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Abstract

Semantic roles, logical relations such as AGENT or INSTRUMENT that
hold between events and their participants and circumstances, need
to be determined automatically by several types of applications in
natural language processing. This process is referred to as semantic role
labeling. This dissertation describes how to construct statistical models
for semantic role labeling of English text, and how role semantics is
related to surface syntax.
It is generally agreed that the problem of semantic role labeling is

closely tied to syntactic analysis. Most previous implementations of
semantic role labelers have used constituents as the syntactic input,
while dependency representations, in which the syntactic structure is
viewed as a graph of labeled word-to-word relations, has received
very little attention in comparison. Contrary to previous claims, this
work demonstrates empirically that dependency representations can
serve as the input for semantic role labelers and achieve similar results.
This is important theoretically since it makes the syntactic–semantic
interface conceptually simpler and more intuitive, but also has practical
significance since there are languages for which constituent annotation
is infeasible.
The dissertation devotes considerable effort to investigating the

relation between syntactic representation and semantic role labeling
performance. Apart from the main result that dependency-based
semantic role labeling rivals its constituent-based counterpart, the em-
pirical experiments support two findings: First, that the dependency-
syntactic representation has to be well-designed in order to achieve a
good performance in semantic role labeling. Secondly, that the choice
of syntactic representation affects the substages of the semantic role
labeling task differently; above all, the role classification task, which
relies strongly on lexical features, is shown to benefit from dependency
representations.
The systems presented in this work have been evaluated in two

international open evaluations, in both of which they achieved the top
result.





Sammanfattning

Denna avhandling beskriver hur man kan konstruera statistiskt
baserade datorprogram som analyserar text.
Analysen sker på två nivåer: den syntaktiska, som beskriver de

grammatiska sambanden mellan orden i en meningen, och den se-
mantiska, som beskriver de betydelsemässiga sambanden. Vi kan
åskådliggöra dessa samband genom diagram – grafer – som i figuren
nedan.

Ibland dricker damerna kaffe efter lunch

INGESTION

INGESTOR

TIME INGESTIBLES

TIME

ADVL SBJ

OBJ

ADVL

PC

För att ta ett exempel kan vi betrakta ordet dricker. I den semantiska
grafen (under meningen) kan vi se att detta ord uttrycker en situation
som vi kan kalla INGESTION1. Detta ord har betydelsemässiga samband
med andra ord i meningen: damerna fungerar som INGESTOR, alltså den
som dricker, och kaffe som INGESTIBLES, det som blir uppdrucket. Även
dessa samband kan vi läsa i den semantiska grafen. På motsvarande
sätt kan vi läsa av syntaktiska samband i grafen som visas över
meningen. Vi kan se att damerna fungerar som grammatiskt subjekt
(SBJ) för dricker och kaffe som objekt (OBJ).
Det är uppenbart att de två graferna har någon typ av samband.

I meningen ovan motsvarades till exempel det grammatiska subjektet
av den som dricker, INGESTOR. Dessa samband är vad avhandlingen

1Symbolerna INGESTION, INGESTOR, etc. är tagna från databasen FrameNet.



IV

undersöker. Till att börja med beskriver vi några principer för hur sam-
banden på den syntaktiska nivån ska beskrivas, och vilken betydelse
detta har för den semantiska analysen. Därefter undersöker vi hur
vi kan konstruera statistiska modeller för att bygga den semantiska
analysen utifrån den syntaktiska. Slutligen jämför vi olika typer av
syntaktiska grafermed avseende på hur lätt det är att bygga semantiska
grafer. De datorprogram som beskrivs i avhandligen har deltagit i två
internationella utvärderingar. I båda utvärderingarna fick våra system
det högsta resultatet av de deltagande.
Automatisk syntaktisk och semantisk analys kan vara till nytta i

olika datorprogram som hanterar text. Ett ofta anfört exempel är infor-
mationsextraktion. Frågebesvarande system är en annan tillämpning. Det
kan också användas i sammanfattning, alltså där datorns uppgift är att
söka upp de mest relevanta styckena i en större text. Textkategorisering
är en annan tillämpning där syntaktisk och semantisk analys kan
vara till nytta. Textkategorisering innebär att datorprogrammet avgör
vilken typ av text man har att göra med, t.ex. ekonomi, sport eller
vetenskap. Det finns också ett antal tänkbara tillämpningar som hittills
inte undersökts. Till dessa hör informationssökning.
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Chapter 1

Introduction

The representation of semantic roles, the logical relations that hold
between an event and its participants, is needed in many applications
in natural language processing. Semantic role labeling, the process of
automatically extracting role-semantic structures, has recently been
studied intensely. It has obvious applications for template-filling tasks
such as information extraction and has also been applied in question
answering, entailment recognition, summarization and text categoriza-
tion. While the task of full natural language understanding is poorly
understood in general, semantic role structures constitute a tractable
fragment of the full spectrum of human semantic processing.
The recent advances in automatic semantic role labeling have been

made possible by large-scale annotation projects that have resulted in
role-semantically annotated resources such as FrameNet and PropBank
(Baker, Fillmore, and Lowe, 1998; Palmer, Gildea, and Kingsbury, 2005;
Xue and Palmer, 2007). These corpora have made it feasible to apply
statistical techniques to the problem (Gildea and Jurafsky, 2002).
From the start, it has been assumed that automatic role-semantic

annotation must be performed on top of a syntactic representation, a data
structure that describes how an arrangement of surface words form a
complete grammatical sentence. This has sometimes been contested
(Collobert and Weston, 2007) but still seems to be the received wisdom
of the field (Gildea and Palmer, 2002; Punyakanok, Roth, and Yih, 2008).
The question then arises on what information the syntactic structure

should represent in order to be practical for automatic semantic role
labeling. We aim to find a parsimonious representation – one that is
expressive enough to allow us to perform semantic analysis on top of it,
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but is also economical as possible, meaning that it contains no redundant
structure.
The central claim of this dissertation is that automatic role-semantic

analysis can be performed using a dependency representation of syntax.
In a dependency representation, syntactic relationships between words
are represented as a graph of labeled edges between words. This
representation of syntax emphasizes function – the label on an edge
between two words represents how the words cooperate to form a
complete structure. This is to be contrasted with the more widely used
constituent structures, which represent the hierarchical organization of
phrases but not their grammatical function.
We claim that for the particular task of automatic role-semantic anal-

ysis, dependency representations are both expressive and economical,
and thus deserve more attention than they have been given until now.
We carry out a number of experiments in semantic role labeling of
English to support our claims. However, not just any dependency-
syntactic representation will be good enough to serve as the syntactic
input of a semantic role labeler. We will thus devote considerable effort
to carefully define what to represent in the dependency graphs: which
nodes to connect and the directions and labels of the dependency arcs.
To estimate parameters in statistical dependency parsers, a col-

lection of syntactically annotated sentences – a treebank – is needed.
However, since no dependency treebank for English exists, we are
forced to create dependency structures automatically from the Penn
Treebank, a constituent treebank. This limits what we can achieve by
automatic methods alone, since we cannot extract information that is
not represented in the Penn Treebank.
To empirically demonstrate the parsimony of the dependency rep-

resentation for the task of semantic role labeling, we carry out a series
of evaluations where we compare it to other types of syntactic repre-
sentations, all based on constituents in some form. Since the results
are as good as with constituent representations, this constitutes an
empirical demonstration of the expressivity of the representation – since
the results are equivalent – and the economy – since a dependency tree
lacks phrases and thus has fewer nodes and edges than a constituent
tree.

Example

Figure 1.1 shows how the sentence Chrysler plans new investment in Latin
America is represented using dependency-syntactic (above the text)
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and role-semantic links (below). The syntactic dependency structure
represents, for instance, that the main verb of the sentence, plans, has a
subject Chrysler and an object investment. The corresponding semantic
structure contains a semantic predicate corresponding to the verb plans
– we represent this predicate using a word sense label plan.01,
meaning that this word is an instance of the first sense of plan described
in the lexicon. Two semantic arguments directly corresponding to
its syntactic counterparts are connected to the predicate: Chrysler is
marked as argument 0, and if we refer to the lexical entry of plan, we
see that this argument corresponds to the planner, the active participant
in the act of planning. Similarly, investment is marked as argument
1, corresponding to the thing planned. The word investment is itself a
predicate having two arguments: an investor (Chrysler, argument 0) and
purpose (Latin America, argument 2).

Chrysler plans new investment in Latin America

plan.01

LOC

PMOD

NMODNMOD

OBJ

A0

investment.01

A1
A0

A2

SBJ

ROOT

Figure 1.1: Syntactic and role-semantic representations of a sentence.

1.1 Overview of this Dissertation

The rest of this dissertation is organized as follows:

Chapter 2: Role Semantics and Its Applications. This chapter formally
defines the concepts of semantic roles and frames, gives an overview of
role-semantic linguistic resources, and reviews published work on role
semantics in practical NLP applications.

Chapter 3: Dependency-syntactic Representations. Here, we turn
to the question of describing the organizational relations that hold
between words in a sentence. We argue that dependency graphs are
expressive and economical as the input representation when predicting
role-semantic structures.
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Chapter 4: Automatic Construction of an English Dependency Tree-
bank. This chapter describes how dependency structures can be
automatically extracted from a constituent treebank. To justify the
design decisions, we apply the principles laid down in Chapter 3 to
analyze a number of nontrivial constructions.

Chapter 5: Dependency-based Role-Semantic Analysis. The treebank
created in the previous chapter forms the basis of the work described
in this chapter, which describes the implementation of automatic role-
semantic analyzers for English in the FrameNet, PropBank, and Nom-
Bank frameworks. Features for statistical classifiers are described, and
a number of evaluation metrics are introduced.

Chapter 6: Comparing Syntactic Representations for Automatic Role-
semantic Analysis. The experiments in this chapter compare the
effect of syntactic representation on semantic role labeling performance.
We compare dependency-based and constituent-based semantic role
labelers, and investigate the effect of the design of the dependency
representation.

Chapter 7: Extensions of the Classifier-based Model. In this chapter,
we describe three extensions to the basic model: linguistic constraints,
reranking of complete predicate–argument structures, and integration
of syntactic and semantic analysis.

Chapter 8: Conclusion. This chapter concludes the dissertation by
summarizing the main points and describing possible future directions.

1.2 Published Work

The core parts of the material describing dependency-syntactic repre-
sentations and their conversion from constituents was first published
in this paper:

Johansson, Richard and Pierre Nugues. 2007a. Extended constituent-
to-dependency conversion for English. In Proceedings of NODAL-
IDA 2007, Tartu, Estonia.

The syntactic framework was then revised considerably for the
CoNLL-2008 Shared Task. This is described in the CoNLL-2008 shared
task introduction paper:
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Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluís Màrquez,
and Joakim Nivre. 2008. The CoNLL-2008 shared task on joint
parsing of syntactic and semantic dependencies. In Proceedings
of the 12th Conference on Computational Natural Language Learning
(CoNLL), Manchester, United Kingdom.

The description of the classifier-based semantic role labeling archi-
tecture was first published in the SemEval task on Frame-semantic
Structure Extraction:

Johansson, Richard and Pierre Nugues. 2007b. Semantic structure
extraction using nonprojective dependency trees. In Proceedings
of SemEval-2007, Prague, Czech Republic.

Preliminary experiments investigating the differences between syn-
tactic representations were published in this article:

Johansson, Richard and Pierre Nugues. 2007c. Syntactic represen-
tations considered for frame-semantic analysis. In Proceedings of
the Sixth International Workshop on Treebanks and Linguistic Theories,
Bergen, Norway.

The extended experiments, which form the basis of the material in
Chapter 6, were described in this article:

Johansson, Richard and Pierre Nugues. 2008c. The effect of
syntactic representation on semantic role labeling. In Proceedings
of COLING, Manchester, United Kingdom.

The extensions to the classifier-based semantic role labeler have
been described in two papers, the first of which used a dependency-
based evaluation metric and the second one a segment metric:

Johansson, Richard and Pierre Nugues. 2008b. Dependency-based
syntactic–semantic analysis with PropBank and NomBank. In
Proceedings of the Shared Task Session of CoNLL-2008, Manchester,
United Kingdom.

Johansson, Richard and Pierre Nugues. 2008a. Dependency-based
semantic role labeling of PropBank. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP).





Chapter 2

Role Semantics and Its
Applications

We model the process of communication as an exchange and harmo-
nization of structures of meaning: semantic structures. The natural
languages that humans use are a tool for encoding these structures
using the limited expressive capabilities of our speech apparatus. The
relations between natural language sentences and their corresponding
semantic structures are the topic of this dissertation.
To be able to make meaningful observations about the semantic

structures, we need to make the assumption that they can be decomposed
into smaller building blocks which we can study independently. This is
the well-known principle of compositionality, which has been argued for
and against since antiquity.1 It is well known and very obvious that this
principle is unrealistic in the general case. However, the work that we
describe here will concern only the representation of information in lan-
guage that is to be taken completely literally, completely disregarding
its rhetorical context and all possible interpretations of humor, sarcasm,
or allegory.
The core assumption in the principle of compositionality is that

complex structures are formed by combining smaller structures. This
decomposition is usually hierarchical, so that some semantic elements
– which we refer to as functors – require other elements – the arguments
– to form complete structures. Every functor has a number of slots

1It was known to early Indian philosophers such as Yāska. Plato proposed – and
refuted – the principle in Theaetetus. Later Indian grammarians debated it intensely.
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for arguments. We refer to these complex terms as functor–argument
structures. Such representations are widespread, and it has been
conjectured that they have a neural basis (Hurford, 2003).
Given a world, the functor–argument structures may be interpreted

as statements about this world. The functors are then referred to as
predicates in a predicate logic. Predicate logic is the foundation of vir-
tually all formalisms used in knowledge representation and theories of
natural-language semantics. However, since this dissertation concerns
only the superficial construction of the logical formulae given a text, not
how they relate to the world or how new facts are inferred from them,
wewill use the word predicates to refer to functors throughout, although
this is an abuse of the term. This is standard practice in the NLP field.
To illustrate the representational formalisms that we will describe

in this chapter, we will refer to the situation denoted by the following
sentence:

Example 2.1. Alexander eats an olive.

If we assume that the sentence is intended to be read completely
literally, without metaphors or irony, a formulation of Example 2.1 in
an event-based predicate logic (Davidson, 1967) might be

∃x, e : olive(x) ∧ eat(e,Alexander, x)

in addition to some temporal description of the event e.
In this work, our effort will be spent on finding event predicates

and their arguments. In the logical representations, we will omit entity
predicates, quantifiers, and representation of temporal, aspectual, and
modal structure. This simplification of the logical representation is
often referred to as a shallow semantic representation. We thus rewrite the
full representation of the example to the following simplified formula:

eat(e,Alexander, olive)

To be able to reason about the relations between predicates and
arguments, we introduce auxiliary predicates (which we will refer to as
slot connectors) that connect the event entity e to its participants. Then
the formula above becomes

eat(e)∧FIRSTARGOFEAT(e,Alexander)∧ SECONDARGOFEAT(e, olive)

2.1 Role Semantics

Role semantics is the assumption that slot connectors associated with
different predicates can be meaningfully grouped into equivalence
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classes – semantic roles2. If we are speaking about language, these classes
are then assumed to be reflected in surface realizations.
For example, we might say that the relation between Alexander and

eats is in some way “the same” as that between Barbara and puts on
in Barbara puts on a hat, i.e. that of a sentient being who intentionally
instigates the event, andwho is the focus of the narrative. The linguistic
rationale behind this intuition is that the arguments connected by these
slot connectors tend to appear as surface subjects in active clauses. Of
course, this “sameness” can only be rough since language discretizes a
continuous world.

Definition 2.1. A role-semantic equivalence is an equivalence relation
over slot connectors, and a semantic role is an equivalence class under a
role-semantic equivalence relation.

Introducing descriptive names for the equivalence classes, this
allows us to rewrite the example as follows:

eat(e) ∧ AGENT(e,Alexander) ∧ THEME(e, olive)

It is also customary to group semantic roles into core roles and peripheral
roles. Core arguments for a predicate are semantically central partici-
pants, while peripheral roles “set the scene.” The set of core arguments
allowed by a predicate is called its semantic valency, using a metaphor
from chemistry popularized by Tesnière (1959)3.

2.1.1 Role Semantics in Linguistic Theory

In linguistic theories, semantic roles have been used as a device to
explain the process of linking: the realization of semantic arguments
as surface forms. As mentioned above, for instance, when explaining
why one semantic argument of a predicate appears on the surface as a
subject, it comes very naturally to posit a general semantic category
similar to AGENT. The purpose of this abstraction is to allow us to
generalize over predicates when reasoning about predicate–argument
relations.
There are several linguistic transformations, some of which are

or have formerly been explicitly marked in morphology, which

2The term thematic role or θ-role (theta role) is also common. Depending on context and
tradition, the terms semantic, thematic, and θ role may have slightly different meanings
and may not be completely interchangeable.
3The metaphor seems to have been around in Russian and German linguistics before

Tesnière, see Schubert (1987).
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can be most conveniently defined using a role-based framework:
active/passive (to tell/to be told), inchoative/causative (to rise/to raise,
to fall/to fell), and various diathesis alternations (smeared paint on the
wall/smeared the wall with paint). It has been claimed that the semantic
role categories are universal and possibly innate, and this could explain
why native speakers intuitively know what grammatical construction
to use for previously unseen words such as to fax or to fedex, depending
on the semantics of the word. The research investigating these ques-
tions has primarily focused on the relations between verbs and their
arguments (a prototypical example is Levin, 1993), although there also
have been some less verb-centered frameworks. Semantic roles are now
found in many theoretical descriptions, and they have even found their
way into mainstream generative linguistics (Chomsky, 1981). For a
general overview of current role-based research in typology, theoretical
linguistics, and neurolinguistics, see Bornkessel et al. (2006).
The earliest known example of role semantics in a linguistic setting

is the kāraka system of Pān. ini, found in Ās. t.ādhyāyı̄, an early gram-
mar of Sanskrit (∼500 BC). This system was used in the semantic
representation given as input to an algorithm (rewriting system) to
carry out the transition from semantics to surface morphology. This
representation used the following kāraka, factors which have a function
in the accomplishment of action (kriyā).

Apādāna. “That which is firm when departure takes place.” (source)

Sam. pradāna. “He whom one aims at with the object.” (dative/bene-
factor/target)

Karan. a. “That which effects most.” (instrument)

Adhikaran. a. “Location.”

Karman. “What the agent seeks most to attain.” (objective/theme)

Kartr. . “He/that which is independent in action.” (agent)

A similar purpose – explaining the interface between surface and
deep structure – made Fillmore (1968), in the context of generative–
transformational grammatical theory, propose the following list of
“deep cases”, although he also included the caveat “additional cases
will surely be needed.” Note the similarity to the above list.

Agentive. “The case of the typically animate perceived instigator of
the action identified by the verb.”
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Instrumental. “The case of the inanimate force or object causally
involved in the action or state identified by the verb.”

Dative. “The case of the animate being affected by the state or action
identified by the verb.”

Factitive. “The case of the object or being resulting from the action
or state identified by the verb, or understood as a part of the
meaning of the verb.”

Locative. “The case which identifies the location or spatial orientation
of the state or action identified by the verb.”

Objective. “The semantically most neutral case, the case of anything
representable by a nounwhose role in the action or state identified
by the verb is identified by the semantic interpretation of the verb
itself [. . . ]”

Both lists were derived from surface systems of grammatical cases,
hence Fillmore’s terminology. However, they arrived at these systems
from very different starting points: Pān. ini used the kāraka system as
a convenient device to simplify the exposition of a grammar for a
particular language, without any claim of universality or cognitive
grounding, while Fillmore was trying to to establish universal prop-
erties of all languages: “a set of universal, presumably innate, concepts
which identify certain types of judgments human beings are capable
of making about the events that are going on around them” (Fillmore,
1968, p. 24).

2.2 Frame Semantics

Pān. ini and Fillmore posited universal sets of semantic roles. The univer-
sal semantic roles, and their scientific grounds, have been challenged
repeatedly. First of all, there has been no universal set that has been
generally agreed upon – using the terminology introduced above, it
is notoriously difficult to find meaningful role-semantic equivalence
classes that cover all slot connectors in all predicates. It has not been
possible to give strict definitions of the roles, and as we saw above,
the lists of semantic roles of Pān. ini and Fillmore both include an ill-
defined “catch-all” category (karman/objective). The problems appear
both when defining the roles on the semantic level andwhen describing
the link to the surface-linguistic level. Symmetrical predicates such as
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resemble and pairs like buy/sell are examples that are difficult to fit into
the framework of universal roles. For a summary of criticisms of the
concept of semantic role, see Ratté (1994).
To circumvent the definitional problems of universal semantic role

sets, Fillmore (1976) proposed the concept of semantic frame – a set of
predicates that share the same role set.
Definition 2.2. A semantic frame is a pair F = 〈L,∼F 〉 such that L is
a set of predicates, and ∼F is a role-semantic equivalence over the slot
connectors for the predicates in L.

While the formal requirement is only that the set of predicates shares
a set of semantic roles, linguists who group predicates into frames
usually make a stronger assumption: that the predicates relate to a
shared “situation” or domain:

A word’s meaning can be understood only with refer-
ence to a structured background of experience, beliefs, or
practices, constituting a kind of conceptual prerequisite for
understanding the meaning. Speakers can be said to know
the meaning of the word only by first understanding the
background frames that motivate the concept that the word
encodes. Within such an approach, words or word senses
are not related to each other directly, word to word, but only
by way of their links to common background frames and
indications of the manner in which their meanings highlight
particular elements of such frames.

Fillmore and Atkins (1992), pp. 76–77.

For instance, in FrameNet, a frame-semantic lexical database (see
2.3.1), the word eat belongs to the frame INGESTION, which it shares
with words (verbs and nouns) such as devour, drink, gulp, . . . Conven-
tionally, descriptive frame-specific names such as INGESTOR are then
given to the semantic roles, rather than abstract names such as AGENT.
We thus write the example as follows:

INGESTION:eat(e) ∧ INGESTOR(e,Alexander) ∧ INGESTIBLES(e, olive)

In this formulation, frame semantics has less predictive power than role
semantics with universal roles, and to be able to describe general lin-
guistic processes such as diathesis alternation, frame-semantic theories
may introduce frame-to-frame relations such as inheritance from more
abstract frames, which may then contain abstract roles such as AGENT.
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This is the case with FrameNet, for instance. Of course, care must be
taken so that these relations do not just lead back to the problems that
made universal role sets impractical.
It has been conjectured that a system of frames and frame-to-

frame relations in a given language would be structurally similar to
its counterparts in other languages, and it is this assumption that
underpins the hypothesis that frame semantics could be useful in
machine translation (Boas, 2002; Boas, 2005). This assumption has
been used with some success to automatically construct role-semantic
resources in new languages (see 2.4.3). However, investigations of
frame-semantic parallelism (Padó, 2007a; Padó, 2007b) demonstrate
clearly that the frame structures in a pair of languages are not generally
isomorphic, not even for very closely related languages such as English
and German. We can also be fairly sure that the structure parallelism
decreases as typological and cultural distance grows, although this has
not been investigated to our knowledge.

2.3 Role-Semantic Lexicons and Corpora

To be able to construct computer systems that automatically carry out
a role-semantic analysis, significant efforts are needed to construct
resources that make this possible.

• Role-semantic lexicons define the semantic valencies of individual
lexical items.

• Annotated corpora allow us to create statistical models in systems
that generate or analyze semantic role structures, as well as
evaluating their performance.

This section gives an overview of existing role-semantic resources.

2.3.1 FrameNet, SALSA

FrameNet (Baker, Fillmore, and Lowe, 1998) is a lexical database
grounded in the frame-semantic paradigm. It consists of the following
parts:

• A lexicon that lists a frame for every word sense,

• A frame ontology, which defines the semantic roles for each frame
and frame-to-frame relations such as inheritance, part-of, and
causative-of,
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• A collection of lexical examples manually sampled from the
British National Corpus.

With release 1.3 of FrameNet, a small corpus of running text was
also added, in order to create a corpus from which reliable statistical
inferences can be drawn. However, the projects that have trained
statistical models on FrameNet have utilized the lexical examples as
the primary source of training data, since this collection is much larger.
On a practical level, FrameNet has a problem of low coverage and
incompatibility with other resources. The low coverage has led to a
number of ad-hoc methods to extend the lexicon (Burchardt, Erk, and
Frank, 2005; Johansson and Nugues, 2007d).

There are also projects to create FrameNets for Spanish (Subirats,
2008) and Japanese (Ohara et al., 2003). In addition, there are a
number of preliminary proposals and pilot projects for a wide range
of languages.

A more corpus-oriented project is SALSA (Burchardt et al., 2006). In
contrast to FrameNet, this project annotated a real corpus of German,
which is promising for statistical systems. The project tried to maintain
compatibility with the English FrameNet as far as possible, which
could make it useful in multilingual applications. Another interesting
difference compared to FrameNet is that SALSA annotated directly on
top of the TIGER treebank. An automatic semantic role labeler for
German trained on the SALSA corpus has been developed (Erk and
Padó, 2006).

2.3.2 VerbNet

VerbNet (Kipper, Dang, and Palmer, 2000) is a role-semantic lexicon for
English based on the theoretical framework of Levin (1993). In VerbNet,
verbs are grouped into hierarchical classes depending on which subcat-
egorization patterns they allow. It makes stronger assumptions than
FrameNet: that not only the allowed semantic arguments, but also the
syntactic transformations that are allowed by a verb, are determined by
the semantics of the verb.

VerbNet uses a set of universal semantic roles. Table 2.1 shows the
semantic role labels used in VerbNet. The descriptions are taken from
the project website.
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Actor Used for some communication classes when both arguments can
be considered symmetrical.

Agent Generally a human or an animate subject.
Asset Used for the Sum of Money alternation.
Attribute Attribute of Patient/Theme refers to a quality of something that

is being changed.
Beneficiary The entity that benefits from some action.
Cause Used mostly by classes involving psychological verbs and verbs

involving the body.
Destination End point of motion, or direction towards which the motion is

directed.
Source Start point of the motion.
Location Underspecified destination, source, or place.
Experiencer A participant that is aware or experiencing something.
Extent Specifies the range or degree of change.
Instrument Used for objects (or forces) that come in contact with an object

and cause some change in them.
Material Start point of transformation.
Product End result of transformation.
Patient Participant that is undergoing a process or that has been affected

in some way.
Predicate Used for classes with a predicative complement.
Recipient Target of the transfer.
Stimulus Used by verbs of perception for events or objects that elicit some

response from an experiencer.
Theme Participant in a location or undergoing a change of location.
Time Class-specific role, used in Begin-55.1 class to express time.
Topic Topic of communication verbs to handle theme/topic of the

conversation or transfer of message.

Table 2.1: The semantic role labels used in VerbNet.
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2.3.3 PropBank and NomBank

PropBank (Palmer, Gildea, and Kingsbury, 2005) adds a layer of se-
mantic role annotation on top of the Penn Treebank of constituent-
syntactic annotation (Marcus, Santorini, andMarcinkiewicz, 1993). This
framework is theoretically agnostic; the core semantic arguments are
just assigned numbers (ARG0, ARG1, . . . ). The allowed core arguments
for every verb are listed in a lexicon. In addition, adjuncts are
annotated using generic labels such as ARGM-DIR (direction), ARGM-
PNC (purpose/cause). The following is an analysis of the example
sentence according to PropBank conventions.

eat(e) ∧ ARG0(e,Alexander) ∧ ARG1(e, olive)

The semantic role labels are consistent across different diathesis alter-
nations of the same verb. However, unlike in FrameNet or VerbNet, it
is not assumed that the labels are meaningful across different verbs. A
general rough convention is that ARG0 corresponds to the argument
having most properties of a “proto-agent” and ARG1 to a “proto-
patient” (Dowty, 1991). The other core arguments for a particular verb
are numbered “by decreasing degree of prominence.” For instance,
ARG2 for the verbmake corresponds to the VerbNet role MATERIAL, but
for the verb multiply, it corresponds to EXTENT. Despite this, statistical
systems that carry out a PropBank-style semantic analysis typically
treat role label assignment as a well-defined classification problem, and
it generally seems that semantic role labeling is easier with PropBank
than with other frameworks, although it is difficult to discern to what
extent this is caused by the framework itself as opposed to factors such
as data quality and domain variability.
Unlike FrameNet, PropBank is defined for verbs only, although it is

often possible to express a predicate as a noun. For instance, Alexander’s
death refers to the same state of affairs as Alexander died. NomBank
(Meyers et al., 2004) is a project that addresses this issue by attempting
to generalize PropBank to nominal predicates. Its framework is almost
identical to PropBank’s, and it tries to stay close to PropBank’s role
definitions, so that for instance the nominalization death has the same
semantic role range as the verb die. So far, there has been little research
on automatic semantic NomBank semantic role labeling – it seems to be
considerably more difficult than for PropBank (Surdeanu et al., 2008).
PropBank-based semantic role labelers have been implemented for

other languages than English, for instance Chinese (Xue, 2008), Arabic
(Diab, Moschitti, and Pighin, 2008), Spanish, and Catalan (Surdeanu,
Morante, and Màrquez, 2008).
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2.3.4 Prague Dependency Treebank

The Prague Dependency Treebank (Hajič, 1998) is probably the most
well-known treebank based on syntactic dependency. It consists of
three layers: the morphological, the analytical (surface syntax), and
the tectogrammatical (“underlying” syntax). The final of these is a
semantic dependency structure that (among other things) annotates
predicate–argument structure using semantic role labels such as ACT
(actor) and PAT (patient). Like SALSA and PropBank, the semantic
layer of the Prague Dependency Treebank has the advantage of being
linked to a syntactic layer, which makes it easier to construct automatic
semantic role labelers, assuming that a syntactic parser is available. A
comparison of PropBank and the tectogrammatical layer has beenmade
by Hajičová and Kučerová (2002).

2.4 Role Semantics in Practical Applications

Role semantics has been proposed as a practical intermediate structure
that mediates between raw syntax and domain-specific representa-
tions. As we saw previously, it has been employed in linguistics as
an auxiliary device, a transitional representation used in translating
“deep” semantic structures to surface structures. In natural language
processing, on the other hand, it may serve as a generic semantic
representation, mediating between surface structures and application-
specific representations.
The reason for the appeal of role semantics in this context is that

these representations are simple enough for building computer systems
that extract them automatically with a fair degree of accuracy. Since
they are not full predicate-logic formulae, automatic systems can avoid
resolving notoriously hard and poorly understood linguistic problems
such as quantifier scope ambiguity, reference resolution, and temporal,
modal, and discourse structure.
Despite their relative simplicity, these representations provide more

abstraction than what is possible when using syntax only. The reason
for this is that they are to a large extent invariant under paraphrasing,
which was indeed the reason to introduce them in the first place. Role-
semantic representations preserve structure under operations such as
passivization (they told a lie / a lie was told) and diathesis alternations
such as dative shift (they told me a lie / they told a lie to me). If FrameNet
is used, it may also be possible to generalize from verbs such as speak to
nouns such as statement.
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The following subsections give a brief overview of how role seman-
tics has been applied (or proposed to be applied) in applications.

2.4.1 Template-filling Applications

Possibly, the most obvious practical applications of automatic systems
for role-semantic analysis are information extraction systems that fill
templates. In these cases, it might be possible to map semantic roles
directly to template slots. Figure 2.1 shows such a mapping from
two FrameNet frames to a simple template, taken from the paper by
Moschitti, Morărescu, and Harabagiu (2003). This example shows
the advantage that the additional level of abstraction offers – details
of linguistic variations are abstracted away. In other cases, a more
complex mapping than in this simple example may be needed, but it
can be expected that information extraction systems can be in general
constructed more rapidly if semantic role information is available:
Surdeanu et al. (2003) constructed such mappings manually in a couple
of hours per domain.

Arriving

Theme

Source

Path

Goal

Manner

Theme

Source

Path

Goal

Manner

Departing

Person

Date

To−location

Movement of People

From−location

Figure 2.1: Mapping from FrameNet frames to a template in an information
extraction application.
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2.4.2 Graph-based Applications

In some applications, it it fruitful to build graphs to represent texts.
These graphs can then be used to measure similarity or for locating se-
mantically prominent parts. Role-semantic representations have a very
natural place in such representations. A typical example is question
answering, in which a relevant document and a relevant passage in
the document are to be extracted by an automatic system. Semantic
role labelers have been shown to improve performance in question
answering (Narayanan and Harabagiu, 2004; Shen and Lapata, 2007).
Figure 2.2 shows how frame semantics can be used as text represen-

tations in question answering. Here, we search for a passage that can
answer the questionWhen did Alexander marry?, and the answer passage
. . . Alexander’s 327 BC wedding . . . can be extracted by exploiting the
semantic structure similarity.

After Alexander’s 327 BC wedding to Roxana, ...

Forming_relationships

Partner_1
Time

Partner_2

When did Alexander marry ?

Forming_relationships

Partner_1

Time

Figure 2.2: Examples of semantic graphs in a question answering problem.

A similar problem is entailment recognition: given a text and a
statement, determine whether or not the statement is a logical conse-
quence of the text. There are many ways to approach this problem,
but it seems that methods using role-based semantic graphs work well
(Haghighi, Ng, and Manning, 2005; Hickl et al., 2006). Semantic role
labeling has also been applied in summarization, in which simplifying
transformation operations are applied to semantic graphs (Melli et al.,
2005).

2.4.3 Multilingual Applications

One of the most widely cited conjectured applications for role and
frame semantics is automatic translation (Boas, 2002). Classical meth-
ods in machine translation were based on an analysis component
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that extracted a language-independent semantic representation, an
interlingua, from which the text in the target language was produced
by a generation component. When the field was swept clear by the
introduction of statistical methods, interlingua-based translation fell
out of favor, and word-based translation based on the noisy channel
model dominated the field completely. Recently, however, statistical
machine translation has moved to more complex representations than
just words, and it is conceivable that frame and role semantics can be
helpful in designing a future new interlingua (Boas, 2005).
However, this presupposes that the frame-semantic structures in the

two languages are similar, or that suitable mappings can be constructed
(or learned). And above all, practical application of frame semantics
in this context is currently limited by the absence of frame ontologies,
lexicons, and annotated corpora for other languages than English.
For non-frame role semantics, the Chinese PropBank has recently re-

ceived much attention (Xue and Palmer, 2007; Xue, 2008). It remains to
be seen whether this resource can facilitate translation; since PropBank
core argument labels do not generally have a consistent interpretation
across predicates, this seems unlikely (see also a related discussion by
Padó (2007a), pages 40–42). Preliminary attempts to integrate semantic
role labelers in syntax-based machine translation have not improved
results (Liu and Gildea, 2008).
The assumption that a text and its translation have isomorphic

frame-semantic structures has also made it possible to automatically
annotate role-semantic structure in corpora in a new language (Padó
and Lapata, 2005; Padó, 2007a; Johansson and Nugues, 2006).

SPEAKER
express

MESSAGE
[We]             wanted to               [our perplexity as regards these points]             [by abstaining in committee]

MEANS

MEANS SPEAKER
[Genom att avstå från att rösta i utskottet]           har [vi]            velat                [denna vår tveksamhet]uttrycka

MESSAGE

Figure 2.3: Example of isomorphic frame-semantic structure in an English–
Swedish sentence pair.

For instance, figure 2.3 shows an example of an English–Swedish
sentence pair from the Europarl corpus, and its corresponding frame-
semantic annotation, which in this case allows a perfect transfer. For
the transfer method to be meaningful, the following assumptions must
be made:
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• The complete frame ontology in the English FrameNet is mean-
ingful in Swedish as well, and each frame has the same set of
semantic roles and the same relations to other frames.

• When a predicate belongs to a certain frame in English, it has a
counterpart in Swedish that belongs to the same frame.

• Some of the semantic roles on the English side have counterparts
with the same semantic roles on the Swedish side.

The structural similarity assumptions are invalid in many cases,
depending on typological and cultural distance between languages, but
also on genre – in fiction, for instance, translation is often less literal
for artistic reasons. However, the assumptions seem to work fairly
well in practice: Johansson and Nugues (2006) describe an experiment
where automatically annotated frame-semantic data were used to train
an automatic semantic role labeler for Swedish that achieved an F1-
score of 0.55 on a test corpus4.

2.4.4 Vector Space Applications

Text categorization is the task of automatically assigning a document to
one or more predefined categories. The most successful algorithms to
solve this problem have been based on statistical classification methods
using a feature representation of the complete document based only on
the individual words in the document – the bag-of-words representation.
It has recently been shown (Persson, 2008; Persson, Johansson,

and Nugues, 2008) that categorization accuracy can be improved by
adding predicate–argument features to a bag-of-words representation.
The predicate–argument structures were extracted using the system
described in Chapter 7. The extensions of the feature set led to error
reductions of between 2 and 10 percent for categories having more than
2,000 training documents.
This application is different from those described above, since the

predicate–argument structures are used implicitly, as a part of a feature
representation, rather than explicitly.
It remains to be seen whether this feature representation can be

applied in other tasks that are commonly solved using bag-of-words
representations, such as information retrieval or sentiment classifica-
tion.

4See 5.4 for a definition of this metric
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2.4.5 Applications Using Domain-Specific Role Sets

Role-semantic representation frameworks have also been created or
adapted for specific applications. This is advantageous for several
reasons: First, theoretical problems of definition of roles are less severe
when only a small fragment of language is covered – this is similar to
the view of frame semantics, where semantic roles are defined with
respect to situations. Second, domain-specific semantic role labelers
can often avoid a very significant obstacle in automatic semantic role
labeling: word sense ambiguity – the sense of the predicate word
determines which semantic roles are played by its arguments. A typical
example of an application for which a domain-specific semantic role
labeler was created is Carsim (Johansson et al., 2005), a system for
automatic illustration of traffic accident news texts in Swedish.



Chapter 3

Dependency-syntactic
Representations

The information communicated by humans is expressed by words
arranged in a sequence. The meaning of the complete utterance is
determined in part by the meaning of the words themselves, but also
by the pattern in which the words are arranged. When we arrange
words in a pattern, their organization is a device that we use to signal
a semantic relationship between the concepts denoted by the words.
Saussure (1916) famously characterized language as a system of signs,
where a sign consists of a signifier, a symbol that is used to communicate
a signified, a unit of information; in our case, we can say that the
arrangement of words is a signifier referring to a semantic relationship
– the signified.
Syntax is the study of how a set of surface words may be arranged

in a sequence to form a complete sentence. A syntactic representation of
a sentence is a data structure that represents how words in a sequence
form a pattern. In the framework of syntactic dependency, the syntactic
representation consists of a graph of binary relations betweenwords. The
concept of syntactic dependencywas famously introduced intomodern
linguistics by Tesnière (1959):

The sentence is an organized whole; its constituent parts
are the words. Every word that functions as part of a
sentence is no longer isolated as in the dictionary: the mind
perceives connections between the word and its neighbors;
the totality of these connections forms the scaffolding of
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the sentence. The structural connections establish relations
of dependency among the words. Each such connection in
principle links a superior term and an inferior term. The
superior term receives the name governor; the inferior term
receives the name dependent.1

To exemplify the concept of syntactic dependency graph, Figure 3.1
shows a possible dependency-syntactic representation of the sentence
Yesterday she gave the horse an apple.

gave the horse an appleshe

SBJ NMODNMOD

IOBJ

OBJ

yesterday

TMP

ROOT

Figure 3.1: Example of a dependency representation.

The three main properties of dependency graphs when used as
syntactic representations are thus:

• The graph consists of edges between words, and the presence of
an edge between two words denotes a grammatical cooperation
between those words.

• The edges are directed, and the direction of an edge between
two words denotes which of them determines the grammatical
behavior of the complete structure.

• The edges are labeled, and the label associated with an edge
between two words denotes the nature of their grammatical
relationship, the grammatical function.

Just as we defined semantic roles (see 2.1) as equivalence classes
of relations between predicates and arguments, we define grammatical
functions by noting that the nature of grammatical cooperation between
governor and dependent is “similar” in many cases. This observation
allows us to introduce a finite number of equivalence classes over the
infinite set of syntactic relations between governor and dependent, and
thus use a finite number of grammatical function labels. For instance,
a finite verb is often preceded by a phrase in the nominative case

1Translation from French by Kuhlmann (2007).
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with which it morphologically agrees in grammatical number, and we
introduce the grammatical function label of subject (SBJ in the Figure
3.1) to denote this type of cooperation. The grammatical function is one
of the primary (but not the only) means of expressing the semantic role
relations that hold between a predicate and its arguments. Note that
the inventory of grammatical function labels is specific to a language,
unlike semantic role labels, which are defined in terms of logic.

Dependency representations are often contrasted with constituent
representations, which are more widespread in linguistic theories (at
least in those describing English). These structures instead represent
the grammatical organization of a sentence by means of hierarchically
organized constituents or phrases, and are classically associated with
context-free grammars. Figure 3.2 shows a constituent representation
of the example sentence.

NP NP NP

VP

S

NP

gave the horse an applesheyesterday

Figure 3.2: Example of a constituent representation.

Dependencies with labeled edges and constituents with labeled
phrases can be seen as representations of two different views of the
organization of a sentence, where either the nature of cooperation
or the hierarchical organization is made explicit. To some extent,
constituents can be derived from dependencies and vice versa. The
question is then which of the two views – if any – to treat as the
primitive representation from which the other is derived. In this work,
we regard dependencies as primitive, and derive constituents only
when necessary (in constituent-based evaluation). However, let it be
emphasized that this is for proof of concept, not an ideological choice.

The chapter starts by giving an overview of research on the relation
between syntax and automatic semantic role labeling. We then focus on
dependency syntax: First, we give formal definitions of the concept of a
dependency graph. With the formal machinery in place, we turn to the
question of defining the meaning of the dependencies that constitute
the graphs.
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3.1 The Role of Syntax in Automatic Semantic

Role Labeling

Since the beginning of research in automatic semantic analysis of
natural-language text, it has been assumed that semantic analysis is
closely related to syntactic analysis. This is of course very intuitive –
as mentioned above, the surface organization of words is the encoding
of the meaning of the complete structure.
The assumption of syntactic representation has also been pervasive

in research on automatic semantic role labeling. For instance, the semi-
nal work by Gildea and Jurafsky (2002), which introduced semantic role
labeling to a general audience, carried out semantic role analysis on top
of the output of a constituent parser.
In search of the simplest syntactic representation necessary for

semantic role labeling, shallow2 syntax produced by chunkers is an
obvious candidate (Carreras and Màrquez, 2004). The general con-
sensus seems to be that shallow syntax is insufficient (Gildea and
Palmer, 2002; Punyakanok, Roth, and Yih, 2008). Still, Màrquez et al.
(2005) showed that competitive performance can be achieved using a
shallow syntactic representation based on chunk and clause bracketing.
Interestingly, semantic role labelers based on shallow syntax seem to be
complementary to those based on full constituents, which make them
useful for building hybrid systems.
To follow this line to its logical conclusion, a recent paper by

Collobert and Weston (2007) describes a system based on a neural
network, which performs semantic role segmentation using no syntac-
tic intermediate representation whatsoever, although they suggest that
results could be improved by using a chunk-based input representation.
However, this work is difficult to compare to previously published
results, since the systems are evaluated using a word error rate rather
than a standard segment-based metric (see 5.4 for a further discussion
on evaluation). The article is also lacking in analysis; no explanation is
given as to why their system is able to identify semantic role segments
of arbitrary length without having access to a recursive syntactic repre-
sentation. It seems that the bag-of-words feature representation that is
induced by their word vectors can implicitly capture information about
structure nesting that is made explicit in syntactic representations, but

2In this work, shallow syntax means a simplified constituent structure, such as that
output by a chunker. In other traditions, such as in feature-based grammar frameworks,
shallow syntax is roughly the same as feature-less surface syntax.
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this is left unexplained. We find it unlikely that their method could
work in a language with free word order.
Nevertheless, their success raises profound questions about the

intellectual grounding of the traditional approaches to role-semantic
analysis. If their results would be improved further, and proper
explanations were given, the scientific method would force us to ques-
tion whether syntax-driven semantic analysis, and indeed the explicit
representation of syntactic structure, has any scientific validity at all.
By habit, most systems for automatic role-semantic analysis have

used constituents as in the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz, 1993), produced by Collins’ (1997) or Charniak’s (2000)
statistical parsers. Dependency syntax has received very little attention
for the SRL task, despite a surge of interest in dependency parsing
during the last few years (Buchholz andMarsi, 2006). The earliest work
on dependency-based semantic role analysis was done in the context of
the Prague Treebank for Czech, where automatic systems were created
to assist humans in annotating the tectogrammatical (deep-syntactic
or shallow-semantic) layer (Žabokrtský, 2000; Žabokrtský, Sgall, and
Džeroski, 2002). For English, the literature on dependency-based
SRL is scant; the first work we know is the preliminary experiment
by Hacioglu (2004), which does semantic role analysis using a gold-
standard dependency treebank. Another example is the experiment by
Pradhan et al. (2005b), which is the first work we are aware of that used
an automatic parser. Unfortunately, the results were negative: The F1
measure on the test set dropped from 79.9 to 47.2 (from 83.7 to 61.7
when using a head-based evaluation).
However, there are a number of linguistic motivations why de-

pendency syntax could be beneficial in an SRL context, even for a
constituent-friendly language like English. First, complex linguistic
phenomena such as wh-word extraction and topicalization can be
transparently represented by allowing nonprojective dependency links
(see definition in 3.2). These links also justify why dependency syntax is
often considered superior for free-word-order languages; it is even very
questionable whether the traditional constituent-based SRL strategies
are viable for such languages. Second, grammatical function such as
subject and object is an integral concept in dependency syntax. This
concept is intuitive when reasoning about the link between syntax and
semantics, and it has been used earlier in semantic interpreters such as
Absity (Hirst, 1983).
Although this is not generally acknowledged, traditional semantic

role analyzers based on constituent syntax have already incorporated
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features that point toward a dependency representation. Most impor-
tantly, almost every system uses a set of rules to extract a head in each
constituent3. This is considered crucial, since it is necessary for extract-
ing lexical features. The second hallmark of dependency representa-
tions – grammatical function – is also used in constituent-based systems
in the guise of features such as position and “governing category.”
Explicit grammatical functions have rarely been used – except from
the systems for tectogrammatical analysis of Czech, the only published
work we are aware of is a tentative experiment (Toutanova, Haghighi,
and Manning, 2005) in which grammatical functions extracted from a
gold-standard treebank were used.
As an illustration of our previous points, consider the sentence yes-

terday she gave the horse an apple and its constituent-syntactic representa-
tion, shown in Figure 3.2. We are interested in determining the semantic
relations between the predicate gave and its noun phrase argument the
horse. Based on the syntactic representation, a statistical semantic role
labeler extracts features representing the relation between predicate
and argument: For constituent-based systems, this is typically the PATH
NP↑VP↓VB, the GOVERNING CATEGORY VP, and the POSITION of the
argument with respect to the predicate, AFTER. However, based on
these features only, we would have to assign the same semantic role
label to the following noun phrase an apple, for which these features
have the same values. So how would a state-of-the-art constituent-
based semantic role labeler be able to correctly predict the semantic
roles RECIPIENT of the phrase the horse, even though the grammatical
features cannot discriminate? Probably, it can do this because it utilizes
one or more of the following strategies:

• Its machine learning component may have learned to cluster
words referring to animate beings (such as horse), and these words
increase the probability of the semantic role RECIPIENT. To be able
to extract this feature, the head (horse) needs to be determined
using head-finding rules, and as argued above, this constitutes a
step towards a dependency representation.

• Its machine learning component may have learnt that an NP
followed by another NP should be tagged with RECIPIENT rather
than THEME.

• It might use a global reranker that has learnt that RECIPI-
ENT+THEME is preferable to RECIPIENT+RECIPIENT, or a global

3Modern generative syntactic theory is based on the X-bar framework, which also
requires every phrase to have a head. This is not reflected in the Penn Treebank, though.



3.2. FORMAL DEFINITIONS 29

constraint system that rules out two identical core argument
labels.

However, the solution could be much simpler: the NP the horse has
a grammatical function of indirect object, and for the word give, the
indirect object is the surface realization of the RECIPIENT. This does
not conflict with the following NP the apple, which is a direct object,
corresponding to the semantic role of THEME. As described previously,
the grammatical function is one of the primary means of encoding
semantic role information. The three features used by the constituent-
based systems are implicit reflections of this property, which is made
explicit in the dependency-syntactic structure in Figure 3.1.

3.2 Formal Definitions

This section introduces the formal machinery that we will make use of.
We first define the concepts of token and sentence.

Definition 3.1. A token t is a tuple 〈i, f1, . . . , fk〉, where i ∈ N is called
the index and f1, . . . , fk are atomic features.

Definition 3.2. A sentence x is a set {t0, . . . , tn} of tokens whose indices
are 0, . . . , n, respectively.

To simplify exposition, we assume that the first token t0 in each
sentence is a dummy symbol not corresponding to a word.
We are now ready to give the definition of a dependency graph.

Definition 3.3. Given a label setL and a sentencex, a labeled dependency
graph for x is a pair 〈x, E〉, where E ⊆ x × x × L. We refer to a tuple

〈g, d, l〉 as a labeled dependency edge, and we write it as g l
→ d or just

g → d. We say that g is a governor4 of d with edge label l, and that d
is the dependent of g. The transitive–reflexive closure of the governor
relation is called dominance.5

Definition 3.4. For a labeled dependency graph G for the sentence x

and label set L, we say that G is well-formed if it satisfies the following
two constraints:
4Following Mel’čuk (2003), we use the term governor rather than head. We reserve the

term head for the head word of a constituent or subtree to avoid confusion.
5The transitive–reflexive closure R∗ of a relation R is defined as follows: ∀x : xR∗x,

∀x, y, z : xR∗y∧yRz ⇒ xR∗z. The definition of dominance used here is slightly different
from its usual definition in graph theory: x dominates y if every path from the root to y

contains x. These definitions are of course equivalent if the graph is a tree.
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ROOTEDNESS. The first token t0 in x is a root inG, i.e. there is no token
g in x such that g → t0.

CONNECTEDNESS. The root t0 dominates every token in x.

In addition, all dependency graphs that we will use in this work
satisfy the following constraint.

UNIQUE GOVERNOR. For every token t in x, there is at most one
governor.

In other words, the dependency graph is a tree. There are syntactic
theories that do not impose this constraint, for instance the discon-
tinuous grammar (Buch-Kromann, 2006) used to annotate the Danish
Dependency Treebank (Trautner Kromann, 2003), and this results in a
more expressive syntactic framework that allows convenient analyses
of some tricky phenomena that we will discuss in Chapter 4, where the
hierarchical organization of a structure is unclear. However, parsing
with such graphs is difficult – see the discussion in 7.2 for details.
We finally introduce the projectivity property of dependency graphs

(Lecerf, 1960).

Definition 3.5. A dependency edge g → d in a dependency graph G
for a sentence x is called projective if all tokens in x between g and d
are dominated by g. The graph G is called projective if all its edges are
projective.

Visually, this means that the dependency graph can be drawn above
the sentence without reordering the words, so that no edges cross.6

This property is important, since it means that embedded structures
are continuous and can be processed recursively, and this enables
parsing algorithms to use stacks or dynamic programming. The
connection with context-free grammars is also apparent. It seems
that the majority of sentences in all human languages have projective
dependency-syntactic analyses. Especially in some of the world’s most
widely spoken languages, such as Chinese, English, and Japanese, the
syntactic structures are almost exclusively projective. In some other
languages, nonprojective structures are more common, but still very
close to projective structures (Kuhlmann and Nivre, 2006).

6We make no distinction in this work between projectivity and planarity, since we
assume that every sentence starts with a dummy root token.
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Constituent Trees

Although the work described in this dissertation is mainly based on
dependency syntax, we also need to define the notion of constituent
for completeness. We also introduce some auxiliary notation that will
be employed when we describe transformations on constituent trees in
Chapter 4.

Definition 3.6. Given a label set L and a sentence x, a constituent is
either a single token from x, which is then referred to as a terminal node,
or a nonterminal node: a tuple c = 〈l, C〉, where l ∈ L and C is a set
of constituents. If d ∈ C , we say that c is a parent of d, or that d is a
child of c. The transitive–reflexive closure of the parent relation is called
dominance. For a nonterminal constituent c, we will sometimes use the
shorthand |c| for its number of children, i.e. |C|.

Definition 3.7. Given a label set L and a sentence x, a constituent tree
for x is a pair 〈x, T 〉, where T is a set of constituents for which the
following properties hold:

ROOTEDNESS. There is exactly one constituent r ∈ T , referred to as the
top node or root, which is the child of no constituent in T .

CONNECTEDNESS. Every constituent in T dominates at least one token
in x, and the top node dominates every token.

UNIQUE PARENT. Every constituent in T except the top node is the
child of exactly one other constituent in T .

This definition allows discontinuous constituents as in the TIGER
treebank (Brants et al., 2002). However, most constituent treebanks,
such as the Penn Treebank, differ in this respect, and use other means
to encode discontinuous structures.

Definition 3.8. The start-token index sti(c) of a constituent c is defined
as follows:

sti(c) = i if c is a terminal node with index i
sti(c) = maxd∈C sti(d) if c is a nonterminal 〈l, C〉.

We also define the start-token order �st so that c �st d if sti(c) ≤ sti(d).
For a nonterminal node c, we will use ci to refer to the i-th child of c in
start-token order.
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3.3 Dependency Graphs as Syntactic Repre-

sentations

With the formal framework in place, we now need to define denotations
of its concepts. In this section, we will outline what information should
be represented in the graphs. Wewill define criteria for establishing that
a direct dependency holds between two words, and for determining its
direction and label.
The word–word relations that wewill encode in dependency graphs

are surface-syntactic, and the criteria that we will use to construct
representations are primarily based on observable linguistic phenom-
ena, such as word order and morphology, rather than on underlying
semantic structures.
Our surface-syntactic methodology makes it natural to impose the

following restrictions on the syntactic structures:

• Monostratal: We use only a single layer of syntactic informa-
tion, rather than multiple layers as for instance in Meaning–
Text Theory (Mel’čuk, 1988) or Extensible Dependency Grammar
(Debusmann, Duchier, and Kruijff, 2004).

• Single governor: As mentioned in 3.2, we allow only one governor
per token, thereby imposing a tree structure on the dependency
graph. This contrasts with frameworks such as Word Grammar
(Hudson, 1984) and Discontinuous Grammar (Buch-Kromann,
2006).

• Surface tokens: Except the dummy root token, every node in a
syntactic tree corresponds to a single surface word.

Our reasons for these restrictions are parsimony – wewant to find the
simplest possible representation that allows accurate semantic analysis;
efficiency – multiple layers, multiple governors, multi-word nodes, and
insertion of empty nodes all make automatic syntactic analysis more
complex; reliability – features for statistical systems can be expected
to be more reliable if based on observable surface phenomena; and
scientific rigor – empty nodes and additional “deep-syntactic” layers are
theoretically questionable and hard to define stringently. As pointed
out by Schubert (1987), if we allowmore complex representations, “one
is too easily tempted to make descriptions not about the words found,
but about abstract structures. This entails the danger of reasoning about
‘underlying’ or ‘kernel’ sentences, ‘implicit’ predications or the like.”
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We thus take the word as the minimal unit in syntactic structure. It
could well be argued that the minimal unit should not be the word but
the morpheme. This is certainly true in agglutinative languages such
as Turkish or Finnish, but also in some cases in English – consider, for
instance, the structure of pro- and anti-government demonstrations. Even
when we consider the word as the minimal unit, we must be careful
to define what constitutes a word, although this consideration plays a
minimal practical role in this work since we used pretokenized data7.
Multi-word tokens were used by Tesnière (1959), and are also common
in analyses of Japanese syntax, where the bunsetsu (a phrase followed
by a case-marking postposition) can be regarded as the minimal unit in
syntax.
With regards to the structure of the dependency graphs, we will

not impose a projectivity restriction, unlike some other descriptions.
Although English dependency graphs – like in other languages – are
most often projective, there are situations where this does not hold,
often due to topicalization and “heavy shifts.”

3.3.1 A System of Criteria for Establishing Syntactic
Dependencies

As stated previously, the presence of a link between two words means
that they cooperate in forming a complete grammatical structure. The
direction of the link denotes which of the words is regarded as the one
that determines the grammatical behavior of the complete structure.
We now turn to the task of defining criteria for establishing these
properties. This section describes a typical system of such criteria that
was originally described by Mel’čuk (2003). It should be noted that
the criteria given here should be viewed as a set of general guidelines,
not an algorithm. It is an open and interesting question to what extent
they could serve as a basis for algorithms for unsupervised dependency
annotation.

Connectedness Criteria

The first criteria, the connectedness criteria, which formalize the notion of
“cooperating” that we have referred to, describe necessary conditions

7In the Penn Treebank conventions, contractions such as cannot and I’m are split, as
well as possessive constructions such as Alexander’s. In the CoNLL-2008 data, most
hyphenated words, like part-of-speech, were also split.
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for a dependency relation to hold between two words. They say
nothing about the direction or label of the relation.

A1 Linear arrangement of words. The words w1 and w2 considered in
a communicatively neutral sentence can have a direct syntactic
dependency link between them only if the linear position in the
sentence of one of them must be specified with respect to the
other.

A2 Potential prosodic unity. There can be a direct syntactic link between
the words w1 and w2 only if

• eitherw1 andw2 can form an utterance, i.e. a special prosodic
unit – a phrase,

• or w1, w2, and some set of wordsW form a phrase of which
w1 is the head, and w2 and W also form a phrase, of which
w2 is the head.

There is some vagueness in these criteria. In A1, for instance, it
must be determined what is or what is not a “communicatively neutral
sentence.” Criterion A2 is even more problematic, since it refers to the
undefined concept of “prosodic unit.” An expression of the idea behind
the two criteria that would be more empirically testable is whether
the “unit” (w1, w2, and possibly some other words to form a complete
structure) is able to appear in more than one linguistic context.

Direction Criteria

The second set of criteria is used to establish the direction of the
dependency link. These criteria are ordered hierarchically: For instance,
if B1 clearly applies, then we do not take B2 or B3 into account.

B1 Attachment behavior. In the phrase w1 − w2, w1 is the syntactic
governor of w2 if the attachment behavior – the passive syntactic
valency – of the whole phrase is determined by w1 to a greater
extent than by w2.

B2 Morphological contact point. In the phrase w1−w2, where B1 does not
apply, it is w1 that is the syntactic governor of w2 if w1 controls
the inflection of words external to the phrase or w1’s inflection is
controlled by such words.
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B3 Semantic links. In the phrase w1 − w2, where B1 and B2 do not
apply, w1 is the syntactic governor of w2 if there is a semantic
dependency w1 → w2.

Here, B1 and B2 are the formalization of what was previously
written about the governor being the main cause of the grammatical
behavior of the complete structure, and B3 used to break remaining ties.

Criteria for Grammatical Function Label Inventory

The final set of criteria states necessary conditions for the inventory
of grammatical function labels to be well-formed. It should be noted
that the definition of grammatical functions is intertwined with the
definition of parts of speech (Schubert, 1987). However, we will take
the parts of speech for granted in this work.

C1 Absence of semantic contrast. A syntactic relation r must not describe
two different phrases wi

r
→ wj and wm

r
→ wn where

• wi and wm are forms of the same lexeme, and wj and wn are
forms of the same lexeme,

• the two phrases contrast semantically,

• the phrases differ formally only by some syntactic means of
expression (i.e. by word order, by syntactic prosody, or by
syntactic grammemes).

C2 Substitutability with prototype. For every syntactic relation r, there
must exist a prototype category X other than substitute pronouns
such that for any syntactic configuration h r

→ ∆Y , replacing ∆Y

by ∆X , where ∆X is headed by a word of the prototype category
X , does not affect its syntactic wellformedness.

C3 Repeatability. Any syntactic relation must be either unlimitedly
repeatable or non-repeatable.

Criterion C3 is related to the distinction between complements and
adjuncts – every complement function is supposed to appear only
once under a governor, while adjuncts may appear more than once.
While it is hard in practice to consistently distinguish complements
and adjuncts, this criterion forces us to define complement functions
carefully if introduced.
It can be observed that trivially large sets of function labels (i.e.

when every label encodes the complete context) always pass these tests.
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The set of functions should be small enough to allow us tomake general
observations, but the criteria force us to make the set large enough
to make explicit the distinctions in organizational patterns used in
language to express semantic distinctions. We can thus view the search
for the function inventory as a constrained optimization problemwhere
we look for a minimal set satisfying the criteria.

Additional Connectedness Criteria

We will encounter a number of situations where Mel’čuk’s connected-
ness criteria (A1 and A2) are not enough to determine the structure,
and we may end up with strongly connected clusters of three or more
tokens. In these ambiguous situations, we may have use of additional
rules of thumb. We first introduce two definitions:

Definition 3.9. The words w1 and w2 are said to be lexically dependent
if the lexical form of w2 is selected by w1.

Definition 3.10. The words w1 and w2 are said to be morphologically
dependent if the morphological inflection of w2 depends on the lexical
form or some feature of w1.

A typical example of lexical dependence is the selection of a
preposition by a verb, such as depend on or believe in. Morphological
dependence is common, such as number agreement between a verb and
its subject, and gender agreement between a pronoun and its referent.
It was the main tool for determining syntactic dependency in Tesnière’s
work (1959), although this is not explicitly stated (Schubert, 1987).
Unlike syntactic dependency (according to our framework), lexical

and morphological relations are often bidirectional. A well-known
example is the morphological relation between a verb and its subject:
The number feature of the verb is controlled by the subject noun phrase,
and the case of the noun phrase is set to nominative to reflect its gram-
matical function with respect to the verb. When establishing syntactic
dependencies, we will make use of morphological dependence that is
manifested in features that reflect syntactic properties. Examples of
such morphological features are case in nouns and mood in verbs, both
of which can be imposed by a grammatical function with respect to a
governor.
We can now formulate the additional connectedness criteria.

α1 Morphological dependence. If the connectedness criteria A1 and A2
allow dependency links between all three words w1, w2, and
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w3, and there is a morphological dependency between w1 and
w2 in the form of government of features that reflect syntactic
properties, then the w1 − w2 link should take priority.

α2 Lexical dependence. If the connectedness criteria A1, A2, and α1
allow dependency links between all three words w1, w2, and w3,
and there is a lexical dependency between w1 and w2, then the
w1 − w2 link should take priority.





Chapter 4

Automatic Construction of
an English Dependency
Treebank

In Chapter 3, we argued that dependency-syntactic representations
have a potential to be useful for automatic semantic analysis. To sup-
port these claims, we have to train a syntactic parser on a dependency
treebank. However, except for preliminary efforts (Rambow et al.,
2002), there exists no dependency-annotated treebank of English. Also,
we can rule out manual corpus annotation since it is very costly and
time-consuming. We thus have to resort to automatic conversion from
an existing constituent-based resource, the Penn Treebank (Marcus,
Santorini, and Marcinkiewicz, 1993).
This chapter describes the algorithms that carry out the constituent-

to-conversion algorithms. In addition, we apply the principles laid
down in Chapter 3 to disentangle some nontrivial linguistic consid-
erations. We give dependency-syntactic analyses of a number of
constructions in English.
Relying on an external resource of course limits our options when

annotating dependencies, since the only structures that can be derived
are those that can be deterministically transformed from this source.
Fortunately, the Penn Treebank is richly structured. However, there
are some limitations: For instance, we cannot introduce a distinction
between complements and adjuncts except in verb phrases, since this
distinction is not generally made in the Treebank.
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The algorithms described in this chapter were used to create the
dependency treebanks used in the experiments in this dissertation.
Note, however, that for historical reasons there are two treebanks:
first, the treebank used in Chapter 6 and the FrameNet-related part
of Chapter 5; secondly, the treebank that was publicly distributed
for the CoNLL-2008 Shared Task (Surdeanu et al., 2008), used in the
Chapter 7 and the PropBank-related part of Chapter 5. When we
need to distinguisth the two treebanks, we will refer to them as the
LTH and CoNLL-2008 treebanks, respectively. They differ only slightly,
primarily in how underspecified noun phrase structure is resolved: The
LTH treebank used the noun phrase bracketing by Vadas and Curran
(2007), while the CoNLL-2008 treebank imported noun phrase structure
from GLARF (Meyers et al., 2001), an annotation framework developed
in the NomBank project (Meyers et al., 2004).

4.1 The Penn Treebank

The Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993) is
the most widely used syntactic resource for English. The core part
of the representation is a constituent structure, as defined in 3.2.
Discontinuous constituents are not allowed, or even expressible, since
the annotation format uses nested bracketing to encode the constituent
structure. The constituent structure has been extended in three ways:

• Empty categories, i.e. terminal nodes that do not correspond to
surface words.

• Secondary edges that encode a number of nonlocal relations. Except
for edges used in gapping, every edge is connected to an empty
category.

• Secondary labels (or “dash tags” in Penn Treebank jargon) that
represent functional or structural properties that are not part of
the constituent structure. Most secondary labels, but not all, are
grammatical function labels.

The extensions are not present in the output of the popular constituent
parsers. However, there are systems that insert empty categories and
secondary edges (Johnson, 2002; Schmid, 2006) and secondary labels
(Blaheta, 2004; Merlo and Musillo, 2005).
Figure 4.1 shows a tree from the Penn Treebank. It contains three

empty categories: an empty subordinating conjunction 0, and two trace
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nodes (*T*). The traces encode underlying “movements” that are
supposed to have taken place and reflect the theoretical roots of the
Penn Treebank in the transformational paradigm. There are secondary
edges from the traces to the respective “moved” constituents, and four
secondary labels representing grammatical functions: two SBJ, a CLR
and a PRP.

SBARQ

VP

SBAR

ADVP

S

NP

SQ

PRN

VP

SBJ

NP

SBJ

PP

CLR

NP

SBARQ

WHADVP

PRP

Why wonderthey 0 EC ?should, belongit to the*T* *T*,

Figure 4.1: A constituent tree from the Penn Treebank.

Apart from its use in dependency syntax, conversion from the Penn
Treebank has been used for a number of other syntactic formalisms.
Hockenmaier and Steedman (2007) devised a conversion algorithm
similar to ours to automatically create a treebank of derivations in the
combinatory category grammar framework. Similarly, Miyao and Tsuji
(2008) and Cahill et al. (2008) applied rule-based methods to convert
Treebank trees into HPSG and LFG feature structure trees, respectively.

In addition to the constituents in the treebank itself, we used the
noun phrase bracketing by Vadas and Curran (2007). This had to be
done because a large number of noun phrases with a complex internal
structure are annotated using a completely flat structure in the Penn
Treebank. An extreme example is the noun phrase other small apparel
makers, button suppliers, trucking firms and fabric houses. The main reasons
for this are probably practical; it saves annotation time, and the internal
structure may not be entirely clear to the manual annotators unless they
are domain experts. However, the flat structure is very unappealing
when the phrase is converted to a dependency structure, since this
wouldmake all words in the noun phrase direct dependents of the head
word.
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4.2 Dependency Analysis of Some Construc-

tions in English

This section provides linguistic motivations for the constituent-to-
conversion algorithms to be described in 4.3. We apply the syntactic
framework described in 3.3 to a number of constructions in English
grammar. We will restrict the attention to a selected set of problematic
constructions; in most other cases, it is very obvious how to create the
dependency structures from the constituents. For instance, we won’t
spend any effort on explaining why a noun should be selected as the
head of a noun phrase1.
While the underlying philosophy of dependency syntax, as opposed

to other frameworks, is to emphasize function rather than structure, it is
by no means obvious that the syntactic relationships between words in
a sentence can be satisfactorily represented using only binary relations.
In fact, problematic situations often arise when there is a configuration
of words that is naturally described using an n-ary relation rather
than a tree of binary relations. In the most simple of these cases, two
semantically prominent “content” words are connected via a functional
word that has a role in expressing the syntactic or semantic relation
between them. Examples of this situation include verb–preposition–
noun and conjunct–conjunction–conjunct.
Below, we will describe a range of such linguistic phenomena, and

discuss how to impose a decomposition into binary relations. Our
method is based on examining and generalizing from one or a few
prototypical examples.

4.2.1 Prepositions

To illustrate how to analyze how prepositions should be handled,
consider the fragment depends on water. Here, the connectedness criteria
(A1 and A2) allow dependency links between all three words: both on
and watermust be placed after the verb depends, and onmust be placed
before water.

1Even this supposedly simple example could be contested: the Danish Dependency
Treebank, for instance, regards the determiner as the head in a noun phrase. This may
also have some support in unsupervised induction of dependency structures (Klein and
Manning, 2004). The discussion of course comes down to your conception of what types
of relations the dependency structures should encode.
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As mentioned above, this is a situation where have a ternary
relation: a relation between depends and water, and a syntactic relation
marker on.
Intuitively, the finite verb should be the root of the structure, and it

is also clearly confirmed by dominance criterion B1 that the finite verb
depends dominates both on and water, regardless of how other links are
configured.
This leaves us with three alternatives, shown in Figure 4.2. Which

analysis to choose is controversial, and all three variants have been
proposed in literature. We prefer to eliminate the first alternative (both

depends on water depends on waterdepends on water

Figure 4.2: Possible dependency representations of depends on water.

on and water as direct dependents) because we feel that on and water are
strongly linked and could appear as a single unit. This is of course
also paralleled by the concept of prepositional phrase in constituent
frameworks.
Of the two remaining analyses, we prefer the final one because

criterion B1 favors an analysis with the preposition as the governor
– it is the preposition on that is the primary explanation of where
the phrase on water can be attached. Alternatively, we could have
invoked our additional criterion α2, since the preposition on is selected
by depend. Another argument for this analysis is that English allows
a phenomenon referred to as preposition stranding, such as in the water
we depend on, where the prepositional complement is extracted. In these
situations, the structure is simpler if the verb and preposition are linked,
because only one long-distance link is needed.
This analysis is contested by frameworks that place more emphasis

on isomorphism between syntactic and semantic structure: The seman-
tically prominent words are depend and water, and on is only a marker
of the relation between them (Johansson and Nugues, 2007a).

4.2.2 Subordinating Conjunctions, Infinitive Markers

The relations between the verb in a main clause, a subordinating
conjunction, and a subordinated clause can be analyzed similarly to
how we treated prepositional phrases above. However, we have to
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accept that structures that are only superficially different, such as think
that it’s enough and think it’s enough, have different syntactic analyses
since we use no empty categories in our framework. Similarly, the
infinitive marker to is analyzed as the head of an infinitival clause.

4.2.3 Relative Pronouns and Question Words

A trickier case is how to handle relative pronouns, such as which in
the fragment water which I drink. The question is how to determine the
function of the relative pronoun which: like a subordinating conjunc-
tion, it is the introducer of a subordinated clause, but it also fills the
object valency slot of the verb drink. It can thus be argued to play a dual
syntactic role, and this is actually the analysis in some frameworks. The
double function has also led some, such as Tesnière (1959), to propose
to split relative words into two tokens wh-ich. The first part wh- (or
qu- in Tesnière’s case) then serves as a subordinator, and the second
part -ich as the valency filler of the verb. In our case, we have to
assign a single function, since we assume monostratal, single-governor
dependency structures, and as argued previously, we won’t modify the
Penn tokenization.
We will analyze a more complex fragment, taken from the Treebank,

to answer this question.

Example 4.1. goals for which he had to settle

We will first make two assumptions that we hope the reader accepts
unquestioningly: first, that goals dominates all other words in the
fragments; secondly, that he had to settle is conventionally analyzed.

he to settleforgoals hadwhich

Figure 4.3: Possible dependencies in a relative clause.

Apart from this, Criteria A1 and A2 allow many possible analyses.
Figure 4.3 shows the possible links using dashed lines. To disentangle
this structure, we then proceed to identify the lexical relations, In this
case, we have two of these: Most obviously, for is selected by settle. Also,
which is selected by the preposition for – to see this, try to substitute the
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word that. This is also consistent with the notion of a WHPP phrase, as
used in the Treebank.
If we accept these lexical relations, then Criterion α2 disambiguates

the structure. Theword settle already has a governor to, so it must be the
governor of for. In consequence, which is subordinated to for. Finally,
the only place where an incoming edge can be connected into the
relative clause is on the word had. Figure 4.4 shows the disambiguated
structure.

he to settleforgoals hadwhich

Figure 4.4: Disambiguated structure of a relative clause.

We thus generalize from this example to the following general
principle: The subordinating nature of the relative pronoun is not
expressed, but instead its function as a valency filler.
The same reasoning holds for wh-questions, which are similar in

structure to relative clauses. One could argue that the head of the
structure is the question word, since it is the primary determinant of the
function of the complete structure. However, since the question word
also fills a valency slot of the verb, we mark it as a dependent.

4.2.4 Coordination

The problemswith representing non-binary relations appear once again
with the phenomenon of coordination, which has been discussed to
great lengths in literature. To illustrate, consider Example 4.2. Here,
two conjuncts (olive and orange) are joined by a conjunction (and).
Example 4.2. Alexander ate an olive and an orange.

It is not trivial to represent the semantics of the sentence, but one
possible analysis is the following:

eat(e1) ∧ AGENT(e1,Alexander) ∧ PATIENT(e1, olive)∧
eat(e2) ∧ AGENT(e2,Alexander) ∧ PATIENT(e2, orange)

The coordination of two noun phrases can thus be viewed as a short-
hand for the logical coordination of two full event structures. Inspired
by the semantics of the sentence, some accounts of coordination treat it
as a process of deletion: Alexander ate an olive and Alexander ate an orange.



46
CHAPTER 4. AUTOMATIC CONSTRUCTION OF AN ENGLISH DEPENDENCY

TREEBANK

However, an explicit representation of the deletion is of course totally
unacceptable in a surface-syntactic framework, since it would lead to a
proliferation of empty categories. Also, the semantics may not always
be as clear as in this example.

Applying the connectedness criteria, we see again that we have
a strongly connected cluster: The criteria allow dependency links
between all four words ate, olive, and, and orange. Let us postulate that
the finite verb ate is the head of the complete structure – the opposite
position, in which and is the root, could only be supported if we take
the view that coordination involves deletion. Also, we find it plausible
that the coordinated structure an olive and an orange should be regarded
as a single unit and that there should only be a single dependency link
leaving this unit. This analysis makes it easier to adhere to Criterion C3
for coordinated complements. For instance, if we would regard both
olive and orange as direct objects of ate, Criterion C3 would force us
either to label the two dependencies differently, which would defeat
the purpose of this analysis, or to regard objects as adjuncts.

To find the head of the coordinated fragment an olive and an orange,
Criterion B1 forces one of the conjuncts to be the head – the complete
structure has the same syntactic behavior as the conjuncts would have
separately2.

anateAlexander olive and an orange

Figure 4.5: Representation of coordination.

Regarding the place of the conjunction in the dependency structure,
we can apply a very similar argument as with prepositions to introduce
a coordination phrase3 consisting of the conjunction and the second
conjunct, and as in the prepositional phrase, the marker (i.e. the con-
junction) becomes the head. Although most accounts of coordination
in the linguistic literature seem to assume symmetry, asymmetrical

2There are of course many situations where the situation is not so simple. For instance,
the Penn Treebank uses a special phrase label UCP for coordinated structures of disparate
elements.
3This is not to be confused with CONJP in the Penn Treebank, which just denotes a

multiword conjunction such as as well as.
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analyses using coordination phrases exist as well (Johannessen, 1998)4.
The analysis of the sentence is shown in Figure 4.5.
The following two examples illustrate the coordination phrase.

Example 4.3 shows how it appears on its own in a fragment, and
Example 4.4 how it can be dislocated in a heavy noun phrase.

Example 4.3. Will Alexander come? Yes, and Barbara too.

Example 4.4. Coffee was brought and a platter of pale, sharp cheeses.

Although the examples discussed above all involved coordinated
nouns, we apply the same analysis of coordination of words of other
types. It could be possible to use multiple levels of coordinations,
as is done in some treebanks. For instance, the Talbanken treebank
of Swedish (Einarsson, 1976) uses three levels: sentence, clause, and
phrase coordination.
Our asymmetrical analysis of coordination implies that the syntactic

dependency representation of a coordinated structure is not isomorphic
to its semantic counterpart. More seriously, in a framework with-
out empty categories or multiple governors, this analysis results in
interpretational ambiguity, exemplified in Figures 4.6 and 4.7: The
dependency graphs do not tell us whether old applies tomen and women
or just to men, and similarly we cannot tell whether it is an object of
heard and saw or only of heard. This has made a number of dependency-
based treebanks such as the Prague Treebank (Hajič, 1998) adopt a
symmetric analysis where the two conjuncts are treated as dependents
of the conjunction.

old men womenand

Figure 4.6: Dependency representation of Old men and women.

andheard sawI it

Figure 4.7: Dependency representation of I heard and saw it.

4Johannessen (1998) assumes an X-bar analysis in which the conjunction is the head,
the first conjunct the specifier, and the second conjunct the complement. With her
analysis, we would thus still end up with a symmetrical dependency structure.
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It may be argued that this ambiguity is not of a syntactic nature but
rather semantic/pragmatic. For instance, the semantics of the sentence
in Figure 4.6 cannot be disambiguated even by humans without know-
ing the context, but we still see clearly that the fragment is grammatical,
and we could say that this implies that the syntactic representation
should represent only that. However, the sentence in Figure 4.7 is not
ambiguous to humans, because it serves as an obligatory object for
both heard and saw. The suggestion that underspecified representation
should be preferred is thus compatible with modification (such as old in
Figure 4.6) but not with complementation (as it in Figure 4.7), which is
syntactically required to form a complete structure.
Mel’čuk (1988; 2003) and Hudson (1984) both tried to solve ambigu-

ity problems arising from coordination by extending the dependency
framework with simple phrase-like structures. Other solutions may
be to allow empty categories or multiple heads. A solution that does
not require a modification of the dependency framework is to encode
attachment information in the edges, and this is indeed the solution
that comes to mind when considering Criterion C1. Special edge labels
may be introduced to distinguish attachment to the first conjunct from
attachment to the complete structure. However, this solution perverts
the meaning of the edge labels; a new representational dimension is
introduced which is orthogonal to the concept of grammatical function.
We have opted to use the asymmetric analysis despite the ambiguity

problems, not only because this is what is imposed by the surface-
syntactic criteria, but also because it has been shown empirically that
this improves parsing performance for a number of languages (Nilsson,
Nivre, and Hall, 2006).

NP NP NP
PP PP

ADJP ADJP

PRDPRD

VP VP

VP

S

SBJ

=
=

LOCLOC

Prices were mixed in Zurich and lower in Stockholm

Figure 4.8: Penn Treebank representation of a sentence with gapping.

Another issue with coordinated structures, which is problematic
whether you use a symmetric or asymmetric analysis, is that coordi-
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nation often results in repeated parts being left out (ellipsed). This
is referred to as gapping. Figure 4.8 shows how the sentence Prices
were mixed in Zurich and lower in Stockholm is represented in the Penn
Treebank. Here, two verb phrases are coordinated, and the word were is
ellipsed from the second one. Structure parallelism between the parts
in the verb phrases is represented using secondary edges (=).
This phenomenon, which is fortunately infrequent, is difficult to

represent satisfactorily in a framework without empty categories. In
our representation, shown in Figure 4.9, we form a coordination
phrase that includes the conjunction and the “hanging” parts of the
second verb phrase. In addition, we add a special structural label
GAP to indicate that they should be interpreted as dependents of
an ellipsed governor.

Prices were mixed Zurich and lower in Stockholmin

GAP

GAP

Figure 4.9: Dependency representation of a sentence with gapping.

4.2.5 Small Clauses

One peculiar and interesting family of constructions for which syntactic
analysis is nontrivial is those involving a so-called small clause5, that is
a semantic predicate–argument structure that has a surface realization
without a tense. An example of this phenomenon is Example 4.5, where
the sentence in (a) may be reformulated using a small clause in (b).

Example 4.5.
(a) They believed that he lied.
(b) They believed him to lie.

The semantics of both (a) and (b) can be analyzed as follows in a
PropBank representation:

believe.01(e1)∧ARG0(e1, they)∧ARG1(e1, e2)∧lie.02(e2)∧ARG0(e2,he)

5The terminology used for these constructions and their various subtypes varies
considerably between syntactic theories. In this work, a small clause is any tenseless
subordinated clause, defined in practice as an unlabeled S node directly under a VP node.
This is also the terminology used in the Treebank (Bies et al., 1995, chapter 15).
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There are two opposing ideas of how to represent the syntactic
structure of (b): In the first, the small-clause analysis, syntactic structure
is supposed to be isomorphic to the semantic structure and thus similar
to that of (a), meaning that him is analyzed as the syntactic subject of
lie. As a consequence, it must be explained why the subject does not
appear in nominative case. In Chomskian schools, this is referred to as
exceptional case marking (ECM). This view is also held by Latin-inspired
grammarians such as Tesnière (1959), who argue that him to lie is a
nominalization of he lied, and that the case of him is a consequence of the
grammatical function of the whole clause. The second analysis argues
that although him is the logical subject of lie, its case indicates that it
has been raised to the position of grammatical object rather than subject.
This position has most notably been advocated by Postal (1974) but also
in surface-oriented dependency syntax (Mel’čuk, 2003).
It is difficult to analyze this construction using the connectedness

criteria, since the analysis depends on our intuition: with a small-clause
(Latin-inspired) outlook, we could say that him to lie is a prosodic unit
(A2) and that the case of him indicates a morphological relation with the
word to (α1). Conversely, in the raising-to-object view, him to lie is not
a prosodic unit and the morphological relation instead holds between
him and believe.
Althoughwe see the point of the small-clause analysis in some other

contexts than this,we settled for the raising-to-object analysis without
much hesitation. The reason for this is the instablility of the purported
syntactic unit him to lie – it easily breaks apart due to passivization or
topicalization, for instance. The case of him is also clearly governed by
its syntactic relation to believe, since it would be nominative if believe
were passive. The logical link between him and believe could well
be represented in a multistratal representation, but it should not be
regarded as a surface-syntactic relation.
By doing this analysis, we diverge from the convention in the Penn

Treebank (Bies et al., 1995, chapter 15), which brackets the small clause
as a syntactic unit, and thus stays closer to semantics rather than to
surface syntax. This style of bracketing is used very liberally in the
Treebank. PropBank, on the other hand, takes a middle position by
splitting many of the small clauses in the Treebank, but not all (Babko-
Malaya et al., 2006).
In addition to raising of grammatical subjects to object position, as

we saw above, we may also see raising to subject position. This happens
for verbs such as seem, for instance in he seemed to lie. The analysis of
these constructions is less controversial – it would be hard to argue in
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a surface-syntactic framework that he is the grammatical subject of lie
rather than of seemed.
A superficially similar construction is control, in which the verb also

takes its subject or object from a subordinate clause, and which does
have a semantic relation to that subject or object. Subject control verbs
include try, and object control verbs include force, persuade. It may be
difficult to distinguish raising and control, and the Treebank onlymarks
control (of objects) for a small selected set of verbs, and treats the rest
as verbs taking small clause complements.

they believed him to lie

OPRD

OBJ

Figure 4.10: Dependency representation of a sentence with gapping.

Figure 4.10 shows the dependency-syntactic analysis of the sentence
they believed him to lie. As argued above, we treat him as a syntactic object
of believed. Regarding function labeling, we labeled the predicative
part of all small clauses using the label OPRD (object predicative). We
are aware that this terminology is correct for only a subset of the
constructions for which the Treebank employs a small-clause analysis.
Also, the label does probably not adhere to Criteria C1 and C2, but
we did not have time to carefully categorize the various types of
constructions or implement a procedure to distinguish them.

4.3 Automatic Conversion of Constituents to

Dependencies

As argued previously, constituents and dependencies can be seen as
two different views of the grammatical organization of the sentence.
This implies that it should in principle be possible to convert one
representation into the other.
The main effort when moving between representations is to make

explicit what is implicit in the original representation. In a constituent
representation, the recursive groupings are explicit but grammatical
function and governor–dependent hierarchy is underspecified. Since
dependency syntax represents grammatical structure by means of
labeled binary governor–dependent relations rather than phrases, the
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task of the conversion procedure in our case is to identify and label
governor–dependent pairs. The idea underpinning constituent-to-
dependency conversion algorithms (Magerman, 1994; Collins, 1999;
Yamada and Matsumoto, 2003) is that governor–dependent pairs are
created from constituents by first selecting a head token in every con-
stituent and then adding dependency links in which the head word is
the governor. The dependency labels are subsequently inferred from
the phrase–subphrase or phrase–word relations. Figure 4.11 shows an
example of the general idea: In a noun phrase (left), our algorithm
selects a head token (sea, illustrated by the dotted arrow) and adds
dependency links (right) to the other words in the constituent. The
dependency labels on all three links are NMOD (modifier of nominal)
since the corresponding words are all subordinated elements in a noun
phrase.

NP

the deep blue sea the deep blue sea

NMOD

NMOD

NMOD

Figure 4.11: Conversion of a noun phrase to a dependency tree.

Algorithm 4.1 Overview of the constituent-to-dependency conversion
algorithm.

function CONSTITUENTS-TO-DEPENDENCIES(T )
input Constituent tree T
PREPROCESS(T )
ASSIGN-HEADS(T )
ASSIGN-FUNCTIONS(T )
return CREATE-DEPENDENCY-TREE(T )

Algorithm 4.1 shows the main steps in the constituent-to-
dependency conversion algorithm for a constituent tree T . The first step
applies a number of structural transformations to the constituent tree to
simplify conversion or to reflect theoretical considerations. Next, a head
word is assigned to every constituent. After this, grammatical functions
can be inferred, finally allowing a dependency tree to be created.
The first three steps convert a Penn-style constituent tree to a head-

marked and function-annotated tree. An interesting contrast to the
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Penn Treebank is the TIGER treebank of German (Brants et al., 2002).
In this treebank, heads and functions are explicitly annotated, which
makes the treebank easy to convert to dependency structures.

4.3.1 Preprocessing of Constituents

Before the two main steps of the conversion process – head selection
and function labeling – can be carried out, the constituent structure
needs to bemodified to facilitate conversion. In addition, since the Penn
Treebank reflects a theoretical tradition that differs from our surface-
syntactic philosophy, the organization of constituents sometimes has to
be restructured. These transformations are shown in Algorithm 4.2.

Algorithm 4.2 Preprocessing constituents.

procedure PREPROCESS(T )
input Constituent tree T
REMOVE-UNUSED-LABELS(T )
REATTACH-REFERENTS(T )
INSERT-AUXILIARY-HEAD-GROUPS(T )
INSERT-COORDINATION-PHRASES(T )
SPLIT-SMALL-CLAUSES(T )

The first step is to remove secondary labels that are not used.
We removed four Penn Treebank edge labels that reflect a structural
property rather than a grammatical function: HLN (headline), TTL
(title), NOM (non-NP acting as a nominal), and TPC (topicalization).
The final one, topicalization, represents a property of a phrase that is
arguably more semantically relevant than the three others, e.g. when
analyzing the rhetorical structure. However, we still think that is a
property that is orthogonal to grammatical function – after all, an object
is just an object whether fronted or not.
The CLR (“closely related”) label is also worth a discussion. It

represents a number of complemental relations, such as the relation
between verb and preposition in depend on or between verb and noun in
take part. While useful, and especially for semantics, it has been shown
that this tag is not consistently annotated. In this work, we kept the CLR
label despite its inconsistencies6.

6In the CoNLL-2008 treebank, on the other hand, we removed the CLR label for
compatibility reasons since it is not used in the constituent annotation of the Brown
Corpus. For a behind-the-scenes story about CLR, see Blaheta (2004), pages 5–6.
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The next transformation, shown in Algorithm 4.3, was to reattach
referents of secondary edges. The three types of long-distance depen-
dencies handled in this step were

• discontinuity links, *ICH*,

• traces of “transformations” such as wh-movement and topicaliza-
tion, *T*, based on the discussion in 4.2.3,

• right node raising, *RNR*. These links always come in pairs,
but we used only the first of them due to the single-governor
constraint.

We did not consider secondary edges representing “logical depen-
dency” such as the logical object in passivization. Note that the
algorithm has to take circularity into account, such as in Figure 4.1.
Figure 4.12 shows an example of how constituents are modified by

the reattachment transformation.

Algorithm 4.3 Reattachment of referents of secondary edges.

procedure REATTACH-REFERENTS(T )
input Constituent tree T

for each empty category t in T
if t is linked to a constituent C
and the label of t is in { *ICH*, *T*, *RNR* }

if C has a child c that dominates t
disconnect c from C and attach it to the parent of C

disconnect the secondary edge
disconnect C and attach it to the parent of t

The reattachment of constituents sometimes results in nonprojective
dependency links: in the CoNLL-2008 corpus, 0.4 percent of the
dependencies were nonprojective. 7.6 percent of the sentences had at
least one nonprojective link.
Next, Algorithm 4.4 brackets the head part of VPs and PPs, which

is flatly annotated in the Treebank. Recall that Ci refers to the i-th
child of C according to the start-token order. We refer to the inserted
constituents as “head groups” (VG and PG). While also linguistically
justified, the main purpose of the transformation is to make the pro-
cessing of coordination more uniform. The effect on the algorithm on a
prepositional phrase is shown in Figure 4.13.
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Figure 4.12: Reattachment of referents of secondary edges.

After auxiliary head groups have been inserted, coordinate struc-
tures can be processed. This transformation results in a right-branching
structure using coordination phrases (&P). The treatment of coordina-
tion is based on the discussion in 4.2.4. Figure 4.14 exemplifies the
effect of this transformation. Algorithm 4.5 shows the pseudocode.
|C| is a shorthand for the number of children of C, as defined in
3.2. A coordinator is either a single token with the CC tag, or a
multiword conjunction, CONJP. A separator is a single token whose tag
is either , or :. The procedure uses a heuristic IS-COORDINATED that
determineswhether or not coordination is present. Themost interesting

NP

PP

To or from work

NPPG

PP

To or from work

Figure 4.13: Auxiliary head groups in a prepositional phrase.



56
CHAPTER 4. AUTOMATIC CONSTRUCTION OF AN ENGLISH DEPENDENCY

TREEBANK

Algorithm 4.4 Insertion of auxiliary head groups.

procedure INSERT-AUXILIARY-HEAD-GROUPS(T )
input Constituent tree T

for every nonterminal constituent C in T
if C is a VP
i← start-token index of first finite verb child of C
j ← start-token index of last finite verb child of C
BRACKET(C, i, j,VG)

else if C is a PP
i← start-token index of first preposition child of C
j ← start-token index of last preposition child of C
BRACKET(C, i, j,PG)

function BRACKET(C, i, j, l)
input Constituent C, left and right index i, j, label l
create a constituent Gwhose label is l
move the children Ci, . . . Cj from C to G
add G as a child of C
return G

case is for noun phrases, where a comma-separated structure without
coordinators may also be an apposition. We used a simple heuristic
based on the number of separators.
The final transformation in the preprocessing step, Algorithm 4.6, is

based on the discussion in 4.2.5. It raises the logical subjects of small
clauses to object position in the surrounding verb phrases. Function
labels are also added: if the small clause has no label, it receives the
OPRD label. Otherwise, PRD labels are replaced by OPRD. Figures 4.15
and 4.16 show examples of how small clauses are treated. Note that the
transformation only applies to small clauses in object position.

4.3.2 Head Token Assignment

As described above, the fundamental principle of the constituent-
to-dependency conversion process is based on the idea that every
constituent can be assigned a head token, a single word that is the main
controller of the grammatical behavior of the whole structure. This
principle underpins most modern theories of syntax, including main-
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Algorithm 4.5 Insertion of coordination phrases.

procedure INSERT-COORDINATION-PHRASES(T )
input Constituent tree T

for every nonterminal constituent C in T
if IS-COORDINATED(C)
l← the constituent label of C
for i ∈ [|C|, . . . , 2]

if Ci−1 is a coordinator or separator
and Ci is not a coordinator
c←BRACKET(C, i, |C|, l)
set the secondary label of c to CONJ

if Ci is a coordinator or Ci−1 is a separator
c←BRACKET(C, i, |C|,&P)
set the secondary label of c to COORD

function IS-COORDINATED(C)
input Constituent C

if C has the constituent label UCP, return True
if C has a coordinator child that is not leftmost, return True
if C has a separator child c, and c is not leftmost or rightmost

if C is an NP and the number of separators is 1, return False
else return True

else return False

stream generative linguistics, where it is one of the main assumptions
of the X-bar system.
The method to assign heads to constituents is based on the idea of

percolation and is directly taken from previous work. The procedure
assigns a head child in every constituent. These can then be used to
recursively compute head words of every constituent, as shown in
Algorithm 4.7. The main effort is thus to select head children (FIND-
HEAD-CHILD), and since the Penn Treebank does not annotate this
information, we had to resort to a set of rules.
Noun phrases need special consideration. Their selection procedure

is shown in Algorithm 4.8. We apply this algorithm to constituents
with labels NP, NX, WHNP, and NML (noun phrases added by Vadas and
Curran, 2007). Note that grammatical function labels are taken into
account in this procedure. The purpose of this is that the function
label indicates that the child has a syntactic function with respect to
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NML
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CONJ
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COORD
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good salaries , a cable television contract and even expansion plans

good salaries , a cable television contract and even expansion plans

Figure 4.14: Insertion of coordination phrases (&P).

Algorithm 4.6 Splitting small clauses.

procedure SPLIT-SMALL-CLAUSES(T )
input Constituent tree T

for each verb phrase C in T
if C has a child S and the phrase label of S is S
and S is not preceded by a “ or , tag
and S has a subject child s that is not in genitive
move s from S to C
set the secondary label of s to OBJ
if S has a child with a label l containing PRD
replace PRD with OPRD in l
set the secondary label of S to l

else
set the secondary label of S to OPRD

the whole constituent, which is a clear indication that it should not be
regarded as the head.
To find the head children for other types of constituents, a system
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Figure 4.15: Splitting of small clauses.

Algorithm 4.7Head percolation.

procedure ASSIGN-HEADS(T )
input Constituent tree T
PERCOLATE(T.root)

procedure PERCOLATE(N)
input Constituent N

if N is a terminal node
N.head← N

else
for each child C of N
PERCOLATE(C)

H ← FIND-HEAD-CHILD(N )
N.head← H.head
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Figure 4.16: Relabeling in small clauses.

of rules is used (Table 4.1), based on the system by Yamada and Mat-
sumoto (2003) but changed to reflect the modified constituent structure
described in 4.3.1. The first column in the table indicates the constituent
label, the second is the search direction, and the third is a priority list of
phrase types to look for. For instance, to find the head of an S, we look
from right to left for a VP. If no VP is found, look for anything with a
PRD function tag, and so on. In addition, all rules implicitly prefer non-
punctuation tokens over punctuation, and surface words over empty
categories.

Algorithm 4.8Head child selection for noun phrases.

function FIND-HEAD-CHILD-NP(N)
input Noun phrase N
Search← for NN, NNP, NNPS, NNS, NX, or JJR without function.
Else search→ for NP, NML, or WHNP without function.
Else search→ for $ or #.
Else search← for CD.
Else search← for JJ, JJS, RB, QP.
Else search→ for a determiner that is not a, an, or the.
Else select the last non-punctuation child.

4.3.3 Function Labeling

The Penn Treebank (versions II and III) annotates some constituents
with grammatical function labels. However, this annotation is not
complete, and to be able to convert the constituents to dependencies,
our algorithms have to insert more function labels.
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&P → CC|CONJP

ADJP, JJP ← NNS QP NN $ ADVP JJ VBN VBG ADJP|JJP

JJR NP JJS DT FW RBR RBS SBAR RB

ADVP → RB RBR RBS FW ADVP TO CD JJR JJ IN

NP JJS NN

CONJP → CC RB IN

FRAG → NN*|NP W* SBAR PP|IN

ADJP|JJ|JJP ADVP RB

INTJ ← *
LST → LS :

PG → IN TO VBG VBN FW

PP, WHPP → PG

PRN → S* N* W* PP|IN ADJP|JJ* ADVP|RB*
PRT → RP

QP ← $ IN NNS NN JJ RB DT CD QP JJR JJS

RRC → VP NP ADVP ADJP|JJP PP

S ← VP *-PRD S SBAR ADJP|JJP UCP NP

SBAR ← PG S SQ SINV SBAR FRAG

SBARQ ← SQ S SINV SBARQ FRAG

SINV ← VG VP *-PRD S SINV ADJP NP

SQ ← VG *-PRD VP SQ

UCP → *
VG → VB*
VP → VG VP *-PRD ADJP NN NNS NP

WHADJP ← CC WRB JJ ADJP|JJP

WHADVP → CC WRB

X → *

Table 4.1: Head child selection rules.

Algorithm 4.9 shows how function labels are added to constituents
lacking one. Appendix A lists the complete set of grammatical function
tags used in the dependency treebanks.

The algorithm makes use of an auxiliary procedure POTENTIAL-
OBJECT, shown separately in Algorithm 4.10, that determines whether
or not a constituent (if it appears under a verb phrase) can be inter-
preted as an object. In the Penn Treebank, the absence of a function
label on a constituent in a verb phrase indicates that it should be
taken as a complement. The most common type of object is a noun
phrase directly subordinated under a verb phrase, but we also include
subordinated clauses, either in the form of direct speech (S, SINV, SQ,
SBARQ) or not (SBAR). Note that we assume that small clauses already
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have been assigned a function tag at this stage, so they are not assumed
to be objects. The heuristics used for SBARs in POTENTIAL-OBJECT
are formally redundant but were added for robustness to filter out
constituents where Penn annotators had forgotten to add a grammatical
function tag.
The function labeling algorithm distinguishes direct and indirect

objects. Procedurally, we define the indirect object as the first of two
objects. Adding the IOBJ labels is not problematic if there is more than
one object, in which case the IOBJ label is assigned to the first of them.
However, if we make a distinction between direct and indirect object,
it is not clear that there won’t occur cases where there is only a single
object, but that object should have an IOBJ function tag (such as in
Tell me!). To have an idea of the number of such cases, we inspected a
large set of instances of the verbs give, tell, and provide. Fortunately, the
Treebank annotates most of those cases with an empty node to denote
a missing object, although there are a few annotation errors that make
the rule fail. Note that the IOBJ label was not used in the CoNLL-2008
treebank.
Regarding a few of the function tags from Penn, we introduced

minor modifications. The adverbial tag, ADV, was extended to all
unmarked RB, ADVP and PP nodes in verb phrases. According to
Penn annotation conventions, ADV is implicit in these cases. The label
representing the logical subject in passive clauses, LGS, was moved to
the edge between the verb phrase and by, rather than the edge between
by and the noun phrase.
In addition, it is necessary to mention the adverbial function tags

used in the Penn Treebank, shown in Table 4.2. It could clearly be
argued that the distinction between these functions is not syntactic but
semantic, and that therefore they should not be reflected in a surface-
syntactic framework. Indeed, most of them have a direct counterpart
in PropBank. For instance, a phrase carrying the grammatical function
label TMP is highly likely to be marked as a semantic adjunct ARGM-
TMP in PropBank. This semantic information is sometimes orthogonal
to the dimension of grammatical functions. This leads to non-atomic
labels such as TMP-CLR, TMP-PRD.
The TMP label may appear in the following four different syntactic

contexts.

• As an adjunct of a verb (TMP).

• As a complement of a verb (TMP-CLR).

• As an adjunct or complement of a nominal (TMP).
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Algorithm 4.9 Function labeling.

procedure ASSIGN-FUNCTIONS(T )
input Constituent tree T

for each constituent C in T
if C is the root constituent
set the function label of C to ROOT

else if C has no function tag from Penn or previous stages
L← INFER-FUNCTION(C)
set the function label of C to L

function INFER-FUNCTION(C)
input Constituent C

let c be the head of C, P the parent of C, p the head of P ,
and R the right sibling of C

if c = p return ∅
if POTENTIAL-OBJECT(C) and POTENTIAL-OBJECT(R) return IOBJ

if POTENTIAL-OBJECT(C) return OBJ

if C is PRN return PRN

if c is punctuation return P

if C is PP, ADVP, or SBAR and P is VP return ADV

if C is PRT and P is VP return PRT

if p is TO and C is VP return IM

if C is VP and P is VP, SQ, or SINV return VC

if P is SBAR and p is IN return SUB

if P is VP, S, SBAR, SBARQ, SINV, or SQ
and C is RB or ADVP return ADV

if P is NP, NX, NAC, NML, or WHNP return NMOD

if P is ADJP, ADVP, JJP, WHADJP, or WHADVP return AMOD

if P is PP or WHPP return PMOD

else return DEP

• As a predicative complement of a copula (TMP-PRD).

However, we kept the adverbial tags since we think this information
can be useful, and should not be discarded unless it can be argued
that it is harmful, not only on purist grounds. With some effort, it
might also be said that these distinctions are meaningful in surface
syntax. Many languages have word order preferences that require
that temporal adjuncts generally should go before locative adjuncts, for
instance.
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Algorithm 4.10 Finding potential objects.

function POTENTIAL-OBJECT(C)
input Constituent C

if C has a function label other than OBJ return False
if C is an NP, S, SQ, SINV, or SBARQ return True
if C is a UCP

for each child Ci of C
if POTENTIAL-OBJECT(Ci) return True

if C is an SBAR
if C.head is as, because, for, since or with return False
else return True

else return False

Label Definition
ADV General adverbial
DIR Direction
EXT Extent
LOC Location
MNR Manner
PRP Purpose / reason
TMP Temporal

Table 4.2: Adverbial function tags in the Penn Treebank.

4.3.4 Dependency Tree Creation

After the preceding steps, which produce a richly labeled constituent
tree, the final step of building the dependency tree is a formality.
Algorithm 4.11 shows the pseudocode.
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Algorithm 4.11 Creation of a dependency tree from a labeled and head-
marked constituent tree.
function CREATE-DEPENDENCY-TREE(T )
input Constituent tree T
D ← {}
for each token t in T

let C be the highest constituent that t is the head of
let P be the parent of C
let l be the secondary label of C

D ← D ∪ P.head l
→ t

return D





Chapter 5

Dependency-based
Role-Semantic Analysis

This chapter shows how the role-semantic representations described
in Chapter 2 can be automatically constructed by algorithms. The
architecture that we describe in this chapter has been implemented in
a system that took part in an international evaluation, the SemEval-
2007 task on frame-semantic structure extraction (Baker, Ellsworth,
and Erk, 2007) which was based on FrameNet. We will refer to this
implementation as the FSSE system. In addition, we will also evaluate
a similar system on the test corpus from the CoNLL-2008 Shared Task
(Surdeanu et al., 2008), based on PropBank and NomBank. This will be
referred to as the CoNLL-2008 baseline system – the reason for using
the word baseline is that we will describe extensions to it in Chapter 7.
We give a brief overview of the field of automatic semantic role la-

beling. While previously published systems were based on constituent-
syntactic input, we demonstrate that a sequential, classifier-based
semantic role labeling architecture can be similarly implemented with
syntactic input in the form of dependencies constructed by the algo-
rithms described in Chapter 4.

In contrast to our definitions in Chapter 2 of semantic role struc-
tures, which were purely based on logic, most annotation systems for
semantic role structures are based on labeled segmentation. This is
also reflected in the evaluation metrics usually applied for automatic
semantic role labelers. We briefly discuss the metrics that have been
proposed in literature.
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5.1 Automatic Semantic Role Labeling

Automatic determination of semantic roles has a long tradition in
natural language processing, and has been used by early systems for
semantic interpretation (Hirst, 1983, inter alia). However, its break-
through in modern statistical language processing came with the work
by Gildea and Jurafsky (2000). The subsequent article (Gildea and
Jurafsky, 2002) has become the standard reference in the field. Around
the same time, early work was pursued on automatic analysis of
the tectogrammatical layer of the Prague Treebank (Žabokrtský, 2000;
Žabokrtský, Sgall, and Džeroski, 2002).
The work by Gildea and Jurafsky (2000) proposed a division of

the problem of semantic role analysis into two main subproblems,
argument identification and argument labeling, that is still widely
used. This work also identified a number of features used by statistical
classifiers, which are also more or less standard practice in modern
systems: for instance, the parse tree path to capture the grammatical
relation between predicate and argument, voice, and lexical features
of predicate and argument. It also established the tradition of relying
on syntactic parse trees as input, both in determining the possible
arguments of a predicate and for extracting classifier features. In
addition, a number of extensions are explored: syntactic–semantic
integration, generalization of lexical features based on WordNet and
automatic clustering, and generalization to unseen domains.
Gildea and Jurafsky’s work became the starting point of a wide

range of extensions. The first major improvement was the replacement
of the smoothed probabilistic models by more sophisticated statistical
methods. Early examples includemaximum-entropy classifiers used by
Fleischman, Kwon, and Hovy (2003), decision trees by Surdeanu et al.
(2003), and support vector machines by Hacioglu and Ward (2003).
While considerable performance gains could be achieved by just

changing the classification method, there was also much to be done
in the design of features for the classifiers. Surdeanu et al. (2003)
added a number of features such as the “content word,” a semantically
prominent word that helps role disambiguation when the head is a
grammatical word. Xue and Palmer (2004) and Pradhan et al. (2005a)
studied the effect of several possible features.
The enterprise of designing features for semantic role labelers soon

reached a ceiling, beyond which improvements were very small. To
improve performance further, attention switched to devising new ar-
chitectures. One of the most common strategies is combination of the
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output from multiple systems. An example is the method by Pradhan
et al. (2005b), in which a chunk-based semantic role labeler uses the
output of a number of systems as classifier features. Punyakanok, Roth,
and Yih (2005) combined systems by means of optimization under a
carefully designed set of hand-coded linguistic constraints. It seems
that diversity of the candidate set is an important parameter influencing
the success of combination methods (Màrquez et al., 2005). Apart from
the combination of multiple systems, another architectural innovation
that is nowadays commonly used is reranking of complete predicate–
argument structures (Toutanova, Haghighi, and Manning, 2005).

5.2 The Tasks

Asmentioned in the introduction, the systems based on the architecture
described in this chapter have been evaluated on test data from two
international evaluations of semantic role analyzers, the SemEval-2007
task on frame-semantic structure extraction (FSSE) and the CoNLL-
2008 Shared Task on joint syntactic and semantic analysis. This section
describes task definitions of the FSSE task and the CoNLL-2008 Shared
Task. We postpone the discussion of their evaluation metrics to 5.4.
Apart from these two, a number evaluations of semantic role label-

ing performance have been carried out since 2004. In the CoNLL-2004
Shared Task (Carreras and Màrquez, 2004), the participants trained and
evaluated on a small portion of the PropBank corpus annotated with
shallow syntax; predictably, the results were modest. The Senseval-
3 task on automatic semantic role labeling, which used FrameNet,
achieved higher results (Litkowski, 2004). In the CoNLL-2005 Shared
Task (Carreras and Màrquez, 2005), in contrast to the 2004 task, the full
PropBank corpus was used, and the participants had access to parser
output from full constituent parsers. The data set used in this task has
become a standard benchmark for the field.

5.2.1 SemEval-2007 Task on Frame-semantic Structure
Extraction

The SemEval-2007 task on frame-semantic structure extraction (FSSE),
evaluated the performance of semantic role analysis in the FrameNet
paradigm (previously described in 2.3.1). In addition, the participat-
ing systems were required to identify predicates and assign them to
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FrameNet frames, which made this task more complex than previous
tasks.
The output of the systems consisted of labeled segments represented

using the FrameNet annotation format. Example 5.1 shows an example
of the annotated sentenceDublin excels in packaging its past for the visitor.
The frame is EXPERTISE and there are two segments annotated with role
labels, PROTAGONIST and SKILL.

Example 5.1.
[Dublin]PROTAGONIST EXPERTISE:excels [in packaging its past for the visitor]SKILL .

The main resource used by the participants was version 1.3 of
FrameNet. This package contained the following parts:

• A lexical database defining frames and mapping predicate words
to frames,

• A collection of annotated example sentences for each predicate
word, taken from the British National Corpus, 139,439 sentences,

• A corpus of running text that was annotated for the task. These
texts were taken from two specific domains: public information
about weapons of mass destruction from the Nuclear Threat
Initiative (NTI), and travel guide books from Berlitz.

The running text corpus was split into a training part, consisting
of 1,728 sentences, and a test part of 120 sentences. The test part was
used to score the participating systems. This corpus had 5.9 annotated
predicates per sentence.
The majority of the training data thus consisted of “representative”

examples sampled from the BNC, since the example collection was
much larger than the corpus of running text. This of course leads to
a skewed distribution of predicates and arguments. Still, training on
the running text corpus only would not be feasible since it is too small.
The test corpus was very different from the training data and contained
many unseen predicates (and even a number of unseen frames), and
proved very difficult for participants.
Apart from FrameNet, there were no restrictions on the tools or

resources that the participants could use. Our system used a part-of-
speech tagger (Toutanova et al., 2003) and the MaltParser dependency
parser (Nivre et al., 2007). In addition, we used a method (Johansson
and Nugues, 2007d) to expand the FrameNet dictionary by using
WordNet (Fellbaum, 1998), which we will not detail here.
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5.2.2 CoNLL-2008 Shared Task on Joint Syntactic and
Semantic Analysis

In the second evaluation that we describe here, the CoNLL-2008 Shared
Task on joint syntactic and semantic analysis, the participants carried
out both dependency parsing and semantic analysis. PropBank and
NomBank (see 2.3.3) were used as the representational formalism to
annotate predicates and arguments. Like the FSSE task, the task
involved identification and disambiguation of predicates in addition to
argument identification and labeling.
A novelty compared to previous evaluations of semantic role an-

notation was that a fully dependency-based representation was used,
not only for syntax but also for semantics: A semantic role was not
annotated as a labeled segment, but as a labeled link between the
predicate word and the argument head word. Figure 5.1 shows an
example of the structures to extract in this task. There is one PropBank
predicate plan and one NomBank predicate investment.

Chrysler plans new investment in Latin America

plan.01

LOC

PMOD

NMODNMOD

OBJ

A0

investment.01

A1
A0

A2

SBJ

ROOT

Figure 5.1: Syntactic and role-semantic representations of a sentence in the
CoNLL-2008 Shared Task.

Similarly to the FSSE task, the participants had access to a the
PropBank and NomBank lexicons, and sections 02 – 21 of the WSJ part
of the Penn Treebank. Section 24 was used as a tuning set. No other
external resources were allowed.1 The WSJ corpus is all running text,
so the skewedness problems of the FrameNet corpora are not an issue
here.
The test was carried out using section 23 of WSJ and a small part

of section K of the syntactically annotated Brown corpus. Since the
Brown test set is very different in style and content from the training

1This constitutes the closed setting. In an open setting, participants were allowed to
use any resource but the Treebank and PropBank/NomBank. However, the open setting
attracted less interest from participants.
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set, the performance on this set is interesting since it gives an idea of
the domain sensitivity of the system.

5.3 Classifier-based Semantic Role Labeling

using Dependency-Syntactic Input

This section describes an architecture for automatic semantic role
labeling based on a sequence of statistical classifiers. This is a direct
adaptation for dependency syntax of classifier-based semantic role
labelers for constituent syntax, a prototypical example of which is the
system by Pradhan et al. (2005a).
Our sequential classifier-based systems for semantic role analysis

carry out these four subtasks, as shown in Figure 5.2:

• Identifying the words that should be analyzed as predicates,

• assigning word sense identifiers to the predicates,

• identifying the arguments of every predicate,

• assigning a semantic role label to every argument.

In most of the literature, the first two of these subtasks are not con-
sidered. However, since both the FSSE and the CoNLL tasks included
predicate identification and disambiguation in the task definition, we
include them here as well.
While the FSSE and CoNLL-2008 baseline systems are both de-

signed according to the conceptual framework of a sequence of clas-
sifiers, as in Figure 5.2, there are some differences. The most important
is that the FSSE system is based on FrameNet, while the CoNLL-
2008 baseline system uses PropBank and NomBank. In Figure 5.2,
PropBank/NomBank-style annotation is used: The sense identifiers
and argument labels are numbers. In FrameNet, we use frame names
as sense identifiers, so we would for instance replace plan.01with the
frame name PURPOSE. Similarly, we would replace the numbered Prop-
Bank argument labels A0 and A1 with AGENT and GOAL, respectively.
There are also some engineering differences. In the system that

participated in the FSSE task, the classifiers were support vector ma-
chines (Boser, Guyon, and Vapnik, 1992) with quadratic kernels that
we trained using the LIBSVM package (Chang and Lin, 2001). After
training, we converted the set of support vectors to explicit weights for
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Chrysler plans new investment in Latin America

plan.?? investment.??

Chrysler plans new investment in Latin America

Predicate
identification

disambig.
Sense

Argument
identification

Argument
labeling

plan.01 investment.01

Chrysler plans new investment in Latin America

plan.01 investment.01

Chrysler plans new investment in Latin America

plan.01 investment.01

Chrysler plans new investment in Latin America

A0 A0 A1 A2

Figure 5.2: Example processed by a sequence of classifiers.

features and feature bigrams to speed up evaluation. For the CoNLL-
2008 baseline system, we replaced the kernel-based classifiers with
linear classifiers, implemented using the efficient LIBLINEAR package
(Fan et al., 2008), which speeds up the training process by several
orders of magnitude. We also replaced the support vector machines
with L2-regularized logistic regression classifiers. There was no notice-
able difference in classification accuracy between logistic and support
vector classifiers, but we needed probabilistic output for the extended
experiments in Chapter 7, for which logistic classifiers are better suited.
An additional requirement when replacing kernel-based classifiers by
linear ones is that feature bigrams must be added to the feature set,
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due to the limited expressivity of linear separators (Minsky and Papert,
1969). This increases feature selection time, but since training is faster
with linear classifiers, the total time spent on training and feature
selection is still reduced.
Finally, while the FSSE and CoNLL-2008 baseline system both used

dependency trees as described in Chapter 4, the parsers were different:
The SemEval-2007 system used MaltParser (Nivre et al., 2007), while
the CoNLL-2008 baseline system used our own parser, which we will
describe in detail in 7.3.

5.3.1 Predicate Identification

The predicate identification task consists of finding the words in a
sentence that refer to semantic predicates. We describe two methods
to carry out this task: rule-based filtering and a statistical classifier
inspired by word sense disambiguation techniques.

Rule-based Predicate Identification

In the FSSE system, we applied a rule-based method to identify predi-
cates. The reason for using rules rather than a statistical classifier was
that the training corpus of running text was relatively small, which
made it impractical to train a classifier.
We implemented the predicate identification component by using

the FrameNet lexicon and a rule-based filter. A set of potential
predicates was extracted in a sentence by finding all words (including
multiwords) listed in FrameNet. The filtering rules were then applied to
remove some of these predicate candidates. Most of the rules concerned
prepositions, which have recently been added to FrameNet, and for
which we had very little annotation.
We used the following set of filtering rules:

• havewas retained only if it had an object,

• be was retained only if it was preceded by there,

• will was removed in its modal sense,

• The words course and particular were removed if part of the
expressions of course or in particular, respectively,

• the prepositions above, against, at, below, beside, by, in, on, over,
and under were removed unless their grammatical function was
locative,
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• after and beforewere removed unless their function was marked as
temporal,

• into, to, and through were removed unless the function was
direction,

• as, for, so, and withwere always removed,

• since the only sense of of was PARTITIVE, we removed it unless
it was preceded by only, member, one, most, many, some, few, part,
majority, minority, proportion, half, third, quarter, all, or none, or if it
was followed by all, group, them, or us.

Classifier-based Predicate Identification

In the CoNLL-2008 baseline system, we once again made use of
lexicons to spot possible predicate words, in this case the PropBank
and NomBank lexical databases. In our case, however, the filter was
based on statistical classifiers instead of hand-written rules, since we
had enough running text to train classifiers.
In principle, we treated the problem of predicate identification as a

word sense disambiguation problem. While almost every word listed
in PropBank or NomBank will always be annotated as a predicate when
it appears in text, there are some words, such as the verb have, for
which we needed to discriminate between a predicate sense and a non-
predicate (auxiliary) sense.
Statistical word sense disambiguation of a word extracts features

based on the context of the word. In this case, the context is based on
the dependency tree. We extracted the following features:

PREDWORD, PREDLEMMA. The surface form and lemma of the
predicate.

PREDGOVWORD and PREDGOVPOS. Form and part-of-speech tag of
the governor node of the predicate.

DEPLABELS, DEPWORDS, DEPWORDLABELS, DEPPOSS, DEP-
POSLABELS. These features describe the set2 of dependents of
the predicate using combinations of dependency labels, words,
and parts of speech.

2Set-valued features are implemented as a set of Boolean features denoting the
presence or absence of a member.
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DEPSUBCAT. Subcategorization frame: the concatenation of the
dependency labels of the predicate dependents, excluding paren-
theticals, punctuation, and coordinations.

PREDREL. Dependency relation between the predicate and its gover-
nor.

To give an example of the features used in predicate identification,
Figure 5.3 shows an example of a sentence. The potential predicate is
had. The most frequent sense of this word is auxiliary and should not be
annotated as a predicate. The extracted features are listed in Table 5.1.

a
DT

he had problem
VBDPRP

ROOT OBJ

 NN

SBJ NMOD

Figure 5.3: Example of features in predicate identification and sense disam-
biguation.

Feature Value
PREDWORD had
PREDLEMMA have
PREDGOVWORD ROOT
PREDGOVPOS ROOT
DEPLABELS { SBJ, OBJ }
DEPWORDS { he, problem }
DEPPOSS { PRP, NN }
DEPWORDLABELS { he+SBJ, problem+OBJ }
DEPPOSLABELS { PRP+SBJ, NN+OBJ }
DEPSUBCAT SBJ+OBJ
PREDREL ROOT

Table 5.1: Example of features in predicate identification and sense disam-
biguation.

We used two classifiers: one for verb predicates and one for noun
predicates. The size of the training set was 100,000 instances for the
verb predicate identifier and 180,000 for the noun predicate identifier.
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5.3.2 Predicate Sense Disambiguation

After a predicate has been identified, it needs to be assigned a sense
identifier. In FrameNet, this is equivalent to assigning a frame name,
and in PropBank/NomBank, we assign a sense label from the sense
inventory of the lemma. The formulation of frame assignment as
a word sense disambiguation problem comes from Erk (2005). In
the running text corpus used for training in the FSSE task, around
40 percent of the predicates had more than one frame listed in the
FrameNet database.
Similarly to the classifier-based predicate identifier, we used a

statistical method to assign a sense identifier. For the FrameNet case,
we trained one classifier for every frame (796 classifiers), which allows
for some generalization to new lemmas. For PropBank/NomBank,
we trained one classifier per lemma (7,737 classifiers), since the sense
labels (which are just numbers) are not meaningful across lemmas. We
used the same feature set as for the predicate identification classifier
described above.

5.3.3 Argument Identification

The argument identification step finds the arguments for a given predi-
cate. Following Gildea and Jurafsky (2002), the underlying assumption
that makes this task possible is that the potential semantic arguments
of a predicate are defined by a syntactic parse tree. While a semantic
role relation conceptually holds between logical entities, this method
sidesteps the messy issue of reference relations between surface words
and logical concepts. We thus somewhat sloppily say that a node in
a syntactic tree has a semantic role with respect to a surface predicate
word. Gildea and Jurafsky (2002) implemented the argument identifier
as a binary classifier applied to the nodes in a constituent tree, and this
is still the most common method although there are many variants.
We used the same principle for identifying arguments: The possible

arguments of a predicate are the nodes in a syntactic tree, although in
our case this tree is a dependency tree, and a binary classifier decides
whether or not a given parse tree node is an argument of a given
predicate word. Moreover, to reduce the size of the training set and
to balance the number of positive and negative examples, we applied a
pruning algorithm, shown inAlgorithm 5.1, that formalizes the intuition
that arguments tend to be located directly under a predicate node or one
of its ancestors in the tree. This is the adaption to dependency syntax of
the well-known pruning algorithm by Xue and Palmer (2004).
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Algorithm 5.1 Finding potential arguments.

function FIND-POTENTIAL-ARGUMENTS(p)
input Predicate dependency node p
A← [d : p→ d]
n← p

repeat
n← governor(n)
A← A ∪ [d : n→ d]

until n is the root node
return A

In the training data for the FSSE system, semantic arguments
were annotated using labeled segments. To find a dependency node
corresponding to a labeled segment, we selected the first node in the list
returned by Algorithm 5.1 whose governor was outside the segment.
For the FSSE task, the training set consisted of 1,500,000 instances.

Since we used quadratic support vector machines, it was infeasible to
train on the full training set. We thus selected a random subset of
200,000 instances as the training set. The training time was roughly
24 hours. For the CoNLL-2008 task, the training set contained 750,000
instances for the verb predicates and 1,000,000 for noun predicates.
However, since we used linear classifiers, training took only a few
seconds.

5.3.4 Argument Labeling

The argument labeling step consists of assigning a semantic role label to
an argument of a predicate. Similarly to the previous steps, we solved
this by applying a statistical classifier, in this case a multiclass classifier.
In both the Framenet and PropBank/NomBank case, the set of allowed
semantic roles is defined by the predicate. To ensure that the output
predicted by the classifier was consistent with the predicate, we used
only the restricted set of binary subclassifiers3 allowed by the predicate.
There is a conceptual problem with having a single classifier for all

predicates: it overgeneralizes. A semantic role label is only guaranteed
to have the same meaning with respect to a single frame (for FrameNet)

3In the FSSE system, we used the one-versus-one binarization method that comes
with LIBSVM. In the CoNLL-2008 baseline system, we implemented a one-versus-all
binarization method.
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or lexical unit (for PropBank/NomBank). For instance, the meaning of
the CONTENT label in the FrameNet frame EXPERIENCER_SUBJ is not
the same as in the frame SOCIABILITY. This problem, while relatively
minor in FrameNet, is more marked in PropBank/NomBank, where
only the ARG0 and ARG1 labels have a more or less consistent interpre-
tation as “agent-like” and “patient-like” roles, respectively. However,
the method of having a single classifier is still commonly used since it
gives some generalization between frames or predicates, although this
generalization may not be sound. While there are some FrameNet-
based systems that train an argument labeler for every frame, it is
not feasible to train a PropBank/NomBank argument labeler for every
lemma – the training data would be too sparse.
The training set for the argument labeler contained 250,000 instances

for the FSSE system. This classifier could be trained faster than
the argument identifier since it consists of a large number of binary
subclassifier, which allowed parallellization of the training process. For
the CoNLL-2008 baseline system, we had 225,000 instances for verb
predicates and 150,000 for noun predicates.

5.3.5 Features Used in Argument Identification and La-
beling

We used roughly the same feature sets for argument identification and
classification. This section describes the features. In the FSSE system,
we used all these features, while in the CoNLL-2008 baseline system,
we used a feature selection process described in 5.3.6.

PREDLEMMASENSE. The lemma and sense number of the predicate,
e.g. give.01.

VOICE. For verbs, this feature is Active or Passive. For nouns, it is not
defined.

POSITION. Position of the argument with respect to the predicate:
Before, After, or On.

ARGWORD and ARGPOS. Lexical form and part-of-speech tag of the
argument node.

LEFTWORD, LEFTPOS, RIGHTWORD, RIGHTPOS. Form/part-of-
speech tag of the leftmost/rightmost dependent of the argument.
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LEFTSIBLINGWORD, LEFTSIBLINGPOS,
RIGHTSIBLINGWORD, RIGHTSIBLINGPOS. Form/part-of-speech
tag of the left/right sibling of the argument.

PREDPOS. Part-of-speech tag of the predicate.

RELPATH. A representation of the complex grammatical relation
between the predicate and the argument. It consists of the
sequence of dependency relation labels and link directions in the
path between predicate and argument, e.g. IM↑OPRD↑OBJ↓.

POSPATH. An alternative view of the grammatical relation, which
consists of the POS tags passed when moving from predicate to
argument, e.g. VB↑TO↑VBP↓PRP.

VERBCHAINHASSUBJ. Binary feature that is set to true if the predicate
verb chain has a subject. The purpose of this feature is to resolve
verb coordination ambiguity as in Figure 5.4.

CONTROLLERHASOBJ. Binary feature that is true if the link between
the predicate verb chain and its governor is OPRD, and the
governor has an object. This feature is meant to resolve control
ambiguity as in Figure 5.5.

FUNCTION. The grammatical function of the argument node. For di-
rect dependents of the predicate, this is identical to the RELPATH.

I

SBJ

eat drinkyouand

COORD SBJ

CONJ
ROOT

SBJ COORD

ROOT

drinkandeatI

CONJ

Figure 5.4: Coordination ambiguity: The subject I is in an ambiguous
position with respect to drink.

5.3.6 Feature Selection in the CoNLL-2008 Baseline

The feature sets used by the argument identification and labeling
classifiers in the CoNLL-2008 baseline system are shown in Table 5.2.
In the table, N or V denotes a feature used by a classifier for noun or
verb predicates, respectively.
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I to

IMSBJ

want sleephim

OBJ

OPRD
ROOT

IM

sleepI

SBJ

want

ROOT

to

OPRD

Figure 5.5: Subject/object control ambiguity: I is in an ambiguous position
with respect to sleep.

To select the feature sets, we carried out a greedy forward feature
search procedure, shown in Algorithm 5.2. Due to the implementation
of classifiers, this was not possible for the FSSE system.

From a set F of features, the algorithm incrementally adds one
feature to a working set until no progress is made. To measure progress,
an evaluation metric µ is used, in our case the average F-measure in a
5-fold cross-validation on the training set. Also, a tolerance parameter ǫ
is needed, and we used a value of 10−5. Since we used linear classifiers,
we also needed to select feature pairs, and this is done in the second part
of the algorithm. Tables 5.3 and 5.4 list the first 10 features found by the
feature selection process for every classifier (feature pairs are omitted).
For every feature, the tables also show the improvement in F-measure.

We see that both subtasks seem to be more lexicalized for noun
predicates; grammatical features are not expressive enough to dis-
ambiguate. A partial reason for this may be that the inventory of
dependency relations that we use in noun phrases is limited – as
we saw in 4.3.3, we mainly use NMOD except for some locative or
temporal modifiers, where we used LOC or TMP, respectively. No
complement/adjunct distinction is made since this information is not
available in the Treebank. However, the problem does not only
stem from our encoding of grammatical structure, but also from the
limited grammatical expressivity in nominal structures. For instance,
in Example 5.2 we see that what is expressed using a genitive in a
nominalization may correspond to either a subject or object in the
corresponding structure with a verb predicate.

Example 5.2.
(a) Alexander arrived / Alexander’s arrival
(b) They acquitted Alexander / Alexander’s acquittal
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Feature ArgId ArgLbl
PREDGOVWORD/POS N,V
DEPLABELSET N,V N,V
PREDLEMMASENSE N,V N,V
VOICE V V
POSITION N,V N,V
ARGWORD/POS N,V N,V
LEFTWORD/POS N N,V
RIGHTWORD/POS N,V N,V
LEFTSIBLINGWORD/POS N,V
RIGHTSIBLINGWORD/POS N N
PREDPOS N,V V
RELPATH N,V N,V
POSPATH N
VERBCHAINHASSUBJ V V
CONTROLLERHASOBJ V N
PREDREL N,V N,V
FUNCTION N,V

Table 5.2: Classifier features in argument identification (ArgId) and labeling
(ArgLbl).

Feature Contribution Feature Contribution
RELPATH 0.934 RELPATH 0.597
ARGWORD 0.0191 ARGWORD 0.186
VERBCHAINHASSUBJ 0.00204 PREDLEMMASENSE 0.00594
CONTROLLERHASOBJ 0.00227 ARGPOS 0.00403
PREDLEMMASENSE 8.67e-4 RIGHTPOS 0.00240
RIGHTPOS 2.92e-4 CHILDDEPSET 0.00120
PREDREL 3.43e-4 LEFTPOS 5.15e-4
ARGPOS 2.67e-4 POSPATH 4.39e-4
CHILDDEPSET 2.71e-4 PREDREL 2.47e-4
PREDPOS 7.62e-5 POSITION 2.11e-4

Table 5.3: Contributions of individual features for argument identification
for verb (left) and noun (right) predicates.

5.4 On Evaluating Semantic Role Annotation

Quality

Starting in Chapter 2, we defined semantic roles as logical relations
holding between an event and its participants. In role-annotated text,
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Algorithm 5.2 Greedy forward feature selection.

function GREEDY-FORWARD-SELECTION(F, µ, ǫ)
input Feature set F , evaluation metric µ, tolerance ǫ
S ← ∅
P ← ∅
µmax ← −∞
repeat
µcurr ← µmax

for each f ∈ F \ S
µ′ ← µ(S ∪ {f}, P )
if µ′ > µmax + ǫ

µmax ← µ′

fmax ← f

if µmax > µcurr

S ← S ∪ {fmax}
until µmax = µcurr

repeat
µcurr ← µmax

for each p ∈ (F × F ) \ P
µ′ ← µ(S, P ∪ {p})
if µ′ > µmax + ǫ

µmax ← µ′

pmax ← p

if µmax > µcurr

P ← P ∪ {pmax}
until µmax = µcurr

return 〈S, P 〉

these relations are typically annotated by bracketing the referring words
(predicate and argument words).
The most commonly used metric is the strict segment metric, which

assumes a bracketed annotation. This metric was used in the 2004
and 2005 CoNLL Shared Tasks and in the FSSE task (among other
metrics). In this metric, a labeled segment is counted as correct if the
gold standard contains a segment with the same boundaries and label.
This is then used to compute the following two measures:

precision = #correct
#attempted and recall = #correct

#in gold standard

Since it is impractical to rank systems when having two separate
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Feature Contribution Feature Contribution
RELPATH 0.690 ARGWORD 0.267
ARGWORD 0.105 PREDLEMMASENSE 0.0908
PREDLEMMASENSE 0.0678 RELPATH 0.0237
CHILDDEPSET 0.0286 RIGHTWORD 0.0122
RIGHTWORD 0.00428 PREDPOS 0.00694
VOICE 0.00376 LEFTSIBLINGPOS 0.00106
ARGPOS 0.00300 LEFTPOS 7.85e-4
POSITION 0.00211 LEFTWORD 9.19e-4
LEFTPOS 0.00101 CHILDDEPSET 9.91e-4
RIGHTPOS 7.95e-4 RIGHTPOS 2.41e-4

Table 5.4: Contributions of individual features for argument labeling for verb
(left) predicates and noun (right) predicates.

measures, the precision and recall measures are typically combined
into a single figure using a harmonic mean, the F1-measure (or just F-
measure):

F1 =
2PR

P +R

However, it is questionable whether a segment-based metric is the
proper way to evaluate systems whose purpose is to find semantic
relations between logical entities. We believe that the same criticisms
that have been leveled at the bracket-based PARSEVAL metric for
constituent structures (Lin, 1998) are equally valid for the segment-
based evaluation of SRL systems.
In the end, the evaluation metric must be related to the real-world

task that a semantic role labeler is intended to carry out. If it is to be
used as a template filler, then a segment-based metric is perfectly natu-
ral. If its task is to extract semantic information in some sort of logical
formalism, or provide features for a bag-of-words representation, then
a segment metric is probably misleading.

5.4.1 Evaluation in FSSE

In the FSSE task, the participating systems were scored according to
a number of different metrics, evaluating the performance for both
predicates and arguments. The evaluation metric puts more weight on
identification and labeling of predicates than of arguments.
For the semantic role annotation, the participants were required

to submit conventional labeled segment annotation, but the output
was not only scored using the segment metric discussed above, but
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also a dependency metric that was intended to be more semantically
relevant. The system outputs were automatically converted to semantic
dependency graphs, which were then compared to the gold standard.
Figure 5.6 shows the semantic dependency graph representing the
sentence This geography is important in understanding Dublin, taken from
the paper by Baker, Ellsworth, and Erk (2007).

Figure 5.6: Semantic dependency graph representation used in the FSSE task.

In addition, there were strictness options in the evaluation of
labeling. In the hard evaluation metric, a label was either completely
correct or incorrect. In the soft evaluation metric, a frame or semantic
role label could be counted as “partially” correct, depending on the
distance in the FrameNet ontology.
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5.4.2 Evaluation in the CoNLL-2008 Shared Task

In the CoNLL-2008 Shared Task on joint analysis of syntactic and
semantic dependencies, the evaluation metric scored the performance
of syntactic dependency parsing and semantic analysis. The global
measure by which the systems were ranked was the average of the
syntactic and semantic scores.
For the evaluation of semantic role annotation, predicate–argument

structures were conceptually represented as in Figure 5.1: A predicate
link whose label is the sense identifier, and labeled argument links
from the predicate to its arguments. Predicate and argument links were
equally weighted in scoring.

5.4.3 Evaluating Dependency-based Systems with Seg-
ment Metrics

For the FSSE evaluation, the annotation of semantic role structures
consisted of labeled segments. A naïve method to create argument
segments given an argument dependency node would be to create a
set of segments for all contiguous word groups in the yield4 of the
argument node. However, when the argument node dominates the
predicate, the created segment is not compatible with the conventions
used in segment-based annotation. Figure 5.7 shows such an example.
In segment-based annotation, we would annotate The man as an argu-
ment of saw. In a dependency representation, we would identify man
as the argument, but its yield would be the whole phrase The man I saw
yesterday.
Note, however, that on a conceptual level this is a trivial non-

issue that does not affect the interpretation of the sentence. Regardless
of bracketing, the semantics of the sentence is roughly the following
(using VerbNet semantic labels):

∃x, e : man(x) ∧ SEE(e) ∧ EXPERIENCER(e, I) ∧ STIMULUS(e, x)∧
∧TIME(e,Yesterday) ∧ painter(x)

Algorithm 5.3 shows how the segments are constructed from the
argument dependency nodes. For each argument node, the algorithm
computes the yield Y , the set of dependency nodes to include in the
bracketing. This set is then partitioned into contiguous parts, which are
then converted into segments. In most cases, the yield is just the subtree
dominated by the argument node. However, if the argument dominates

4The yield of a dependency node n is the set Y = {d : n dominates d}.
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The man I saw yesterday is a painter

The man I saw yesterday is a painter

NMOD

NMOD

SBJ TMP

SBJ
ROOT

PRD

NMOD

Figure 5.7: Example of a situation where an annotated semantic role segment
does not match the yield of any dependency node.

the predicate, then the branch containing the predicate is removed.
Also, FrameNet allows arguments to coincide with the predicate; in this
case, the yield is just the predicate node.

that we have been relying onthe ideas

ROOT−FRAG

VCSBJ VC CLR

PMOD

NMOD

NMOD

Figure 5.8: Example of a dependency tree containing a predicate relyingwith
three arguments: the ideas, we, and on . . . that.

To illustrate Algorithm 5.3, consider Figure 5.8. In this sentence, the
predicate relying has three arguments: the ideas, we, and on . . . that. The
simplest of them iswe, which does not dominate its predicate andwhich
is not discontinuous. A more complex case is the discontinuous argu-
ment headed by on, where the yield {on, that} is partitioned into two
subsets that result in two separate segments. Finally, the dependency
node ideas dominates the predicate. In this case, the algorithm removes
the subtree headed by have, so the remaining yield is {the, ideas}.
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Algorithm 5.3 Segment creation from argument dependency nodes.

function CREATE-SEGMENT(p, a, T )
input Predicate node p, argument node a, dependency tree T

if a does not dominate p in T
Y ← {n; a dominates n}

else if p = a

Y ← {p}
else
c← the dependent of a that dominates p
Y ← {n; a dominates n} \ {n; c dominates n}

end if
S ← partition of Y into contiguous subsets
return {(min-index s,max-index s); s ∈ S}

5.5 Results

This section describes the results of the evaluations.

5.5.1 Results in FSSE

The FSSE system, processed using Algorithm 5.3 to give segment
output, was evaluated on three unseen texts.
Table 5.5 shows the results for frame detection averaged over

the test texts. The strictness column indicates whether hard or soft
frame matching was used by the evaluation script, and the metric
column whether a segment or dependency metric was used. Our
system outperformed the second-best participant in the evaluation, the
constituent-based system by Bejan and Hathaway (2007), on all metrics.

Strictness Metric Recall Precision F1
Hard Segment 0.528 0.688 0.597
Soft Segment 0.581 0.758 0.657
Hard Dependency 0.549 0.715 0.621
Soft Dependency 0.601 0.784 0.681

Table 5.5: Results for frame detection in the FSSE task.

Table 5.6 shows the importance of a proper implementation of the
predicate identifier and classifier. The hard segment metric is used in
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these evaluations. For the predicate identifier, we compare a system
using a rule-based filter with one that marks all lemmas listed in
FrameNet as predicates. We see that the filter lowers recall very slightly,
while the precision is greatly improved. For the frame assignment
problem, we see that when a classifier is used, the system performs
much better than when the most common sense is always picked.

Pred. id. Frame assignment Recall Precision F1
Filtering Classifier 0.528 0.688 0.597
Filtering First sense 0.457 0.596 0.517
No filtering Classifier 0.535 0.488 0.510
No filtering First sense 0.461 0.420 0.440

Table 5.6: Effect of filtering rules and sense disambiguation on frame
detection results.

Finally, Table 5.7 shows the results for the evaluation of complete
annotation. Our system had the top scores in this evaluation as well.
However, the scores for all systems were low, reflecting the complexity
of the task and the difficulty of the test set.
Interestingly, the scores are higher with the dependency metric than

with the segment metric, while the other teams generally had higher
scores with the segment metric. We believe that the reason for this
is that we used a dependency parser, and that the rules that we used
to convert dependency nodes into segments may have produced some
errors. It is possible that the figures would have been slightly higher if
our program produced semantic dependency graphs directly.

Strictness Metric Recall Precision F1
Hard Segment 0.364 0.530 0.432
Soft Segment 0.391 0.570 0.464
Hard Dependency 0.384 0.561 0.456
Soft Dependency 0.411 0.600 0.488

Table 5.7: Results for the complete system in the FSSE task.

5.5.2 CoNLL-2008 Results

We evaluated the CoNLL-2008 baseline system onWSJ section 23 and a
part of section K of the Brown corpus. We used the standard evaluation
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script for the shared task. Table 5.8 shows the result of the semantic
part of the evaluation. In addition to the conventional precision, recall,
and F1 measures, the table also shows the number of perfectly detected
propositions (Prop).

Corpus P R F1 Prop
WSJ 81.32 82.32 81.81 52.67
Brown 67.40 69.99 68.67 33.88
WSJ+Brown 79.77 80.98 80.37 50.64

Table 5.8: Results on the CoNLL-2008 corpora.

These figures are higher than for all participating systems in the
CoNLL-2008 Shared Task except the best-performing (which will be
described in Chapter 7).



Chapter 6

Comparing Syntactic
Representations for
Automatic Role-semantic
Analysis

In Chapter 5, we described a dependency-based semantic role labeler
that achieved a good result in two evaluations. However, a comparison
with previously published results may not be very informative, since
results are also influenced by menial engineering and optimization
details. In this chapter, we carry out an evaluation that we believe is
more fair: We implement dependency- and constituent-based semantic
role labelers that are designed to be as similar as possible, and we
evaluate them on a number of different parsers. While the purpose of
the previously described system was to demonstrate the feasibility of
dependency-based semantic role analysis, the current chapter instead
aims to understand the impact of the syntactic representation on the
subtasks of semantic role labeling. Additionally, using the same exper-
imental setup, we evaluate the effect of the design of the dependency
representation that we described in Chapter 4.
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6.1 Experimental Setup

To study the influence of syntactic representation on SRL performance,
we developed a framework that could be easily parametrized to process
either constituent or dependency input1. This section describes its
implementation. As the role-semantic paradigm, we used FrameNet
(Baker, Fillmore, and Lowe, 1998).

6.1.1 Systems

We applied the SRL architecture on the output of six different parsers.
All parsers were trained on sections 02–21 of the WSJ part of the
Penn Treebank, either directly for the constituent parsers or through
the constituent-to-dependency converter described in Chapter 4. The
resulting SRL systems are identified as follows:

LTH Parser. A dependency-based system using the parser described
in 7.3.

MaltParser. A dependency-based system using MaltParser (Nivre et
al., 2007).

MSTParser. A dependency-based system using MSTParser (McDon-
ald, Crammer, and Pereira, 2005).

C&J Reranker. A constituent-based system using the reranking parser
(the May 2006 version) by Charniak and Johnson (2005).

Charniak. A constituent-based system using Charniak’s parser (Char-
niak, 2000).

Collins. A constituent-based system using Collins’ parser (Collins,
1997).

MaltParser is an incremental greedy classifier-based parser based
on support vector machines, while MSTParser use exact edge-factored
search with a linear model trained using an online learning algorithm.
MaltParser and MSTParser have achieved state-of-the-art results for a
wide range of languages in the 2006 and 2007 CoNLL Shared Tasks
on dependency parsing. Charniak’s and Collins’ parsers are widely
used constituent parsers for English, and the C&J reranker is the best-
performing publicly available constituent parser at the time of writing
according to published figures. Charniak’s parser and the C&J reranker

1The implementation is available for download at the following web page:
http://nlp.cs.lth.se/fnlabeler.



6.1. EXPERIMENTAL SETUP 93

come with a built-in part-of-speech tagger; all other systems used the
Stanford tagger (Toutanova et al., 2003).

Following Gildea and Jurafsky (2002), the SRL problem is tradition-
ally divided into two subtasks: identifying the arguments and labeling
them with semantic roles. We did not consider predicate identification
and disambiguation in the experiments described in this chapter. Al-
though state-of-the-art SRL systems use sophisticated statistical models
to perform the two subtasks jointly, as described in Chapter 7, we
implemented them as two independent support vector classifiers as in
Chapter 5 to be able to analyze the impact of syntactic representation
on each subtask separately.

Table 6.1 enumerates the features used by the classifiers. For a
description of the features used in the dependency trees, see 5.3.5. The
differences in the feature sets reflect the structural differences between
constituent and dependency trees: The constituent-only features are
based on phrase tags and the dependency-only features on grammatical
functions labels.

Argument Argument
Features identification classification
PREDLEMMA C,D C,D
PREDPOS C,D C,D
VOICE C,D C,D
POSITION C,D C,D
ARGWORD/POS C,D C,D
LEFTWORD/POS C,D C,D
RIGHTWORD/POS C,D C,D
PREDGOVWORD/POS C,D
CONSTITUENTSUBCAT C C
CONSTITUENTPATH C C
PHRASETYPE C C
GOVCAT C C
RELPATH D D
DEPLABELS D D
CONTROLLERHASOBJ D
PREDREL D
FUNCTION D

Table 6.1: Classifier features. The features used by the constituent-based and
the dependency-based systems are marked C and D, respectively.
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6.1.2 Features in Constituent-based SRL Systems

In the constituent-based SRL systems, we used a number of features
that are not directly definable in a dependency-based system. The
examples refer to Figure 6.1.

CONSTITUENTSUBCAT. Subcategorization frame: corresponds to the
phrase-structure rule used to expand the phrase around the
target. For give in the example, this feature is VP→VB NP NP.

CONSTITUENTPATH. A string representation of the path through the
constituent tree from the target word to the argument constituent.
For instance, the path from gave to she is ↑VP-↑S-↓NP.

PHRASETYPE. Phrase type of the argument constituent, e.g. NP for she.
GOVCAT. Governing category: this feature is either S or VP, and
is found by starting at the argument constituent and moving
upwards until either a VP or a sentence node (S, SINV, or SQ)
is found. For instance, for she, this feature is S, while for the
horse, it is VP. This can be thought of as a very primitive way of
distinguishing subjects and objects.

NP NP NP

VP

S

NP

gave the horse an applesheyesterday

Figure 6.1: Example to illustrate features in constituent-based SRL.

6.2 Comparison of Constituents and Depen-

dencies for SRL

We carried out a number of experiments to compare the influence of
the syntactic representation on different aspects of SRL performance.
We used the FrameNet example corpus and running-text corpus, from
which we randomly sampled a training and test set. The training set
consisted of 134,697 predicates and 271,560 arguments, and the test set
of 14,952 predicates and 30,173 arguments. This does not include null-
instantiated arguments, which were removed from the training and test
sets.
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6.2.1 Argument Identification

Before evaluating the full automatic argument identification systems,
we studied the effect of the span creation from dependency nodes
(Algorithm 5.3). To do this, we measured the upper-bound recall of
argument identification using the conventional span-based evaluation
metric. We compared the quality of pruned spans (Algorithm 5.3)
to unpruned spans (a baseline method that brackets the full subtree).
Table 6.2 shows the results of this experiment. The figures show that
proper span creation is essential when the traditional metrics are used:
For all dependency-based systems, the upper-bound recall increases
significantly. However, the dependency-based systems generally have
lower figures for the upper-bound recall than constituent-based ones.

System Pruned Unpruned
LTH 83.9 82.1
Malt 82.1 80.2
MST 80.4 77.1
C&J Reranker 85.3
Charniak 83.4
Collins 81.8

Table 6.2: Upper-bound recall for argument identification.

Our first experiment investigated how the syntactic representa-
tion influenced the performance of the argument identification step.
Table 6.3 shows the result of this evaluation. As can be seen, the
constituent-based systems outperform the dependency-based systems
on average. However, the picture is not clear enough to draw any
firm conclusion about a fundamental structural difference. There are
also a number of reasons to be cautious: First, the dependency parsers
were trained on a treebanks that had been automatically created from
a constituent treebank, which probably results in a slight decrease in
annotation quality. Second, while dependency parsing has advanced
during recent years, constituent parsing is still at least one generation
ahead: the best constituent parser (C&J) is a reranking parser utilizing
global features, while the dependency parsers use local features only;
we believe that a reranker could be used to improve the dependency
parsers as well.
Differences between parsers using the same syntactic formalism

are also considerable, which suggests that the attachment accuracy is
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System P R F1
LTH Parser 79.7 77.3 78.5
MaltParser 77.4 73.8 75.6
MSTParser 73.9 71.9 72.9
C&J Reranker 81.4 77.3 79.2
Charniak 79.8 75.0 77.3
Collins 78.4 72.9 75.6

Table 6.3: Argument identification performance based on type of formalism.

System Accuracy
LTH Parser 89.6
MaltParser 88.5
MSTParser 88.1
C&J Reranker 88.9
Charniak 88.5
Collins 88.3

Table 6.4: Semantic role classification accuracy.

possibly the most important parameter when choosing a parser for this
task.

6.2.2 Argument Classification

To evaluate the argument classification accuracies, we provided the
systems with gold-standard arguments, which were then automatically
classified. Table 6.4 shows the results.
Here, the situation is different: the best dependency-based system

make 6.3% fewer errors than the best constituent-based one, a statisti-
cally significant difference at the 99.9% level according to a McNemar
test. Apart from this outlier, there are no clear differences that can
be attributed to syntactic formalism. However, this result is positive,
because it shows clearly that SRL can be carried out in situations where
only dependency parsers are available.
On the other hand, it may seem paradoxical that the rich set of

grammatical functions used by the dependency-based systems did not
lead to a clearer difference between the groups, despite the linguistic
intuition that this feature should be useful for argument classification.
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Especially for for the second- and third-best systems (Malt and MST
versus Charniak and Collins), the performance figures are almost
identical. However, all systems use lexical features of the argument,
and we saw in 5.3.6 that these features are very important for argument
classification. Given enough training data, one may say that the
grammatical function is implicitly encoded in these features. This
suggests that lexical features are more important for constituent-based
systems than for dependency-based ones.

6.2.3 Robustness of SRL Classifiers

In this section, we test the hypothesis that the SRL systems based on
dependency syntax rely less heavily on lexical features. We also in-
vestigate two parameters that are influenced by lexicalization: domain
sensitivity and the amount of training data required by classifiers.

Tests of Unlexicalized Models

To test the hypothesis about the reliance on lexicalization, we carried
out a series of experiments where we set aside the lexical features of the
argument in the argument classifier. Table 6.5 shows the results.
As expected, there is a sharp drop in performance for all systems,

but the results are very clear: When no argument lexical features are
available, the dependency-based systems have a superior performance.
The difference between MST and C&J constitutes an error reduction of
6.9% and is statistically significant at the 99.9% level.

System Accuracy
LTH Parser 83.0
MaltParser 81.9
MSTParser 81.7
C&J Reranker 80.3
Charniak 80.0
Collins 79.8

Table 6.5: Accuracies for unlexicalized role classifiers.
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Training Set Size

Since the dependency-based systems rely less on lexicalization, we
can expect them to have a steeper learning curve. To investigate
this, we trained semantic role classifiers using training sets of varying
sizes and compared the average classification accuracies of the two
groups. Figure 6.2 shows the reduction in classification error of the
dependency-based group compared to the constituent-based group
(again, all systems were lexicalized). For small training sets, the
differences are large; the largest observed error reductionwas 5.4%with
a training set of 25,000 instances. When the training set size increases,
the difference between the groups decreases. The plot is consistent
with our hypothesis that the grammatical function features used by
the dependency-based systemsmake generalization easier for statistical
classifiers. We interpret the flatter learning curves for constituent-based
systems as a consequence of lexicalization – these systems need more
training data to use lexical information to capture grammatical function
information implicitly.
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Figure 6.2: Error reduction of average dependency-based systems as a
function of training set size.
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Out-of-domain Test Sets

We finally conducted an evaluation of the semantic role classification
accuracies on an out-of-domain test set: the FrameNet-annotated Nu-
clear Threat Initiative texts from SemEval task (Baker, Ellsworth, and
Erk, 2007). Table 6.6 shows the results. This corpus contained 9,039
predicates and 15,343 arguments. The writing style is very different
from the FrameNet training data, and the annotated data contain
several instances of predicates and frames unseen in the training set.
We thus see that all systems suffer severely from domain sensitivity,
but we also see that the dependency-based systems are more resilient
– the difference between MST and C&J is statistically significant at
the 97.5% level and corresponds to an error reduction of 2%. The
experiment reconfirms previous results (Carreras and Màrquez, 2005)
that the argument classification part of SRL systems is sensitive to
domain changes, and Pradhan, Ward, and Martin (2008) argued that an
important reason for this is that the lexical features are heavily domain-
dependent. Our results are consistent with this hypothesis, and suggest
that the inclusion of grammatical function features is an effective way
to mitigate this sensitivity.

System Accuracy
LTH Parser 71.1
MaltParser 70.1
MSTParser 70.1
C&J Reranker 69.5
Charniak 69.3
Collins 69.3

Table 6.6: Classification accuracy on the NTI texts.

6.3 Effect of the Design of Dependency Repre-

sentation

While the previous section compared the constituent and dependency
formalisms with respect to SRL performance, this section investigates
how SRL is affected by the structure of the dependency representation,
which we discussed at great length in Chapters 3 and 4. We now apply
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the dependency-based SRL system evaluated in the previous section on
the output of MaltParser in two different dependency formalisms.
As the baseline, we used the Penn2Malt tool.2 This constituent-to-

dependency converter implements the widely used method described
by Yamada and Matsumoto (2003). While Yamada’s method only
produces unlabeled links, Penn2Malt also outputs function labels. The
set of grammatical functions contains 12 labels.
The evaluation is carried out similarly to the previous section.

Starting with the upper-bound recall on the training set (Table 6.7), we
see that the system using the dependency representations designed in
this work (referred to as LTH Converter in the table) outperforms the
baseline significantly.

System Pruned Unpruned
LTH Converter 82.1 80.2
Penn2Malt 81.2 79.2

Table 6.7: Upper-bound recall for argument identification, based on depen-
dency type.

It should be noted that this is not because the LTH dependency
structures are easier to predict for a parser; in fact, the opposite is true.
Table 6.8 shows the results of a parser evaluation on section 23 of the
WSJ part of the Penn Treebank. As we can see, the LTH format is more
demanding for parsers, both for attachment and for function labeling.

Converter Labeled Unlabeled
Penn2Malt 90.3 91.4
LTH Converter 87.8 90.7

Table 6.8: Parsing accuracy for MaltParser on WSJ section 23 using
Penn2Malt and the LTH converter.

Moving on to argument identification performance, shown in Ta-
ble 6.9 we see that the system based on the LTH-processed treebank
outperforms the Penn2Malt-based system soundly.
It is also interesting to note that the difference is greater than the

difference in upper-bound recall. It thus seems that the modified head

2http://w3.msi.vxu.se/∼nivre/research/Penn2Malt.html
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selection procedure and dependency arc labeling used by the LTH
labeler result in better features for the statistical classifier.

System P R F1
LTH Converter 77.4 73.8 75.6
Penn2Malt 76.1 72.1 74.0

Table 6.9: Argument identification performance for different conversion
methods.

Similarly to what we saw in 6.2.2, we see no significant difference
in the case of argument classification (Table 6.10). Again, we believe
that this is due to the fact that lexicalization can compensate for an
inexpressive grammatical function set if the training set is large enough.
The figures in Table 6.11, which show classification accuracies when
removing argument lexicalization, are consistent with this hypothesis.

System Accuracy
LTH Converter 88.5
Penn2Malt 88.4

Table 6.10: Semantic role classification accuracy for different conversion
methods.

System Accuracy
LTH Converter 81.9
Penn2Malt 80.0

Table 6.11: Unlexicalized role classification accuracy for different conversion
methods.

The benefit of relying less on lexicalization is once more evident in
the plot of error reduction as a function of training set size in Figure 6.3.
For clarity, the plot also includes an interpolated quadratic polynomial
to show the general tendency more clearly. For small training sets, the
semantic role labeler using LTH dependency structures has a higher
performance.
However, in contrast with the experiment in 6.2.2, the difference in

accuracy is insignificant when wemove to role classification on the NTI
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Figure 6.3: Error reduction of the LTH-based semantic role labeler as a
function of training set size.

corpus. This result may appear slightly unexpected, but a possible
explanation is that the LTH dependency structures, while generally
more informative, also make the parsermore brittle. However, it is hard
to test this hypothesis empirically without a gold-standard syntactic
annotation of the NTI corpus.

System Accuracy
LTH Converter 70.1
Penn2Malt 70.0

Table 6.12: NTI role classification accuracy for different conversion methods.

6.4 Discussion

We have described a set of experiments investigating the relation
between syntactic representation and semantic role labeling perfor-
mance, specifically focusing on a comparison between constituent-
and dependency-based SRL systems. The influence of the syntactic
formalism on SRL has only been considered in a few previous articles.
For instance, Gildea and Hockenmaier (2003) reported that a CCG-
based parser gives improved results over the Collins parser. The most
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closely related work is by Miyao et al. (2008), who compared the effect
of parsers and syntactic representation based on the performance of
information extraction systems. They reported results that were very
similar to ours, that constituent and dependency systems can both serve
as the syntactic input for a system doing semantic processing.
We reconfirm the result from Chapter 5 that dependency-based

systems can perform more or less as well as constituent-based systems.
This comparison is also fairer since we designed the systems to be
as similar as possible, to rule out any influence of engineering details
on the result. For the argument classification task, dependency-based
systems are slightly better on average, while the constituent-based
systems perform slightly higher in argument identification.
Our second main result is that for argument classification,

dependency-based systems rely less heavily on lexicalization, and we
suggest that this is because they use features based on grammatical
function labels. These features make the learning curve steeper when
training the classifier, and improve robustness to domain changes.
The experiments also show that a careful design of the dependency

representation, as described in Chapters 3 and 4, is important for the
performance of the semantic role labeler.





Chapter 7

Extensions of the
Classifier-based Model

In Chapter 5, we modeled the problem of automatic analysis of text as
a sequential task that is solved using a greedy search procedure. We
applied a dependency parser, followed by predicate identification and
word sense disambiguation, then argument identification and labeling.
Using this model, we were able to obtain decent results.
However, this architecture is problematic from both a linguistic

and from a statistical view. It is clear that all the subtasks are highly
interdependent, and it is sensible to ask whether they could be solved
more accurately if the statistical model takes this into account. Intu-
itively, semantic interpretation should help syntactic disambiguation,
and joint syntactic–semantic analysis has historically been prominent
in linguistic theory; deep-linguistic formalisms such as LFG and HPSG
are examples of frameworks where syntactic and semantic analysis are
performed in tandem.
The chapter starts with an introduction to modern statistical meth-

ods for learning predictors of complex structured data. Introducing
more complex models is a challenge from an engineering point of view,
since the problem structure has to be exploited to maintain tractability.
We extend the CoNLL-2008 baseline system for PropBank and

NomBank analysis described in Chapter 5 by applying these methods
to the complete syntactic–semantic problem, and to the subproblems
of dependency parsing and predicate–argument structure prediction,
respectively. The resulting system took part in the CoNLL-2008 Shared
Task, where it obtained the best result among 22 participants.
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7.1 Discriminative Modeling of Non-atomic

Variables

Prediction of structured data has a long tradition in NLP. The statis-
tical models have typically been generative and employed maximum-
likelihood estimation, such as probabilistic context-free grammars for
constituent parsing, or hidden Markov models for sequence labeling.
The generative models had the drawback of lack of expressivity,

since the features that they could model were limited. This led to
the introduction of discriminative classifier-based models, which can
use arbitrary features. They might be probabilistic, such as maximum-
entropy Markov models (McCallum, Freitag, and Pereira, 2000) or not
(Punyakanok and Roth, 2001). Classifier-based models have been very
successful in a number of tasks such as sequence labeling (Kudo and
Matsumoto, 2003) and dependency parsing (Nivre et al., 2007).
However, unlike generative models, classifier-based models suffer

from a problem referred to as label bias (Bottou, 1991) – local decisions
are viewed in isolation when estimating the parameters of the models,
and this may lead to suboptimal performance when viewed in a larger
context. Therefore, a number of approaches have been proposed to
unify the two types of models. The first widely known was the
conditional random field (Lafferty, McCallum, and Pereira, 2001), which is
the generalization of logistic (or maximum entropy) models to arbitrary
data, but which is typically applied in tasks that can be modeled using
graphical models, such as sequence labeling.
Since then, a large number of publications on the topic have ap-

peared. The approaches can be grouped into two broad categories:

• Decomposition-based methods, which assume that the non-atomic
output variable y can be meaningfully decomposed into a set
of atomic parts y1, . . . , yn, which are logically and statistically
correlated. Problem-specific independence assumptions are then
used to make optimization tractable. This group includes the
above-mentioned conditional random fields, as well as the max-
margin Markov (Taskar, Guestrin, and Koller, 2004) and PCFG
(Taskar et al., 2004) models. A recent efficient optimization
algorithm for both types of models is the extragradient method
(Collins et al., 2008).

• Prediction-basedmethods, which repeatedly asks the user to make
a prediction during learning. This group includes online learning
algorithms such as the generalized perceptron (Collins, 2002)
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and its extensions, which may be margin-based such as MIRA
(Crammer and Singer, 2003) and the online passive–aggressive al-
gorithm (Crammer et al., 2006), or probabilistic (Johansson, 2007).
Batch algorithms in this group include SVMstruct (Tsochantaridis
et al., 2005).

It can be noted that when using search based on locally trained
classifiers, it is to a certain extent possible to compensate for the
inherent limitations of the models by using a more complex feature
set (Liang, Daumé III, and Klein, 2008). For instance, this has made it
possible to obtain competitive performance in a sequential labeling task
such as part-of-speech tagging (Giménez and Màrquez, 2003). Another
way to overcome the bias problems in classifier-based search is based
on iterative retraining (Wang, Lin, and Schuurmans, 2007; Daumé III,
Langford, and Marcu, 2006).

7.1.1 Online Linear Learning

In a discriminative framework, we model the prediction problem for
a given input x as finding the output ŷ from a candidate set Y that
maximizes a function F (x, y).

ŷ = arg max
y∈Y

F (x, y)

The learning problem consists of finding the function F so that the
cost of the predictions is as low as possible according to a cost function
(or loss function) ρ. In this work, we consider linear scoring functions
of the following form:

F (x, y) = w ·Ψ(x, y)

whereΨ(x, y) is a numeric feature representation of the pair (x, y) and
w a high-dimensional vector of feature weights.
A widely used framework for fitting the weight vector is the max-

margin model (Taskar, Guestrin, and Koller, 2004; Taskar et al., 2004),
which is a generalization of the well-known support vector machines
(Boser, Guyon, and Vapnik, 1992) to general cost-based prediction
problems. This approach has been shown theoretically and practically
to lead to good generalization to unseen data. In this model, we search
for the smallest weight vector w that satisfies the constraint that the
difference in F between the correct output yi and an incorrect output
yij should be at least ρ(yi, yij). For a training set T = {〈xi, yi〉} where
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the output space for the input xi is Yi, we state the learning problem as
a constrained quadratic optimization program:

minimize
w

‖w‖2

subject to F (xi, yi)− F (xi, yij) ≥ ρ(yi, yij), ∀〈xi, yi〉 ∈ T , yij ∈ Yi

In practice, the optimization problem is also regularized to reduce
overfitting, which leads to the introduction of a parameter C as in
SVMs.
For most realistic types of problems, the number of constraints

precludes a direct solution of the optimization program. In our case, for
instance, the number of constraints is equal to the number of incorrect
parse trees for each sentence. There are algorithms that can handle
fairly large-scale problems either by iteratively selecting constraints
(Tsochantaridis et al., 2005) or by relying on problem factorization
(Taskar, Guestrin, and Koller, 2004; Collins et al., 2008).
Since the large number of training examples and features in our case

make an exact solution of the max-margin optimization problem im-
practical, we used the online passive–aggressive algorithm (Crammer
et al., 2006), which simplifies the optimization process in two ways:

• The weight vector w is updated incrementally, one example at a
time.

• For each example, only the most violated constraint is considered.

The algorithm is a margin-based variant of the perceptron. Algo-
rithm 7.1 shows pseudocode for the algorithm.
As stated above, we model the prediction problem for a given input

x as finding the ŷ that maximizes a function F (x, y). Conceptually, we
solve this problem by applying F to all possible outputs for the input
x. However, except for very small candidate sets, it is not feasible to
enumerate all the possible outputs. When applying a learning method
such as the passive–aggressive algorithm, we thus need to rely on the
structure of the problem we are solving.
To use the passive–aggressive algorithm, the user needs to imple-

ment the following four functions.

• A feature representation functionΨ(x, y).

• A cost function ρ(yi, yj) that returns a numerical measure of how
far the predicted output yj is from the correct answer yi.
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Algorithm 7.1 The online passive–aggressive algorithm

function PASSIVE–AGGRESSIVE(T , N,C)
input Training set T = {(xt, yt)}Tt=1

Number of iterations N
Regularization parameter C

Initialize w to zeros
repeat N times

for (xt, yt) in T
let ỹt = arg max y F (xt, y) + ρ(yt, y)

let τt = min
(

C,
F (xt,ỹt)−F (xt,yt)+ρ(yt,ỹt)

‖Ψ(x,yt)−Ψ(x,ỹt)‖2

)

w ← w + τt(Ψ(x, yt)−Ψ(x, ỹt))
return waverage

• An optimizer that finds ŷ = arg max y F (xt, y) + ρ(yt, y) during
learning.

• A predictor that finds ŷ = arg max y F (xt, y) at test time.

7.2 Predicting Syntactic–Semantic Depen-

dency Graphs

As we argued in the introduction to the chapter, syntax and semantics
are interdependent and it is possible that syntactic and semantic analy-
sis could be improved by integrating the two steps. In the framework
described in 7.1, we model the problem of finding a syntactic tree ŷsyn

and a semantic graph ŷsem for a sentence x as maximizing a function
Fjoint that scores the joint syntactic–semantic structure:

〈ŷsyn, ŷsem〉 = arg max
ysyn,ysem

Fjoint(x, ysyn, ysem)

7.2.1 Overview of the Problem and Previous Work

We can view the problem of joint syntactic and semantic analysis as a
special case of multi-governor dependency parsing. Unfortunately, the
optimization problem of maximizing Fjoint is intractable in this case.
If the number of heads is not bounded but we assume that the graph
is cycle-free, the problem is equivalent to FEEDBACK ARC SET, which
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was one of Karp’s original 21 NP-complete problems (Karp, 1972).1

Even if we assume a bound on the number of heads – which is true
in our case since there can only be one semantic link per predicate –
the problem is NP-hard (Chickering, Geiger, and Heckerman, 1994).
In the literature, there have been a few methods for multi-governor
dependency parsing. For instance, McDonald and Pereira (2006) used a
greedy search starting from the optimal single-governor tree, and Sagae
and Tsuji (2008) applied a greedy shift–reduce algorithm.
However, formulating the joint syntactic–semantic analysis prob-

lem as multi-governor dependency parsing is too general, since the
predicate–argument structures are unnested. This fact was exploited
by Lluís and Màrquez (2008), who extended Eisner’s search method
(Eisner, 1996) for projective dependency trees to simultaneously predict
syntactic and semantic dependency structures.
On the other hand, even with the restrictions on the form of the

semantic dependency graphs, exact search is clearly intractable if we
want to model the interaction between syntax and semantics realisti-
cally. As we saw in Chapter 5, the path through the dependency tree
from the predicate to the argument is the most important feature. Since
semantic relations can be non-local, the path feature is too complex to
be used in exact search. Lluís and Màrquez (2008) used the output of a
dependency parser to be able to extract this feature.
Except for the above-mentioned work by Lluís and Màrquez (2008),

some interesting approximations of the joint syntactic–semantic search
problem that were used in the CoNLL-2008 Shared Task include an
incremental shift–reduce algorithm (Henderson et al., 2008) that main-
tains two separate stacks for syntactic and semantic dependencies, re-
spectively. Another work based on shift–reduce parsing is Samuelsson
et al. (2008), who added semantic information to the syntactic labels.
This output was also combined with the output of a conventional
classifier-based semantic role labeler in a “blending” step.
The problem of joint syntactic–semantic analysis has of course also

been described before the CoNLL-2008 Shared Task. The pioneering
work by Gildea and Jurafsky (2002), which anticipated many of the
issues later explored in more detail by others, attempted to integrate
the Collins constituent parser with a semantic role labeler, but failed to
improve significantly over the original sequential method. A simpler
approach to the problem that has been attempted is to add semantic la-

1To make matters worse, Kann (1992) showed that this problem is APX-hard, meaning
that that there is a constant k, such that there is no polynomial-time approximation
algorithm that always find a solution at most k times more costly than the optimal result.
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bels to constituent labels (Musillo and Merlo, 2006; Merlo and Musillo,
2008). Finally, the work by Collobert and Weston (2008), which jointly
predicts chunks, named entities, and semantic role segments, also needs
to be mentioned.

7.2.2 Our Method

The intractability of the problem, which we described in the previous
section, forces us to resort to a simplification. We chose a strategy based
on reranking: A candidate pool is generated by simple subsystems,
while the final output is selected from the candidate pool by a complex
model. This allows us to have arbitrarily complex features in the
scoring function Fjoint, since we just apply it to every candidate. The
reranking method is commonly used in speech recognition (Schwartz
and Austin, 1993), and has also recently been applied in constituent
parsing (Collins, 2000; Charniak and Johnson, 2005), where it has led to
some of the best published results.
To generate the candidate pool, we used the following strategy:

• In a first step, a syntactic submodel, a dependency parser, generates
am-best list of syntactic trees.

• In a second step, a semantic submodel generates n semantic analy-
ses for every syntactic tree.

The following two sections describes the submodels, and we will
return to the integration step in 7.5.

7.3 The Syntactic Submodel

To implement the syntactic submodel, we once again applied the
conceptual framework and design pattern described in 7.1: The process
of syntactic parsing of a sentence x is modeled as finding the parse
tree ŷsyn = arg maxysyn

Fsyn(x, ysyn) that maximizes a scoring function
Fsyn. This is the well-known discriminative model for dependency
parsing previously described by McDonald et al. (2005), inter alia.
We trained this model using Algorithm 7.1. The value of C was 0.01,

and we defined the syntactic cost ρsyn as the sum of link costs, where
the link cost was 0 for a correct dependency link with a correct label, 0.5
for a correct link with an incorrect label, and 1 for an incorrect link.
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7.3.1 Features and Search

The feature functionΨsyn is a factored representation, meaning that we
compute the score of the complete parse tree by summing the scores of
its parts, referred to as factors:

Ψsyn(x, ysyn) ·w =
∑

f∈factors(ysyn)

ψ(x, f) ·w

The advantage of this decomposition is that although the number
of parse trees is superexponential2 in the number of words in the input
sentence, the number of possible factors is just polynomial. Since the
scoring function is the sum of factor scores, we can apply dynamic
programming to find the optimal parse tree.
We used a second-order factorization (McDonald and Pereira, 2006;

Carreras, 2007), meaning that the factors are subtrees consisting of four
links: the governor–dependent link, its sibling link, and the leftmost
and rightmost dependent links of the dependent. Figure 7.1 shows an
example of a factor.

told storyhim a about

OBJ

VBD PRP DT  NN IN

Figure 7.1: Second-order factor in the dependency parser.

Tables 7.1 and 7.2 show the first-order and second-order feature sets.
These feature sets are taken from McDonald et al. (2005) and Carreras
(2007), respectively. The abbreviations used in the tables are explained
in Table 7.3. Note that all features are implicitly combined with the
LABEL and DIRECTION features.
This factorization allows us to express useful features, but also

forces us to adopt the expensive search procedure by Carreras (2007),
which extends Eisner’s span-based dynamic programming algorithm
(1996) to allow second-order feature dependencies. This algorithm has
a time complexity of O(n4), where n is the number of words in the

2For a sentence with n words, the number of unlabeled dependency trees is given by
(n + 1)n−1 (Cayley’s formula). If we consider only projective trees, then the number of

trees is equal to 1
2n+1

„

3n

n

«

(for a proof, see Yuret (1998), inter alia).
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Unigram Bigram Context
gw gw+gp+dw+dp {gp+bp+dp}
gp gp+dw+dp gp+gp+1+dp−1+dp
gw+gp gw+dw+dp gp−1+gp+dp−1+dp
dw gw+gp+dp gp+gp+1+dp+dp+1

dp gw+gp+dw gp−1+gp+dp+dp+1

dw+dp gw+dw
gp+dp

Table 7.1: First-order features used in the syntactic submodel

Sibling Grandchild
gp+dp+sp gp+dp+gcp+gcd
gp+sp gp+gcp+gcd
dp+sp dp+gcp+gcd
gw+sw gw+gcw+gcd
dw+sw dw+gcw+gcd
gp+sw gp+gcw+gcd
dp+sw dp+gcw+gcd
gw+sp gw+gcp+gcd
dw+sp dw+gcp+gcd

Table 7.2: Second-order features used in the syntactic submodel

sentence. The search was constrained to disallow multiple root links.
To speed up computation, we also pruned the search space based on

part-of-speech tag pairs: A dependency link g l
→ d was considered

only if a link g′ l
→ d′ in the same direction had been observed in the

training treebank, where g′ and g belong to the same part-of-speech
category, and the same for d′ and d. Simplified pseudocode for the
search algorithm is given in Appendix B.
To evaluate the arg max in Algorithm 7.1 during training, we need

to handle the cost function ρsyn in addition to the factor scores. Since
the cost function ρsyn is based on the cost of single links, this can easily
be integrated into the factor-based search.
The m-best syntactic parsing algorithm, needed to generate the

candidate pool for the complete system, is a very simple implemen-
tation that maintains an m-best set at every entry in the dynamic
programming table. This is not efficient – it increases parsing time by
a factor m2 logm – but we did not have time to implement the smart
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Abbreviation Explanation
gw governor word
gp governor part-of-speech tag
dw dependent word
dp dependent part-of-speech tag
bp part-of-speech tag between gov. and dep.
gp+1 part-of-speech tag right of governor
sw sibling word
sp sibling part-of-speech tag
gcw grandchild word
gcp grandchild part-of-speech tag
gcd grandchild direction

Table 7.3: Abbreviations of feature names.

m-best generation algorithm by Huang and Chiang (2005).

7.3.2 Handling Nonprojective Links

Although only 0.4% of the links in the training set are nonprojective,
7.6% of the sentences contain at least one nonprojective link. Many of
these links represent long-range dependencies – such as wh-movement
– that are valuable for semantic processing. Nonprojectivity cannot be
handled by span-based dynamic programming algorithms. For parsers
that consider features of single links only, the Chu–Liu/Edmonds
algorithm (Chu and Liu, 1965; Edmonds, 1967) can be used instead.
However, this algorithm cannot be generalized to the second-order
setting – McDonald and Pereira (2006) proved that this problem is NP-
hard, and described an approximate greedy search algorithm.
To simplify implementation, we instead opted for the pseudo-

projective approach (Nivre and Nilsson, 2005), in which nonprojective
links are lifted upwards in the tree to achieve projectivity, and special
trace labels are used to enable recovery of the nonprojective links at
parse time.
The use of trace labels in the pseudo-projective transformation leads

to a proliferation of edge label types: from 69 to 234 in the training set,
many of which occur only once. Since the running time of our parser
depends on the number of labels, we used only the 20 most frequent
trace labels.
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7.4 The Semantic Submodel

The semantic submodel had three main subcomponents, as mentioned
previously.

• The pipeline of local logistic classifiers described in Chapter 5.

• A set of linguistically motivated constraints.

• A reranking model that scores complete propositions (predicates
with arguments)

To have input for the second and third step, a candidate set was
needed. We generated this set by a simple beam search procedure
(using a width of 4) based on the output scores from each of the four
steps in the classifier pipeline. Since our classifiers were logistic, their
output values could bemeaningfully interpreted as probabilities, which
allowed us to combine the scores from subclassifiers into a score for the
complete propositions.

7.4.1 Linguistically Motivated Global Constraints

The following three global constraints were used to filter the candidates
generated by the pipeline.

CORE ARGUMENT CONSISTENCY. Core argument labels must not
appear more than once.

DISCONTINUITY CONSISTENCY. If there is a label C-X, it must be
preceded by a label X.

REFERENCE CONSISTENCY. If there is a label R-X and the label is
inside a relative clause, it must be preceded by a label X.

7.4.2 Proposition Reranker

Toutanova, Haghighi, and Manning (2005) have shown that a global
model that scores the complete proposition can lead to substantial
performance gains. We therefore created a proposition reranker using
the following global features in addition to the features from the
pipeline:

CORE ARGUMENT LABEL SEQUENCE. The complete sequence of core
argument labels. The sequence also includes the predicate and
voice, for instance A0+break.01/Active+A1.
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MISSING CORE ARGUMENT LABELS. The set of core argument labels
declared in the PropBank frame that are not present in the
proposition.

Similarly to the syntactic submodel, we trained the global SRL
model using the online passive–aggressive algorithm. The cost function
ρ was defined as the number of incorrect links in the proposition.
The number of iterations was 20 and the regularization parameter
C was 0.01. Interestingly, we noted that the proposition reranker
outperformed the pipeline even when it used no global features. This
shows that the global learning model can correct label bias problems
introduced by the pipeline architecture.

7.5 Integrating Syntactic and Semantic

Analysis

As outlined in 7.2.2, when the candidate pool has been generated by the
two subsystems, we can apply a joint model

Fjoint(x, ysyn, ysem) = w ·Ψjoint(x, ysyn, ysem)

Our baseline joint feature representationΨjoint contained only three
features:

• The log probability of the syntactic tree, logPsyn(ysyn|x)

• The log probability of the semantic structure according to the
classifier pipeline, logPp(ysem|x, ysyn)

• The log probability of the semantic structure according to the
proposition reranker, logPr(ysem|x, ysyn)

Figure 7.2 shows an overview of the complete system. The three arrows
entering the syntactic–semantic reranker represent the three features in
Ψjoint.
The probabilities from the syntactic model and the proposition

reranker were obtained using the multinomial logistic function (“soft-
max”).

P (y|x) =
eF (y,x)

∑

i e
F (yi,x))

Normalizing the probabilities with respect to the sentence length or
number of predicates did not result in any measurable effect.
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Predicate
identification

Sense
disambig.

Argument
identification

Argument
labeling

Semantic pipeline

reranking
Pred−argLinguistic

constraints

dependency
Syntactic

parsing

Global semantic model

Syntactic−semantic
reranking

Figure 7.2: Overview of the extended semantic role labeling system.

To find the threeweights inw, we trained themodel on the complete
training set using cross-validation.
We carried out an initial experiment with a more complex joint

feature representation, but failed to improve over the baseline. Time
prevented us from exploring this direction conclusively.

7.5.1 Evaluation in the CoNLL-2008 Shared Task

The system participated in the CoNLL-2008 Shared Task. This section
describes the results.

Overall Score

The submitted results on the development and test corpora are pre-
sented in the upper part of Table 7.4. The columns in the table
are syntactic labeled accuracy, semantic labeled F1, macro-averaged
syntactic and semantic F1, complete proposition F1, and number of
perfectly analyzed sentences.
After the submission deadline, we corrected a bug in the predicate

identification method. This resulted in improved results shown in the
lower part of the table.

Corpus Syn. acc. Sem. F1 Macro F1 Prop. Perfect
Test WSJ 90.13 81.75 85.95 54.12 12.46
Test Brown 82.81 69.06 75.95 36.90 12.68
Test WSJ + Brown 89.32 80.37 84.86 54.12 12.46
Test WSJ 90.13 83.09 86.61 57.34 13.12
Test Brown 82.84 69.85 76.34 37.11 13.15
Test WSJ + Brown 89.32 81.65 85.49 55.15 13.10

Table 7.4: Results of our system in the CoNLL-2008 Shared Task (post-
deadline bugfix results lower).
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Our results were the highest in the closed challenge of the shared
task. Table 7.5 shows the results of the second-best system (Che et al.,
2008).

Corpus Syn. acc. Sem. F1 Macro F1 Prop. Perfect
Test WSJ 87.51 80.00 83.78 48.05 10.37
Test Brown 80.73 66.37 73.57 30.90 11.50
Test WSJ + Brown 86.75 78.52 82.66 48.05 10.37

Table 7.5: Results of the second-best system in the CoNLL-2008 Shared Task.

Syntactic Results

Table 7.6 shows the effect of adding second-order features to the parser
in terms of accuracy as well as training and parsing time on a Mac Pro,
3.2 GHz. The training times weremeasured on the complete training set
and the parsing time and accuracies on the development set. Similarly
to Carreras (2007), we see that these features have a very large impact
on parsing accuracy, but also that the parser pays dearly in terms of
efficiency as the search complexity increases fromO(n3) toO(n4). Since
the low efficiency of the second-order parser restricts its use to batch
applications, we see an interesting research direction to find suitable
compromises between the two approaches, for instance by sacrificing
the exact search procedure.

System Training Parse Labeled Unlabeled
1st order 65 min 28 sec 85.78 89.51
2nd order 60 hours 34 min 88.33 91.43

Table 7.6: Impact of second-order features.

Table 7.7 shows the dependency types most affected by the addition
of second-order features to the parser when ordered by the increase
in F1. As can be seen, they are all verb adjunct categories, which
demonstrates the effect of grandchild features on PP attachment and
labeling.
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Label ∆R ∆P ∆F1

TMP 14.7 12.9 13.9
DTV 0 19.9 10.5
LOC 7.8 12.3 9.9
PRP 12.4 6.7 9.6
DIR 5.9 7.2 6.5

Table 7.7: Labels affected by second-order features.

Effect of Constraints and Proposition Reranking

To assess the effect of the components in the semantic submodel, we
tested their performance on the top-scoring parses from the syntactic
model. Table 7.8 shows the results on the development set, WSJ section
24. The baseline system (B) consists of the SRL pipeline only, i.e. the
CoNLL-2008 baseline system described in Chapter 5. Adding linguistic
constraints (C) results in a more precision-oriented system with slightly
lower recall, but significantly higher F1. Even higher performance is
obtained when adding the proposition reranker (R).

System P R F1
B 80.74 77.98 79.33
B+C 82.42 77.66 79.97
B+C+R 83.64 78.14 80.40

Table 7.8: Extended SRL results on the top-scoring parse trees.

Effect of Syntactic–Semantic Integration

The final experiment concerned the integration of syntactic and seman-
tic analysis. To have a system that is not greedy, we increase the number
m of syntactic trees output by the dependency parser. The system
chooses the output that maximizes the joint syntactic–semantic score,
based on the top m syntactic trees. Table 7.9 shows the results on the
development set. We see that syntactic–semantic integration improves
both syntactic accuracy and semantic F1. This holds for the constraint-
based SRL system as well as for the full system.
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Sem model m Syn acc Sem F1 Macro F1
B+C 1 88.33 79.97 84.17
B+C 16 88.42 80.42 84.44
B+C+R 1 88.33 80.40 84.39
B+C+R 16 88.47 80.80 84.66

Table 7.9: Effect of syntactic–semantic integration.

7.5.2 Comparing with Segment-based Systems

While the results presented so far are high compared to other
dependency-based systems taking part in the CoNLL Shared Task, it
is still not clear how well our system compares against previously
published systems. However, these systems used the segment-based
metric described in 5.4. We thus had to use Algorithm 5.3 to convert the
semantic dependency structures to labeled segments. We then applied
the CoNLL-2005 segment scorer to measure the quality of our output.
In addition, we disabled predicate identification since in the 2005 task,
the predicates were given; similarly, we did not evaluate anything
related to NomBank since the 2005 task concerned PropBank only.
Table 7.10 shows the performance figures of our system on the

WSJ and Brown corpora: precision, recall, F1-measure, and complete
proposition accuracy (Prop). These figures are compared to the best-
performing system in the CoNLL-2005 Shared Task (Punyakanok,
Roth, and Yih, 2008), referred to as Punyakanok in the table, and the
best result currently published (Surdeanu et al., 2007), referred to as
Surdeanu. To validate the sanity of the segment creation algorithm,
the table also shows the result of applying segment creation to gold-
standard syntactic–semantic trees. We see that the two conversion
procedures involved (constituent-to-dependency conversion by the
CoNLL-2008 Shared Task organizers, and the dependency-to-segment
conversion in Algorithm 5.3) work satisfactorily although the process is
not completely lossless.
During inspection of the output, we noted that many errors arise

from inconsistent punctuation attachment in PropBank/Treebank. We
therefore normalized the segments to exclude punctuation at the be-
ginning or end of a segment. The results of this evaluation is shown
in Table 7.11. This table does not include the results of the Surdeanu
system since we did not have access to its output.
The results on the WSJ test set clearly show that dependency-



7.5. INTEGRATING SYNTACTIC AND SEMANTIC ANALYSIS 121

WSJ P R F1 Prop
Our system 82.22 77.72 79.90 57.24
Punyakanok 82.28 76.78 79.44 53.79
Surdeanu 87.47 74.67 80.56 51.66
Gold standard 97.38 96.77 97.08 93.20

Brown P R F1 Prop
Our system 68.79 61.87 65.15 32.34
Punyakanok 73.38 62.93 67.75 32.34
Surdeanu 81.75 61.32 70.08 34.33
Gold standard 97.22 96.55 96.89 92.79

WSJ+Brown P R F1 Prop
Our system 80.50 75.59 77.97 53.94
Punyakanok 81.18 74.92 77.92 50.95
Surdeanu 86.78 72.88 79.22 49.36
Gold standard 97.36 96.75 97.05 93.15

Table 7.10: Evaluation with unnormalized segments.

WSJ P R F1 Prop
Our system 82.95 78.40 80.61 58.65
Punyakanok 82.67 77.14 79.81 54.55
Gold standard 97.85 97.24 97.54 94.34

Brown P R F1 Prop
Our system 70.84 63.71 67.09 36.94
Punyakanok 74.29 63.71 68.60 34.08
Gold standard 97.46 96.78 97.12 93.41

WSJ+Brown P R F1 Prop
Our system 81.39 76.44 78.84 55.77
Punyakanok 81.63 75.34 78.36 51.84
Gold standard 97.80 97.18 97.48 94.22

Table 7.11: Evaluation with normalized segments.
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based SRL systems can rival constituent-based systems in terms of
performance – it clearly outperforms the Punyakanok system, and has
a higher recall and complete proposition accuracy than the Surdeanu
system. We interpret the high recall as a result of the dependency
syntactic representation, which makes the parse tree paths simpler and
thus the arguments easier to find.
For the Brown test set, on the other hand, the dependency-based

system suffers from a low precision compared to the constituent-based
systems. This may seem paradoxical in view of the result in 6.2.3, where
we argued that the dependency-based systems were more resilient to
domain changes. It is unlikely that the performance degradation stems
from the syntactic parser; the increase in the number of errors of our
parser is roughly the same as that reported for the Charniak parser
used in the CoNLL-2005 Shared Task (Carreras and Màrquez, 2005).
One possible explanation why the constituent-based systems are more
robust in this respect is that they utilize a combination strategy, using
inputs from two different full constituent parsers, a clause bracketer,
and a chunker. Another possible reason3 may be that the global
inference used in the Punyakanok system is based on a set of hand-
coded (and thus domain-independent) linguistic constraints, which
may result in improved robustness. However, caution is needed when
drawing conclusions from results on the Brown test set, which is only
7,585 words, compared to the 59,100 words in the WSJ test set.

7.5.3 Dependency-based Comparison

It has previously been noted (Pradhan et al., 2005b) that a segment-
based evaluation may be unfavorable to a dependency-based system,
and that an evaluation that scores argument headsmay be more indica-
tive of its true performance. We thus carried out a comparison using
the evaluation script of the CoNLL-2008 Shared Task. In this evaluation
method, an argument is counted as correctly identified if its head and
label are correct. Note that this is not equivalent to the segment-
based metric: In a perfectly identified segment, we may still pick out
the wrong head, and if the head is correct, we may infer an incorrect
segment. The evaluation script also scores predicate disambiguation
performance; we did not include this score since the 2005 systems did
not output predicate sense identifiers.
To score the output of a segment-based system using the depen-

dency metric, we need to extract a head in every segment. However,

3Thanks to Dan Roth for this suggestion.
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since CoNLL-2005-style segments have no internal tree structure, this
is nontrivial. It is conceivable that the output of the parsers used by
the Punyakanok system could be used to extract heads, but this is not
recommendable because the Punyakanok system is an ensemble system
and a segment does not always exactly match a constituent in a parse
tree. Furthermore, the CoNLL-2008 constituent-to-dependency con-
version method uses a richer structure than just the raw constituents:
empty categories, grammatical functions, and named entities. To
recreate this additional information, we would have to apply automatic
systems and end up with unreliable results.
Instead, we chose to compute an upper bound on the performance

of the segment-based system. Every semantic dependency in the gold
standard was counted as correctly detected if the argument node was
contained in a segment with the correct label.
Table 7.12 shows the results of the dependency-based evaluation. In

the table, the output of the dependency-based system is compared to
the upper bound on the result of the Punyakanok system.

WSJ P R F1 Prop
Our system 88.46 83.55 85.93 61.97
Punyakanok 87.25 81.59 84.32 58.17

Brown P R F1 Prop
Our system 77.67 69.63 73.43 41.32
Punyakanok 80.29 68.59 73.98 37.28

WSJ+Brown P R F1 Prop
Our system 87.07 81.68 84.29 59.22
Punyakanok 86.94 80.21 83.45 55.39

Table 7.12: Dependency-based evaluation.

In this evaluation, the dependency-based system has a higher F1-
measure than the Punyakanok system on both test sets. This suggests
that the main advantage of using a dependency-based semantic role
labeler is that it is better at finding the heads of semantic arguments,
rather than finding segments. The results are also interesting in com-
parison to the multi-view system described by Pradhan et al. (2005b),
which has a reported head F1 measure of 85.2 on the WSJ test set. The
figure is not exactly compatible with ours, however, since that system
used a different head extraction mechanism.
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7.6 Discussion

We have described a system for syntactic and semantic dependency
analysis based on PropBank and NomBank, and detailed the imple-
mentation of its subsystems. The system achieved the highest score in
the CoNLL-2008 Shared Task on joint syntactic and semantic analysis.
Crucial to our success was the high performance of the syntactic parser,
which achieved a high accuracy. In addition, we reconfirmed the
benefits of global inference in semantic analysis: both constraint-based
and learning-based methods resulted in improvements over a baseline.
Finally, we showed that integration of syntactic and semantic analysis
leads to a modest improvement for both subtasks.
In addition, to assess the relevance of our work in comparison to

previously published results, we compared it to a number of state-
of-the-art systems. Our evaluations show that the performance of
our system is close to the state of the art, and for some metrics
even better. This holds regardless of whether a segment-based or
a dependency-based metric is used. Interestingly, our system has a
complete proposition accuracy that surpasses other systems by nearly
3 percentage points. Our system is the first semantic role labeler based
only on syntactic dependency that achieves a competitive performance.
Evaluation and comparison are difficult issues since the natural

output of a dependency-based system is a set of semantic links rather
than segments, as is normally the case for traditional systems. To
handle this situation fairly to both types of systems, we carried out a
two-way evaluation: conversion of dependencies to segments for the
dependency-based system, and head-finding heuristics for segment-
based systems. However, the latter is difficult since no structure is avail-
able inside segments, and we had to resort to computing upper-bound
results using gold-standard input; despite this, the dependency-based
system clearly outperformed the upper bound on the performance
of the segment-based system. The comparison can also be slightly
misleading since the dependency-based system was optimized for the
dependency metric and previous systems for the segment metric.
Our evaluations suggest that the dependency-based SRL system is

biased to finding argument heads, rather than argument text snippets,
and this is of course perfectly logical. Whether this is an advantage or a
drawback will depend on the application – for instance, a template-
filling system might need complete segments, while an SRL-based
vector space representation for text categorization or a reasoning ap-
plication might prefer using heads only.



Chapter 8

Conclusion

This chapter concludes the dissertation and gives a review of its main
points. We also give a brief outlook on what research we intend to carry
out in the future.

8.1 Contributions

The dissertation has investigated syntactic representation in the form
of labeled relations between words, dependencies, and how dependency
graphs can be used to automatically derive semantic information. The
semantic structures that we have used are restricted to the represen-
tation of semantic roles, that is the logical relations that hold between
predicates and their arguments, such as AGENT or INSTRUMENT. While
dependency-syntactic analysis and semantic role labeling both have
received much focus recently, there has been little work to unify these
two fields. Our main effort has been to demonstrate that dependency
syntax is suitable for the task of semantic role labeling.
We must emphasize that this work is not intended to take a side

in the debate on constituents versus dependencies in general. Its
purpose is not polemic, but to fill a gap in current research. In
general, we believe that what is the most parsimonious representation
depends on the language and on the particular task to solve – as
stated previously, dependencies and constituents can be regarded as
two views on the organizational structure of a sentence. For instance,
dependency structures might not be the most expressive or economical
representation for explaining and predicting anaphors, prosody, or the
acceptable word orders in verb-second languages such as Swedish or
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German. It is possible that a multistratal representation that may
involve constituent structure or other structures may be the closest
to the true representation, if such a thing can be conceived. What
we do claim is that for the particular task of explaining the syntax–
semantics interface, dependency representations are both expressive and
economical, and thus deserve more attention than they have been given
until now.
The first chapters were introductory. We first set out the main

principle – parsimony – that has guided the design decisions made in
this work. Then, we introduced the frameworks that we employed
throughout the dissertation: first semantic roles, and then dependency
syntax. We finally reviewed a number of guiding principles to usewhen
designing dependency-syntactic representations.
Conceptually, we pointed out that since syntax is the system of signs

that expresses semantic relations between the concepts denoted by sur-
face words, our syntactic representations should be designed to reflect
this fact. On the other hand, for reasons of scientific soundness, we
emphasized that the criteria must be based on observable phenomena.
Our dependency representation is thus surface-syntactic.
We described the creation of an English dependency treebank via

automatic conversion from the Penn Treebank, the best-known con-
stituent treebank for English. While the design was to a certain extent
driven by the principles described in the introduction, the limits on
what is possible to represent are set by the constituent annotation
available.
The experiments described in this work clearly show that the task

of semantic role labeling, which has traditionally been solved using
constituent syntax as input, can be solved equally well using a depen-
dency representation. Ours is the first published semantic role labeler
using only syntactic dependency whose performance rivals that of its
constituent-based counterparts, and this result refutes previous claims
of insufficiency of dependency representations for this task. The system
has been evaluated in two international competitions on semantic
analysis, in both of which it achieved the best result. We suggested that
the previous negative results published on dependency-based semantic
role labeling have been caused by immature dependency parsers.
Since syntax is the surface encoding of the semantic relations be-

tween words, it is clear that the two problems of syntactic and semantic
analysis are highly interdependent. This suggests that a parsing
strategy that solves both tasks simultaneously could be fruitful. While
the full problem is intractable in general, at least if we try to model the
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interaction between grammatical and semantic structures, we were able
to implement a simple reranking-based method to integrate syntactic
and semantic analysis. We showed that this resulted in a modest
improvement in performance for both tasks.
The design of the dependency representation plays an important

role: We have shown that a carefully designed dependency framework
results in an improved semantic role labeling performance compared to
a system based on previously published conversion methods.
In addition, we studied how the subtasks of semantic role anal-

ysis (argument identification and labeling) are affected by the choice
of a dependency or constituent representation. We could see that
constituent-based systems had a slightly higher average performance
for the argument identification, although we are not sure how much
of this effect is attributable to parser accuracy rather than syntac-
tic representation. For argument classification, on the other hand,
dependency-based systems were superior, and the difference becomes
more marked when training sets are smaller or when there is a change
of domain. We suggested that this is due to the fact that the grammatical
function information available in dependency representations makes
the classifiers less reliant on lexicalization. Lexical features are sparse
and often tied to a certain domain.

8.2 Future Work

There are a number of possible directions in which this work could be
extended in the future.
One particularly interesting open problem that was insufficiently

explored in this work is the integration of syntactic and semantic
analysis. As discussed previously, the computational intractability of
the problem precludes exact optimization algorithms. Creativity is
thus needed when devising approximate algorithms to solve the joint
problem.
We carried out experiments where we integrated syntactic and

semantic analysis by applying reranking to a candidate set generated
by separate syntactic and semantic modules. However, the reranking
strategy is generally agreed to have two important drawbacks:

Efficiency: Reranking requires generation of a set of candidates – the
more candidates, the better result. This has a severe impact on
the speed of the algorithms and makes the systems prohibitively
slow for use in practical applications.
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Coverage: Even when a large set of candidates is generated, there may
be too little variation in the set and the correct answer is often not
included.

Instead of traditional k-best reranking, it could be possible to base
syntactic–semantic integration on the forest reranking method, which
is a recent strategy that makes better use of the search space. It has
been employed in machine translation (Huang and Chiang, 2007) and
syntactic analysis (Huang, 2008) and led to improvements in both
accuracy and efficiency. In this method, the nonlocal features that make
dynamic programming impossible are computed as early as possible
during search. This contrasts with conventional reranking, where
nonlocal features are computed after all search has been carried out
(i.e. the k-best candidate set has been computed). Another interesting
method for coping with intractable search problems is the method by
Smith and Eisner (2008), based on belief propagation.
Apart from issues in the algorithmic and statistical fields, there are

also linguistic questions that need to be investigated. In the current
work, the described systems have been trained and tested for the
English language only. Although our systems are designed generically
and have very little infrastructure specifically tied to English, this situa-
tion is of course scientifically problematic – it is impossible to tell which
is the best algorithm or statistical model in general when evaluating
on a single language only. It is therefore important to apply our
systems on texts in other languages. One opportunity is the proposed
CoNLL-2009 Shared Task, which aims to repeat the 2008 effort for other
languages than English: Catalan, Chinese, Czech, German, Japanese,
and Spanish. In fact, as repeatedly stated, multilinguality is one of
the main motivations for this work, since we believe that dependency
syntax is the most practical framework cross-linguistically for this task.
If English were the only languageworth consideration, our workwould
be less important since English is an exceptionally constituent-friendly
language for which SRL works perfectly fine with constituents.
Finally, as a general recommendation to the field, the usefulness of

semantic role representations in practical computer applications needs
to be investigated thoroughly. After all, the scientific method requires
us to avoid intermediate representations as far as possible. We can only
make judgments on the scientific soundness of syntactic and semantic
structures by demonstrating in practice that they make construction of
applications simpler or result in statistically significant improvements
in performance.
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Hajičová, Eva and Ivona Kučerová. 2002. Argument/valency structure
in PropBank, LCS database and Prague dependency treebank: A
comparative pilot study. In Proceedings of the Third International
Conference on Language Resources and Evaluation (LREC-2002), Las
Palmas, Spain.

Henderson, James, Paola Merlo, Gabriele Musillo, and Ivan Titov. 2008.
A latent variable model of synchronous parsing for syntactic and
semantic dependencies. In CoNLL 2008: Proceedings of the Twelfth
Conference on Natural Language Learning, pages 178–182, Manchester,
United Kingdom.

Hickl, Andrew, Jeremy Bensley, John Williams, Kirk Roberts, Bryan
Rink, and Ying Shi. 2006. Recognizing textual entailment with
LCC’s GROUNDHOG systems. In Proceedings of the Second PASCAL
Recognizing Textual Entailment Challenge.

Hirst, Graeme. 1983. A foundation for semantic interpretation. In Pro-
ceedings of the 21st Annual Meeting of the Association for Computational
Linguistics, pages 64–73, Cambridge, United States.

Hockenmaier, Julia and Mark Steedman. 2007. CCGBank: A corpus
of CCG derivations and dependency structures extracted from the



BIBLIOGRAPHY 135

Penn Treebank. Computational Linguistics, 33(3):355–396.
Huang, Liang. 2008. Forest reranking: Discriminative parsing with
non-local features. In Proceedings of ACL-08: HLT, pages 586–594,
Columbus, United States.

Huang, Liang and David Chiang. 2005. Better k-best parsing. In
Proceedings of the Ninth International Workshop on Parsing Technologies
(IWPT-2005).

Huang, Liang and David Chiang. 2007. Forest rescoring: Fast decoding
with integrated language models. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics, pages 144–151,
Prague, Czech Republic.

Hudson, Richard. 1984. Word Grammar. Blackwell.
Hurford, James. 2003. The neural basis of predicate–argument struc-
ture. Behavioral and Brain Sciences, 23(6).

Johannessen, Janne Bondi. 1998. Coordination. Oxford University Press.
Johansson, Richard. 2007. Logistic online online learning methods and
their application to incremental dependency parsing. In Proceedings
of the ACL 2007 Student Research Workshop, pages 49–54, Prague,
Czech Republic.

Johansson, Richard, Anders Berglund, Magnus Danielsson, and Pierre
Nugues. 2005. Automatic text-to-scene conversion in the traffic ac-
cident domain. In IJCAI-05, Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence, pages 1073–1078, Edinburgh,
United Kingdom.

Johansson, Richard and Pierre Nugues. 2006. A FrameNet-based
semantic role labeler for Swedish. In Proceedings of the COLING/ACL
2006 Main Conference Poster Session, pages 436–443, Sydney, Aus-
tralia.

Johansson, Richard and Pierre Nugues. 2007a. Extended constituent-
to-dependency conversion for English. In NODALIDA 2007 Confer-
ence Proceedings, pages 105–112, Tartu, Estonia.

Johansson, Richard and Pierre Nugues. 2007b. Semantic structure
extraction using nonprojective dependency trees. In Proceedings of
the Fourth International Workshop on Semantic Evaluations (SemEval-
2007), pages 227–230, Prague, Czech Republic.

Johansson, Richard and Pierre Nugues. 2007c. Syntactic represen-
tations considered for frame-semantic analysis. In Proceedings of
the Sixth International Workshop on Treebanks and Linguistic Theories,
Bergen, Norway.



136 BIBLIOGRAPHY

Johansson, Richard and Pierre Nugues. 2007d. Using WordNet to
extend FrameNet coverage. In Proceedings of the Workshop on Build-
ing Frame-semantic Resources for Scandinavian and Baltic Languages, at
NODALIDA, pages 27–30, Tartu, Estonia.

Johansson, Richard and Pierre Nugues. 2008a. Dependency-based
semantic role labeling of PropBank. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), Hon-
olulu, United States.

Johansson, Richard and Pierre Nugues. 2008b. Dependency-based
syntactic–semantic analysis with PropBank and NomBank. In
CoNLL 2008: Proceedings of the Twelfth Conference on Natural Language
Learning, pages 183–187, Manchester, United Kingdom.

Johansson, Richard and Pierre Nugues. 2008c. The effect of syntactic
representation on semantic role labeling. In Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008),
pages 393–400, Manchester, United Kingdom.

Johnson, Mark. 2002. A simple pattern-matching algorithm for
recovering empty nodes and their antecedents. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
pages 136–143, Philadelphia, United States.

Kann, Viggo. 1992. On the Approximability of NP-complete Optimization
Problems. Ph.D. thesis, Royal Institute of Technology.

Karp, Richard M. 1972. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors, Complexity of Computer
Computations. New York, pages 85–103.

Kipper, Karin, Hoa Trang Dang, and Martha Palmer. 2000. Class-
based construction of a verb lexicon. In Proceedings of AAAI-
2000 Seventeenth National Conference on Artificial Intelligence, Austin,
United States.

Klein, Dan and Christopher D. Manning. 2004. Corpus-based induc-
tion of syntactic structure: Models of dependency and constituency.
In Proceedings of the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pages 478–485, Barcelona, Spain.

Kudo, Taku and Yuji Matsumoto. 2003. Fast methods for kernel-
based text analysis. In Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics, pages 24–31, Sapporo,
Japan.

Kuhlmann, Marco. 2007. Dependency Structures and Lexicalized Gram-
mars. Ph.D. thesis, Saarland University.



BIBLIOGRAPHY 137

Kuhlmann, Marco and Joakim Nivre. 2006. Mildly non-projective
dependency structures. In Proceedings of the COLING/ACL 2006Main
Conference Poster Session, pages 507–514, Sydney, Australia.

Lafferty, John, AndrewMcCallum, and Fernando Pereira. 2001. Condi-
tional random fields: Probabilistic models for segmenting and label-
ing sequence data. In Proceedings of the 18th International Conference
on Machine Learning, pages 282–289, San Fransisco, United States.

Lecerf, Yves. 1960. Programme des conflits, modèle des conflits.
Bulletin bimestriel de l’ATALA, 1(4):11–18.

Levin, Beth. 1993. English Verb Classes and Alternations: A Preliminary
Investigation. University of Chicago Press.

Liang, Percy, Hal Daumé III, and Dan Klein. 2008. Structure
compilation: Trading structure for features. In Proceedings of the
25th International Conference on Machine Learning, pages 592–599,
Helsinki, Finland.

Lin, Dekang. 1998. A dependency-based method for evaluating broad-
coverage parsers. Natural Language Engineering, 4:97–114.

Litkowski, Ken. 2004. Senseval-3 task: Automatic labeling of semantic
roles. In Proceedings of Senseval-3: Third International Workshop on
the Evaluation of Systems for the Semantic Analysis of Text, pages 9–12,
Barcelona, Spain.

Liu, Ding and Daniel Gildea. 2008. Improved tree-to-string transducer
for machine translation. In ACL Workshop on Statistical Machine
Translation (ACL08-SMAT), pages 62–69, Columbus, United States.

Lluís, Xavier and Lluís Màrquez. 2008. A joint model for parsing
syntactic and semantic dependencies. In CoNLL 2008: Proceedings
of the Twelfth Conference on Natural Language Learning, pages 188–192,
Manchester, United Kingdom.

Magerman, David M. 1994. Natural Language Parsing as Statistical
Pattern Recognition. Ph.D. thesis, Stanford University.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz.
1993. Building a large annotated corpus of English: the Penn
Treebank. Computational Linguistics, 19(2):313–330.

Màrquez, Lluís, Mihai Surdeanu, Pere Comas, and Jordi Turmo. 2005.
A robust combination strategy for semantic role labeling. In Pro-
ceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, pages 644–651,
Vancouver, Canada.

McCallum, Andrew, Dayne Freitag, and Fernando Pereira. 2000.



138 BIBLIOGRAPHY

Maximum entropy Markov models for information extraction and
segmentation. In Proceedings of the Seventeenth International Confer-
ence on Machine Learning, pages 591–598, Stanford, United States.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2005. Online
large-margin training of dependency parsers. In Proceedings of
43rd Annual Meeting of the Association for Computational Linguistics
(ACL’05), pages 91–98, Ann Arbor, United States.

McDonald, Ryan and Fernando Pereira. 2006. Online learning of ap-
proximate dependency parsing algorithms. In Proceedings of the 11th
Conference of the European Chapter of the Association for Computational
Linguistics, pages 81–88, Trento, Italy.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič.
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Appendix A

List of Dependency Labels

Table A.1 shows the complete list of dependency labels that we used
in our experiments. Labels marked with an asterisk were used only in
the CoNLL-2008 treebank, and labels marked with a dagger were used
only in the LTH treebank.
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Label Description
ADV General adverbial
AMOD Modifier of adjective or adverbial
*APPO Apposition
BNF Benefactor complement (“for”) in dative shift
† CLR Used in PTB for various non-object complements of verbs
CONJ Between conjunction and second conjunct
COORD Coordination
DEP Unclassified
DIR Adverbial of direction
DTV Dative complement (“to”) in dative shift
EXT Adverbial of extent
EXTR Extraposed element in cleft
*HMOD Between a head and a dependent inside a hyphenated word
*HYPH Between a part of a hyphenated word and a following hyphen
IM Between infinitive marker (“to”) and a verb
† IOBJ Indirect object
LGS Logical subject of a passive verb
LOC Locative adverbial or nominal modifier
MNR Adverbial of manner
*NAME Name-internal link
NMOD Modifier of nominal
OBJ Object
OPRD Predicative part of a small clause
P Punctuation
PMOD Modifier of preposition
*POSTHON Posthonorific modifier of nominal
PRD Predicative complement
PRN Parenthetical
PRP Adverbial of purpose or reason
PRT Between verb and particle
PUT Prepositional phrase complement of the verb “put”
ROOT Root
SBJ Subject
SUB Between subordinating conj. and subordinated clause
*SUFFIX Between possessor and possessive suffix
*TITLE Between name and title
TMP Temporal adverbial or nominal modifier
VC Verb chain
VOC Vocative

Table A.1: List of atomic syntactic labels.



Appendix B

Search Procedure for
Second-order Dependency
Parsing

This appendix shows simplified pseudocode of the search procedure
for dependency parsing with second-order factors (Carreras, 2007), an
extension of the algorithm by Eisner (1996).
For brevity, we present the algorithm to compute the score of the

best dependency tree given a sentence. To compute the actual tree,
backpointers are needed as well. For subroutines depending on link
direction, we show only the implementation for the right direction.
The algorithm uses two dynamic programming tables:
O[s][t][d][l] score of the link with left endpoint s, right

endpoint t, direction d, and label l
C[s][t][d][m] score of the span starting at s and ending at t,

with a top link with direction d ending atm
The following scoring functions are used:
σ(s, t) score of the link from the token at s to the token at t
σ(s, t, l) score of the link from the token at s to the token at t

with the label l

σs(s, t, l, k) sibling score, i.e. score of the link s l
→ t having

an adjacent link s→ k

σgc(s, t, l, k) grandchild score, i.e. score of the link s l
→ t having

a subordinated link t→ k
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PARSING

function SEARCH(x)
input sentence x

for k ∈ [1, . . . , |x|]
for s ∈ [0, . . . , |x|]

t← s + k

if t < |x|
COMPLETE-LINKS-RIGHT(s, t)
COMPLETE-LINKS-LEFT(s, t)
COMPLETE-SPANS-RIGHT(s, t)
COMPLETE-SPANS-LEFT(s, t)

return maxi C[0][|x| − 1][→][i]

procedure COMPLETE-LINKS-RIGHT(s, t)
input left index s, right index t

L← allowed labels between s and t

us← σ(s, t)
for l ∈ L

O[s][t][→][l]← us + σ(s, t, l)+ CREATE-LINK-RIGHT(s, t, l)

procedure COMPLETE-SPANS-RIGHT(s, t)
input left index s, right index t

for m ∈ [s + 1, . . . , t]
C[s][t][→][m]← CREATE-SPAN-RIGHT(s, t, l)

function CREATE-LINK-RIGHT(s, t, l)
input left index s, right index t, label l

max← −∞
for r ∈ [s, . . . , t− 1]

L← best sibling of s l
→ t between s + 1 and r

ls← C[s][r][→][L] + σs(s, t, l, L)

R← best grandchild of s l
→ t between r + 1 and t

rs← C[r + 1][t][←][R] + σgc(s, t, l, R)
if ls + rs > max

max← ls + rs

return max

function CREATE-SPAN-RIGHT(s, t, m)
input left index s, right index t, middle indexm

L← allowed labels between s andm

return maxl∈L,k∈[m+1,...,t] O[s][m][→][l] + C[m][t][→][k] + σgc(s, m, l, k)
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Notation

〈·, . . . , ·〉 Tuple
[·, . . . , ·], h|t Sequence

x · y Scalar product in a Euclidean space

g
l
→ d Dependency from the token g to the token d with label l

g
l
→ ∆ Dependency from the token g to the subtree ∆ with label l


