Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Baculovirus-mediated expression of the epidermal growth factor-like modules of human factor IX fused to the factor XIIIa transamidation site in fibronectin. Evidence for a direct interaction between the NH2-terminal epidermal growth factor-like module of factor IXa beta and factor X

Astermark, Jan LU ; Sottile, Jane ; Mosher, Deane F and Stenflo, Johan LU (1994) In Journal of Biological Chemistry 269(5). p.3690-3697
Abstract
Factor IX is a vitamin K-dependent procoagulant zymogen of a serine protease. In the presence of Ca2+ the active form of factor IX (factor IXa beta) forms a complex with factor VIIIa on suitable phospholipid surfaces such as aggregated platelets. This macromolecular complex rapidly activates factor X. We have previously provided data that suggest an interaction between the NH2-terminal epidermal growth factor (EGF)-like module of factor IXa beta and the substrate factor X. In an alternative approach to study this protein-protein interaction, we have expressed three recombinant baculovirus constructs encoding the EGF-like modules of human factor IX and a truncated form of fibronectin in a system based on the infection of insect cells... (More)
Factor IX is a vitamin K-dependent procoagulant zymogen of a serine protease. In the presence of Ca2+ the active form of factor IX (factor IXa beta) forms a complex with factor VIIIa on suitable phospholipid surfaces such as aggregated platelets. This macromolecular complex rapidly activates factor X. We have previously provided data that suggest an interaction between the NH2-terminal epidermal growth factor (EGF)-like module of factor IXa beta and the substrate factor X. In an alternative approach to study this protein-protein interaction, we have expressed three recombinant baculovirus constructs encoding the EGF-like modules of human factor IX and a truncated form of fibronectin in a system based on the infection of insect cells (Spodoptera frugiperda 21). This strategy allows a simple one-step purification of the recombinant proteins on a gelatin-Sepharose column, followed by removal of the gelatin-binding part derived from fibronectin by proteolytic cleavage. The fusion proteins were isolated at yields of 20-50 micrograms/ml culture medium. The recombinant EGF-like modules contained 0.2-0.4 mol of erythro-beta-hydroxyaspartic acid/mol of protein, i.e. similar to the amount found in factor IX from human plasma, and appeared to be glycosylated at Ser-53. The NH2-terminal EGF-like module, which contained a transamidation acceptor site derived from fibronectin, was cross-linked by factor XIIIa in solution to intact and Gla-domainless factor X. There was no evidence of cross-linking to activated factor X or to factor X fragments containing only the gamma-carboxyglutamic acid module and the two EGF-like modules. The cross-linking results suggest a specific interaction between the NH2-terminal EGF-like module of factor IXa beta and the heavy chain of unactivated factor X. This interaction, albeit weak as judged by competition experiments, may be important for the targeting of factor X to the factor IXa beta-factor VIIIa complex on biological membranes and for the subsequent dissociation of factor Xa from the complex after activation. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Journal of Biological Chemistry
volume
269
issue
5
pages
3690 - 3697
publisher
American Society for Biochemistry and Molecular Biology
external identifiers
  • pmid:7906269
ISSN
1083-351X
language
English
LU publication?
yes
additional info
The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Emergency medicine/Medicine/Surgery (013240200), Clinical Chemistry, Malmö (013016000)
id
39e8fa1c-6094-4b6f-9efd-e045228d7817 (old id 1108480)
alternative location
http://www.jbc.org/cgi/reprint/269/5/3690
date added to LUP
2016-04-01 12:20:18
date last changed
2018-11-21 20:06:24
@article{39e8fa1c-6094-4b6f-9efd-e045228d7817,
  abstract     = {{Factor IX is a vitamin K-dependent procoagulant zymogen of a serine protease. In the presence of Ca2+ the active form of factor IX (factor IXa beta) forms a complex with factor VIIIa on suitable phospholipid surfaces such as aggregated platelets. This macromolecular complex rapidly activates factor X. We have previously provided data that suggest an interaction between the NH2-terminal epidermal growth factor (EGF)-like module of factor IXa beta and the substrate factor X. In an alternative approach to study this protein-protein interaction, we have expressed three recombinant baculovirus constructs encoding the EGF-like modules of human factor IX and a truncated form of fibronectin in a system based on the infection of insect cells (Spodoptera frugiperda 21). This strategy allows a simple one-step purification of the recombinant proteins on a gelatin-Sepharose column, followed by removal of the gelatin-binding part derived from fibronectin by proteolytic cleavage. The fusion proteins were isolated at yields of 20-50 micrograms/ml culture medium. The recombinant EGF-like modules contained 0.2-0.4 mol of erythro-beta-hydroxyaspartic acid/mol of protein, i.e. similar to the amount found in factor IX from human plasma, and appeared to be glycosylated at Ser-53. The NH2-terminal EGF-like module, which contained a transamidation acceptor site derived from fibronectin, was cross-linked by factor XIIIa in solution to intact and Gla-domainless factor X. There was no evidence of cross-linking to activated factor X or to factor X fragments containing only the gamma-carboxyglutamic acid module and the two EGF-like modules. The cross-linking results suggest a specific interaction between the NH2-terminal EGF-like module of factor IXa beta and the heavy chain of unactivated factor X. This interaction, albeit weak as judged by competition experiments, may be important for the targeting of factor X to the factor IXa beta-factor VIIIa complex on biological membranes and for the subsequent dissociation of factor Xa from the complex after activation.}},
  author       = {{Astermark, Jan and Sottile, Jane and Mosher, Deane F and Stenflo, Johan}},
  issn         = {{1083-351X}},
  language     = {{eng}},
  number       = {{5}},
  pages        = {{3690--3697}},
  publisher    = {{American Society for Biochemistry and Molecular Biology}},
  series       = {{Journal of Biological Chemistry}},
  title        = {{Baculovirus-mediated expression of the epidermal growth factor-like modules of human factor IX fused to the factor XIIIa transamidation site in fibronectin. Evidence for a direct interaction between the NH2-terminal epidermal growth factor-like module of factor IXa beta and factor X}},
  url          = {{http://www.jbc.org/cgi/reprint/269/5/3690}},
  volume       = {{269}},
  year         = {{1994}},
}