Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Pharmacokinetics of coagulation factors: clinical relevance for patients with haemophilia

Björkman, S and Berntorp, Erik LU (2001) In Clinical Pharmacokinetics 40(11). p.815-823
Abstract
Haemophilia is a recessively inherited coagulation disorder, in which an X-chromosome mutation causes a deficiency of either coagulation factor VIII (FVIII) in haemophilia A, or factor IX (FIX) in haemophilia B. Intravenous administration of FVIII or FIX can be used to control a bleeding episode, to provide haemostasis during surgery or for long term prophylaxis of bleeding. In special cases, activated factor VII (FVIIa) may be used instead of FVIII or FIX. The aim of this work is to review the pharmacokinetics of FVIII, FIX and FVIIa and to give an outline of the use of pharmacokinetics to optimise the treatment of patients with haemophilia. The pharmacokinetics of FVIII are well characterised. The systemic clearance (CL) of FVIII is... (More)
Haemophilia is a recessively inherited coagulation disorder, in which an X-chromosome mutation causes a deficiency of either coagulation factor VIII (FVIII) in haemophilia A, or factor IX (FIX) in haemophilia B. Intravenous administration of FVIII or FIX can be used to control a bleeding episode, to provide haemostasis during surgery or for long term prophylaxis of bleeding. In special cases, activated factor VII (FVIIa) may be used instead of FVIII or FIX. The aim of this work is to review the pharmacokinetics of FVIII, FIX and FVIIa and to give an outline of the use of pharmacokinetics to optimise the treatment of patients with haemophilia. The pharmacokinetics of FVIII are well characterised. The systemic clearance (CL) of FVIII is largely determined by the plasma level of von Willebrand factor (vWF), which protects FVIII from degradation. Typical average CL in patients with normal vWF levels is 3 ml/h/kg, with an apparent volume of distribution at steady state (Vss) that slightly exceeds the plasma volume of the patient, and the average elimination half-life (t1/2) is around 14 hours. There are still some discrepancies in the literature on the pharmacokinetics of FIX. The average CL of plasma-derived FIX seems to be 4 ml/h/kg, the Vss is 3 to 4 times the plasma volume and the elimination t1/2 often exceeds 30 hours. FVIIa has a much higher CL (average of 33 ml/h/kg), and a short terminal t1/2 (at 2 to 3 hours). The Vss is 2 to 3 times the plasma volume. Since the therapeutic levels of coagulation factors are well defined in most clinical situations, applied pharmacokinetics is an excellent tool to optimise therapy. Individual tailoring of administration in prophylaxis has been shown to considerably increase the cost effectiveness of the treatment. Dosage regimens for the treatment of bleeding episodes or for haemostasis during surgery are also designed using pharmacokinetic data, and the advantages of using a constant infusion instead of repeated bolus doses have been explored. The influence of antibodies (inhibitors) on the pharmacokinetics of FVIII and FIX is in part understood, and the doses of coagulation factor needed to treat a patient can tentatively be calculated from the antibody titre. In conclusion, therapeutic monitoring of coagulation factor levels and the use of clinical pharmacokinetics to aid therapy are well established in the treatment of patients with haemophilia. (Less)
Please use this url to cite or link to this publication:
author
and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Clinical Pharmacokinetics
volume
40
issue
11
pages
815 - 823
publisher
Adis International
external identifiers
  • pmid:11735604
  • scopus:0035189391
ISSN
0312-5963
language
English
LU publication?
yes
id
91607123-15c9-44bc-a997-c00fc50969a7 (old id 1121709)
date added to LUP
2016-04-01 16:59:58
date last changed
2022-04-23 01:59:30
@article{91607123-15c9-44bc-a997-c00fc50969a7,
  abstract     = {{Haemophilia is a recessively inherited coagulation disorder, in which an X-chromosome mutation causes a deficiency of either coagulation factor VIII (FVIII) in haemophilia A, or factor IX (FIX) in haemophilia B. Intravenous administration of FVIII or FIX can be used to control a bleeding episode, to provide haemostasis during surgery or for long term prophylaxis of bleeding. In special cases, activated factor VII (FVIIa) may be used instead of FVIII or FIX. The aim of this work is to review the pharmacokinetics of FVIII, FIX and FVIIa and to give an outline of the use of pharmacokinetics to optimise the treatment of patients with haemophilia. The pharmacokinetics of FVIII are well characterised. The systemic clearance (CL) of FVIII is largely determined by the plasma level of von Willebrand factor (vWF), which protects FVIII from degradation. Typical average CL in patients with normal vWF levels is 3 ml/h/kg, with an apparent volume of distribution at steady state (Vss) that slightly exceeds the plasma volume of the patient, and the average elimination half-life (t1/2) is around 14 hours. There are still some discrepancies in the literature on the pharmacokinetics of FIX. The average CL of plasma-derived FIX seems to be 4 ml/h/kg, the Vss is 3 to 4 times the plasma volume and the elimination t1/2 often exceeds 30 hours. FVIIa has a much higher CL (average of 33 ml/h/kg), and a short terminal t1/2 (at 2 to 3 hours). The Vss is 2 to 3 times the plasma volume. Since the therapeutic levels of coagulation factors are well defined in most clinical situations, applied pharmacokinetics is an excellent tool to optimise therapy. Individual tailoring of administration in prophylaxis has been shown to considerably increase the cost effectiveness of the treatment. Dosage regimens for the treatment of bleeding episodes or for haemostasis during surgery are also designed using pharmacokinetic data, and the advantages of using a constant infusion instead of repeated bolus doses have been explored. The influence of antibodies (inhibitors) on the pharmacokinetics of FVIII and FIX is in part understood, and the doses of coagulation factor needed to treat a patient can tentatively be calculated from the antibody titre. In conclusion, therapeutic monitoring of coagulation factor levels and the use of clinical pharmacokinetics to aid therapy are well established in the treatment of patients with haemophilia.}},
  author       = {{Björkman, S and Berntorp, Erik}},
  issn         = {{0312-5963}},
  language     = {{eng}},
  number       = {{11}},
  pages        = {{815--823}},
  publisher    = {{Adis International}},
  series       = {{Clinical Pharmacokinetics}},
  title        = {{Pharmacokinetics of coagulation factors: clinical relevance for patients with haemophilia}},
  volume       = {{40}},
  year         = {{2001}},
}