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Multistream Faster than Nyquist Signaling
Fredrik Rusek and John B. Anderson

Electrical and Information Technology Dept. and
Swedish Strategic Center for High Speed Wireless Communication

Lund University, Box 118, 221 00 Lund, Sweden

Abstract— We extend Mazo’s concept of faster-than-Nyquist
(FTN) signaling to pulse trains that modulate a bank of
subcarriers, a method called two dimensional FTN signaling.
The signal processing is similar to orthogonal frequency division
multiplex (OFDM) transmission but the subchannels are not
orthogonal. Despite nonorthogonal pulses and subcarriers, the
method achieves the isolated-pulse error performance; it does so
in as little as half the bandwidth of ordinary OFDM. Euclidean
distance properties are investigated for schemes based on
several basic pulses. The best have Gaussian shape. An efficient
distance calculation is given. Concatenations of ordinary codes
and FTN are introduced. The combination achieves the outer
code gain in as little as half the bandwidth. Receivers must work
in two dimensions, and several iterative designs are proposed
for FTN with outer convolutional coding.

I. INTRODUCTION

Consider baseband signals of the form

s(t) =
�

2Es/T
�

n

anh(t − nT ), (1)

in which an are data values over an M -ary alphabet and
h(t) is a unit-energy baseband pulse. This simple form
underlies QAM, TCM, and the subcarriers in orthogonal
frequency division multiplex (OFDM), as well as many
other transmission systems. In these schemes, h(t) is a
T -orthogonal pulse, meaning that the correlation

�
h(t −

nT )h∗(t − mT )dt is zero, m �= n. In 1975 Mazo [1]
pointed out that binary sinc(t/T ) pulses in (1) could be
sent every TΔ seconds, TΔ < T , without loss in asymptotic
error probability. This he called faster than Nyquist (FTN)
signaling, because the pulses appear faster than allowed by
Nyquist’s limit for orthogonal pulses. FTN signaling has
since been generalized in a number of ways.

This paper extends the FTN concept to the frequency
dimension. This extension to two dimensions opens up a
number of attractive possibilities. Many signals of type (1)
are stacked in frequency through modulation by a set of
carriers at frequencies f0 + {fk} to form the in-phase and
quadrature (I/Q) signal given by the real part of

s(t) =

�
2Es

T

K−1�
k=0

N−1�
n=0

[aI
k,n+jaQ

k,n]h(t−nT ) ej2π(f0+fk)t.

(2)
This is a superposition of 2K linear carrier modulations, and
it carries 2NK data values. The K×N matrix A = {ak,n}
is called the data matrix and consists of the complex data
values ak,n = aI

k,n + jaQ
k,n. The K rows in this matrix

correspond to subcarriers, and the N columns to pulse
positions. If fk = kfΔ, k = 0, 1, . . . K−1 and fΔ is equal
twice the single-sided bandwidth of h(t), the 2K carrier
signals are orthogonal; if h(t) is T -orthogonal, all NK
pulses are mutually orthogonal. In OFDM, h is ordinarily
the width-T square pulse, the subcarriers are 1/T -spaced

frequency orthogonal, and all pulses are again mutually
orthogonal.

The signal design in the sinc and OFDM cases is thus
based on orthogonality. According to theory, there exist
about 2WT orthogonal signals in W positive Hertz and T

seconds. Data values that modulate the amplitude of each
can be maximum-likelihood detected independently, and
therefore about 2WT symbols can be transmitted this way.
Take for example h(t) =

�
1/T sinc(t/T ), and measure

time and bandwidth of (2) by some reasonable method
(such as 99% power bandwidth). Then as K and N grow,
T/N → T , W = KfΔ = K/T , and the product 2WT

tends in ratio to 2(K/T )(NT ) = 2KN ; thus Eq. (2) carries
as many data values for large NK as any scheme based on
orthogonality can carry. A similar outcome occurs when h is
a root RC pulse. For a given number of symbols carried by
(2), T may be varied, which trades off W against T. N may
also be traded against K. The time–bandwidth product is
unaffected, and (2) always carries about twice WT symbols.

If the aim is to achieve the error rate of a stacked
orthogonal-signal system (2), without necessarily using or-
thogonal signals, the story is more complex, and more can
be achieved. By error rate is meant the error probability
of the maximum likelihood sequence estimation (MLSE)
receiver when h is employed in (1) with additive white
Gaussian noise (AWGN) of density N0/2 in the channel.
As the signal-to-noise ratio Eb/N0 grows, the probability
of incorrect detection of an an is asymptotically Pe ∼
Q(
�

d2
minEb/N0), where dmin is the minimum distance of

the set of signals and dmin ≤ dMF. Here Eb = Es/ log2 M ,
Es is the average symbol energy, and dMF is the matched-
filter bound distance for the data alphabet. dMF measures
the performance of simple orthogonal-pulse signaling with
the same data values. The paper will concentrate on the
binary case, for which d2

MF = 2, so the target orthogonal-
pulse error rate is Q(

�
2Eb/N0). If the K I/Q signals in

(2) do not overlap in frequency, the same asymptotic error
rate applies there.

Achieving more at the same Eb and error probability
means that FTN signals need to consume less bandwidth.
We need to define it carefully. With independent and iden-
tically distributed (IID) data symbols the power spectral
density (PSD) of the kth subcarrier Sk(f) is proportional to
|H(f−kfΔ−f0)|2+|H(f+kfΔ+f0)|2, k = 0, . . . , K−1,
where H(f) is the Fourier transform of h(t). With K
subcarriers, the total PSD satisfies (take positive f only)

S(f) ∝
K−1�
k=0

Sk(f)

=
K−1�
k=0

|H(f−kfΔ−f0)|2, f0 � KfΔ. (3)

The normalized time–bandwidth product (NTB) of this
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transmission is

NTB � WTΔ

2RK
Hz-s/bit, (4)

where W is a measure of the positive frequency bandwidth
of the entire Eq. (3), TΔ ≤ T is the actual symbol time,
and R is the bits carried by each subcarrier symbol. Each
subcarrier carries 2R/TΔ bit/s, counting I and Q. For the
single-subcarrier Eq. (1), W is the positive baseband band-
width of just H(f). The NTB measures time–bandwidth on
a per data bit basis.1 Simple time scaling of s(t) does not
affect the NTB, since the spectrum is then scaled by the
inverse factor.

As TΔ drops for the same h, the FTN signal be-
comes “faster”, and its NTB drops. In the baseband single-
subcarrier case, the total PSD is just |H(f)|2 and W
measures its width, and as TΔ drops, the symbol-normalized
spectrum and the NTB are scaled down. In this view the
pulses come faster. It is equivalent to fix T and scale the
pulse h wider by the factor T/TΔ; this reduces the PSD
and the NTB narrows in an identical way. In either case,
the time–bandwidth per data bit is less. With K subcarriers
the calculation is more complicated but the outcome is the
same.

Mazo’s paper[1] envisioned one subcarrier and binary
sinc( ) pulses and claimed the surprising result that d2

min

is in fact d2
MF = 2 for TΔ > .802T . No asymptotic error

rate is lost by increasing the symbol rate 24.7% above the
Nyquist limit, yet the NTB has dropped from 1 Hz-s/bit
to 0.802. A full MLSE detection is required in principle,
which compares all N -symbol signals to the full noisy
received signal. The reason for this behavior can be seen
by analyzing the error events that can occur (as in Section
II). As TΔ declines and the pulse rate grows, another error
event eventually has a distance less than the d2 = 2
antipodal event that leads to dMF. But this does not occur
immediately.

Later research has shown that a similar phenomenon
occurs with other orthogonal h(t) than the sinc pulse [2],
[3]. For the 30% root RC pulse for example, TΔ can be
as small as 0.703T . There is a least TΔ as well for pulses
such as the Gaussian, that are not orthogonal for any T .
Moreover, such a limit appears with nonbinary transmission,
with precoding, and with linear coded modulation based on
heavy filtering [3], [4]. All these cases can be summed up
as follows: The error performance of the linear transmission
of form (1) remains unchanged under downward scaling of
the normalized spectrum shape until a surprisingly narrow
bandwidth, after which it suddenly drops. This occurs
despite escalating ISI. We call this threshold bandwidth the
Mazo limit. Its significance is that it is pointless to transmit
in a wider bandwidth in a linear channel with AWGN,
if sufficient receiver processing is available. We will see
in this paper that a Mazo phenomenon applies as well to
concatenations of traditional coding with FTN modulators
and to multicarrier FTN.

We introduced the idea of multistream FTN (MFTN)
signaling in [5]. It is useful to think of it as two-dimensional
FTN signaling because the symbols can be associated with

1Others have called the NTB the normalized bandwidth or the
bit normalized bandwidth; it could as well be called the bandwidth
normalized bit time. We prefer the neutral term time–bandwidth
product.

points in a lattice spaced every fΔ and TΔ. This is illustrated
in Fig. 1. Pulses are “hung” on each point. The signaling
is not two-dimensional in the sense of coding over the
magnetic domains on a multitrack tape, although receivers
have some similarity. Reference [5] gave examples that
simultaneous frequency and time squeezing can indeed
increase the symbols transmitted in a given time–bandwidth
at the same Pe. Neither compression alone can achieve the
same increase.

TΔ

fΔ

f

t

Fig. 1. Two dimensional Mazo signaling, in time and frequency.
Dots represent symbols separated by fΔ and TΔ.

What total time–bandwidth product is occupied by the
transmission? The question may be approached in several
ways. Spectral and temporal sidelobes interfere with ad-
jacent users of frequency and time, and contribute to the
signal’s occupancy. For a moderate NK product, a packet of
say 100–10000 bits, the sidelobes make a significant contri-
bution. In a companion paper [6] we treat this contribution,
seek to minimize it, and find rather different outcomes than
given here. In this paper we let N and K grow large, so
that the sidelobes are insignificant. The lattice area is about
NKfΔTΔ Hz-s and the NTB tends to fΔTΔ Hz-s/bit. The
ratio of N and K can be changed at will so long as they
have the same product. The orthogonal binary sinc(t/T )
pulse case has fΔ = 1/T and TΔ = T , and the NTB is
fΔTΔ = 1 Hz-s/bit. This provides a useful benchmark for
other pulses and systems. Since the value of T does not
change the NTB, we henceforth take T = 1.

When fΔ is less than the subcarrier bandwidth, the signal
interrelations that produce dmin work in new ways and the
distance structure is time varying. Analytical results are
available only in special cases [15], [16]. Finding dmin in
this new situation is challenging but possible. The subject
of minimum distance is taken up in Section II. Distance
studies with various pulses h(t) show that d2

min = 2 can
occur at 0.5 Hz-s/bit, i.e., half the sinc benchmark. The
section also gives a number of properties. Euclidean distance
computations appear in Appendix 1. An advanced algorithm
to find minimum distance appears in the Appendix 2.

Section III proposes several MFTN receiver designs
and introduces concatenation of convolutional codes with
MFTN. An iterated receiver works particularly well here,
and these concatenations form a successful practical appli-
cation of MFTN.
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II. SIGNALS, PROPERTIES AND MINIMUM DISTANCE

The real part of Eq. (2) is�
2Es/T [I(t) cos 2πf0t − Q(t) sin 2πf0t]

where the in-phase and quadrature signals I(t) and Q(t)
are

I(t) =

K−1�
k=0

N−1�
n=0

�
aI

k,nh(t − nT ) cos 2πfkt

−aQ
k,nh(t − nT ) sin 2πfkt

�
Q(t) =

K−1�
k=0

N−1�
n=0

�
aQ

k,nh(t − nT ) cos 2πfkt

+aI
k,nh(t − nT ) sin 2πfkt

�
. (5)

The signals cos 2πfkt and sin 2πfkt are the subcarriers.
They exist only mathematically; the physical modulation
carriers are cos 2π(f0 +fk)t and sin 2π(f0 +fk)t, for k =
0, . . . , K−1. Figure 2 shows example 2-carrier signals with
TΔ = .8 and fΔ = .625, in which aI

0,0 = aQ
0,5 = 1 for

carrier 0 and aI
1,3 = aQ

1,8 = 1 for carrier 1, with all other
symbols set to zero. The carriers lie at f0 and f0 + .625
Hz. Arrows show the location of the 1-symbols, and I0, I1

and Q0, Q1 are the respective carriers’ I and Q signals. The
subcarrier cos 2πf1t is shown dashed for reference. Note
that I1 symbols have an effect on Q1 and vice versa.
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I
0
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1

I
tot

Fig. 2. Upper three: Component and total in-phase signals
for 2-carrier MFTN example with fΔ = .8 and TΔ = .625.
Bottom three: Component and total quadrature signals. Time scale
in multiples of TΔ.

The normalized Euclidean distance between two signals
s(1)(t) and s(2)(t) of form (2) is

d2 =

�
|s(1)(t) − s(2)(t)|2dt

2Eb
. (6)

Because of the summations in (2), only the difference
between the symbol streams matters and d2 becomes

1

2Eb

� �����
K−1�
k=0

N−1�
n=0

Δak,nh(t − nT ) ej2π(f0+fk)t

�����
2

dt.

(7)
Here Δak,n are the elements of the complex symbol dif-
ference matrix

ΔA =

	

 Δa0,0 Δa0,1 . . . Δa0,N−1

. . . . . .
ΔaK−1,0 ΔaK−1,1 . . . ΔaK−1,N−1

�
� .

Equation (7) can as well be written�
|ΔI(t) − ΔQ(t)|2dt (8)

as f0 → ∞, in which ΔI(t) and ΔQ(t) are as in (5) with
ΔA instead of A. For binary signaling the elements in ΔA
take values in {±2 ± 2j,±2,±2j, 0}.

An error event is a region of nonzero difference compo-
nents that begins at some position (n, k), which we may
as well take as (0, 0). Without loss of generality, we can
restrict Δa0,0 to {2, 2 + 2j}. The minimum distance dmin

of a signal set is the minimum of (7) over all such events,
and an event leading to dmin is called a critical event.
Since there are very many error events, finding dmin is
difficult, but it is possible to find reliable estimates (i.e., tight
overbounds) by searching over limited sets of events. In this
paper the critical error events are typically of size 3× 3 or
smaller. Distance may be computed by direct integration of
the difference signal, but a much more efficient method is
based on autocorrelations of h(t); this is given in Appendix
1.

An important property of MFTN distance is that it
depends on the start time of the event. That is, for a given
error event ΔA whose first column corresponds to pulses
centered at t = 0, the distance will change if the event starts
with pulses centered at t = nTΔ. The fundamental reason
is that the pulse rate is not in general synchronized with
the subcarrier frequencies; it is mathematically seen in the
derivations in Appendix 1. An example of the phenomena
appears in Figure 3 for a 30% root RC pulse, TΔ = .7,
fΔ = .8, and the event

ΔA =



2 −2 + 2j −2j
−2 2 + 2j −2j

�
. (9)

The figure plots square distance against the event start time
t0. Since the plot repeats every 1/fΔ = 1.25 s, the time
axis can be taken as t0 mod 1/fΔ. Dots show this event’s
distance when it starts at times t0 = 0, .8, 1.6, . . ., which
lead mod 1.25 to all the multiples of .05. If 1/fΔTΔ is not a
rational number, then in principle starts at all t0 mod 1/fΔ

in [0, 1/fΔ) are possible, and the worst case distance is the
minimum, which is 1.13 at start t0 mod 1/fΔ ≈ .24.

Synchronous MFTN. When finitely many modulo start
times can occur, the multistream FTN is synchronous. It
is easy to see that when fΔTΔ = i/�, i and � positive
integers without a common factor, then the MFTN signals
are synchronous and the distances occur at multiples of 1/�.
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The worst-case distance is the minimum of the allowed time
points. Synchronism can thus lead to a better distance, but
in reality there is little gain unless i and � are very small
integers. In the figure, with 25 points, there is virtually
no distance gain. But the MFTN case shown in Figure 2
is a synchronous one with fΔTΔ = 1/2; the subcarrier
structure repeats precisely every 2TΔ. With error event (9),
the distance from start time t0 = TΔ or 2TΔ are both 8.72.
These avoid the worst-case start time, which is 0.25, with
the much poorer distance 0.77. (However, there exist other
error events with distance less than 2, so this MFTN is
beyond the Mazo limit). Synchronism can thus be of benefit
when the MFTN parameters allow it, but only a few cases
of synchronous FTN are worth reporting. We will ordinarily
take distance to be the minimum of the continuous distance
versus t0 curve.

0  0.25 0.5 0.75 1.00 1.25
0 

4 

8 

12

16

20
d2

t
0
 mod 1/ fΔ

min =
1.13

Fig. 3. Distance versus event start time t0 modulo 1/fΔ , for
fΔ = .8 and TΔ = .7 with error event (9).

When not more than two carriers overlap in spectrum,
the curve in Figure 3 can be shown to be a sinusoid, and
its minimum can be computed easily from any three points.
Another simplifying property is that very few error events
lead to a distance near dmin. As well, groups of symmetric
events, typically 4–8 in number, have identical distance for
the entire range of TΔ and fΔ. These we call event families.
The results presented in this paper in fact stem from only
20 families.

Delayed Pulses. Subjecting subcarriers to different delays
has the potential to improve minimum distance because
pulses can come into more favorable alignments with each
other and with the sines and cosines in the I and Q signals
in (5). Many ways to execute the delays can be imagined.
A simple but effective way is to delay the I and Q pulses
h(t−nTΔ) in carriers 0, 1, . . . , K−1 by δ0, δ1, . . . , δK−1,
where each δ satisfies 0 ≤ δ < TΔ. Delaying all K
carrier pulses by the same δ is the same as a time shift
to the subcarrier system; this can prevent a subcarrier in
(2) from passing through zero at the moment when a
pulse is largest, which can severely reduce distance. Pulse
trains k = 0, 1, . . . can be delayed by linearly growing
amounts, e.g., δ0, δ1, . . . = (0, .2, .4, . . .)TΔ. A particularly
successful scheme is delays of the form .5, 0, .5, 0, . . . times
TΔ. Instead of pulse delays, schemes can be based on
delaying the subcarriers by fractions of their own period
1/fΔ.

The Mazo Limit for Root RC and Gaussian Pulses.
Figures 4 and 5 plot the outcome of a search for non-
synchronous combinations of fΔ and TΔ that have least

product. Dotted lines show contours of constant fΔTΔ

product. Figure 4 plots the case for the Gaussian pulse
h(t) =

�
1/2πσ2 exp(−t2/2σ2), normalized, with σ2 =

.399.2 The minimum distance searches here are over all
start times in the error events. Overlapping curves show
the trajectory for each critical event family; the “northeast”-
most of all curves is the Mazo limit. Consider the trajectory
for one critical error sequence, with distance d2. As TΔ

drops, the fΔ needed to maintain d2 = 2 rises, creating,
typically, a convex-up fΔ, TΔ relationship. Eventually, time
compression alone prevents d2 = 2; no fΔ allows it, and
the result is a horizontal section at the lower right end of the
convex section (this is most visible in Fig. 5). At the upper
left of a convex section, TΔ is large and it can happen that
no fΔ leads to d2 < 2. The section simply stops at some
f�
Δ, T �

Δ (square blocks mark two such points in Fig. 4).
If this section is part of the ultimate Mazo limit, then at
TΔ = T �

Δ the Mazo limit must move horizontally left to
another event’s convex section.

Note that h(t) here is not orthogonal for any T . The
Gauss pulse has important properties when simultaneous
time and frequency side lobes are important [6].

0.55 0.65 0.75 0.85
0.65

0.75

0.85

0.95

T
Δ

f
Δ

Gauss

.5
.6.52 .54

Fig. 4. Estimated position of the two-dimensional Mazo limit
for non-synchronous binary Gaussian pulse signaling. Dashed line
shows limit with alternate pulse trains delayed 0.5 symbol. Each of
the five component curves here represents an event family. Dotted
curves are contours of constant fΔTΔ.

Figure 5 plots the non-synchronous Mazo limit for 10
and 30% root RC pulses, plus the 10% case when alternate
pulse trains are delayed by TΔ/2 (dashed). The searches
are again over all start times in the error events. It can be
seen that the least product for 30% is about 0.60, at (fΔ ≈
.67, TΔ ≈ .88); for 10% pulses this improves to product
0.556 at (fΔ = .660, TΔ = .843). The delays improve
the 10% case to 0.534 at (fΔ ≈ .66, TΔ ≈ .80); the 30%
pulse is similarly improved by delays. These products are
excellent but we have found a few synchronous 10% cases,
with TΔ in the range 0.78–0.9, for which fΔTΔ = 1/2.
This is a doubling of the spectral efficiency of the sinc
benchmark and OFDM.

The estimated minimum distance of all combinations is
2. Searches are generally performed with the method in
Appendix 2 and are over error events out to size 4 × 7

2This is the Gaussian pulse that has itself as transform. A new
pulse begins each TΔ as always.
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0.55 0.6 0.65 0.7 0.75
0.75

0.8

0.85

0.9

0.95

1
T

Δ

f
Δ

.5

.6

.52 .54

rtRC30%
10%

Fig. 5. Estimated position of the two-dimensional Mazo limit for
non-synchronous binary root RC signaling with excess bandwidth
10 and 30%. Dashed line shows 10% with alternate pulse trains
delayed 0.5 symbol. Dotted curves are contours of constant fΔTΔ.

and 7×4 carriers × pulses.3 The critical events that lead to
the points in the figures are much smaller, almost entirely
of size 3 × 3 or 2 × 4, 2 × 3 or the reverses. We can thus
have some confidence that the minimum distance estimate is
tight. Each critical event leads to a section of the Mazo limit.
Sketching the limit consists of searching over hundreds of
millions of events at some (fΔ, TΔ), finding a critical event
for it, drawing a (fΔ, TΔ) section that stems from the event,
and then repeating the process.

III. DETECTION OF CONVOLUTIONALLY ENCODED

SYSTEMS

Detection of this type of signaling is a difficult task.
A trellis description of the system consists of 4KL states,
where L is the support of the model of the FTN-induced
intersymbol interference (ISI). Clearly, reduced complexity
methods have to be used, and in order to avoid simply
trading the bandwidth reduction for a higher symbol en-
ergy, the receiver must achieve essentially the full MLSE
performance. Reduced complexity detection methods appear
in [8], [9], [10], [17], but these are all operating too far
from MLSE performance to fully exploit the bandwidth
inmprovement. In [5] a simple M -algorithm is considered,
but it turns out that the method only works for 2–4 sub-
carriers. In [14] a more sophisticated iterative detector is
proposed. The detector’s BER at high signal to noise ratio
closely follows the basic reference Pe ∼ Q(

�
d2
minEb/N0).

Thus the distance computations from Section II are verified.
The complexity, however, is still significant; the detector
consists of two steps, each involving 6–8 iterations. In brief,
detection is possible, but with high complexity.

If an outer code is concatenated via an interleaver to
the MFTN system, detection is much simpler and a more
practical MFTN system is the outcome. We will now focus
on this case and take the outer code as a rate 1/2 feedforward
convolutional code; such codes at low memory have 4–5
dB coding gain. Just as an uncoded system from Section
II was able to preserve its BER down to a certain critical

3The method in Appendix 2 was verified where possible with a
brute force method. Gauss searches require the brute force search
because more than two carriers contribute to the spectrum; 10–15
start times were used.

compression product fΔTΔ, a concatenated system can
preserve the coding gain of the outer code down to another
product. It will turn out that this critical product is in fact
smaller than the one for an uncoded system. Thus, the
potential of MFTN increases for concatenated systems, and
this is a major reason to focus on them. Concatenated coding
with a two dimensional ISI channel has been investigated
e.g. in [11], [18], [19], but not with MFTN-induced ISI.

The system model consists of the sequence: Convolu-
tional Code → Interleaver → Binary to K Stream Mapper
→ MFTN Modulator. The memory of the convolutional
code is ν. A sequence of 10000−ν IID information bits are
first convolutionally encoded; this produces a codeword v
of length 20000, which is randomly interleaved to produce
v′. Mapping from v

′
l , v

′
l+1 to one symbol ak,n ∈ {±1± j}

follows, with k and n found from l by some predefined pat-
tern. The pattern is not of interest because of the interleaver,
and will not be discussed further. The transmitted signal s(t)
is formed according to (2) from the symbol sequence a; we
will use 20 subcarriers, i.e. K = 20 and thus N = 500. We
have also performed tests with fewer subcarriers. When the
number increases, the BER generally degrades. But at 5–8
subcarriers a saturation of the BER occurs, that is, the BER
for K = 10 is virtually identical to the BER for K = 20
presented here. We are therefore confident that the BER
does not change if many subcarriers are used, e.g. K = 64
or 256.

Due to the interleaver, straightforward iterative detection
is possible, and a block diagram is given in Figure 6.
Two soft-input soft-output detectors are needed, one for
the convolutional encoder and one for the MFTN signaling
system, which together with the mapper is considered as
an inner encoder. Hereafter, the detector for the MFTN
system is referred to as a detector and the outer detector
as a decoder. A standard full BCJR algorithm will be
used as decoder for the convolutional code, but the MFTN
detector is not standard. If optimum detection is desired,
the 4LK state complexity still comes about, and here also
a reduced complexity method is needed. The difference
from the uncoded case is that the output from the reduced
complexity detector there is the final result, while it feeds
an iterative process in concatenated systems. The outer
and the inner detectors jointly work their way to a near-
optimal result; the fact that the inner detector is not full
complexity more or less only slows down the convergence
speed. The ultimate compression product limits, however,
will be somewhat worse due to the reduced complexity.

We now turn to the structure of the MFTN detector. The
baseband representation of (2) is

sbb(t) =
�

n

�
k

ak,nh(t − nTΔ)ej2πtfk , (10)

The detector encounters a noisy signal r(t) = sbb(t)+n(t),
where n(t) is complex-valued baseband white Gaussian
noise. The first step in the receiver is to project r(t) onto
the basis functions h(t − nTΔ)ej2πtfk , i.e. to compute

Rk,n =

� ∞

−∞
r(t)h∗(t − nTΔ)e−j2πtfkdt. (11)

The elements Rk,n form the matrix R, which can in practice
be efficiently implemented by a bank of matched filters with
rate-1/TΔ sampling. The matrix R comprises a sufficient
statistic for estimating {ak,n}, and in the sequel R is simply
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Fig. 6. Block diagram for iterative detection of encoded MFTN. r(t) is the received signal and ‘c.c.-BCJR’ denotes a BCJR for the
convolutional code.

called the received signal. We may write R = S +N . The
sent part S of R equals

Sk,n =

� �
m,l

al,mh(t−mTΔ)ej2πt(l−k)fΔh∗(t−nTΔ) dt.

(12)
Further manipulations of (12) are made in Appendix 1. The
noise matrix N is given by

Nk,n =

� ∞

−∞
n(t)h∗(t − nTΔ)e−j2πtfkdt. (13)

The variables Nk,n are not white.
The goal of the detector is to maximize the a posteriori

probability (APP) of an individual bit, i.e.

â
I/Q
k,n = arg max

a∈{−1,1}
Pr
�
â

I/Q
k,n = a |R

�
. (14)

(Superscript I/Q means “I respectively Q”; when this su-
perscript is omitted we intend a complex a). Instead of
working with probabilities it is convenient to work with
log-likelihood ratios (LLRs)

L
�
a

I/Q
k,n

�
= log

Pr
�

a
I/Q
k,n = 1

�
Pr
�

a
I/Q
k,n = −1

� . (15)

From L(a
I/Q
k,n ) it is straightforward to find the LLRs L(vl).

Since the data symbols are independent we can as usual
express the conditional LLR L(a

I/Q
k,n |R) as

L
�
a

I/Q
k,n |R

�
= Lext

�
a

I/Q
k,n |R

�
+ L

�
a

I/Q
k,n

�
(16)

where Lext(a
I/Q
k,n |R) denotes the extrinsic information

about a
I/Q
k,n contained in R.

The true APPs of the data bits can be found by a
multidimensional BCJR algorithm, but its complexity grows
exponentially with K, and the APPs have to be approxi-
mated by simpler means. The detector will thus consider
only a fraction of the symbols at once; the rest will
act as noise. The symbols {ak,n} are grouped into two
sets, Adec and Aint; symbols in Adec are the ones that
we try to decode at the moment and those in Aint act
as noise. The transmitted baseband signal sbb(t) can be
expressed as sbb(t) = sdec(t) + sint(t), where sdec(t)
and sint(t) are the contributions from symbols in Adec and
Aint, respectively. The detector will be based on successive
interference cancellation [13]; when decoding the signal
sdec(t) a soft estimate ŝint(t) of sint(t) is formed based
on soft information about all symbols in Aint:

ŝint(t) =
�
B

b
I/Q
k,n h(t − nTΔ) ej2πtfk , (17)

where B = {(k, n) : ak,n ∈ Aint} and b
I/Q
k,n are the soft

estimates of a
I/Q
k,n defined by

b
I/Q
k,n = Pr

�
a

I/Q
k,n = 1

�
− Pr

�
a

I/Q
k,n = −1

�
= tanh



1

2
Lext

�
a

I/Q
k,n |R

��
.

Then ŝint(t) is projected onto the basis functions, with the
projection denoted Ŝ(Aint). Finally, the tentative received
signal when detecting symbols in Adec is formed as

R̂(Adec) = R − Ŝ(Aint). (18)

Together with the extrinsic information
Lext(a

I/Q
k,n |R̂(Adec)) about the symbols a

I/Q
k,n in Adec,

the signal R̂(Adec) is fed to some detection algorithm.
If Adec = {ak,n,∀n, k} and Aint = ∅ there is no com-

plexity reduction at all. We will only consider the partition
Adec = {ak′,n,∀n}; this is all symbols on carrier k′. For
this partition, the signal sdec(t) can be viewed as a single
carrier signal, based on a real-valued pulse shape h(t). It
then follows that its real- and complex-valued parts can
be detected independently; it is thus a matter of detecting
binary symbols through an ISI channel in AWGN. If the
detector takes L ISI taps as being significant, the complexity
of a full BCJR is 2L. In this paper the full BCJR will be
used, with L ≤ 5, and thus there are at most 32 states in the
BCJR detector. One technical detail remains. The classical
BCJR requires white noise N , which is not the case here.
Since h(t) has long duration, in theory infinite, whitening of
the outputs from the sampled matched filters is a difficult
task. However, an equivalent algorithm to the BCJR that
operates directly on the samples of the matched filter output
has been derived in [12]. This algorithm assumes colored
noise and is not a true BCJR, but it has the same output
as a true BCJR acting on a whitened version of R, and we
still refer to it as a BCJR.

The innermost part of Figure 6 can now be drawn. It is
shown for subcarrier k′ in Figure 7. Some words on the
partition Adec = {ak′,n,∀n} are needed. If TΔ = T , there
is no ISI, and the BCJR in Figure 7 becomes meaningless,
since there is no dependence along each subchannel in the
signal R̂(Adec). If TΔ is close to 1, but fΔ 
 1, there is
some ISI, but the ICI is much stronger. In that case it makes
more sense to use the partition Adec = {ak,n′ ,∀k}, that is,
to attack the ICI only. For fΔ, TΔ of roughly the same
size, hybrid methods can be used; some iterations can use
Adec = {ak′,n,∀n} and some can use Adec = {ak,n′ ,∀k}.
Brevity prevents pursuing this idea. The partition Adec =
{ak′,n,∀n} turns out to work quite well in this paper.

Let us turn to actual receiver tests. The outer code was
taken as the (7,5) convolutional code, and h(t) was a 30%
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Fig. 7. MFTN detector for subcarrier k′.

root RC pulse. The number of receiver iterations is limited
to 7. In each receiver test, 1000 blocks of 10000 information
bits have been detected.

In Figure 8, three parameter combinations are tested,
fΔ = 1.174, TΔ = .46 (product .54), fΔ = .5682, TΔ =
.88 (product .5) and fΔ = .75, TΔ = .60, (product .45).
Also shown is the performance of the convolutional code
over an ISI-free channel. As seen from the figure, at high
Eb/N0 the encoded MFTN signaling systems are in fact
able to retain the full coding gain of the outer code, but
at a much narrower bandwidth. A similar phenomenon is
often observed in turbo equalization. If the compression is
too heavy, causing too severe ISI/ICI, the system is bounded
away from the outer code performance; but eventually it will
reach it if TΔ is large enough. From the figure it is seen

0 1 2 3 4 5 6

10
−4

10
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10
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10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

(7,5) code, no ISI

TΔ=.46, fΔ=1.174

TΔ=.88, fΔ=.5682

TΔ=.6, fΔ=.75 Full gain
region

Fig. 8. Receiver tests of (7,5) encoded MFTN.

that the system with the smallest product, fΔTΔ = .45, did
not converge to the outer code performance. This may be a
result of badly chosen parameters TΔ and fΔ rather than a
too small product fΔTΔ.

In order to see which systems will converge at practical
Eb/N0, there exists a strong tool, Extrinsic Information
Transfer (EXIT) charts. Although their validity is open
for discussion and they are not perfect in the case of
finite block lengths and non-ideal interleavers, they quickly
provide insight into the iterative convergence mechanism.
In our case, the noise is in fact not Gaussian because of
the interference from the non-ideal Ŝ(Aint), and this will
slightly degrade the EXIT charts. We have not used EXIT
charts when establishing which combinations of fΔ and TΔ

result in the full coding gain; these are based solely on
receiver tests.

We will say full coding gain is achieved if the encoded
MFTN system requires less than 0.5 dB more power then

the outer code alone to achieve BER 5×10−5. The definition
is illustrated in Figure 8; encoded MFTN systems that pass
through the “full gain region” achieve full coding gain.

It is now straightforward to exhaust the parameter com-
binations and find out where the full coding gain is present.
In Figure 9 the combinations of fΔ and TΔ are shown that
result in the full coding gain for the convolutional codes
(7,5) and (74,54), with × denoting (7,5) and ◦ (74,54). The
figure only applies to the block size and iterations stated
above; more iterations can improve the results somewhat.
An exhaustive search of fΔ and TΔ is of course not
tractable. We have tested fΔ in steps of .01. If the full
coding gain is present for some TΔ = x and fΔ = y but
not at TΔ = x and fΔ = y− .01, the point (x, y) is plotted
in Figure 9. Dotted lines show constant fΔTΔ products. The
smallest product with full coding gain occurs for both codes
at TΔ = .79, with fΔTΔ ≈ .43 and .455 respectively for
the (7,5) and (74,54) codes. There is thus ≈ 55% bandwidth
reduction without loss of BER.

Receiver Complexity. In the iterative detection process
we allowed 7 iterations only. The decoder for the outer
code is a full complexity BCJR; for the (7,5) and the
(74,54) codes this results in 4 and 8 states respectively. The
state complexity of the MFTN detector was limited to 32,
although this can be reduced for TΔ close to 1. In total, one
four-state BCJR and one 32 state BCJR need to be applied
7 times.

A particular combination of fΔ and TΔ is worth mention.
When TΔ = 1 it can be seen that the smallest product fΔTΔ

such that the full gain is present is only sligthly worse than
optimal. From a decoding point of view, TΔ = 1 is a very
good choice as there will be no ISI to defeat. This implies
that for the MFTN detector above there is no memory and
the detection is only symbol by symbol. The complexity
is only to apply the BCJR to the outer code a number of
times. For the (7,5) code there are only 4 states, only 7
iterations are required, and the overall complexity is thereby
very small.

There is in fact nothing that prohibits TΔ from being
larger than 1. As seen in Figure 9, this leads to reasonable,
but not superior, performance. There will be ISI to detect
in this case.

Concluding Observations. We make three observations.
First, Figure 9 applies to a certain type of turbo receiver.
The fΔTΔ products may be smaller with an MLSE receiver
or with a receiver that attacks the ICI and ISI in a dif-
ferent pattern. Second, the spectral efficiency (bit rate/Hz)
is independent of the basic pulse h(t); it depends solely
on fΔ, TΔ and the rate of the outer code. This makes
the pulse h(t) a free optimization parameter. It should be
chosen such that full coding gain can be reached at the
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Fig. 9. Mazo limit fΔTΔ for coded MFTM. Lines marked × and
◦ are the (7,5) and (74,54) convolutional codes. Full coding gain
at Pe = 5 × 10−5 is present above the lines, but not below.

smallest product fΔTΔ. How to perform this optimization
is an open problem. Finally, by observing signals, one can
see that MFTN signals, like most bandwidth-compressed
transmissions, have a higher peak to average power ratio
than Nyquist signals. How this ratio compares to that of
other methods should be studied in the future.

IV. CONCLUSIONS

We have demonstrated that the idea of faster than Nyquist
time compression can be applied at the same time across
frequency carriers, to achieve transmission throughput up to
twice that of OFDM-like signaling at the same energy and
error rate. We have sketched the Mazo limit for multistream
Gauss and root RC pulses, that is, the least time–frequency
compression products that yield the antipodal signal er-
ror rate. Both synchronism and pulse delays can improve
this product. Finally, we have investigated concatenations
of convolutional codes and MFTN. An iterated receiver
continues to achieve the convolutional coding/orthogonal
modulation error performance even under strong compres-
sion. Multistream faster than Nyquist techniques thus show
great promise as practical, bandwidth saving tranmission
methods.
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APPENDIX 1

In this appendix we derive the Euclidean distance of an
MFTN error event set; the derivation assumes an arbitrary
starting time of the error event and an arbitrary delay pattern.
We start with notation. Let τr( ) be the r-step operator; for
matrices it is defined as

τr(ΔA) =

	
��


0 . . . 0 Δa0,0 . . . Δa0,N−1

. . . . . .
0 . . . 0� �� �

r

ΔaK−1,0 . . . ΔaK−1,N−1

�
��� .

Then d2(τr(ΔA)) denotes the normalized distance of the
error event ΔA delayed r steps. Assume also that er-
ror event ΔA starts at time index 0; i.e., for some k,
Δak,0 �= 0. Let d2(ΔA)

��
F denote the portion of distance

contained in the frequency range f ∈ F . We can compute
d2(τr(ΔA)) by (19)-(21).

The last expression in (19) is the distance of ΔA at
time–frequency offset φ = fΔTΔγ mod 2π; this distance
we write as

d2(ΔA; φ) =

K−1�
k=0

K−1�
l=0

ej2πφ(l−k)βk,l(ΔA). (22)

We can compute d2(ΔA)
��
F by replacing (21) with

γk,l[m, n]
��
F =

�
F
H(f)H(f−fΔ(l − k)) ej2π(n+δl)TΔf ×

×e−j2π(m+δk)TΔ(f−fΔ(l−k)) df. (23)

To find the worst case φ we take the derivative of
d2(ΔA; φ),

∂ d2(ΔA; φ)

∂φ
=

K−1�
k=0

K−1�
l=0

j2π(l−k)ej2πφ(l−k)βk,l(ΔA).

(24)
For fΔ ≥ W we have γk,l[m, n] = 0 for |l − k| > 1; this
implies that βk,l(ΔA) = 0 for |l− k| > 1 as well. Setting
the derivative equal to zero we get

K−1�
k=1

ej2πφβk,k−1(ΔA) =

K−1�
k=0

e−j2πφβk,k+1(ΔA).

(25)
Equation (25) is the second order equation

(ej2πφ)2
K−1�
k=1

βk,k−1(ΔA) =

K−1�
k=0

βk,k+1(ΔA) (26)

which can be analytically solved (the case fΔ < W gives a
fourth order equation and is omitted here). The two solutions
φ1, φ2 to (26) are

{2πφ1, 2πφ2} = arg

�
±

��K−1
k=0 βk,k+1(ΔA)�K
k=1 βk,k−1(ΔA)

�
, (27)

where arg{ } denotes the angle in radians of a complex
number. Whether φ1 is the minimum or the maximum can
be determined from the sign of

�K−1
k=0 βk,k+1(ΔA). This

method of determining the worst time offset of an error
event is only valid for irrational products fΔTΔ. For rational
products we can find the worst point by finding the two
closest allowed points to the minimizing φmin.

APPENDIX 2

The derivations in Appendix 1 find the worst time offset
φ for a given error event ΔA. Computing d2

min requires in
principle an efficient search over all error events and that is
the aim of this appendix. Assume that the search is limited
to events of size k0×n0 symbols. We give now an efficient
search for this case. The algorithm assumes a pulse h(t)
perfectly bandlimited to W positive Hz and is stated here
only for the case fΔ ≥ W (if this is not the case, the
search can still be used by approximating the bandwidth).
Moreover, when we formulate the algorithm, we omit the
time dependency of the distance function for notational
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Fig. 10. Illustration of the frequency intervals defined in (29).
k0 = 4.

convenience: All error events considered are already time
shifted such that the smallest distance is obtained. Let
d2
min

��
F denote the minimum distance of any error event

in the frequency interval F , that is4

d2
min

��
F � min

ΔA
d2(ΔA)

��
F . (28)

Also, define the frequency intervals

F +
k � [−W,−W + (k + 1)fΔ]

F −
k � [(k0 − k − 2)fΔ + W, (k0 − 1)fΔ + W ]

FMk � [kfΔ + W − fΔ, kfΔ + fΔ − W ], (29)

where ≤ k ≤
�

k0−1
2

�
for F +

k and F −
k and 1 ≤ k ≤ k0−2

for FMk . These intervals are illustrated in Figure 10. In the
interval FMk the kth subchannel is free from interference
from other channels. Thus we can easily calculate d2

min

��
FMk

by methods that apply for single carrier systems. But since
there is no interference in FMk , we have d2

min

��
FM1

=

d2
min

��
FM2

= · · · = d2
min

��
FMk0−2

; this distance we will

refer to as just d2
min

��
FM

. In F +
0 the first subchannel is

4If time shifts were included, (28) would become d2min

�
�
F �

minr,ΔA d2(τr(ΔA))
�
�
F .

free from interference from the others, so we can compute
d2
min

��
F +

0
easily. Let ΔAk = [Δak,0 . . . Δak,n0−1] and

define the rowwise transpose	
�


ΔA0

...
ΔAk0−1

�
��

tr

= [ΔA0 . . .ΔAk0−1] .

Throughout, let ΔA∗ denote componentwise complex con-
jugation. It is easy to show that

d2(ΔA)
��
F +

k

= d2(ΔB∗)
��
F −

k

(30)

where

ΔB =

	

 ΔAk0−1

. . .
ΔA0

�
� .

This implies that d2
min

��
F −

k

= d2
min

��
F +

k

, all k.
The algorithm computes the minimum distance under

the assumption that exactly k′
0 adjacent subchannels are

involved in the error event, with k′
0 = 2, . . . , k0 in sequence

(k′
0 ≥ 2, otherwise the signaling is one dimensional).
(i) First set k′

0 = 2. Consider the error symbols in the first
subchannel. There must be at least a distance d2

min

��
F −

0
=

d2
min

��
F +

0
present in the frequency interval F −

0 . Therefore,

only events that pile up an amount d2(ΔA)
��
F +

0
< 2 −

d2
min

��
F +

0
in F +

0 need to be considered. Collect these in the

set M+
0 ; that is

M+
0 �

�
ΔA0 : d2(ΔA0)

��
F +

0
< 2 − d2

min

��
F +

0

�
.

(31)
This also implies that only the events M−

0 � {ΔAk′
0−1 :

ΔA∗
k′
0−1 ∈ M+

0 } need to be considered at the last
subchannel. What number of subcarriers k0 needs to be
tested? The distance of any error event will at least pile
up d2

min

��
F +

0
+ d2

min

��
F −

0
+(k0 − 2)d2

min

��
FM

. Therefore k0

needs to be at most

k0 ≤
2 − d2

min

��
F +

0
+ d2

min

��
F −

0

d2
min

��
FM

. (32)

d2(τr(ΔA)) =

� ∞

−∞

�
k,l,m,n

Δak,mΔa∗
l,nh(t−(r+m + δk)TΔ)h∗(t−(r+n + δl)TΔ)ej2πfΔ(l−k)tdt

=

� ∞

−∞

�
k,l,m,n

Δak,mΔa∗
l,nh(t − (m + δk)TΔ)h∗(t − (n + δl)TΔ)ej2πfΔ(l−k)(t+rTΔ)dt

=
�

k,l,m,n

Δak,mΔa∗
l,nej2πfΔ(l−k)rTΔ

� ∞

−∞
h(t − (m + δk)TΔ)h∗(t − (n + δl)TΔ)ej2πfΔ(l−k)tdt

=
�

k,l,m,n

Δak,mΔa∗
l,nej2πfΔ(l−k)rTΔγk,l[m, n]

=
�
k,l

ej2πφ(l−k)βk,l(ΔA), (19)

where

βk,l(ΔA) =
N−1�
m=0

N−1�
n=0

Δak,mΔa∗
l,nγk,l[m, n], (20)

and

γk,l[m, n] =

� ∞

−∞
h(t − (m + δk)TΔ)h∗(t − (n + δl)TΔ)ej2πfΔ(l−k)tdt. (21)
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We can now find the minimum distance of events with
two subchannels involved. We exhaust all possible error
events of the form

ΔA=



ΔA0

ΔA1

�

with
ΔA0 ∈ M+

0

ΔA1 ∈ M−
0 .

With an abuse of notation, we write the set of all such ΔA
as M+

0 ×M−
0 .

(ii) Continue with three subchannels (k′
0 = 3). Consider

the error event on the second subchannel. As stated above, it
is free from interference in FM1 . What events are possible?
Since we know that we will accumulate up at least an
amount 2d2

min

��
F +

0
in F +

0 and F −
0 we only have to consider

events that have distance less than 2 − 2d2
min

��
F +

0
in FM1 .

We collect them in a set MM . Note that it does not matter
what subchannel we consider; since there is no interference
in FMk , the set is identical for all k and we take k = 1.
Then

MM �
�
ΔA1 : d2(ΔA1)

��
FM1

< 2 − 2d2
min

��
F +

0

�
.

(33)
We can also easily compute the minimum distance in

FMk . Since we know that we will accumulate at least this
amount, we can redefine the sets M+

0 and M−
0 ; M+

0

becomes M+
0 = {ΔA0 : d2(ΔA0)

��
F +

0
< 2−d2

min

��
F +

0
−

d2
min

��
FM

} and M−
0 is found from M+

0 by the formula

M−
k �

�
[ΔA0...ΔAk−1]

tr : [ΔA∗
k−1...ΔA∗

0]
tr ∈ M+

k

�
.

(34)
Thus, in the the interval F +

1 we only have to consider
events in M+

0 ×MM when we find

M+
1 =

�
[ΔA0 ΔA1]

tr :

d2([ΔA0 ΔA1]
tr)
��
F +

1
< 2 − d2

min

��
F +

0

�
.

We also find the set M−
1 . Note that M+

1 contains events
with components over subchannels 0 and 1 and that M−

1

contains events over subchannels 1 and 2. Thus we cannot
treat the two sets independently, as was possible when
k′
0 = 2. We need to exhaust all events of the form

ΔA=

	

ΔA0

ΔA1

ΔA2

�
�

with
[ΔA0 ΔA1]

tr ∈ M+
1

[ΔA1 ΔA2]
tr ∈ M−

1 .

This generates the minimum distance when there are
exactly three subchannels involved in the error event.

(iii) To investigate events on four subchannels, we
first compute d2

min

��
F +

1
by exhausting the events in M+

1 .

Then we redefine M+
1 to M+

1 = {[ΔA0 ΔA1]
tr :

d2(ΔA)
��
F +

1
< 2 − d2

min

��
F +

1
} and exhaust events in

M+
1 × M−

1 , with M−
1 defined from M+

1 according to
(34). The procedure can be repeated up to k0 subchannels,
where k0 satisfies (32).

We summarize the algorithm.

1) First compute d2
min

��
F +

0
and d2

min

��
FM

; these are one

dimensional searches. If d2
min

��
F +

0
> 1, then stop and

go to step 4; the minimum distance for error events

with 2 or more subchannels involved is larger than
2. Define the sets M+

0 , M−
0 and MM according to

(31), (34) and (33). Set k′
0 = 2. Exhaust all events in

the set M+
0 × M−

0 . This generates the minimum
distance when 2 subchannels are involved and we
denote it d2

2.
2) Set k′

0 = k′
0 + 1 (k′

0 is now odd). If k′
0 > k0

then stop; the search over all k0 × n0 error events
is complete. Define a temporary set T = M+

(k′
0−3)/2

.

Then redefine M+
(k′

0−3)/2
to

M+
k′
0−3
2

=

�

ΔA0 . . .ΔA k′

0−3
2

�tr

∈ T :

d2

 

ΔA0 . . .ΔA k′

0−3
2

�tr
!

<

2 − d2
min

��
FM

− d2
min

��
F +

k′
0−3
2

"#
$ .

Find d2
min

��
F +

(k′
0−1)/2

by exhausting the events in

M+
(k′

0−3)/2
×MM . Define

M+
k′
0−1
2

=

�

ΔA0 . . .ΔA k′

0−1
2

�tr

∈M+
k′
0−3
2

×MM :

d2

 

ΔA0 . . . ΔA k′

0−1
2

�tr
!

<

2 − d2
min

��
F +

k′
0−3
2

"#
$ .

If d2
min

��
F +

(k′
0−1)/2

+ d2
min

��
F +

(k′
0−3)/2

> 2, then stop

and go to step 4; the minimum distance for error
events with k′

0 or more subchannels involved is larger
than 2. Otherwise, compute the set M−

(k′
0−3)/2

. Find

d2
min for error events with k′

0 subchannels involved,
which we denote d2

k′
0
, by exhausting all events of the

form

ΔA=

	
�������


ΔA0

...
ΔA(k′

0−1)/2

...
ΔAk′

0−1

�
��������

with

�
ΔA0 . . . ΔA(k′

0−1)/2

�tr

∈ M+
(k′

0−1)/2�
ΔA(k′

0−1)/2 ΔAk′
0−1

�tr

∈ M−
(k′

0−1)/2
.

3) Set k′
0 = k′

0 + 1 (k′
0 is now even). If

2d2
min

��
F +

(k′
0−1)/2

> 2, then stop and go to step 4;

the minimum distance for error events with k′
0 or

more subchannels involved is larger than 2. If not,
if k′

0 > k0 then stop and go to step 4; the search over
all k0×n0 error events is complete. Otherwise, define
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a temporary set T = M+
k′
0/2−1

and redefine the set

M+
k′
0/2−1 =

%�
ΔA0 . . .ΔAk′

0/2−1

�tr

∈ T :

d2

&�
ΔA0 . . .ΔAk′

0/2−1

�tr
'

< 2 − d2
min

��
F +

k′
0/2−1

(
.

Compute the set M−
k′
0/2−1

. Find d2
min for error events

with k′
0 subchannels involved, which we denote d2

k′
0
,

by exhausting all events of the form

ΔA=

	
������


ΔA0

. . .
ΔAk′

0/2−1

ΔAk′
0/2

. . .
ΔAk′

0−1

�
�������

with

�
ΔA0 . . . ΔAk′

0/2−1

�tr

∈ M+
k′
0/2−1�

ΔAk′
0/2 . . .ΔAk′

0−1

�tr

∈ M−
k′
0/2−1

.

Go to step 2.
4) Find d2

min = min{d2
2, d

2
3, . . . , d

2
k0}.
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