (1993) In Journal of Applied Physiology 74(4). p.1779-1784
Abstract
In 31 anesthetized rabbits, after removal of superficial tissues, glass micropipettes filled with 0.5 M NaCl solution and connected to an electrohydraulic servo-null system were used to measure extraperitoneal interstitial fluid pressure (Pi,per) and peritoneal liquid pressure (Pliq,per) at various heights. Linear regressions relating pressure to recording height (H) were Pi,per = 1.07 - 0.27H and Pliq,per = 0.9 - 0.64H, respectively. Protein concentration (Cp;g/dl) and colloid osmotic pressure (II; cmH2O) of plasma and of peritoneal and pleural liquids were 5.48 +/- 0.38 and 24.61 +/- 3.23, 3.07 +/- 0.5 and 13.29 +/- 1.87, and 1.76 +/- 0.42 and 8.45 +/- 2, respectively. The equation relating II to Cp was II = 4.64Cp + 0.0027Cp2. Tissue... (More)
In 31 anesthetized rabbits, after removal of superficial tissues, glass micropipettes filled with 0.5 M NaCl solution and connected to an electrohydraulic servo-null system were used to measure extraperitoneal interstitial fluid pressure (Pi,per) and peritoneal liquid pressure (Pliq,per) at various heights. Linear regressions relating pressure to recording height (H) were Pi,per = 1.07 - 0.27H and Pliq,per = 0.9 - 0.64H, respectively. Protein concentration (Cp;g/dl) and colloid osmotic pressure (II; cmH2O) of plasma and of peritoneal and pleural liquids were 5.48 +/- 0.38 and 24.61 +/- 3.23, 3.07 +/- 0.5 and 13.29 +/- 1.87, and 1.76 +/- 0.42 and 8.45 +/- 2, respectively. The equation relating II to Cp was II = 4.64Cp + 0.0027Cp2. Tissue fluid samples were collected with saline-soaked wicks implanted in vivo or dry wicks inserted postmortem in extraperitoneal and extrapleural interstitial spaces. After 60 and 15 min, respectively, wicks were withdrawn and centrifuged; wick fluid was analyzed in colloid osmometer for small samples. Average extraperitoneal and extrapleural II values were 14.2 +/- 2.49 and 11.94 +/- 1.52 cmH2O, corresponding to Cp of 3.07 and 2.57 g/dl, respectively. The average net pressure gradient, assuming reflection coefficient and hydraulic conductivity (Negrini et al. J. Appl. Physiol. 69: 625-630, 1990; 71: 2543-2547, 1991), was 1.18 and 0.98 cmH2O for parietal peritoneal and pleural mesothelia, respectively, favoring filtration from the extraserosal interstitia into the serosal cavities. Total parietal peritoneal filtration was 1.49 ml.kg-1.h-1, approximately 15-fold higher than that for pleural mesothelium. (Less)
Please use this url to cite or link to this publication:
author
; and
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Applied Physiology
volume
74
issue
4
pages
1779 - 1784
publisher
American Physiological Society
external identifiers
  • pmid:8514696
  • scopus:0027243143
ISSN
1522-1601
language
English
LU publication?
no
id
187d495c-84d0-425c-baa3-772e89fad1a6 (old id 1107171)
alternative location
http://jap.physiology.org/cgi/reprint/74/4/1779
date added to LUP
2016-04-01 12:18:08
date last changed
2021-01-03 08:55:40
@article{187d495c-84d0-425c-baa3-772e89fad1a6,
  abstract     = {{In 31 anesthetized rabbits, after removal of superficial tissues, glass micropipettes filled with 0.5 M NaCl solution and connected to an electrohydraulic servo-null system were used to measure extraperitoneal interstitial fluid pressure (Pi,per) and peritoneal liquid pressure (Pliq,per) at various heights. Linear regressions relating pressure to recording height (H) were Pi,per = 1.07 - 0.27H and Pliq,per = 0.9 - 0.64H, respectively. Protein concentration (Cp;g/dl) and colloid osmotic pressure (II; cmH2O) of plasma and of peritoneal and pleural liquids were 5.48 +/- 0.38 and 24.61 +/- 3.23, 3.07 +/- 0.5 and 13.29 +/- 1.87, and 1.76 +/- 0.42 and 8.45 +/- 2, respectively. The equation relating II to Cp was II = 4.64Cp + 0.0027Cp2. Tissue fluid samples were collected with saline-soaked wicks implanted in vivo or dry wicks inserted postmortem in extraperitoneal and extrapleural interstitial spaces. After 60 and 15 min, respectively, wicks were withdrawn and centrifuged; wick fluid was analyzed in colloid osmometer for small samples. Average extraperitoneal and extrapleural II values were 14.2 +/- 2.49 and 11.94 +/- 1.52 cmH2O, corresponding to Cp of 3.07 and 2.57 g/dl, respectively. The average net pressure gradient, assuming reflection coefficient and hydraulic conductivity (Negrini et al. J. Appl. Physiol. 69: 625-630, 1990; 71: 2543-2547, 1991), was 1.18 and 0.98 cmH2O for parietal peritoneal and pleural mesothelia, respectively, favoring filtration from the extraserosal interstitia into the serosal cavities. Total parietal peritoneal filtration was 1.49 ml.kg-1.h-1, approximately 15-fold higher than that for pleural mesothelium.}},
  author       = {{Negrini, D and del Fabbro, M and Venturoli, Daniele}},
  issn         = {{1522-1601}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{1779--1784}},
  publisher    = {{American Physiological Society}},
  series       = {{Journal of Applied Physiology}},
  title        = {{Fluid exchanges across the parietal peritoneal and pleural mesothelia}},
  url          = {{http://jap.physiology.org/cgi/reprint/74/4/1779}},
  volume       = {{74}},
  year         = {{1993}},
}