
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Controller synthesis for application specific digital signal processors

Öwall, Viktor; Torkelson, Mats

Published in:
[Host publication title missing]

DOI:
10.1109/ASIC.1991.242899

1991

Link to publication

Citation for published version (APA):
Öwall, V., & Torkelson, M. (1991). Controller synthesis for application specific digital signal processors. In [Host
publication title missing] https://doi.org/10.1109/ASIC.1991.242899

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ASIC.1991.242899
https://portal.research.lu.se/en/publications/51109cac-8777-4096-bebd-9494cd7c3da5
https://doi.org/10.1109/ASIC.1991.242899


CONTROLLER SYNTHESIS FOR 
APPLICATION SPECIFIC DIGITAL SIGNAL PROCESSORS 

Viktor Owdl and Mats Torkelson 

Department of Applied Electronics 
Lund University, Sweden 

To DP 

Eval. 

Abstract 

A controller synthesizer, tha t  is part of a design sys- 
tem by which algorithms unsuitable for standard pro- 
cessors can be implemented, is presented. A hierarchi- 
cal controller architecture suitable for frame-based and 
multi-sample-rate algorithms is synthesized. Synthesis 
of a controller is based on micro instructions, specific for 
each architecture, and assumes no use of predefined func- 
tional blocks. The designer can affect complexity and 
partitioning of the controller by changing the micro pro- 
gram. Processors for speech scrambling and digital ad- 
justment of quadrature modulators have been designed 
and fabricated. 

1 Introduction 
Application Specific Digital Signal Processors ( ASDSPs) require 
a complex set of signals to control the data flow through the 
processor. Various ASDSP architectures require different sets of 
control signals and different complexity of the controller. Thus, 
it is important to have a flexible tool for controller synthesis. 
The presented Control Unit Synthesizer (CUS) is aimed a t  dig- 
ital radio communication applications where frame-based and 
multi-sample-rate algorithms are frequently used. Therefore, our 
CUS synthesizes controllers which have a hierarchical architec- 
ture suitable for these kinds of algorithms [I]. 

The CUS Synthesizes a controller from a micro program and 
is tightly coupled to  a Data Path Compiler (DPC) [2]. The DPC 
and the CUS put no restrictions on the processor architecture 
which gives the designer the flexibility to develop an architecture 
suitable for the algorithm. Algorithms with conditional state- 
ments, subroutine calls, conditional subroutine calls, loops, etc. 
can be implemented with the CUS. 

In order to simulate and debug the micro program a Register 
Transfer Level (RTL) simulator has been developed. The DPC 
and the CUS together with the RTL simulator make it possible 
to design complex ASDSPs in a short time. 

2 System Overview 
Because of the tailored architecture of an ASDSP the CUS has 
to work closely with the DPC. The DPC generates data path 
modules from structural descriptions, additionally the DPC gen- 
erates a behavioral description of the processor. The behavioral 
description consists of all micro instructions available for the 
processor, status signals, and default levels to control signals. 

The algorithm is described in a micro program with the micro 
instructions defined by the DPC, memories (ROMs and RAMS) 
can be declared for usage in the micro program. Subroutines, 
case statements, and variable passing are used in a way similar 
to high level programming to make scheduling and simulation 
easier. A C program which performs an RTL simulation of the 
micro code can be generated from the micro program. The RTL 
simulation can be performed both in floating point representa- 
tion and on bit level and allows the designer to debug the micro 
code without generation, extraction, and simulation of the chip. 

The CUS synthesizes a complete hierarchical controller and 
specifies its interconnections to  data  paths and I/O-units. Mem- 
ory modules, with a supporting Address Processing Unit (APU), 
are generated by the CUS if such are declared in the input spec- 
ification. Partitioning and complexity of the controller is de- 
pendent on the structure of the micro program. Therefore, the 
designer can try various strategies in partitioning of micro code 
and memories, and complexity of APUs, to  find a good solution. 

The generated ASDSP is finally extracted and simulated a t  
transistor level before fabrication. The tools have been modified 
to  enable the use of different cell libraries and to produce different 
output formats. 

3 Controller Architecture 
The controller architecture contains one micro code level and one 
or several sequencing levels. Each level controls the next lower 
level, the data  path for the micro code, and is controlled by the 
next higher level, an external signal for the highest level. The 
number of sequencing levels is decided by the partitioning of the 
micro code. 

The micro code level is the lowest hierarchical level and con- 
sists of a micro code ROM, a program counter, and a pipeline 
register, figure 1. 

Figure 1: The micro code level. 
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The micro code ROM generates control signals which control 
the data flow through the data paths and control signals to the 
APU. The code is partitioned into blocks of micro instructions of 
arbitrary length (subroutines). Micro instructions in a block are 
executed in sequential order, controlled by a program counter, 
where each time slot is one clock cycle. The sequencing of blocks 
is controlled by the next higher level ROM. Pipeline registers 
are implemented between all levels in the controller to avoid 
clock cycle overhead on out-of-block transitions. At the end of 
each block a n  End Of Block (EOB) signal is set that resets the 
program counter and loads a new block address into the pipeline 
register. This EOB signal also increments the program counter 
on the next higher level. 

It is possible to  select different micro operations or memory 
locations with a case statement. Case statements use Boolean 
conditions evaluated from status signals in a Decision Finite 
State hlachine (DFSM). Status signals can be both data path 
signals, and external signals from I/O-units. The evaluation of 
conditions is controlled from the micro code ROM. A condition 
should not be used before it has been evaluated. The DFSM can 
be implemented in one or many PLAs depending on speed re- 
quirements or floorplan considerations, partitioning of the DFSM 
is controlled by the designer in the micro program. 

The  next hierarchical levels describe the sequencing of blocks. 
Each level is divided into blocks and each block into time slots as 
in the micro code ROM. In the sequencing levels, however, a time 
slot is not one clock cycle but one block in the next underlying 
level. Thus a time slot in higher levels is not a fixed number of 
clock cycles but of arbitrary length decided by the designer. All 
sequencing levels in the controller are implemented in the same 
way and is controlled by a counter and by the next higher level, 
the same way as for the micro code ROM. 

The counter sequences through the block addresses for the 
next lower level. The counter is incremented when an EOB signal 
is received from the next lower level and reset with the EOB 
signal from the same level. Loops are realized by disabling the 
incrementing of the level counter until the required condition in 
the DFShl is fulfilled. An example with micro code and two 
sequencing levels is shown in figure 2. 

Figure 2: Architecture for a three level controller. 

The highest level is controlled by an external Start of 2 -  
quence (SOS) signal. At the end of a program sequence (I- 
controller will examine the SOS signal. If SOS is set the mi,:. 
code will be executed once more, otherwise the controller w.. 
send default signals to the data  path and wait for SOS t o  be se: 

The DFSM is connected to all levels in the controller arct. 
tecture. Thus, it is possible to use the case statement for makir.6 
decisions on every level in the hierarchy. On the micro code levt 
case statements are used to  choose different sets of micro ope:: 
tions and on higher levels to choose what block address to se:. : 
to the lower level. Synchronization between different modules :I 
a processor is taken care of by the DFSM. 

The controller is partitioned into small modules in order : 
make the controller faster and make it easier t o  get a dense- 
floorplan. To avoid one large micro code ROM it can be pal: 
tioned into smaller and faster modules to be placed close to 1;: 
controlled module. 

The described controller architecture is best suited for n: 
cro code with non nested case and while statements. However 
replacing the counters with feedback registers results in a : 
nite state machine implementation, more suitable for nested pr: 
gramming 13, 4). Such an architecture, with kept hierarch!.. .. 
currently under development, figure 3. 

Level ROM 
Cond. 

Figure 3: Finite state machine implementation. 

Communication between processors is important in large- 
systems. The described system supports both communicatior 
between processors on the same chip and communication wit: 
external processors. Co-processors can be synchronized to e a c  
other using the DFSM and to a host processor using the SOS 
signal. Future work will be to investigate implementation of par- 
allel processors and parallel controllers and how to synchroniz- 
these, figure 4. 

Figure 4: Parallel contrcllers 
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4 Memories and Address 
Processine: Unit 

Memories, RAhls and ROA4s, with an Address Processing Unit 
(APU) can be generated optionally. The CUS generates de- 
scription files of declared memories to a memory generator and 
routing descriptions for the DPC. Output of the memories can 
be connected to any bus at  any data path. If large memories 
are needed in a design the CUS is prepared for handling exter- 
nal memories. Address bus, read, and write signals are then 
connected to I/O-units. 

The address ROM is separated from the micro code ROM 
and can be controlled from more than one of the hierarchical lev- 
els. Thus, it is possible to execute the same micro code several 
times with different memory locations by passing variables from 
higher levels. Otherwise the micro code must be duplicated and 
the size of the micro code ROh.1 will increase. Variable passing 
require additional pipeline registers between higher sequencing 
levels and tlie APU. Thus. there is a trade off between increns- 
ing the size of the micro code ROM and adding registers. The 
DFSM can be connected to the address ROhl as well and case 
statements can be used to choose different memory location5 
when the micro code is executed. 

R d M  

Figure 5: hlemories with APU 

The APU can be implemented in two ways. Either with a 
single address ROM, or with an address ROM and an address 
processor. In applications with few memory references an ad- 
dress ROM without an address processor is sufficient (RAhl in 
figure 5). 

If more memory references are used the size of the address 
ROM will increase. The address processor implementation will 
then significantly reduce the size of the address ROM (ROM in 
figure 5). A memory address, either from the address ROM or 
from another module, is stored in a register and is used to  com- 
pute following memory locations. The address processor is con- 
trolled by operations specified by the CUS depending on the se- 
lected implementation. Address processor operations are treated 
in the same way as other data path operations and can be part 
of case statements. Signals from the address processor, overflow 
signal and sign bit from the adder, are used as status signals 
to the DFSM. These signals can be used to control incremental 
loops in a micro program. 

An address processor can support several memories or one ad-  
dress processor can be implemented for each memory. Different 
memories in a processor can use various strategies for the APU 
and different complexity of the address processor. The complex- 
ity of the address processor, number of registers and number 
of inputs to  the multiplexers, is synthesized depending on the 
application. 

5 Application examples 
The tools have been used to design a speech scrambler chip for 
mobile telephones and a chip for digital adjustment of quadrature 
modulators. 

In  the scrambler the speech is split into four frequency bands 
which are transposed and mirrored before transmission. The 
algorithm requires four 6th order IIR filters a t  the input, followed 
by a down-sampler, a multiplexer and an up-sampler. The same 
filters are used at  the output to add the different bands together, 
figure 6. One data path is used for all of the filters. 

Status 

Figure 6: Principle of the speech scrambler. 

Multiplexing and mirroring are controlled by external signals 
connected to  the DFSM. The multiplexing is handled by con- 
trolling the APU to a data  storage module. Depending on the 
state of the DFSM different data  will be sent to the output fil- 
ters. The chip size is 7x6 mm in a two micron technology and 
contains about 20 000 transistors , figure 7. 
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Figure 7: Die photo of speech scrambler chip. 
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The other application is a post-processor to a waveform gen- 
erator, either a DSP or a look-up table ROM. The designed 
processor compensates for imbalances in Radio Frequency (RF) 
quadrature modulators for digital communication 151. Tradi- 
tional methods for correction of these errors usually involve im- 
proving the R F  section. An alternative method applies correc- 
tions to the baseband signal, either digital or analog. The de- 
signed digital chip should be placed between the waveform gen- 
erator and the digital to analog converters, figure 8. 

Figure S: Correction of quadrature modulators. 

6 Conclusions 

The Control Unit Synthesizer has been developed for synthesis 
of controllers to  arbitrary digital signal processors. A behavioral 
description is read for each processor and no constraints are pu: 
on the architecture. 

Complexity and partitioning of the controller is dependent on 
the structure of the micro program. Therefore, it is easy to tr) 
different strategies to  find a good solution. A complete controller 
and its interconnections with the data path is synthesized witt 
specified memories and an address processing unit. A controller 
is synthesized with basic logic building blocks and interconnec- 
tions are specified in a generated netlist. This is crucial in order 
to be flexible and to interface to various vendors, cell libraries. 
and CAD-systems. 

Our applications are targeted at digital radio communica- 
tion. Therefore, a hierarchical controller architecture suitable 
for algorithms frequently used in these applications has been de- 
veloped. A finite state machine architecture as an alternative to 
the counter based architecture is currently under development. 
Work is also presently performed at adapting the Control Uni t  
Synthesizer to a C scheduler [6] and to further investigate ini- 
plementation of parallel processors on one chip. 

The Control Unit Synthesizer is a part of a complete desigr: 

sign of two very different applications proves the flexibility and 
the usefulness of the developed tools. 

The controller handles not only the sequencing of the data 

is performed by the DFSM, control signals 
flow but also the communication with the host DSP. This inter- system specific digita1 processors. The de- 

face 
connected to  I/O-units, and the start of sequence signal. 

The algorithm requires only four micro instructions on the de- 
signed processor architecture. A corresponding implementation 
on a ThIS320C25 processor requires more than 20 instructions 
for the same function. The chip size is 6x6 mm in a two micron 
technology and contains about 18 000 transistors , figure 9. 
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