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Abstract

We derive the low frequency behavior of the scattering coe�cients from a low
pass structure which periodic in a plane, and �nite in the normal direction.
The analysis is for oblique incidence of arbitrary polarization on a structure
which can be anisotropic in both electric and magnetic material properties,
and may contain metal inclusions. The metal inclusions can be modeled both
as perfect electric conductors (PEC), and with a �nite conductivity. It is found
that the low frequency re�ection and transmission coe�cients are proportional
to the sum and di�erence of the electric and magnetic polarizability per unit
area of the periodic structure. If the metal inclusions are modeled as PEC
instead of as a �nite conductivity, the �rst order low frequency re�ection is
larger whereas the �rst order transmission is smaller.

1 Introduction
Periodic structures are often used as spatial �lters, or frequency selective surfaces.
They are typically either band pass or band stop. Band pass structures usually
consist of one or several metal sheets with periodic arrays of apertures, whereas
the band stop structures are usually periodic arrays of metal inclusions; in the case
of one sheet, the two concepts can be considered as complementary structures via
Babinet's principle.

In a series of papers, physical limitations on the amount of electromagnetic in-
teraction available for antennas, materials, and general scatterers have been derived
based solely on the principles of linearity, causality, and energy conservation [3, 11�
14]. There, it is demonstrated that the low frequency behavior of the structure under
consideration provides a measure of the total electromagnetic interaction available
for all frequencies. It is anticipated that the same kind of relations can be derived
for many kinds of periodic structures as well, which makes it interesting to take an
explicit look at low frequency scattering for such structures.

In this paper, we limit ourselves to the band stop case, since this is the one most
easily analyzed. The reason for this is that in the static limit of band stop structures,
the tangential electric and magnetic �elds are continuous. In the band pass case,
the possibility of an interelement current in the metal sheets provides a possibility
for discontinuous tangential magnetic �elds, which must be handled separately.

Our analysis is for oblique incidence with arbitrary polarization, and includes
fully anisotropic permittivities and permeabilities, as well as metal inclusions.

2 Notation
Let the periodic structure be situated between 0 < z < d, with periodicity described
by two basis vectors a1 and a2 in the xy plane as in Figure 1. These are the sides
of the unit cell U with area A = ẑ · (a1 × a2). An arbitrary lattice vector is then
described by

xn = n1a1 + n2a2 (2.1)
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Figure 1: Typical geometry of the periodic structure.

with n1 and n2 being integers. The material parameters are U -periodic, i.e., ε(x +
xn) = ε(x) and µ(x + xn) = µ(x) for all n = (n1, n2), where ε and µ are the
permittivity and permeability matrices, respectively. In the regions z < 0 and z > d
we have ε(x) = ε0I and µ(x) = µ0I, where ε0 and µ0 are the permittivity and
permeability of vacuum, respectively. Let the incident �eld be a plane wave (time
convention e−iωt)

Ei(x) = E0e
ik·x, H i(x) = H0e

ik·x = η−1
0

k

k
×Ei(x) (2.2)

where c is the speed of light in vacuum, the constant complex vector E0 is the
polarization, η0 =

√
µ0/ε0 = 377 Ω is the intrinsic wave impedance in vacuum, and

k is the wave vector of the incident wave, with amplitude |k| = k = ω/c. The wave
vector can be separated in one normal and one transverse part,

k = k⊥ + kzẑ,
|k⊥|
k

= sin θ,
kz

k
= cos θ (2.3)

where θ is the angle of incidence and k⊥ is a vector in the xy plane.
Due to the use of a plane wave as excitation and the periodicity of the structure,

the �elds (including incident and scattered �elds) satisfy the following translation
property:

E(x + xn) = E(x)eik⊥·xn (2.4)
where xn is an arbitrary lattice vector. This property implies that the �eld

Ẽ(x) = e−ik⊥·xE(x) (2.5)

is U -periodic in x. The periodic �eld Ẽ(x) is called the Bloch amplitude of the �eld
E(x) [9, 10].
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3 Low frequency behavior
Maxwell's equations for time-harmonic �elds are (where the possibly anisotropic
matrices ε and µ are the permittivity and permeability of the material, respectively)

∇×E = iωµ(x)H (3.1)
∇×H = −iωε(x)E (3.2)

Multiplying these �elds with the transverse phase factor of the incident �eld, e−ik⊥·x,
we obtain the equations for the Bloch amplitudes

(∇+ ik⊥)× Ẽ = iωµH̃ (3.3)
(∇+ ik⊥)× H̃ = −iωεẼ (3.4)

Integrating over (x, y) ∈ U and z1 < z < z2, where z1 < 0 and z2 > d are chosen so
that the structure is enclosed, implies

ẑ ×
( ∫

U

Ẽ(z2) dS −
∫

U

Ẽ(z1) dS
)

=

∫ z2

z1

∫

U

(
− ik⊥ × Ẽ + iωµH̃

)
dS dz (3.5)

ẑ ×
( ∫

U

H̃(z2) dS −
∫

U

H̃(z1) dS
)

=

∫ z2

z1

∫

U

(
− ik⊥ × H̃ − iωεẼ

)
dS dz (3.6)

We use the following notation for the mean value of the �elds (where h = z2 − z1)

Ē =
1

Ah

∫ z2

z1

∫

U

Ẽ dS dz Ē1,2 =
1

A

∫

U

Ẽ(z1,2) dS (3.7)

H̄ =
1

Ah

∫ z2

z1

∫

U

H̃ dS dz H̄1,2 =
1

A

∫

U

H̃(z1,2) dS (3.8)

The following matrices γe and γm exist and are bounded as ω → 0 since they
represent the response of a linear system on an excitation E0 and H0 (see Section 4
for computing the matrices in the static limit and generalization to the case of
metallic inclusions):

∫ z2

z1

∫

U

(ε/ε0 − I)Ẽ dS dz
def
= γeE0 (3.9)

∫ z2

z1

∫

U

(µ/µ0 − I)H̃ dS dz
def
= γmH0 (3.10)

The equations are then

ẑ ×
(
Ē2 − Ē1

)
= −ik⊥h× Ē + iωµ0hH̄ + iωµ0A

−1γmH0 (3.11)

ẑ ×
(
H̄2 − H̄1

)
= −ik⊥h× H̄ − iωε0hĒ − iωε0A

−1γeE0 (3.12)

where the factor k⊥h is dimensionless, the factors iωµ0h and iωµ0A
−1γm have di-

mension of impedance, and the factors iωε0h and iωε0A
−1γe have dimension of

admittance.
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Since the right hand side of each of these equations is proportional to ω, this
shows us that in the static limit we have

lim
ω→0

ẑ × (Ē2 − Ē1) = 0 and lim
ω→0

ẑ × (H̄2 − H̄1) = 0 (3.13)

i.e., the static tangential �elds are continuous across the structure.

3.1 Rewriting in transverse components
Since the left hand sides of our equations are orthogonal to ẑ due to the cross
product with ẑ, the z component of the right hand sides must be zero,

0 = −ẑ · (ik⊥h× Ē⊥) + iωµ0hH̄z + iωµ0A
−1(γmH0)z (3.14)

0 = −ẑ · (ik⊥h× H̄⊥)− iωε0hĒz − iωε0A
−1(γeE0)z (3.15)

From this we extract the z components as

Ēz =
−ẑ · (ik⊥ × H̄⊥)

iωε0

− (γeE0)z

Ah
=
−ik′⊥ · H̄⊥

iωε0

− (γeE0)z

Ah
(3.16)

H̄z =
ẑ · (ik⊥ × Ē⊥)

iωµ0

− (γmH0)z

Ah
=

ik′⊥ · Ē⊥
iωµ0

− (γmH0)z

Ah
(3.17)

where we used ẑ · (k⊥ × Ē⊥) = (ẑ × k⊥) · Ē⊥ = k′⊥ · Ē⊥. Inserting this into the
transverse part of the equations implies

ẑ ×
(
Ē2 − Ē1

)
= −ik⊥h× ẑĒz︸ ︷︷ ︸

=ik′⊥hĒz

+iωµ0hH̄⊥ + iωµ0A
−1(γmH0)⊥

=
k′⊥k′⊥
iωε0

h · H̄⊥ − ik′⊥
(γeE0)z

A
+ iωµ0hH̄⊥ + iωµ0

(γmH0)⊥
A

(3.18)

and

ẑ ×
(
H̄2 − H̄1

)
= −ik⊥h× ẑH̄z︸ ︷︷ ︸

=ik′⊥hH̄z

−iωε0hĒ⊥ − iωε0A
−1(γeE0)⊥

= −k′⊥k′⊥
iωµ0

h · Ē⊥ − ik′⊥
(γmH0)z

A
− iωε0hĒ⊥ − iωε0

(γeE0)⊥
A

(3.19)

3.2 Re�ection and transmission
In the surrounding air, the transverse components of the electric and magnetic �elds
in a propagating plane wave are related by an impedance matrix

E⊥ = ±Z(−ẑ ×H⊥) ⇔ H⊥ = ±ẑ × Z−1E⊥ (3.20)

where the upper sign is for waves propagating in the positive z direction, and the
lower sign is for waves propagating in the negative z direction. The impedance
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matrix Z has eigenvalues η0/ cos θ (TE case) and η0 cos θ (TM case). When k⊥ 6= 0
it can be given the explicit representation

Z =
η0

cos θ

k′⊥k′⊥
|k′⊥|2

+ η0 cos θ
k⊥k⊥
|k⊥|2 (3.21)

and for k⊥ = 0, corresponding to cos θ = 1, we have Z = η0I. If r denotes the
re�ection matrix for the tangential electric �eld, i.e., Er⊥ = rEi⊥, the amplitude of
the re�ected magnetic �eld is then

Hr⊥ = −ẑ × Z−1Er⊥ = −ẑ × Z−1rEi⊥ = −ẑ × Z−1rZ(−ẑ ×H i⊥) (3.22)

If the structure does not mix TE and TM modes in the scattering (i.e., r is diagonal
in the k⊥/k′⊥ basis), the impedance matrices cancel each other in the last expression.
We now write the �elds on either side of the periodic structure as a sum of incident
and scattered �elds

Ē1⊥ = E0⊥eikzz1 + rE0⊥e−ikzz1 H̄1⊥ = ẑ × Z−1(Ieikzz1 − re−ikzz1)E0⊥ (3.23)
Ē2⊥ = tE0⊥eikzz2 H̄2⊥ = ẑ × Z−1tE0⊥eikzz2 (3.24)

where r and t are the re�ection and transmission matrices with reference plane at
z = 0, respectively. So far no approximations due to the low frequency have been
made. When considering the low frequency limit, the re�ection and transmission
matrices can be expanded in a formal power series in ω as

r = r0 + ωr1 + · · · (3.25)
t = t0 + ωt1 + · · · (3.26)

Since the static tangential �elds are continuous across the structure according to
(3.13), it is immediately seen that r0 = 0 and t0 = I, as expected for a low pass
structure. In this paper, we are only interested in terms up to r1 and t1, which
means it is su�cient to keep only terms up to �rst order in Ē1,2 and H̄1,2 (we
suppress the expansion of r and t for brevity)

Ē1⊥ = (I + r + ikzz1I)E0⊥ H̄1⊥ = ẑ × Z−1(I− r + ikzz1I)E0⊥ (3.27)
Ē2⊥ = (t + ikzz2I)E0⊥ H̄2⊥ = ẑ × Z−1(t + ikzz2I)E0⊥ (3.28)
Ē⊥ = E0⊥ H̄⊥ = H0⊥ = ẑ × Z−1E0⊥ (3.29)

The �elds Ē⊥ and H̄⊥ are expanded only to zeroth order since in the equations
they are multiplied by factors proportional to ω. In order for Ē⊥ = E0⊥ and
H̄⊥ = ẑ×Z−1E0⊥ to hold to zeroth order, we need to consider a limit process where
h → ∞ and kh → 0 simultaneously. This may seem to invalidate the expansions
(3.25) and (3.26) since an extra scale is introduced, but a deeper analysis shows the
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expansions are still valid. The equations (3.18) and (3.19) are now, to �rst order,

ẑ × (t− I− r + ikz(z2 − z1)I)E0⊥ =

[
k′⊥k′⊥
iωε0

h + iωµ0hI

]
ẑ × Z−1E0⊥

− ik′⊥
(γeE0)z

A
+ iωµ0

(γmH0)⊥
A

(3.30)

−Z−1(t− I + r + ikz(z2 − z1)I)E0⊥ = −
[
k′⊥k′⊥
iωµ0

h + iωε0hI

]
E0⊥

− ik′⊥
(γmH0)z

A
− iωε0

(γeE0)⊥
A

(3.31)

From this equation it is not clear that there is no scattering if there is no material,
i.e., we should subtract the parts corresponding to propagation in vacuum. The
incident �eld satis�es (set all polarizability matrices in (3.18) and (3.19) to zero and
use E1 = E0e

ikzz1 and E2 = E0e
ikzz2 etc, and expand to �rst order)

(eikzz2 − eikzz1)ẑ ×E0 = ikz(z2 − z1)ẑ ×E0⊥ =

[
k′⊥k′⊥
iωε0

h + iωµ0hI

]
H0⊥ (3.32)

(eikzz2 − eikzz1)ẑ ×H0 = ikz(z2 − z1)ẑ ×H0⊥ = −
[
k′⊥k′⊥
iωµ0

h + iωε0hI

]
E0⊥ (3.33)

Subtracting this result from the previous equations we �nd (after multiplying the
�rst equation by −ẑ× and the second by −Z, and observing that −ẑ × k′⊥ =
−ẑ × (ẑ × k⊥) = k⊥, as well as the relations k = ω

√
ε0µ0 and η0 =

√
µ0/ε0)

(t− I− r)E0⊥ = −ik⊥
(γeE0)z

A
− ikη0ẑ × (γmH0)⊥

A
(3.34)

(t− I + r)E0⊥ = iZ · k′⊥
(γmH0)z

A
+ ikη−1

0 Z
(γeE0)⊥

A
(3.35)

We state again that this equation is only valid asymptotically to �rst order as k → 0.

3.3 Solving for the re�ection and transmission matrices
By adding and subtracting the equations we �nd

2(t− I)E0⊥ = ikη−1
0 Z

(γeE0)⊥
A

− ikη0ẑ × (γmH0)⊥
A

− ik⊥
(γeE0)z

A
+ iZ · k′⊥

(γmH0)z

A
(3.36)

2rE0⊥ = ikη−1
0 Z

(γeE0)⊥
A

+ ikη0ẑ × (γmH0)⊥
A

+ ik⊥
(γeE0)z

A
+ iZ · k′⊥

(γmH0)z

A
(3.37)

To �nd explicit expressions for the transmission and re�ection matrices, we must
express all the �eld components in the right hand sides in E0⊥, so that this factor
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can be eliminated. This can be done from the knowledge that the incident �eld is a
plane wave in the surrounding medium, which implies the following formulas:

E0z = −η0
k⊥ · Z−1E0⊥

k
(3.38)

H0⊥ = ẑ × Z−1E0⊥ (3.39)

H0z = η−1
0

k′⊥ ·E0⊥
k

(3.40)

Making use of these representations and the decompositions

γe =

(
γe⊥⊥ γe⊥z

γez⊥ γezz

)
, and γm =

(
γm⊥⊥ γm⊥z

γmz⊥ γmzz

)
(3.41)

we can write the various components of the dipole moments as

(γeE0)⊥ = γe⊥⊥E0⊥ − η0γe⊥z

k⊥
k
· Z−1E0⊥ (3.42)

(γeE0)z = γez⊥E0⊥ − η0γezz
k⊥
k
· Z−1E0⊥ (3.43)

(γmH0)⊥ = γm⊥⊥ẑ × Z−1E0⊥ + η−1
0 γm⊥z

k′⊥
k
·E0⊥ (3.44)

(γmH0)z = γmz⊥ẑ × Z−1E0⊥ + η−1
0 γmzz

k′⊥
k
·E0⊥ (3.45)

Collecting all the results, we can write the transmission and re�ection matrices as

t− I =
ik

2

{
η−1

0 Z

[
γe⊥⊥

A
+

k′⊥k′⊥
k2

γmzz

A

]
+

[
−ẑ × γm⊥⊥

A
ẑ ×+

k⊥k⊥
k2

γezz

A

]
Z−1η0

+ Z

[
k′⊥
k

γmz⊥
A

− γe⊥z

A

k′⊥
k

]
ẑ × Z−1 + ẑ ×

[
k′⊥
k

γez⊥
A

− γm⊥z

A

k′⊥
k

] }
(3.46)

r =
ik

2

{
η−1

0 Z

[
γe⊥⊥

A
+

k′⊥k′⊥
k2

γmzz

A

]
−

[
−ẑ × γm⊥⊥

A
ẑ ×+

k⊥k⊥
k2

γezz

A

]
Z−1η0

+ Z

[
k′⊥
k

γmz⊥
A

− γe⊥z

A

k′⊥
k

]
ẑ × Z−1 − ẑ ×

[
k′⊥
k

γez⊥
A

− γm⊥z

A

k′⊥
k

] }
(3.47)

For normal incidence the result simpli�es to

t− I =
ik

2

{γe⊥⊥
A

− ẑ × γm⊥⊥
A

ẑ×
}

(3.48)

r =
ik

2

{γe⊥⊥
A

+ ẑ × γm⊥⊥
A

ẑ×
}

(3.49)

Note that since the operation ẑ× can be identi�ed with a skew-symmetric matrix
which is its own (negative) inverse, the matrix −ẑ× γm⊥⊥ẑ× = (ẑ×)−1γm⊥⊥ẑ× is
a similarity transform of γm⊥⊥. This demonstrates that the �rst order correction to
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the static transmission and re�ection coe�cients is given by the sum and di�erence
of the electric and magnetic polarizability per unit area of the structure, multiplied
by ik/2. Note that the expressions contain both co- and cross-polarization results.

Example: dielectric �lm. For a dielectric, nonmagnetic �lm we can compute both
the polarizability matrices and the transmission and re�ection coe�cients explicitly.
The �lm is contained in the region 0 < z < d, and has isotropic permittivity ε = εrε0I
and vacuum permeability µ = µ0I. The magnetic polarizability is then γm = 0, and
the electric is

γe =




γ1 0 0
0 γ1 0
0 0 γ2


 , where

{
γ1 = (εr − 1)Ad

γ2 = (1− ε−1
r )Ad

(3.50)

The expressions (3.46) and (3.47) are then

t− I =
ik

2

{
η−1

0 Z
γe⊥⊥

A
+

k⊥k⊥
k2

γezz

A
Z−1η0

}

=
ikd

2

{
εr − 1

cos θ

k′⊥k′⊥
|k′⊥|2

+ cos θ
[
εr − 1 + (1− ε−1

r ) tan2 θ
] k⊥k⊥
|k⊥|2

}
(3.51)

r =
ik

2

{
η−1

0 Z
γe⊥⊥

A
− k⊥k⊥

k2

γezz

A
Z−1η0

}

=
ikd

2

{
εr − 1

cos θ

k′⊥k′⊥
|k′⊥|2

+ cos θ
[
εr − 1− (1− ε−1

r ) tan2 θ
] k⊥k⊥
|k⊥|2

}
(3.52)

which can be con�rmed to be the proper low frequency expansion of the transmission
and re�ection coe�cients for a dielectric �lm [2, p. 65].

4 Polarizability matrix
We now turn to the problem of computing the polarizability matrices γe and γm in
the static limit.

4.1 Finite material parameters with no conductivity
We use Stevenson's method [15] to extract the low frequency equations, as is tra-
ditional in homogenization theory [1]. A formal expansion of the �elds in a power
series in ω, i.e.,

Ẽ = Ẽ
(0)

+ ωẼ
(1)

+ · · · (4.1)

H̃ = H̃
(0)

+ ωH̃
(1)

+ · · · (4.2)

and identifying similar powers of ω in the equations, implies that Maxwell's equa-
tions reduce to the static equations for the zeroth order �elds (where the material
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parameters must be understood as the static limit, i.e., ε(x) = limω→0 ε(x, ω) and
µ(x) = limω→0 µ(x, ω))

∇× Ẽ
(0)

= 0 ∇ · [εẼ(0)
] = 0 (4.3)

∇× H̃
(0)

= 0 ∇ · [µH̃
(0)

] = 0 (4.4)
with periodic boundary conditions in the xy plane. In the z-direction, we require
that Ẽ

(0) and H̃
(0)

go to constants E0 and H0 as z → ±∞. The zero curl condition
implies

Ẽ
(0)

= E0 −∇φe and H̃
(0)

= H0 −∇φm (4.5)
where the potentials φe and φm are U -periodic functions in x and y with zero mean
over U , and ∇φe and ∇φm both decay to zero as z → ±∞ and are square integrable.
Note that we are not requiring φe and φm to be zero at in�nity. That this cannot be
the general case is seen from a dielectric �lm subjected to a �eld in the z direction.
The discontinuous polarization in the z direction induces surface charges on the
boundaries of the �lm, which in turn implies a potential di�erence between the
sides of the �lm. Thus, the potential cannot in general be zero on both sides.

We can now summarize the low frequency problem as two separate local problems
in the unit cell,

∇ · [ε(E0 −∇φe)] = 0 (4.6)
∇ · [µ(H0 −∇φm)] = 0 (4.7)

for prescribed constant �elds E0 and H0. These are elliptic equations for the po-
tentials φe and φm, which are solvable with standard numerical methods such as the
�nite element method, as long as these are implemented with the proper bound-
ary conditions. The potentials depend linearly on E0 and H0, which de�nes linear
operators γe and γm according to the integrals∫ ∞

−∞

∫

U

(ε/ε0 − I)(E0 −∇φe) dS dz
def
= γeE0 (4.8)

∫ ∞

−∞

∫

U

(µ/µ0 − I)(H0 −∇φm) dS dz
def
= γmH0 (4.9)

These matrices are the polarizability matrices in the static limit, used in the pre-
ceding section.

The polarizabilities can be de�ned as the minimum of an energy functional. It is
shown in [5] that if ε(x) ≤ ε(x)′ for all x, the corresponding polarizabilities satisfy
γe ≤ γ ′e. Even though the derivation in [5] is for a single isotropic particle, the
arguments are valid for an anisotropic periodic setting as well as seen in [8], and the
corresponding result applies also to γm. Thus, the polarizabilities are monotone in
the material parameters. In addition, we have the simple estimates [8]

∫ ∞

−∞

∫

U

(I− ε−1ε0) dS dz ≤ γe ≤
∫ ∞

−∞

∫

U

(ε/ε0 − I) dS dz (4.10)
∫ ∞

−∞

∫

U

(I− µ−1µ0) dS dz ≤ γm ≤
∫ ∞

−∞

∫

U

(µ/µ0 − I) dS dz (4.11)
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corresponding to the harmonic and arithmetic means of the material parameters. In
classical homogenization theory, the corresponding bounds are known as the Wiener
bounds [16].

4.2 PEC inclusions
With some small modi�cations, the above reasoning applies also for metal inclusions
in the unit cell. Modelling the metal as a perfect electric conductor (PEC), the
equations should then be interpreted as being valid in the domain U×R\Ω, where Ω

denotes the PEC region and the boundary conditions n̂×Ẽ
(0)

= 0 and n̂·(µH̃
(0)

) =
0 applies on ∂Ω [4, p. 204]. This corresponds to taking the limits ε →∞ and µ → 0
in the PEC region.

We identify the γe and γm matrices as giving the total electric and magnetic
dipole moment, respectively. Their de�nitions are then replaced with (using that
the surface charge density is ρS = n̂ · (εẼ(0)

) and the surface current density is
JS = n̂× H̃

(0)
)

γeE0
def
=

∫

U×R\Ω

(ε/ε0 − I)Ẽ
(0)

dV +

∮

∂Ω

xn̂ · εẼ
(0)

ε0

dS (4.12)

γmH0
def
=

∫

U×R\Ω

(µ/µ0 − I)H̃
(0)

dV +
1

2

∮

∂Ω

x× (n̂× H̃
(0)

) dS (4.13)

It is shown in [6] that the magnetic polarizability γm for PEC bodies in vacuum is
negative. The electric and magnetic polarizabilities are monotone with the volume
in the respect that γe ≤ γ ′e and −γm ≤ −γ ′m if V ≤ V ′, where V and V ′ are the
corresponding volumes [7]. In [8] it is shown that these results apply also when the
PEC body is surrounded by a �xed anisotropic medium. Furthermore, we have the
following estimates for PEC bodies in vacuum [7]

3V ′ ≤ γe ≤ 3V ′′ (4.14)
3V ′/2 ≤ −γm ≤ 3V ′′/2 (4.15)

where V ′ is the volume of the largest sphere contained in the body, and V ′′ is the
volume of the smallest sphere containing the body.

In the following subsection, we show that the last term in (4.13) is absent if the
metal is modeled with a �nite conductivity instead of PEC.

4.3 Conducting inclusions
The conductivity case, where ε = ε′ + σ/(−iω), is fundamentally di�erent since the
electric current has a zeroth order term in the ω expansion due to

−iωεẼ = σẼ − iωε′Ẽ (4.16)
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The formal expansions (4.1) and (4.2) then implies the following equations for the
zeroth order �elds:

∇× Ẽ
(0)

= 0 ∇ · (σẼ
(0)

) = 0 (4.17)

∇× H̃
(0)

= σẼ
(0) ∇ · (µH̃

(0)
) = 0 (4.18)

Assuming σ 6= 0 only inside the region Ω implies the boundary condition n̂ ·
(σẼ

(0)
) = 0 at ∂Ω. In simply connected regions Ω there can be no static current,

which implies σẼ
(0)

= 0. This can be seen in a more formal way by considering the
quadratic form (using that ∇×Ẽ

(0)
= 0 implies the representation Ẽ

(0)
= E0−∇φe

in a simply connected region)
∫

Ω

(E0−∇φe)·[σ(E0−∇φe)] dV = E0·
∫

Ω

σ(E0−∇φe) dV +

∫

Ω

φe∇·[σ(E0−φe)] dV

−
∮

∂Ω

φen̂ · [σ(E0 − φe)] dV (4.19)

Each of these integrals are zero: the �rst because the net static current in a closed
region must be zero,1 the second because of the �eld equation ∇ · (σẼ

(0)
) = 0,

and the third and last due to the boundary condition n̂ · (σẼ
(0)

) = 0. Since the
integrand in the left hand side is non-negative, it must be zero almost everywhere,
proving that the �eld Ẽ

(0)
= E0−∇ϕ = 0 in the inclusion geometry Ω. This means

the equations for the magnetic �eld reduce to ∇× H̃
(0)

= 0 and ∇ · (µH̃
(0)

) = 0,
i.e., the metal inclusions do not in�uence the magnetic �eld.

To determine Ẽ
(0) in regions where σ = 0, we need to consider equations further

down the chain,

∇× Ẽ
(1)

= iµH̃
(0)

(4.20)

∇× H̃
(1)

= −iεẼ
(0)

+ σẼ1 (4.21)

From the last equation it is seen that in regions where σ = 0, i.e., outside Ω, we
necessarily have ∇ · (εẼ(0)

) = 0. Since Ẽ
(0)

= 0 inside Ω and the tangential electric
�eld must be continuous, this implies the standard boundary condition n̂×Ẽ

(0)
= 0

on ∂Ω.
To summarize, if the metallic inclusions are modelled with a �nite conductiv-

ity, the electric polarizability should be calculated just as in the PEC case, but
the magnetic polarizability is only due to variations in µ. The physical di�erence
between the two models is that in the PEC case, the low frequency limit is taken

1Mathematically, this can be shown by considering the integral
∫
Ω
∇ · (xJ) dV . Using the

divergence theorem, we have
∫
Ω
∇ · (xJ) dV =

∮
∂Ω

n̂ · (xJ) dS = 0 due to the boundary condition
n̂ · J = 0. Using that ∇ · (ϕJ) = ∇ϕ · J + ϕ∇ · J for any ϕ, the integral must also be

∫
Ω

Jx dV .
Thus, all components of the current integrate to zero, and we have

∫
Ω

J dV = 0 for closed regions.
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such that an in�nitesimal skin depth is maintained in the metallic particle, whereas
in the conductivity case the limit is taken so that the skin depth is much greater
than the particle. From (3.48) we see that the �rst order transmission coe�cient
is the sum of electric and magnetic polarizability, and from (3.49) the �rst order
re�ection coe�cient is the di�erence. Since the magnetic polarizability is negative
for PEC bodies, we conclude that the di�erence between the two models is that
the �rst order transmission is smaller for the PEC model than for the conductivity
model, whereas the �rst order re�ection is larger for the PEC model than for the
conductivity model.

5 Conclusions
In this paper, we have derived the asymptotic behavior for the low frequency re�ec-
tion and transmission coe�cients of a low pass periodic structure. The structure can
be anisotropic in both electric and magnetic properties, and the angle of incidence
as well as the polarization of the incoming wave is arbitrary. It is found that the low
frequency behavior is proportional to the static electric and magnetic polarizability
per unit area of the periodic structure. The transmission coe�cient is associated
with the sum of the polarizabilities, and the re�ection coe�cient with the di�erence.

The polarizabilities can be considered as minima of energy functionals, which
provide simple estimates in terms of easily calculated quantities associated with
the harmonic and arithmetic mean of the material parameters. When modeling the
metal inclusions with a �nite conductivity instead of as PEC, the electric polarizabil-
ity is unchanged, i.e., a speci�c dipole moment can be identi�ed for the metal body,
whereas the magnetic polarizability only depends on variations in permeability, with
no speci�c contribution from the metal body.
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