Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Effect of flush-perfusion on vascular endothelial and smooth muscle function

Ingemansson, Richard LU ; Budrikis, Algimantas ; Bolys, Ramunas ; Sjöberg, Trygve LU and Steen, Stig LU (1997) In Annals of Thoracic Surgery 64(4). p.1075-1081
Abstract
BACKGROUND: The aim of this study was to investigate how much perfusion pressure an artery can tolerate without significant loss of endothelium-dependent relaxation (EDR) and vascular contractility. METHODS: The abdominal aortas of 396 Sprague-Dawley rats were used. One hundred twenty aortas were flush-perfused for 1 or 5 minutes with cold St. Thomas' Hospital cardioplegic (STHC) solution or with the same solution but modified by the addition of 3.5% dextran 40. Three perfusion pressures were tested: 50, 100, and 150 mm Hg. Two hundred eighty vessels were subjected to pressures of 50, 150, or 300 mm Hg using saline or STHC solution at 22 degrees C or STHC solution at 4 degrees C, for 10 or 60 seconds. The vessels were investigated in organ... (More)
BACKGROUND: The aim of this study was to investigate how much perfusion pressure an artery can tolerate without significant loss of endothelium-dependent relaxation (EDR) and vascular contractility. METHODS: The abdominal aortas of 396 Sprague-Dawley rats were used. One hundred twenty aortas were flush-perfused for 1 or 5 minutes with cold St. Thomas' Hospital cardioplegic (STHC) solution or with the same solution but modified by the addition of 3.5% dextran 40. Three perfusion pressures were tested: 50, 100, and 150 mm Hg. Two hundred eighty vessels were subjected to pressures of 50, 150, or 300 mm Hg using saline or STHC solution at 22 degrees C or STHC solution at 4 degrees C, for 10 or 60 seconds. The vessels were investigated in organ baths. Contractility was tested with the thromboxane analogue U-46619, acetylcholine was used to investigate EDR, and papaverine to elicit endothelium-independent relaxation. RESULTS: Flush-perfusion with cold STHC solution for 5 minutes at a perfusion pressure of 50 or 100 mm Hg affected neither contractility nor EDR. Vessels exposed to a flush-perfusion pressure of 150 mm Hg for 1 or 5 minutes lost 39% (p < 0.001) and 53% (p < 0.001) of their contractility, respectively. Flush-perfusion at 150 mm Hg for 1 minute did not affect EDR, whereas 5 minutes' perfusion caused a reduction of 7% (p < 0.05). A repetition of these experiments using STHC solution with 3.5% dextran 40 added gave no significantly different results. The impairment in contractility and EDR seen after perfusion at 150 mm Hg for 5 minutes disappeared after transplantation and reperfusion for 7 days. The vessels could be distended with saline or STHC solution at a pressure of 150 mm Hg without affecting contractility at 22 degrees C. At 4 degrees C, however, this pressure was harmful to contractility. Distention at a pressure of 300 mm Hg almost abolished contractility and 7 days after transplantation there had not yet been any recovery of contractility, but 30 days after transplantation the grafts had regained their normal contractility. CONCLUSIONS: Cold STHC solution, with or without dextran 40, can be used with a perfusion pressure of 100 but not 150 mm Hg without impairing EDR or vascular smooth muscle function. (Less)
Please use this url to cite or link to this publication:
author
; ; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Annals of Thoracic Surgery
volume
64
issue
4
pages
1075 - 1081
publisher
Elsevier
external identifiers
  • pmid:9354531
  • scopus:0030669484
ISSN
1552-6259
project
Heart Transplantation
language
English
LU publication?
yes
id
78fb5278-3686-4b09-bbb9-d68557ded165 (old id 1112373)
alternative location
http://ats.ctsnetjournals.org/cgi/content/full/64/4/1075
date added to LUP
2016-04-01 11:40:27
date last changed
2022-01-26 08:33:45
@article{78fb5278-3686-4b09-bbb9-d68557ded165,
  abstract     = {{BACKGROUND: The aim of this study was to investigate how much perfusion pressure an artery can tolerate without significant loss of endothelium-dependent relaxation (EDR) and vascular contractility. METHODS: The abdominal aortas of 396 Sprague-Dawley rats were used. One hundred twenty aortas were flush-perfused for 1 or 5 minutes with cold St. Thomas' Hospital cardioplegic (STHC) solution or with the same solution but modified by the addition of 3.5% dextran 40. Three perfusion pressures were tested: 50, 100, and 150 mm Hg. Two hundred eighty vessels were subjected to pressures of 50, 150, or 300 mm Hg using saline or STHC solution at 22 degrees C or STHC solution at 4 degrees C, for 10 or 60 seconds. The vessels were investigated in organ baths. Contractility was tested with the thromboxane analogue U-46619, acetylcholine was used to investigate EDR, and papaverine to elicit endothelium-independent relaxation. RESULTS: Flush-perfusion with cold STHC solution for 5 minutes at a perfusion pressure of 50 or 100 mm Hg affected neither contractility nor EDR. Vessels exposed to a flush-perfusion pressure of 150 mm Hg for 1 or 5 minutes lost 39% (p &lt; 0.001) and 53% (p &lt; 0.001) of their contractility, respectively. Flush-perfusion at 150 mm Hg for 1 minute did not affect EDR, whereas 5 minutes' perfusion caused a reduction of 7% (p &lt; 0.05). A repetition of these experiments using STHC solution with 3.5% dextran 40 added gave no significantly different results. The impairment in contractility and EDR seen after perfusion at 150 mm Hg for 5 minutes disappeared after transplantation and reperfusion for 7 days. The vessels could be distended with saline or STHC solution at a pressure of 150 mm Hg without affecting contractility at 22 degrees C. At 4 degrees C, however, this pressure was harmful to contractility. Distention at a pressure of 300 mm Hg almost abolished contractility and 7 days after transplantation there had not yet been any recovery of contractility, but 30 days after transplantation the grafts had regained their normal contractility. CONCLUSIONS: Cold STHC solution, with or without dextran 40, can be used with a perfusion pressure of 100 but not 150 mm Hg without impairing EDR or vascular smooth muscle function.}},
  author       = {{Ingemansson, Richard and Budrikis, Algimantas and Bolys, Ramunas and Sjöberg, Trygve and Steen, Stig}},
  issn         = {{1552-6259}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{1075--1081}},
  publisher    = {{Elsevier}},
  series       = {{Annals of Thoracic Surgery}},
  title        = {{Effect of flush-perfusion on vascular endothelial and smooth muscle function}},
  url          = {{http://ats.ctsnetjournals.org/cgi/content/full/64/4/1075}},
  volume       = {{64}},
  year         = {{1997}},
}