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Abstract  - Sequential decoding for the Gilbert- 
Elliott channel is considered. The decoding proce- 
dure capacity C;; is defined to be the supremum of the 
rates for which there exists a code that gives arbi- 
trarily small decoding error probability. For different 
assumptions of the decoder’s knowledge of the chan- 
nel states expressions for C;; are derived. 

I. INTROCUCTION 
Assume that a tree code is used together with sequential 

decoding to  communicate over the Gilbert-Elliott channel. Let 
P(E) denote the average probability of decoding error over the 
ensemble of random, infinite depth tree codes. In this paper 
we address the question: “When will P(E) -+ O ? ” .  

Consider the Gilbert-Elliott channel model and denote the 
error probabilities in the Good and Bad states by and eB, 

respectively. Furthermore, let pG and Ps denote the fraction 
of time spent in the Good and Bad states, respectively. 

11. DECODING PROCEDURE CAPACITY 
Let us define the decoding procedure assumptions,  D .  The 

optimistic assumption, D = 0 ,  assumes that the decoder has a 
complete knowledge of the channel state, which could be given 
by a genie. The  pessimistic assumption, D = p ,  assumes that 
the decoder neither is given any channel state information nor 
tries to  make any estimate of it. Given the decoding procedure 
assumption D and the use of the Gilbert-Elliott channel, let 
Cb denote the supremum of the rates for which we can guar- 
antee that there exists a code that gives an arbitrarily small 
decoding error probability P(E). We will call C;; the decoding 
procedure capacity. 

We have proved that  the decoding procedure capacities are 
given by 

and 

where b and g denote the transition probabilities from Good 
to  Bad and from Bad to  Good, respectively, in the channel 
model. 
Theorem 1 Given  the  Gilbert-Elliott channel  and the  decod- 
ing procedure assumptions,  the  use  of a rate R random, inji- 
ni te  depth tree code with the  stack decoder, t h e n  for a n y  rate 
R < G and 7 E Z?, 

where N i s  the  number  of computat ions i n  a n  incorrect subtree. 
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When we wish to transmit over an ordinary Discrete Memory- 
less Channel at  rates (above Rcomp and) close to  its capacity, 
it is sufficient to  allow the number of computations of sequen- 
tial decoding to  go to  infinity to  be able to  guarantee that 
P ( € )  can be chosen arbitrarily small. We will show that this 
is also sufficient for transmission close to rates G ,  which is 
the motivation why we call these rates “decoding procedure 
capacities”. 

Theorem 2 G i v e n  the  assumptions of Theorem I ,  t h e n  for  
any  rate R < C& the  average probability of decoding error 

if the  number  of computat ions,  N ,  i s  allowed t o  go to CO. 

Since the important condition in Theorem 2 is that  R < G, it 
is clear that  the theorem’s statement, given the decoding pro- 
cedure assumptions, is equivalent t o  stating that  the maximal 
transmission rate over the Gilbert-Elliott channel is a t  least 
the rate G. 

In the pessimistic case we can interpret this as follows. For 
arbitrarily small P(E),  there exists a code such that the trans- 
mission rate will be (at  least) C g ,  even  without  any knowledge 
of the channel state or any attempt to  estimate it. 

111. CHANNEL CAPACITY 
A common method to  lowerbound Ct.E is to  calculate 

C&(e), where e = P, . + I& . eB,  but i t  turns out that  C;, 
is a better lower bound for channels with a stable behaviour. 
The optimistic case helps us to  find a stronger result: 

Theorem 3 Given  that  the receiver h a s  a complete channel  
s tate  knowledge, t h e n  the  channel  capacity for the  Gilbert- 
Elliott channel  @E i s  equal t o  

G = CO 

From the proof of Theorem 3 follows immediately 

Corollary 4 Given  that  both transmit ter  and receiver have 
complete knowledge of the  channel  s tate  sequence then  for the  
channel  capacity of the  Gilbert-Elliott channel  C&t we have 

It  should be noted that the capacities e$ and EE, in con- 
tradiction to  what is the case for G, are parameters purely 
dependent of the channel’s properties and that  nothing is as- 
sumed about the decoding method. In the derivations of 
we assume sequential decoding, but by deriving them we show 
that they are achievable rates as such, given the decoding pro- 
cedure assumptions. 
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