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Fig. 7. BER comparison of the DLMS and LMS algorithms over channel
2 (� = 0:01).

performance was similar to the DLMS algorithm. In these cases the
reduced step size and more severe channel distortion resulted in very
little performance variation between the three algorithms.

In Fig. 7, the performance of the LMS and DLMS algorithms
are compared in terms of the bit-error rate (BER) over channel
2 for a (6,6) DFE (500 training symbols were allocated). Perfect
decision feedback and imperfect decision feedback were compared.
The performance loss in this case is only marginal, since the delay
in adaptation is not very large. This is expected since, for both
algorithms, convergence was reliably achieved within the 500-symbol
training period.

IV. CONCLUSION

In this paper pipelined transversal filter-based DFE’s employing the
DLMS training algorithm have been described. An order-recursive
DFE structure was developed which allows a DFE of arbitrary
length to be constructed by cascading a series of identical processing
modules. Alternative filtering structures were chosen for the FFF’s
and FBF’s in order to minimize the global communication. The per-
formance of the new DFE’s were compared using simulated channels
to introduce ISI and were found to be only marginally inferior to
those for the conventional DFE. However, the pipelined DFE’s more
than double the throughput rate of conventional structures and are
very suitable for VLSI implementation. A pipelined version of the
DNLMS algorithm was also proposed for a DFE, which removes the
dependency of the convergence speed on the input signal power.
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Intermodulation Noise Related to THD in
Dynamic Nonlinear Wide-Band Amplifiers

Henrik Sjöland and Sven Mattisson

Abstract—In this brief it is shown that the power of the intermodulation
noise of a wide-band amplifier with dynamic nonlinearities can be
estimated by the total harmonic distortion (THD) with a sinusoid input
signal of appropriate amplitude and frequency. The THD is, as opposed
to the intermodulation noise, easy to measure and use as a design
parameter. This brief is an extension of our paper [1], which treats static
nonlinearities.

Index Terms—Distortion, intermodulation, wide-band amplifiers.

I. INTRODUCTION

In [1] it was shown that the intermodulation noise power due to
a static nonlinearity can be estimated by a total harmonic distortion
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(THD) measurement if the input amplitude is selected appropriately.
If the variance of the wide-band signal is�, the input amplitudeA
is to be selected as

A = 2:5�: (1)

Equation (1) was derived assuming a Gaussian input signal and sim-
ilar distortion contribution from even- and odd-order nonlinearities.
If odd-order nonlinearities dominate, the amplitude is to be selected
higher, and if even-orders dominate, it has to be lower. The variance
� is chosen to keep the clipping distortion power below the required
level [1].

In the derivation of (1) a novel approach was used. Using the
probability densities of a sinusoid and a Gaussian, the error (dis-
tortion) was calculated assuming that the amplifier characteristic
could be represented by a low-order polynomial. Clipping distortion
was treated separately. By comparing the distortion in the sinusoid
case with the Gaussian, (1) could be derived. This approach is now
augmented to allow dynamic nonlinearities. The result is that we can
also determine an appropriate frequency for the THD measurement.

The error of the amplifier output depends on the signal and its time
derivatives and their history. This is too complex to use directly. To
be able to handle each derivative by itself and ignore their history,
we average the error contribution from each time derivative.

Let x be the input; the average output error is then given by

�" = g0(x) + g1(x
0) + g2(x

00) + g3(x
(3)) + � � � (2)

whereg0(x) models the static nonlinearity. Note that allgn functions
give mean errors. As in [1], we assume these mean-error functions
to be soft before clipping.

Amplifiers can be designed to be very linear at a certain frequency,
but highly nonlinear at other frequencies. Such amplifiers can not be
modeled well by (2) because they rely on cancellation of derivative
terms, thus making it inappropriate to handle each derivative by itself.
The required balance conditions are typically narrow-band and are
thus not used in wide-band amplifiers.

II. DERIVATIVES WITH GAUSSIAN AND SINUSOIDAL INPUT

Assume the input signal to be Gaussian with constant spectral
densityRx(f) from zero up tofmax. Above fmax, we assume the
spectral density to be zero. If we take annth-order derivative of
the Gaussian input signal, it is also Gaussian. The spectral density
is given by

Rx = (2�f)2nRx(f): (3)

The variances of the derivatives can now be calculated by inte-
grating the spectral densities

�
2
x

=
f

0

(2�f)2nRx(f)df

=
�2x

fmax
(2�)2n � f

2n+1
max

2n+ 1
= �

2
x � (2�fmax)

2n

2n+ 1
: (4)

If we take a derivative of a sinusoid, the result will also be a sinusoid
but with a different phase and amplitude. The phase does not affect
the distribution, so we just have to consider the amplitude, where the
amplitude of thenth derivative is

An = A � (2�f)n: (5)

We want to find the frequencyfn, where the distortion due to the
nth derivative is similar for the sinusoid and the wide-band signal.
As the derivatives of a sinusoid are sinusoids and the derivatives

of a Gaussian signal are Gaussian, we can use (1) that relates the
distortion with a sinusoid input signal to that with a Gaussian one

An = 2:5�x , f(4, 5)g , A
2(2�fn)

2n

= 2:52�2x � (2�fmax)
2n

2n+ 1

A = 2:5�x

) fn =
fmaxp
2n+ 1

: (6)

Equation (6) is the main result in this brief, and it gives the frequency
to use in the THD test. Depending on the order of the dominating
derivative, the frequency is to be selected differently. The amplitude
is determined by the static nonlinearity.

III. SLEW-RATE CLIPPING

Equation (1) and, hence, also (6), are only valid if the nonlinearity
gn is soft. As in [1], we therefore handle clipping separately. Clipping
can occur in any derivative, but as slew-rate (SR) clipping dominates
in most cases, we concentrate on that. The static clipping has already
been examined in [1].

The maximum value of the time-derivative of the output is called
the SR. If the demanded derivative exceeds SR, there will be large
distortion called SR clipping [2].

Let D be the derivative of the input signal normalized with SR

D =
x0

SR
: (7)

To estimate the SR clipping distortion power we use the integral

PSR cliptot

=
�1

�1

p(D)PSRclip(D)dD +
1

1

p(D)PSRclip(D)dD

= fGaussian, Symmetryg

= 2
1

1

1

�D
p
2�

e
�

� PSR clip(D)dD: (8)

If we compare (8) with [1, eq. (9)], which describes static clipping,
we see a similarity. The exponential function determines the order
of magnitude in both equations. The result is that if the function
PSR clip(D) is not much different from the polynomial of [1, eq.
(9)], �D is to be selected approximately equal to�x for the same
amount of SR clipping as static clipping distortion

�x � �D; �D � SR = �x � 2� � fmaxp
3
) SR � 2� � fmaxp

3
: (9)

Equation (9) gives approximately the required SR capability of a
wide-band amplifier when the input signal is Gaussian and has a
constant spectral density. The amplifier has to be capable of producing
a sinusoid with the maximum amplitude required atfmax divided by
the square root of three, without SR clipping. This is independent of
the required dynamic requirements of the amplifier, as the power of
the signal will be selected small enough to keep the static clipping
below the required level.

It remains to show thatPSR clip(D) behaves as stated. Fig. 1
illustrates a typical SR clipping scenario.

The error-voltage-time product due to the demanded SR(d > SR)
for the time interval�T centered aroundP is

VTerr = �T � (d� SR) � T (d): (10)

The average error voltage due to the demanded SRd then becomes

VSR clip(d) =
VTerr

�T
= (d� SR) � T (d)) PSR clip(D)

� VSR clip(D)
2 = (D � 1)2 � SR2 � T (D)2: (11)
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Fig. 1. An SR clipping scenario.

Fig. 2. Amplifier model for the numerical experiment.

PSR clip(D) behaves almost as the polynomial in [1, eq. (9)]. The
only difference is theSR2T (D)2 term that has a value of about one
and always between zero and four.

IV. RESULTS

The amplitude of the THD test is determined by the static nonlin-
earity [1], and the frequency is determined by (6). When the first-order
derivative (SR) dominates the dynamic distortion, the frequency is to
be selected asfmax=

p
3. At this frequency, the amplifier must also be

able to reproduce a sinusoid of full amplitude without SR clipping (9).
The THD test gives an estimate of the intermodulation distortion

with a wide-band Gaussian input signal when both dynamic and static
nonlinearities can be significant.

A drawback with the method presented is that the amplifier
must have a small signal bandwidth much larger than the operating
bandwidth in order to get an accurate THD measurement. If this is
not the case, a two-tone test would be preferable. The two tones are
to be selected at frequencies close to the THD test frequency. To
avoid clipping we suggest the amplitudes to beA=2. Trigonometric
equations [3] can be used to relate the intermodulation components of
the two-tone test to the harmonics of a THD test without bandwidth
reductions.

V. NUMERICAL EXPERIMENT

To validate the method we performed a numerical experiment in
MATLAB [4]. We used the amplifier model of Fig. 2, which models
the behavior of a typical dominant pole amplifier with feedback.

The parameters were selected so that the model should behave as
an audio power amplifier. The dominant pole was located at 1 kHz.
The direct current (dc) gain of the dominant-pole stage was 200 k
,
the transconductance of the input stage was 20 mS, the voltage gain
of the output stage was one, and� was 1/20, resulting in a dc loop
gain of 200 and a 200-kHz bandwidth. The maximum current of the
input stage was�2 mA, resulting in an SR of 2.5 V/�s referred to
the output. Before clipping, the nonlinearity of the input stage was
third-order compressive with a third-order intercept point of 288 mV
referred toverr. The maximum output voltage was set to�20 V by
output stage clipping. Before clipping, the nonlinearity of the output

stage was also third-order compressive, but with an intercept point
of 56 V referred tov2.

The amplifier can just handle an output signal, at 20 kHz, of 20
V before SR clipping occurs, resulting in the SR clipping distortion
being smaller than the output stage clipping distortion for a wide-band
Gaussian signal withfmax up to 20 kHz � 1:73 = 34:6 kHz.

A Gaussian signal with constant spectral density between dc and
fmax = 20 kHz and� = 0:2 was generated and sent through the
amplifier model with the nonlinearities present and an identical model
without the nonlinearities. The power of the difference between the
outputs, which is equal to the power of the intermodulation noise
from the nonlinear amplifier, was then calculated.

A sinusoid with the amplitude2:8� = 0:56 V and the frequency
20 kHz=1:73 = 11:56 kHz was then generated and fed to the
amplifier model. The amplitude was selected higher than (1) because
the third-order nonlinearity dominates [1]. We got the THD figure by
using a fast Fourier transform (FFT) on the output signal.

To make the MATLAB program simple, we used Forward Euler
as integration method and generated an input signal with sufficiently
small time steps to make the integration numerically stable.

The distortion related to maximum amplitude was 0.041% for the
Gaussian signal and 0.074% for the sinusoid. To demonstrate the
importance of correct frequency, we also tested a sinusoid with the
same amplitude but different frequencies. The THD was 0.099% at
20 kHz and 0.014% at 2 kHz. This indicates that the test frequency
is approximately correct. The estimation of the intermodulation was,
in this case, pessimistic, but less than a factor of two too large.

VI. CONCLUSION

In this brief the statistical approach for estimating intermodulation
noise in static nonlinearities of [1] has been augmented to include
dynamic nonlinearities. The method results in a simple relation
between THD and intermodulation distortion, which was validated
by a numerical experiment. The static nonlinearity determines the
amplitude of the signal in the THD test, and the dynamic nonlinearity
determines the frequency.
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