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Introduction, Background
and Methods





1

Popular Science Summary

This thesis treats electron transport, or more precisely, the theoretical methods
for calculating the electron transport through nanodevices. For macroscopic
objects such as, e.g., a light bulb, Ohm’s law relates the drop in electric po-
tential, V , the resistance, R, and the current I, through the relation V = RI,
see Fig. 1.1. Ohm’s law also holds for large electronic components, but over
the last fifty years it has constantly been possible to diminish the sizes of the
electronic components and reach a regime where Ohm’s law is no longer valid.
In these devices, the smallest length scales can be down to 45 nanometers, i.e.
1/1.000.000.000 m = 10−9 meter = 1 nm.

An active field of basic research is to produce objects which are on the
nanoscale and then connect them to wires for usage in electronic devices, so-
called nano-electronics. This is a very difficult task and it may take several
years before it can be exploited commercially. Examples of nano-objects are
carbon nanotubes, single-molecules, and nanowires, where the latter is used as
an example below. In these devices the current is not governed by the laws of
classical electrodynamics, but rather the laws of quantum mechanics.

A nanowire is a thin rod of semiconducting materials with a length up to
several microns (1/1.000.000 m = 10−6 meter = 1 µm), but with a diameter of
only 10−100 nm. In comparison, the thickness of a human hair is about 50 µm.
It is possible to form segments of different materials and, by a proper choice
of materials, to grow two ‘barriers’ and thereby create a small ‘box’ confining
the electrons, see Fig. 1.1. Such a box, down to a few nanometers long, is
often referred to as a ‘quantum dot’. It is also possible to create a series of
coupled quantum dots, e.g. a double quantum dot by growing three separate
barriers. The pieces of wire surrounding the quantum dots act as contacts, and
by attaching wires to the these pieces an electric circuit can be formed and the
current can be measured.

The laws of quantum mechanics give rise to two particular effects in the
nanowire containing a quantum dot. First, the electrons in the quantum dot
cannot have arbitrary energies but only some specific energies are possible, so-
called energy levels. Secondly, there is a certain probability that the electrons
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Figure 1.1: The current I versus the potential V for a macroscopic object and
a nanowire with a quantum dot, respectively.

will cross the barriers and escape from the quantum dot, which is named the
quantum tunneling effect. In addition, there is the classical effect that the
electrons repel each other as they are charged particles, and therefore it costs
extra energy to add an electron to the quantum dot.

Because of these effects, the current does not show a linear dependence on
the potential but instead steps occur, see Fig. 1.1. It is even possible that
the current suddenly decreases for increasing electric potential. The step-like
behaviour can be exploited in electronic devices but can also be used to an-
alyze the electronic properties of the quantum dot. The lengths of the steps
reveal information about the energy levels in the quantum dot and the electric
repulsion between them due to the Coulomb interaction, and the heights about
the coupling to the surrounding segments and the Coulomb interaction. The
widths of the steps depend on the temperature and how good the contacts are
between the surrounding pieces of wire and the quantum dot.

In this thesis, current measurements on an electric circuit including a nanowire
with two quantum dots are analyzed, setting the stage for a method for calcu-
lating the electron transport through simplified model systems representing the
most important features of quantum dots or molecules. The method consti-
tutes the main part of this thesis and allows for calculating IV -curves, taking
into account the level energies, the Coulomb interaction, and the smearing of
the steps.
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Populärvetenskaplig
sammanfattning

Denna avhandling behandlar elektrontransport, eller för att vara mer pre-
cis, de teoretiska metoder som används vid beräkning av elektrontransport
genom nanostrukturer. För makroskopiska objekt, t.ex. en glödlampa, relaterar
Ohms lag spänningsfallet V , resistansen R och strömmen I, genom sambandet
V = RI, se Fig. 2.1. Ohms lag gäller även för stora elektroniska komponenter,
men under de senaste femtio åren har utveckling g̊att mot mindre och mindre
komponenter s̊a att vi idag befinner oss i en regim där Ohms lag inte längre är
tillämpbar. I dessa komponenter kan de minsta längdskalorna vara ner till 45
nanometer, d.v.s. 1/1.000.000.000 m = 10−9 meter = 1 nm.

Ett aktivt omr̊ade inom grundforskningen är att producera objekt av nano-
skala för sedan ansluta dem till elektroniska komponenter, s.k. nanoelektronik.
Detta är en väldigt sv̊ar uppgift och det kan ta flera år innan den kan bli kom-
mersiellt g̊angbar. Exempel p̊a nanoobjekt är kolnanotuber, enskilda molekyler
och nanotr̊adar, där de senare används som exempel nedan. I dessa komponen-
ter lyder inte strömmen under de klassiska lagarna hos elektrodynamiken, utan
snarare kvantmekanikens lagar.

En nanotr̊ad är en tunn stav av halvledarmaterial med en längd upp mot
flera mikrometer (1/1.000.000 m = 10−6 meter = 1 m), men med en diameter
p̊a endast 10-100 nm. Som en jämförelse är tjockleken p̊a ett h̊arstr̊a runt
50 m. Det är möjligt att bygga segment av olika material och, genom lämpligt
val av material, skapa tv̊a “barriärer” för att p̊a s̊a sätt bilda en liten l̊ada
där elektronerna innesluts, se Fig. 2.1. En s̊adan l̊ada, som kan vara ner mot
ett f̊atal nanometer l̊ang, kallas ofta för en “kvantprick”. Det är ocks̊a möjligt
att skapa en serie av kopplade kvantprickar, t.ex. en dubbel kvantprick genom
att skapa tre separata barriärer. De delar av tr̊aden som omger kvantpricken
fungerar som kontakter, och genom att ansluta metalltr̊adar till dessa delar kan
elektriska kretsar skapas för mätning av strömmen.

Kvantmekanikens lagar ger upphov till tv̊a speciella effekter för en nanotr̊ad
inneh̊allande en kvantprick. För det första kan inte elektronerna i kvantpricken
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Figur 2.1: Strömmen I mot potentialen V för ett makroskopiskt objekt respek-
tive en nanotr̊ad med en kvantprick.

ha godtyckliga energier utan endast vissa energier är möjliga, s.k. energiniv̊aer.
För det andra är det en viss sannolikhet att elektroner kommer korsa bar-
riärerna och fly fr̊an kvantpricken, n̊agot som kallas kvanttunnling. Dessutom
finns en klassisk effekt att elektronerna repellerar varandra eftersom de är lad-
dade partiklar, och det kostar därför extra energi att lägga till en elektron till
kvantpricken.

P.g.a. dessa effekter visar inte strömmen ett linjärt beroende av spänningen
utan istället förekommer steg, se Fig. 2.1. Det är även möjligt att strömmen
plötsligt minskar för ökande spänning. Detta steglika uppförande kan utnyttjas
i elektroniska komponenter men kan även användas för att analysera de elek-
troniska egenskaperna hos kvantpricken. Längden p̊a stegen ger information om
energiniv̊aerna i kvantpricken och den elektriska repulsionen mellan elektroner-
na p.g.a. Coulomb växelverkan, medan höjden p̊a stegen ger information om
kopplingen till de omgivande segmenten och Coulomb växelverkan. Bredden p̊a
stegen beror p̊a temperaturen och hur bra kopplingen är mellan de omgivande
bitarna och kvantpricken.

I denna avhandling analyseras strömmätningarna av en elektrisk krets in-
neh̊allande en nanotr̊ad med tv̊a kvantprickar. För att studera detta experiment
utvecklas en metod för beräkning av elektrontransport genom förenklade mod-
ellsystem vilka representerar de viktigaste egenskaperna hos kvantprickar och
molekyler. Denna metod utgör huvuddelen av denna avhandling och möjliggör
beräkning av IV-kurvor där hänsyn tagits till energiniv̊aerna, Coulomb växel-
verkan och utsmetningen av stegen.
I gratefully acknowledge Olov Karlström for translating the Popular Science
Summary.
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Introduction to transport
through nanostructures

For macroscopic electric devices like, e.g., a light bulb, the laws of classical
physics can be applied. The relation between the potential, the resistance and
the current is given by Ohm’s law. When the sizes of the electric objects di-
minish this no longer holds true, and a different framework for describing the
transport of electrons is needed.

Starting from macroscopic objects and diminishing the sizes, the scale of
microelectronics is reached, i.e., where the sizes of the smallest components are
on the micrometer scale. These components are typically made of silicon wafers
using lithographical techniques, but in many situations the physical laws for
macroscopic objects can still be applied.

A decrease of the size in one of the dimensions can be realized in layered
semiconductor structures, where materials with different band gaps are de-
posited on top of each other using molecular beam-epitaxy. The thickness of
each layer is well-controlled and can be down to a few atomic layers [1, 2, 3].
Due to the different band gaps, electrons are confined to certain layers, thereby
creating two-dimensional electron gases. These structures have been used to
make, e.g., resonant tunneling diodes, superlattices, and even more advanced
structures such as quantum cascade lasers. The theoretical description of the
electronic and optical properties requires a full quantum mechanical descrip-
tion, see, e.g., Ref. [4].

Confining the electrons in two dimensions leads to the formation of quantum
wires, which are effectively one-dimensional objects. These can be realized, e.g.,
in cleaved-edge overgrown structures in GaAs [5], in InP nanowires created by
laser-assisted catalytical growth [6], or by chemical-beam epitaxial growth of
GaAs nanowires [7].

Finally, confining the electrons in all three spatial directions creates zero-
dimensional objects, so-called quantum dots. They are also frequently referred
to as “artificial atoms” or “man-made atoms”. For sizes on the nanometer
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scale, these objects show a significant level quantization with clearly separated
levels. As the smallest length scales typically range from a few nanometers up
to hundreds of nanometers, these objects are often named nanostructures.

Various types of nanostructures exist. Frequently studied objects are quan-
tum dots created in a two-dimensional electron gas, where the latter is formed
at the interfaces between semiconducting materials with different band gaps
as mentioned above. Using lithographically defined metallic topgates, areas in
the electron gas beneath the gates are depleted and quantum dots are formed.
By tuning the gates, the tunnel couplings to source and drain contacts can be
controlled, and the chemical potentials of the dots can be shifted (see e.g. [8]
and references therein). Also in two-dimensional electron gases, quantum dots
can be “cut-out” using electron-beam lithography and etching. The shapes of
the dots can be controlled, and using sidegates the dots can be emptied down
to the last electron [9]. Quantum dots can also spontaneously form when a thin
layer of a semiconducting material is deposited on top of another semiconduct-
ing material with a different lattice constant using molecular beam-epitaxy.
These self-assembled dots occur due to the lattice mismatch. Carving out the
surrounding material, stacks with a single or a few quantum dots can be cre-
ated [10]. All the previous examples have in common that the quantum dots
are formed in a large surrounding environment using top-down techniques such
as lithography.

Alternatively, nanostructures are created by making electric contact to ob-
jects which are native nano-objects, i.e., a bottom-up approach. Examples of
these nanostructures are carbon nanotubes [11], C60 bucky-ball molecules [12],
OPV-molecules [13], or semiconducting nanowires with barriers forming quan-
tum dots. At Lund University intense research takes place within the field of
semiconducting nanowires [7, 14, 15].

Nanowires are rods of semiconducting materials with a diameter down to
tens of nanometers for III-IV materials [7, 14], such as, e.g., InAs-InP, and even
less for Si-nanowires [16]. For both types the lengths can be several microns.
The III-IV wires from Lund University are, e.g., grown from gold aerosols de-
posited on a wafer. Using chemical-beam epitaxy, the wires grow catalytically
only underneath the gold particles which stay at the top of the wires. By chang-
ing the gas in the growth chamber during growth, another type of material is
deposited under the gold particle and a heterostructure is formed. Matching
materials with different band gaps creates barriers in the structure, which form
quantum dots as for example in an InAs wire with InP barriers. By changing
the size of the catalyst particles, size control of the diameters of the wires can
be achieved [7]. Figure 3.1 shows two InAs wires with triple InP barriers, and
in Chap. 4 transport spectroscopy data of a nanowire double dot structure is
analyzed.
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Figure 3.1: Two different InAs-nanowires with InP barriers. The transport
characteristics of a device similar to sample I is further discussed in Chap. 4.
From Paper I.

Nanostructures are interesting as they are potential candidates for new
opto-electronic devices such as single-electron transistors or quantum dot lasers
but are also exciting from a fundamental point of view, as they offer the pos-
sibility to study basic quantum mechanics. Due to the spatial confinement,
the level spectrum displays discrete energies with spacings up to several meV,
and the energy-cost for adding an electron can be several meV due to a pro-
nounced Coulomb repulsion. These features of a single nanostructure can be
investigated using, e.g., transport spectroscopy. Figure 3.2 shows so-called sta-
bility diagrams, i.e. plots of the differential conductance versus bias and gate
voltage, for a single- and a double quantum dot structure defined in nanowires.
In both cases, the wire is placed on an insulating substrate with a conducting
layer beneath acting as a backgate. By changing the potential of the backgate,
the energy levels in the quantum dots are shifted and clear Coulomb diamonds
are observed. Within each diamond the occupation numbers in the dots are
constant, and the sides of the diamonds mark the onset of sequential tunneling
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Quantity Energy scale
Temperature 1 K ∼ 0.1 meV
Level spacing ∼ meV
Magnetic field 1 T ∼ 0.1 meV

Couplings (~×transition rate) ∼> 0.1 meV
Charging energies ∼ meV

Table 3.1: Energy scales in transport through nanostructures.

as further discussed in Chap. 4.1 Analyzing the shapes and the sizes of the dia-
monds reveals information about the level structure and the charging energies
[17]. Figure. 3.3 shows the IV -characteristic for an InAs-InP heterostructure
nanowire with a double quantum dot similar to sample I in Fig. 3.1. When
the levels in the two dots pass each other due to the shifts in the electrostatic
environments, peaks in the current appear giving rise to pronounced negative
differential conductance. The inset shows how source and drain contacts are
attached to the wire.

From a theorist’s perspective, nanostructures offer new challenges. When
the sizes decrease there is no longer a continuum of states available for the
electrons but rather quantized levels which can be broadened due to coupling
to leads. In addition, as the electrons are squeezed together Coulomb interac-
tions can play an important role. The latter implies that the electrons cannot
be described as individual particles, which complicates the theoretical descrip-
tion significantly. Furthermore, as electrons can pass through different levels
interference may occur. Such effects should be included in a theoretical for-
malism, but as discussed in more detail in Chap. 5, the available methods for
describing quantum transport have a limited range of validity, which depends
on the energy scales in the problem. In Table 3.1 some characteristic energy
scales occurring in transport through nanostructures are shown, and note that
they can all be of the same order of magnitude. This motivates why a method
which can handle several different effects and energy scales is needed.

In the rest of this thesis various aspects of quantum transport through
nanostructures are considered. In Chap. 4 a detailed analysis of data obtained
from measurements on an InAs-InP nanowire is presented. The analysis is
based on a capacitance model, but as all parameters cannot be established
from the data, an electrostatic model of the nanowire is set up. In Chap. 5 an
overview of different methods for calculating transport through nanostructures

1Further examples of Coulomb diamonds for single dots are found in Fig. 4 in Paper II
and in Chap. 8.
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Figure 3.2: a) Measurement of the differential conductance, G = dI/dV , versus
bias and gate voltage for a single quantum dot in an InAs wire with a double
InP barrier. The diameter of the wire is approximately 50 nm and the dot is 18
nm long. Clear Coulomb diamonds are observed, where the numbers indicate
the filling of the dot. The data are kindly provided by L.E. Fröberg. b) The
measured differential conductance, G = dI/dV , versus bias and gate voltage
for a double quantum dot in a device similar to sample I in Fig. 3.1. Coulomb
diamonds are observed, and the numbers indicate the filling of dot 1. The
additional structure along the edges is partly due to the filling of dot 2. From
Paper I.

is presented, where the focus is on density-matrix based methods. A newly
developed method is presented, which forms the core of this thesis. In the sub-
sequent chapters the method is applied to various model systems and the results
are compared with other theoretical approaches. In Chap. 6 transport through
a double quantum dot is investigated, where the focus is on various quantum
mechanical sources for negative differential conductance. The topic of Chap. 7
is the delicate interplay between interference and interactions in a model with
a single level coupled to ferromagnetic leads and in addition having an applied
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Figure 3.3: IV -characteristic for a double quantum dot displaying clear peaks
when two levels are at resonance within the bias window (see the lower right
inset). When the levels slide by each other due to electrostatic effects, negative
differential conductance occurs. The upper left inset shows a SEM image of
sample I with two Ni/Au source and drain contacts attached. The double dot
structure is placed somewhere between the contacts. From Paper I.

magnetic field non-collinear with the magnetizations of the leads. Finally, in
the regime where sequential tunneling processes are suppressed, current may
still flow due to higher-order processes, so-called cotunneling processes. For
finite bias, these processes may lead to the occupation of excited states. This
is discussed in Chap. 8. In Chap. 9 a short summary and outlook is given.
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Transport spectroscopy of an
InAs-InP double quantum dot

In this chapter transport spectroscopy data of a particular nanostructure, an
InAs nanowire with three InP barriers forming a double quantum dot, is in-
vestigated. The aim is to deduce the quantum mechanical single-particle level
spacings and the Coulomb charging energies. These quantities are not directly
accessible from the experiment, but can be found from an electrostatic model
of the nanowire.

The basic idea is that due to Coulomb interactions, the energy levels in
each dot are affected by the charging of the same as well as the neighbouring
dot. Furthermore, changing the chemical potentials of the leads or the nearby
backgate alters the electrostatic environments of the dots and, consequently,
the position of the levels. Together with the quantum mechanical level spacings,
these effects are captured in a model for the energy levels which can be cast on
the form

E1(N1, N2, V, Vg) = ∆QM
1 (N1) +

1
2
EC1(2N1 − 1) + ECmN2 − eα1

gVg + eα1
V

V

2
,

(4.1)
and

E2(N1, N2, V, Vg) = ∆QM
2 (N2) +

1
2
EC2(2N2 − 1) + ECmN1 − eα2

gVg − eα2
V

V

2
.

(4.2)

Here N1(2) denote the occupation of dot 1(2), Vg is the potential of the backgate,
Vg = VBG, and e = |e| is the elementary charge. The bias voltage V = Vbias is
applied symmetrically, VR = −VL/2 = V/2, and, finally, the chemical potential
of the left lead is µL = −eVL = eV/2 and for the right lead µR = −eV/2.

In Eqs. (4.1)-(4.2), the first term in each expression is the addition energy
due to the quantum mechanical level spacing. The rest, denoted µ1,2(N1, N2, V, Vg),
is due to the mutual capacitive coupling between the dots, the leads and the
backgate. The charging energies due to the electrostatic interactions within
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each dot are EC1(2), while ECm is the intradot charging energy. The quantities
α1,2

g show the response of the level position in each dot due to a change in the
potential of the common backgate, while α1,2

V indicates the response due to a
change in the chemical potentials of the leads. The entities related to the shifts
in bias or gate voltage are denoted lever arms.

Except for the quantum mechanical level spacings, the other seven quanti-
ties of interests, i.e. the three charging energies and the four lever arms, are
related in terms of the seven capacitances shown in Fig. 4.1, namely Cg1, Cg2,
CL1, CL2, CR1, CR2, and Cm, where the notation is changed relative to Paper
I from S(ource) and D(rain) to L(eft) and R(ight), respectively.

In the experimental setup, a nanowire with dots embedded similar to sam-
ple I in Fig. 3.1 is placed on a substrate and contacts are attached as shown
in Fig. 3.3. The substrate consists of a dielectric oxide layer with a doped
Si-layer beneath acting as a backgate. The applied capacitance model is al-
most identical to the one presented in Ref. [17] by W.G. v.d Wiel et al., but
they consider a double quantum dot formed in a two-dimensional electron gas
defined by metallic gates. In these systems each of the dots is contacted by
a separate gate, not a common backgate as for the nanowire double quantum
dot. Furthermore, they assume that the dots are only capacitatively coupled
to the nearest lead, but in the model presented here also the next-to-nearest
lead-dot capacitances are included as further discussed below. Details of the
capacitance model are found in App. A, and in App. B it is shown how the
features in the data can be related to the capacitances.

In this chapter it is demonstrated how to extract the capacitances from mea-
surements of the differential conductance versus bias and gate voltage. First
a general overview of the interpretation of the different lines appearing in the
data is given in Sec. 4.1. However, due to the common backgate the data can
only provide five relations between the seven capacitances, and, consequently,
two further conditions have to be found. This is done in Sec. 4.2, where the ca-
pacitances are calculated directly from the wire geometry using a finite-element
solver. In Sec. 4.3 the experimental data and the results of the finite-elements
calculations are combined, and values for the charging energies and the lever
arms are estimated. Finally, a conclusion and a discussion is found in Sec. 4.4.

4.1 Analyzing the experimental data

The experimental data for the differential conductance versus bias and gate
voltage is shown in Fig. 4.2a. If considering a fixed vanishing bias voltage,
Vbias = V = 0 the following is observed: By increasing the gate voltage, no
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c)
Vbias(mV)

VBG

CG1 CG2Cm
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Figure 4.1: The capacitance model for a double quantum dot system with a
common back gate. From Paper I.

structure is present below the gate voltage Vbg = Vg = 0.9 V.1 At this value a
change in the differential conductance, G = dI/dV occurs, which is assigned to
the addition of the first electron in dot 1. Subsequent filling of this dot occurs
for increasing gate voltage. Below only Vg < 0.9 V and positive bias voltages
are considered.

Before giving an interpretation of the measured data, it is discussed what
can a priori be expected when performing a measurement of the differential
conductance versus bias and gate voltage at low temperatures.

Previous experiments on similar single dots in InAs-InP nanowires have
shown that only the lowest longitudinal quantum state is occupied for an elec-
tron number up to more than 15 if the length of the dot is smaller than ∼ 20
nm [18]. As the lengths of the two dots in the double dot structure are 11.5
nm and 22.5 nm, respectively, it is assumed that for low electron numbers only
the lowest longitudinal quantum state is occupied. So the single-particle level
quantization seen in the data will presumably stem from the radial confinement.

As the considered DQD structure is asymmetric with dot 1 being roughly
half the size of dot 2, see Fig. 3.1 sample I, the capacitive coupling between
dot 1 and the gate is expected to be smaller than the one of dot 2 and the gate
[15], Cg1 < Cg2, i.e. a more positive gate voltage is needed in order to add the
first electron to dot 1 than to add the first electron to dot 2.

Below the electron transfer through the structure is described as tunneling
processes between eigenstates localized in each dot.2 At positive bias voltage,

1Note that the gate voltage is given in Volts, while the bias voltage is in mV.
2In this picture the coherences between the states are neglected. The role of coherence is
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From Paper I.
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I
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Vbias

Vbias

Vbias

dI/dV dI/dV

I

CotunnelingSequential tunneling

Figure 4.3: The pictures show how sequential tunneling and cotunneling give
rise to two different types of lines in the measured data, see Fig. 4.2. For
sequential tunneling, the levels in the two dots slide by each other due to the
different capacitative couplings to leads, resulting in a peak in the current,
I, and a wave-form in the differential conductance, dI/dV . At the onset of
cotunneling, the current increases monotonously and a peak-structure appears
in the differential conductance.

electrons tunnel into dot 1 from the left lead, subsequently tunnel into dot 2,
and finally out into the right contact. However, these processes can occur in
different ways, see also Fig. 4.3:

If a level in the left dot aligns with a level in the right dot within the
bias window, a sequential tunneling process is possible. When the bias voltage
and/or the gate voltage is varied, the levels will slide by each other due to
the different lever arms and a resonance feature occurs, giving a sharp peak in
the IV -curve and a wave form in the differential conductance dI/dV . In the
experimental dI/dV -data in Fig. 4.2a, these processes give rise to a bundle of
white-black-white-red-white lines with negative slopes, see e.g. the dashed blue
line drawn between M −¤. These lines will be denoted resonance lines and the
slopes αresonance.

Another feature occurs when tunneling is possible by overcoming a single
energy mismatch, i.e. via a single cotunneling process through a virtual state;
either between the states in the leads and the dot, or between the states in the
different dots (see Fig. 4.4). The onset of these processes happens when the
left(right) chemical potential aligns with the chemical potential of dot 1(2), and

discussed in Chap. 6.
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Figure 4.4: Schematic pictures of the appearance of the cotunneling lines, where
electron transport is possible by overcoming only a single energy mismatch, i.e.
via a cotunneling process through a virtual state.

gives rise to step in the IV -curve and a corresponding peak in the differential
conductance, see Fig. 4.3. In the experimental data, a set of grey-black-grey
lines occur as, e.g., seen between ¤−• in Fig. 4.2a. These lines will be denoted
cotunneling lines as a virtual transition is involved.

In the data the dashed green lines, which have been drawn on top of the
experimental data, are interpreted as cotunneling lines with an onset due to
the alignment of the left chemical potential with the chemical potential of dot
1, µL = µ1, see Fig. 4.2a and Fig. 4.4. The slopes of these lines are denoted
αgreen.

Similarly, the interpretation of the dashed red lines drawn on the data is
that along these lines, the chemical potential of the right dot is aligned with
the right chemical potential, µR = µ2. These lines are also due to the onset of
cotunneling processes, and the slopes are denoted αred. At the crossing between
the red and the green dashed lines, the chemical potentials of the left/right leads
are aligned with the chemical potentials of the left/right contacts.

Together the red and the green dashed lines form a border, where the kinks
of the border correspond to the filling of dot 2 by an extra electron. Below
Vg = 0.32 V and V = 150 meV in Fig. 4.2a, the onset of the last dashed green
line occurs, and it is assumed that below this gate voltage the double quantum
dot structure is emptied.3 Above this gate voltage several kinks in the data

3Even for a further increase of the bias voltage, no more kinks are observed.
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are observed, indicating a filling of dot 2 up to at least 12 electrons (indicated
by the red numbers on the figure).

When plotting the distance between the cotunneling lines versus the num-
bers of electrons in dot 2, N2, shown in Fig. 4.2b, two features are observed:4

The distances between the green cotunneling lines are almost constant for
the filling N2 < 7, then it drops to a lower value and stays roughly constant
for N2 ≥ 8. The change occurs at the point marked with ‘¥’ in Fig. 4.2a,
and below a distinction between the high/low-bias regime with N2 < 7 and
N2 ≥ 8, respectively, is made. The change is explained as for a filling of
N2 = 8 electrons start to tunnel through an excited state in dot 2, see the
lowest sketch in Fig 4.2c. As the shapes of the excited states are different than
the shapes of the lower lying states, this might lead to the observed change in
charging energy.

More striking is the large variation in the distances between the red lines,
where large oscillations are imposed on an almost constant background value,
independent of the filling of dot 2, as shown in Fig. 4.2b. The constant back-
ground is assigned to electrostatic effects as described by the capacitance model
in App. A, while the large oscillations are due to the quantum mechanical level
spacings, ∆QM

2 (N2), induced by the radial confinement. The sequence shows
magic numbers 2,6, 10 and 12, which is in accordance with both a hard-wall
circular and a hexagonal confinement.5 Similar shell structure is seen in etched
vertical quantum dot structures [9] and also in single dot nanowire heterostruc-
tures [15].

Also the slopes of the cotunneling and resonance lines are different in the
low- and high-bias regimes, but being (almost) constant within each regime.
The results are shown in Table 4.1. Together with Eqs. (B.1)-(B.5) it gives
five different relations between the capacitances. How to find an approximate
expression for the last relations, CL2/CL1 and CR1/CR2, is discussed in the
next section.

4In Fig. 4.2 the distance between the lines is shown in bias voltage and not gate voltage
as discussed here. As the lines are parallel, the two ways of measuring the distances are of
course equivalent.

5Here ‘magic numbers’ 2, 6, 10, 12, . . . means that the quantum mechanical single-particle
levels are grouped into bunches/shells of two almost generate levels, then a larger spacing,
then four almost degenerate levels, then a larger spacing, then four almost degenerate levels,
and so forth. The notation of shell structure is frequently used in nuclear structure theory,
see e.g. Ref. [19].
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Quantity High-bias regime Low-bias regime
∆V red

g 50.3 meV 50.3 meV
∆V green

g 32.4 meV 22 meV
αred 1.8 1.8
αgreen -1.9 -1.4
αresonance -2.3 -1.45

Table 4.1: Experimental values for the slopes of the blue resonance lines, the
dashed red and green border lines, and the distances between the border lines
for both the high- and low-bias regime.

4.2 Calculating capacitances using a finite-element
solver

In order to deduce a reasonable estimate for the ratio, CL2/CL1 and CR1/CR2,
an electrostatic model is made and the capacitances are calculated.

In Paper I the geometry of the wire was determined from an high-angle an-
nular dark-field scanning transmission electron microscope picture, see Fig. 1a
in Paper I. In the experimental setup, the heterostructure nanowire is placed on
a sandwich structure consisting of doped Si-layer acting as the backgate, with a
100 nm thick oxide-layer on top acting as a gate dielectric. In a complete model
the backgate should be included in order to extract the capacitive couplings
between the gate and the dots. However, this involves a full three-dimensional
calculation, which is avoided for computational reasons. Instead the system is
modelled as a free standing wire, which allows us to exploit the radial symmetry
of the problem, reducing the task to a two-dimensional problem.6

To set up the electrostatic model the following assumptions are made: The
nanowire is modelled as a perfect cylinder with a diameter of 40 nm, and the
source(left) and the drain(right) leads are assumed to be perfect conductors
and much longer than double dot structure (200 nm each). For the range
of voltages considered, only a few electrons are present in each quantum dot
(N1,2 < 15). It is therefore assumed that the excess charge does not completely
fill the interior of the dots, and based on a k · p-calculation the electrons are
assumed to be confined in ellipsoids centered in the middle of the respective
dots [20]. For dot 1 the size (length×width) is set to 6 nm×18 nm, and for
dot 2 it is 10 nm×14 nm. Details are given in Fig. 4.5a. The scales agree
approximately with sample I in Fig. 3.1. Here one has to take into account
that a 5% size variation occurs due to the different wire diameters, and the
device shown in Fig. 3.1 is not the actual device on which the measurements

6A few calculations where done for the full 3D problem, which showed that the capac-
itances CL1, CL2, CR1, CR2 and Cm did not change significantly as compared to the 2D
model.
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Figure 4.5: a) A sketch of the geometry of the nanowire (all lengths are in nm).
The dark gray areas show the InP barrier material, while the white and light
gray areas are InAs, with the latter being the depletion layers added at each end
of the double quantum dot structure (see the main text). The ellipsoids are the
assumed charge distributions in each dot, with the sizes being (length×width)
6 nm×18 nm for dot 1 and 10 nm×14 nm for dot 2. b) In the finite-element
solver this geometry was used for calculating the capacitances, where the white
areas are the perfect conductors, and in the gray area the relative dielectric
constant is εr = 13.

were performed. Due to the finite bias, an extra 8 nm depletion layer is added
to the barrier at the drain contact and a 2 nm depletion layer at the source
contact, see Fig. 4.5a.

Both ellipsoids are modelled as perfect conductors. As the relative dielec-
tric constants of the InAs dot material (εInAs

r = 14.55) is rather close to the
dielectric constant of the InP barrier material (εInP

r = 12.37), the same dielec-
tric constant, εr = 13, is used throughout the double quantum dot structure
including the depletion layers, see Fig. 4.5b. Also the potential at infinity have
to be specified, and therefore the whole nanowire is embedded in a cylindrical
box much larger than the size of the nanowire (denoted the ‘vacuum box’).

In total there are five different conductors: The two leads, the two dots and
the vacuum box.

The charge Qi and the potential Vi of the i-th conductor are related to the
other charges and potentials as Qi =

∑
j=0 Cij(Vi − Vj). The element Cij in

the capacitance matrix can be calculated by grounding all conductors except
the jth conductor, which is set to unit potential (Vj = 1), and then calculate
the total charge on the conductor i. As all charge on a perfect conductor is
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placed at the exterior, this equals the total surface charge ρs.7

The charges on the conductors are obtained by solving the Laplace equation

−∇ε0εr(r)∇φ(r) = ρ(r), (4.3)

with φ(r) being the electrostatic potential, which relates to the electric field
E(r) as

−∇φ(r) = E(r). (4.4)

As the electric field inside a perfect conductor vanishes, the potential inside
the conductor is constant, i.e. it equals the potential at the boundary. In
the calculation all boundaries involving conductors are set to a fixed potential,
which is either ground or unit potential. The only other boundary conditions
needed to be specified are at the outer surfaces between the barriers and the
vacuum, and these are

n · (Dvac −Dbarr) = 0, (4.5)

where D(r) is the electric displacement field related to the electric field as
D(r) = ε0εr(r)E(r), and Dvac/barr being the displacement field in the outside
vacuum and in the barrier, respectively. n is a unit vector normal to the surface.

After solving the Laplace equation, the charge on each conductor can be
calculated through the boundary condition

n · (Dvac/barr −Dcond) = ρs, (4.6)

As the field inside the conductor, Dcond, is zero, it holds that

n ·Dvac/barr = ρs. (4.7)

So integrating the normal component of the displacement field over the surface
of the conductor gives the total charge on the conductor.

The model is solved using the finite-element solver software COMSOL Mul-
tiphysics c©, and the results for the capacitances are presented in Table 4.2.
For the relation between the lead and the dot capacitances the results are
CL2/CL1 ≈ 0.15 and CR1/CR2 ≈ 0.20, showing that the next-to-nearest dot is
not completely screened by the nearest dot. This will be taken as input when
calculating the capacitances from the experimental data.8

7A check of the numerical solution is that Cij = Cji and that the sum of the elements in
each row of the capacitance matrix fulfills

∑
j Cij = 0. The latter can be obtained by raising

the potentials on all conductors by the same amount, which will not change the charges on
the conductors.

8If one instead models the charge of the dots as completely filling the dots, the value of
the lead-nearest-dot capacitance is very close to the value for a simple plate capacitor model,
C = A/[ε0εrd] (d being the thickness of the barrier, and A the cross section of the wire), and
the next-to-nearest dot is almost completely screened.
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Capacitance Value [aF]
CL1 7.2
CL2 1.1
CR1 1.0
CR2 4.9
Cm 3.5

Table 4.2: The calculated capacitances for the structure shown in Fig. 4.5
b.

4.3 Combining the experimental data and the
capacitance model

As explained above, the data cannot provide all the information required to
calculate the charging energies and lever arms. Based on the preceding sec-
tion, the result of solving the Eqs. (B.1)-(B.5) using the ratios CL2/CL1 and
CR1/CR2 in the range 0.1-0.3 is shown in Table 4.3 for the high-bias regime.9

The results for the low-bias regime are not shown here, but can be found in
Paper I.

Considering the variation of the capacitances, charging energies and lever
arms with respect to CL2/CL1 and CR1/CR2, the following trends are observed:
In the high-bias regime, i.e. with N2 ≤ 7, the charging energies of dot 1 and
dot 2 are almost identical and close to 13 meV and do not change much with
the variation of the next-to-nearest lead coupling. This value is 2-3 times larger
than the charging energy reported for similar single dots in InAs-InP nanowires
[15], where they also find only a small variation of the charging energies versus
the lengths of the dots, similar to our findings. The inter-dot charging energy
is ∼ 0.4 times smaller than the intradot charging energies. If the next-to-
nearest lead couplings are ignored, setting CL2 = CR1 = 0, the values for
the charging energies are very different, showing an almost vanishing charging
energy of dot 1 in contrast with the findings in Ref. [15] for single-dots. It
is therefore concluded that for double dots in heterostructure nanowires, the
next-to-nearest lead-dot capacitances are important.

The gate couplings satisfy Cg2 À Cg1. A few calculations were done for
the full three-dimensional structure including the backgate for a similar wire
geometry, which indicated that for both dots the gate coupling should be ∼

9In Paper I the values stated for the two regime are taken for CL2/CL1 = CR1/CR2 = 0.2
and the margins stems from the maximum and minimum values in CL2/CL1 = CR1/CR2 =
0.1− 0.3.
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CL2/CL1 0.1 0.3 0.1 0.3 0.2 0.01 0.15
CR1/CR2 0.1 0.1 0.3 0.3 0.2 0.01 0.2
Cg1 [aF] 0.558 0.488 1.116 1.027 0.817 0.085 0.839
Cg2 - 3.06 3.036 2.703 2.689 2.861 3.19 2.866
CL1 - 12.78 6.829 7.790 5.289 6.940 351.5 7.811
CL2 - 1.28 2.049 0.779 1.587 1.388 3.51 1.718
CR1 - 0.518 0.497 1.296 1.252 0.917 0.057 0.9259
CR2 - 5.174 4.974 4.320 4.1732 4.585 5.73 4.629
Cm - 3.999 3.450 7.743 7.067 5.702 0.627 5.870
EC1 [meV] 9.6 15.4 11.4 14.0 13.2 0.685 12.25
EC2 - 12.7 12.9 13.1 13.2 13.1 12.3 13.02
ECm - 2.84 3.94 5.66 6.4 5.2 0.22 4.95
αg1 0.088 0.122 0.175 0.197 0.160 0.007 0.153
αg2 0.252 0.256 0.261 0.263 0.259 0.245 0.259
αV 1 0.666 0.538 0.336 0.250 0.393 0.974 0.420
αV 2 0.091 0.079 0.061 0.053 0.066 0.119 0.068

Table 4.3: High-bias regime: the capacitances, charging energies and lever
arms for the ratios CL2/CL1 and CR1/CR2 between 0.1-0.3. Also the values
for CL2/CL1 = CR1/CR2 = 0.01 (almost vanishing lead-next-to-nearest-dot
capacitance) and CL2/CL1 = 0.15 and CR1/CR2 = 0.20 are shown.

0.5 aF, inline with the value of Cg1.10 At the moment no clear explanation of
the unexpected large value of Cg2 exists.

4.4 Discussion and conclusion

An electrostatic model extending the work of Ref. [17] by including the next-to-
nearest-lead-dot capacitances was presented, but it only contained a common
backgate for both dots. As the dI/dV -data provided an insufficient number
of parameters to determine all capacitances, the capacitances were calculated
using a finite-element solver. The ratios for the lead-next-to-nearest-dot/lead-
dot capacitances were taken as an input when estimating the charging energies
and lever arms. Clear shell structure was seen, compatible with a hexagonal
or a circular cross-section of the wire.

There are, however, some limitations of the applied method. From the ex-
perimental data, it is difficult to determine the position of the various lines

10For single dots in InAs-InP nanowires they report in [15] that the gate capacitance varies
linearly with dot length between 1aF to 10aF for dots between 10 nm to 100 nm.
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unambiguously, as the lines are rather broad. Especially, the resonance lines
are problematic. Moreover, for the model calculation the laws of macroscopic
electrodynamics were applied to objects which, concerning the barriers, are
only several atom layers thick, and impurities and doping have not been taken
into account. Consequently, the values found for the charging energies should
be taken as order of magnitude estimates, rather than exact quantities. Never-
theless, the values found for the intra-dot charging energies, EC1,C2, are com-
parable to values obtained for similar single dots in heterostructure nanowires
[15].

In summary, it is concluded that next-to-nearest lead-dot capacitances are
important for a quantitative description of multiple dot structures embedded in
nanowires. However, these cannot be determined from transport experiments
with no gate control of the individual dots but only having a common backgate.

A way of overcoming the problem of estimating the lead-next-to-nearest-dot
capacitances would be to obtain individual gate control over the dots, which
might be possible by placing the nanowire on a grid of gates. This was realized
for a homogeneous wire, thereby creating electrostatically defined dots in the
wire [21]. However, placing the heterostructure wire on the grid and obtaining
the individual gate control seems to be an experimental challenge, as the exact
location of the double quantum dot structure is difficult to determine.
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5

Density matrix quantum
transport

The main content of this chapter is a theoretical method for calculating trans-
port through nanostructures presented in Sec. 5.3, which was published in
Paper II and subsequently applied in Paper III-IV. In this chapter the method
is put into context by discussing other approaches to quantum transport.

Below quantum transport through an open system, consisting of two (or
more) leads connected to a central region is considered. The central region
can be, e.g., a single or more quantum dots, a molecule, a carbon nanotube or
a nanowire. In the rest of this thesis, the central region will be denoted the
“quantum dot”.

The system is described by a generic tunneling Hamiltonian, consisting of
three parts,

H = HD + Hleads + HT , (5.1)

describing the dot, the leads and the tunneling between the leads and the dot,
respectively. The Hamiltonians will be further specified in Sec. 5.3.
Often the leads are modelled as non-interacting, while complicated many-body
interactions might be present on the dot. The size of the dot is assumed to be
so small that discrete quantum mechanical levels dominate the spectrum.

As an example of a generic model for this kind of setup, consider the Ander-
son model consisting of a single spinful level with an on-site Coulomb repulsion,
U , and coupled to two reservoirs. Much theoretical work, numerical as well as
analytical, has been devoted to this model and variations hereof, e.g., with the
inclusion of more levels, vibrations, etc. When choosing the method for solving
the transport problem, the energy scales to consider are the temperature of the
leads times the Boltzmann factor, kBT , the coupling strength1, Γ, and finally

1The coupling strength depends on the specific system, but for a single level without spin
the energy-dependent coupling strength is defined as Γ(E) = 2π

∑
k |tk|2δ(E −Ek), with tk

being the tunneling amplitude between the dot state and a state k in one of the leads with
energy Ek. Examples are given in Chap. 6-8.
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the on-site Coulomb interactions, U .

In the regime of strong tunneling coupling, where the temperature is much
smaller than the tunneling coupling, kBT/Γ ¿ 1, and the Coulomb repulsion
is comparable to the coupling strength, U ∼ Γ, the Anderson model displays
the much studied Kondo effect, see, e.g., [22]. Among other features, the
Kondo effect gives in the linear response regime at zero temperature perfect
transmission through the dot, i.e. the conductance is G = 2e2/h, even when
the level is away from resonance. This is due to the formation of a correlated
many-body state between the lead and the dot electrons. The investigation
of the temperature dependence, magnetic field dependence, etc., requires non-
perturbative methods, such as scaling or various renormalization group schemes
[23, 24, 25, 26, 27]. However, several of these methods are restricted to zero
temperature and/or the linear response regime, and often they are numerically
expensive.

In the opposite regime, kBT/Γ À 1, but still with a large Coulomb repulsion
U & max{Γ, kBT}, a much applied tool is the (generalized) master equation
approach, also denoted the density matrix approach [28, 29, 30, 31, 32, 33],
which will be discussed in Sec. 5.2. The method is applicable at finite bias, but
often the effects of the leads are only included to lowest order in the tunneling
coupling. Thereby all broadening of the levels is due to temperature, neglecting
the level broadening due to the couplings to reservoirs. Higher-order effects
such as interference or pair-tunneling are also not included.

Finally, when the Coulomb repulsion is not too large compared to the
coupling strength, a transmission formalism is frequently applied, e.g., the
nonequilibrium Green function formalism [34, 35]. This allows for including
the broadening of the levels due to the coupling to leads and the description
of higher-order effects, but the inclusion of interactions beyond the mean-field
level is complicated [35].

In Paper II a method aiming at bridging the gap between the master equa-
tions and the transmission formalism is introduced. The method is based on
the density matrix formalism, and by working in a basis of many-particle states
of the dot Hamiltonian, correlations on the dot are taken fully into account.
The method goes beyond the lowest-order expansion in the lead-dot coupling
(the sequential tunneling approximation) by including coherent processes up
to second order in the tunneling amplitude.

In the rest of this chapter, the use of the density matrix approach is briefly
motivated in Sec. 5.1, and in Sec. 5.2 three approaches for deriving the gen-
eralized master equations are outlined. In Sec. 5.3 the formalism introduced
in Paper II is presented, and in Sec. 5.4 the applied approximation scheme is
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more thoroughly discussed. Finally, a comparison with other methods is found
in Sec. 5.5, and Sec. 5.6 contains the conclusions.

5.1 The density matrix approach

The density matrix approach is often used when considering transport through
nanostructures. The central object is the density operator

ρ(t) =
∑

i

Wi|i(t)〉〈i(t)| (5.2)

with { i(t)〉} being a complete basis set for the total system Hamiltonian, H,
and Wi ∈ [0, 1] being the (classical) probability to find the system in state
i〉 at some initial time t0. Due to the time evolution of the states, the time

evolution of the density operator is governed by the von Neumann equation2

i~
d
dt

ρ = −[ρ, H]. (5.3)

The motivation for studying the density operator is that the expectation value
of any operator, A, is given as

〈A〉 = Tr [ρA] , (5.4)

where the trace is over a complete basis set. If the system can be divided
into (at least) two subsystems, as in our case the leads and the dot, it is often
assumed that at some initial time the densities can be factorized into a lead
and a dot part, ρ(t0) = ρ0

leads ⊗ ρ0
dot. The tunneling Hamiltonian, HT , couples

the two subsystems, and mixing will occur. In the density matrix approach,
the goal is to apply an approximation scheme, which allows for calculating an
expression for the reduced dot density operator

ρdot(t) = Trleads [ρ(t)] , (5.5)

where the trace is over a complete set of lead states. This is achieved by find-
ing a kinetic equation for the reduced dot density operator (or equivalently, the
elements of the reduced dot density matrix), where the effects of the coupling
to the reservoirs have been incorporated.

5.2 Generalized Master Equations

Below three different approaches for deriving the kinetic equations for the re-
duced dot density matrix are outlined. In some physical problems it is justified

2The Hamilton is assumed time-independent.
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to consider only the diagonal elements, although correlations between different
states might be present. Below this approach will be denoted the (Pauli) Mas-
ter Equation (ME) approach. However, in other situations the inclusion of the
off-diagonal elements of the reduced dot density matrix is crucial, and the set
of equations including the off-diagonal elements will be called the Generalized
Master Equation (GME) approach.3

A much used approach is the so-called Wangness-Bloch-Redfield method
(WBR) [28, 36]. Using the von Neumann equation for the density operator one
can derive an expression for the density operator [37]

ρdot(t) = −i [Hdot, ρdot(t)]

−
∫ ∞

0

dτTr
[
HT ,

[
e−i(Hdot+Hleads)τHT e−i(Hdot+Hleads)τ , ρdot(t)⊗ ρ0

leads

]]
,

(5.6)

with ρ0
leads being the density matrix for the isolated, non-interacting leads. In

the derivation the ”large-reservoir” assumption, i.e. the leads are unaffected by
the tunneling between the leads and the dot, has been applied to second order
in the tunneling amplitude, restricting Eq. (5.6) to the sequential tunneling
limit. Also a Markov approximation has been used, and both approximations
will be discussed in Sec. 5.3.4 By tracing over a complete set of lead states
and many-particle states of the dot, a matrix equation for the elements of the
reduced dot density matrix is obtained, see, e.g., Ref. [37].

Another route to derive a set of generalized master equations was directed
by Gurvitz and Prager [29, 30]. Starting from the many-body Schrödinger wave
function, they were able to derive a closed set of equations for the elements of
the N -resolved reduced density matrix including the off-diagonal elements, by
keeping track of the number N of electrons entering one of the leads. As the
GME is N -resolved it gives access not only to the steady-state current, but
also to higher-order cumulants such as, e.g., the shot-noise [38]. The method
has been applied to tunneling through single, double and multi-dot arrays,
also including inelastic processes [29, 30], to nano-electromechanical systems
[39, 40], as well as to systems with a quantum dot electrostatically coupled to
a quantum point contact, where the latter acts as a charge detector [41].

The method works in a single-particle basis, but is restricted to the high-
bias limit. I.e. the energies of all states, Ea, are far away from the chemical
potentials of the leads, µα, i.e. max(kBT, Γ) ¿ |Ea− µα|, but in this limit the

3When keeping the off-diagonal elements, the resulting set of equations are sometimes
also denoted Quantum Master Equations.

4In [37] it is shown how to derive an expression valid to higher orders in the tunneling
amplitude by using the ”large-reservoir” approximation differently.
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method is exact.

As a last example, Schoeller and Schön developed a method for diagram-
matically deriving a (generalized) master equation for the case of a metallic dot
[31], and later König, Schmid, Schoeller, and Schön considered the case of a
single quantum dot [32, 33]. This technique is frequently named the Diagram-
matic Real-time Transport Theory (DRTT).

The key idea is to consider the quantum mechanical average of a given
operator at time t, A(t),

〈A(t)〉 = Tr
[
ρ0TKe−i

∫
K

dt′HT (t′)I A(t)I

]
, (5.7)

where the operators are written in the interaction picture and ρ0 is the density
matrix at t0. The integral runs along the Keldysh contour from time t0 = −∞
forward in time to time t, and backward to t0 = −∞, where TK is the time-
ordering operator along the Keldysh contour.5 By expanding the exponential
in Eq. (5.7) in powers of the tunneling part of the Hamiltonian, HT (t)I , they
can translate the resulting expression into a diagrammatic language similar
to Feynman diagrams. They now proceed in two different ways: Either by
deriving a generalized master equation in finite-order perturbation theory for
the elements of the reduced density matrix of the dot, or by considering also
correlations between the leads and the dot by including at most one electron-
hole pair, the so-called “resonant tunneling approximation” (RTA). The latter
is further discussed in Sec. 5.5.

In the finite-order perturbation theory, they consider the average of the
projection operator between the many-particle states χ1,χ2, |χ2〉〈χ1|. I.e. the
elements of the reduced dot density matrix, Pχ1

χ2
(t) = 〈(|χ2〉〈χ1|)(t)〉. The

equation of motion for these elements can be expressed as [42]

d
dt

Pχ1
χ2

(t) + i(Eχ1 − Eχ2)P
χ1
χ2

(t) =
∑

χ′1χ′2

∫ t

t0

dt′Pχ′1
χ′2

(t′)Σχ′1,χ1

χ′2,χ2
(t′, t) (5.8)

with Σχ′1,χ1

χ′2,χ2
(t′, t) being the irreducible self-energy part of the propagator from

χ′1 at time t′ forward to χ1 at time t, and then from χ2 at time t backward to
χ′2 at time t0.6 Equation (5.8) is completely general and can also incorporate
time-dependent phenomena, but it of course depends on the approximations
for the self-energy.

5Working on the Keldysh contour is similar to the nonequilibrium Green function (NEGF)
formalism, see, e.g., [35]. However, in the latter formalism only single-particle operators are
considered, while in the DRTT the operators are, e.g., many-body projection operators.
Furthermore, in the DRTT only the value of a single operator at one time is evaluated, while
in the NEGF formalism, the Green function have a two-time structure.

6This is similar to the self-energy in the Dyson equation for Green functions.
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For the steady-state limit, they derive an equation satisfied by the elements
of the reduced dot density matrix,

0 =
∑

χ′
Pχ′Σχ′,χ, (5.9)

where they for simplicity only consider the diagonal elements, Pχ
χ = Pχ. Ex-

panding both the self-energy and the density-matrix elements in powers of the
square of the tunneling amplitude, |T |2, they find to each order p in |T |2 that

0 =
∑

m+m′=p

∑

χ′
P

(m)
χ′ Σ(m′)

χ′,χ (5.10)

where the self-energy is at least first order in |T |2.7
By solving Eq. (5.10) for each order separately, the elements can be calcu-

lated to any finite order, and so can the current. In the sequential tunneling
regime, the method has been applied to various problems such as spin-valve
geometries [43, 44] as well as to the calculation of current noise [45]. Several
works including cotunneling processes have been made, e.g., cotunneling at res-
onance [46], inelastic cotunneling processes [47, 48], models with ferromagnetic
leads [49], and also current noise [50, 51].

This order-by-order expansion is very appealing, but might not always be
possible as discussed in Chap. 8, where inelastic cotunneling is treated.

In summary, three examples of methods for deriving generalized master
equations were presented. They all have in common that only the elements of
the reduced dot density matrix are kept, and all effects of the leads have been
put into the tunneling rates or, equivalently, the self-energy.

Calculating these rates to arbitrary order in the tunneling coupling allows
for an expansion of the dot density matrix elements. To lowest order in the
tunneling coupling, the rates correspond to the rates obtained using Fermi’s
Golden Rule, and the corresponding stationary occupations can be found. In-
troducing higher-order rates gives corrections to the stationary occupations as
well as to any other observable, such as, e.g., the current.

5.3 The second order von Neumann approach

In this section the transport formalism introduced in Paper II is reviewed, al-
though it is presented in a slightly different way. In the coming sections the
advantages and disadvantages of the scheme are more thoroughly discussed.

7T is used for the tunnel amplitude between many-particle states. The temperature is
always described by the energy scale kBT in order to avoid confusion.
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The method will below be denoted the 2vN approach. It is an extension of
the generalized master equation approach as not only a kinetic equation for
the reduced dot density matrix is derived but also a kinetic equation for the
elements of the total density matrix consisting of a single electron-hole pair.
I.e. the density matrix of the total system is not completely factorized into a
lead and a dot part. This resembles the “resonant tunneling approximation”
in the DRTT [31, 32, 33], which is discussed in Sec. 5.5.

As above, the physical system in consideration consists of two (or more)
leads coupled to a quantum dot. The leads are modelled as non-interacting
reservoirs, each having a well-defined chemical potential µi and a temperature
denoted by the energy kBT . On the dot all kinds of complicated many-body
interactions such as, e.g., the Coulomb effect might be present, but it is assumed
that without the coupling to the leads, the Hamiltonian of the isolated quantum
can be diagonalized and the eigenstates, |a〉, and corresponding eigenenergies,
Ea, are known.

In a many-particle basis, the three terms in the Hamiltonian for the total
system in Eq. (5.1) can be written as

HD =
∑

a

Ea|a〉〈a|, (5.11)

describing the dot, and

Hleads =
∑

kσ`

Ekσ`c
†
kσ`ckσ`, (5.12)

describing the non-interacting leads, where σ =↑, ↓ denotes the spin, k labels
the spatial wave functions of the contact states and ` denotes the lead. The
last part in the Hamiltonian expresses the tunneling between the states in the
leads and the dot8

HT =
∑

kσ`,ab

[
Tba(kσ`)|b〉〈a|ckσ` + c†kσ`|a〉〈b|T ∗ba(kσ`)

]
. (5.13)

The matrix element Tba(kσ`) is the scattering amplitude for an electron in the
state kσ` tunneling from the lead onto the dot, thereby changing the dot state
from the state |a〉 to a state |b〉. Note that this amplitude vanishes unless the
number of electrons in state |b〉, Nb, equals Na+1. In general states are denoted
such that the particle number increases with the position in the alphabet of
the denoting letter.

A general state vector for the entire system is written as |ag〉 = |a〉 ⊗ |g〉,
with |g〉 = |{Nkσ`}〉 denoting the state of both leads where Nkσ` ∈ {0, 1}.

8How to transform the tunneling Hamiltonian from a single-particle to a many-particle
basis is described in Paper II App. A.
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To ensure the anti-commutator rules of the operators the following notation is
used

• g − kσ`〉 ≡ ckσ` g〉 and g + kσ`〉 ≡ c†kσ` g〉.
I.e. g − kσ`〉 denotes the same set of indices as the state g〉, but with
Nkσ` reduced by one. Furthermore it contains a minus sign depending
on the number of occupied states to the left of the position kσ`.

• gkσ`〉 ≡ c†kσ`ckσ` g〉 and gkσ`
〉 ≡ ckσ`c

†
kσ` g〉. I.e., gkσ`〉=δNkσ`,1|g〉.

• The order of indices is opposite to the order of the operators. E.g.
g − k′σ′`′ + kσ`〉=c†kσ`ck′σ′`′ g〉=−ck′σ′`′c

†
kσ` g〉=− g + kσ`− k′σ′`′〉

for kσ` 6= k′σ′`′, which is tacitly assumed, unless stated otherwise.

To simplify the notation, σ` is only attached to k the first time the index k
appears in the equation, and below it is implicitly assumed to be connected
with k. Furthermore, the convention is applied that

∑
kσ(`) means summing

over k and σ with a fixed `, which is being connected to k in this sum.

The density matrix elements are defined as ρ
[n]
ag;bg′ = 〈ag ρ̂ bg′〉 and com-

pared to the derivation in Paper II, the notation has been extended by attaching
a label, n. It is defined as the total number of electron-hole pairs (ehp) involved
in the two states bg′〉 and ag〉, e.g., ρ

[1]
bg−k;ag and ρ

[2]
cg−k;ag+k′ , where holes can

be in the leads or on the dot. In other words, n counts the number of different
k-states present in the density matrix element, and the elements are denoted
n-ehp elements.

The time-evolution of the elements of the density matrix is governed by the
von Neumann equation

i~
d
dt

ρ
[n]
ag;bg′ = 〈ag Hρ− ρH bg′〉 (5.14)

Note that the method is formulated in the Schrödinger picture, while in other
works, the density matrix is often transformed to the interaction picture, ρ(t)I =
eiHT tρ(t)e−iHT t, and the time evolution and the approximations are performed
in the interaction picture, see, e.g., [28, 32, 33]. This will be further discussed
Sec. 5.5.

The particle current from the left lead into the structure, JL, equals the
rate of change of the occupations in the left lead. This gives

JL = − d
dt

∑

kσ(L)

〈
c†kck

〉
= − d

dt

∑

kσ(L)

ρ
[0]
bg,bgk

= −2
~

∑

kσ(L),cb

=
{∑

g

T ∗cb(k)ρ[1]
cg−k;bg

}
,

(5.15)
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i.e. the current is expressed in terms of off-diagonal elements of the total density
matrix connecting two dot states, where the number of electrons differ by one.

Without any approximations, the equations of motion for the 0-ehp and
1-ehp elements read

i~
d
dt

ρ
[0]
bg;b′g =(Eb − Eb′)ρ

[0]
bg;b′g

+
∑

a,kσ`

Tba(k)ρ[1]
ag+k;b′g +

∑

c,kσ`

T ∗cb(k)ρ[1]
cg−k;b′g

−
∑

c,kσ`

ρ
[1]
bg;cg−kTcb′(k)−

∑

a,kσ`

ρ
[1]
bg;ag+kT ∗b′a(k),

(5.16)

i~
d
dt

ρ
[1]
cg−kσ`;bg = (Ec − Eb − Ek)ρ[1]

cg−k;bg

+
∑

b′
Tcb′(k)ρ[0]

b′gk;bg −
∑

c′
ρ
[0]
cg−k;c′g−kTc′b(k)

+
∑

k′σ′`′

[∑

b′
Tcb′(k′)ρ

[2]
b′g−k+k′;bg +

∑

d

T ∗dc(k
′)ρ[2]

dg−k−k′;bg

−
∑

c′
ρ
[2]
cg−k;c′g−k′Tc′b(k′)−

∑
a

ρ
[2]
cg−k;ag+k′T

∗
ba(k′)

]
.

(5.17)

Note how the 1-ehp density matrix element is coupled to elements with n equal
to 0 and 2, but it does not couple to other 1-ehp elements.

The equation of motion for the 2-ehp elements is derived similarly, but here
the first approximation is used: (i) only coherent processes involving transitions
of at most two different k-states are considered. For the first element in the
square bracket in Eq. (5.17) this gives (the expressions for the other 2-ehp
elements can be found in Paper II App. B.)

i~
d
dt

ρ
[2]
b′g−kσ`+k′σ′`′;bg = (Eb′ + Ek′ − Eb − Ek)ρ[2]

b′g−k+k′;bg

−
∑

a

Tb′a(k)ρ[1]
agk+k′;bg +

∑

c′
T ∗c′b′(k

′)ρ[1]

c′g−kk′;bg

−
∑

c′
ρ
[1]
b′g−k+k′;c′g−kTc′b(k)−

∑
a

ρ
[1]
b′g−k+k′;ag+k′T

∗
ba(k′)

(5.18)

Neglecting elements with n ≥ 3 lead to a closed set of equations, where the
2-ehp elements only depend on themselves and 1-ehp elements.

For all three types of density matrix elements, ρ
[n]
ag;bg with n = 0, 1, 2, a

sum over all possible lead configurations,
∑

g, is carried out and the following
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notation is introduced9

Φ[0]
b′b =

∑
g

ρ
[0]
b′g;bg, (5.19)

Φ[1]
ba(kσ`) =

∑
g

ρ
[1]
bg−k;ag, (5.20)

Φ[2]
ca(−kσ`; +k′σ′`′) =

∑
g

ρ
[2]
cg−kσ`;ag+k′σ′`′ . (5.21)

Keeping the numbering of the approximations as in Paper II, the third(!) ap-
proximation is invoked, saying that (iii) the level occupations in the leads, fkσ`,
are unaffected by the couplings to the dot, i.e. the densities in the leads and on
the dot can be factorized. It means that for states requiring a specific k-state
being occupied or empty, the approximation

∑
g

ρb′gk;bg =
∑

g

δNk,1ρb′g;bg ≈ fk

∑
g

ρb′g;bg = fkΦ[0]
b′b, (5.22)

is applied, and similar for the empty states.
The resulting expressions for the 0- and 1-ehp elements, together with an

example of a 2-ehp element, Eqs. (5.16)-(5.18), read10

i~
d
dt

Φ[0]
bb′ = (Eb − Eb′)Φ

[0]
bb′ +

∑

a,kσ`

(
Tba(k)[Φ[1]

b′a(k)]∗ − Φ[1]
ba(k)T ∗b′a(k)

)

+
∑

c,kσ`

(
T ∗cb(k)Φ[1]

cb′(k)− [Φ[1]
cb (k)]∗Tcb′(k)

) (5.23)

i~
d
dt

Φ[1]
cb (kσ`) = (Ec − Eb −Ek)Φ[1]

cb (kσ`)

+
∑

b′
Tcb′(k)fkΦ[0]

b′b −
∑

c′
Φ[0]

cc′(1− fk)Tc′b(k)

+
∑

k′σ′`′

[∑

b′
Tcb′(k′)Φ

[2]
b′b(−k + k′; 0) +

∑

d

T ∗dc(k
′)Φ[2]

db (−k − k′; 0)

−
∑

c′
Φ[2]

cc′(−k;−k′)Tc′b(k′)−
∑

a

Φ[2]
ca(−k; +k′)T ∗ba(k′)

]
,

(5.24)

i~
d
dt

Φ[2]
b′b(−kσ` + k′σ′`′; 0) = (Eb′ + Ek′ − Eb − Ek)Φ[2]

b′b(−k + k′; 0)

−
∑

a

fkTb′a(k)[Φ[1]
ba(k′)]∗ +

∑

c′
(1− fk′)T ∗c′b′(k

′)Φ[1]
c′b(k)

−
∑

c′
[Φ[1]

c′b′(k
′)]∗(1− fk)Tc′b(k)−

∑
a

Φ[1]
b′a(k)fk′T

∗
ba(k′),

(5.25)

9In Paper II, Φ
[0]
b′b and Φ

[1]
ba (kσ`) are denoted w

b′b and φba(kσ`), respectively.
10See Paper II App. B for details.
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The 0-ehp elements are the elements of the reduced dot density matrix also
contained in the generalized master equation approach as outlined in Sec. 5.2.
Elements with n ≥ 1 include correlations between the lead and the dot states,
and can be viewed as expectation values for coherent superpositions between
states located in the leads and on the dot.

Defining a discrete set of k-states, one can set up a column vector consisting
of all the elements of the density-matrix Φ =

(
Φ[0],Φ[1],Φ[2]

)
, where the sub-

vectors contain all the elements of the density-matrix with a specific n-value,
as well as the complex conjugates of the complex elements. The equation of
motion for the vector Φ can be cast on a matrix form11

i~
d
dt

Φ =




E
00

M
01

0
M

10
E

11
M

12
0 M

21
E

22


Φ = MΦ. (5.26)

The submatrices Enn are diagonal and contain the energy differences between
the states involved, see Eqs. (5.23)-(5.25).

In Paper II the derivation continues by using the second assumption, (ii),
that the time dependence of terms generating two-electron transition processes
is neglected, which corresponds to the Markov limit [52]. I.e. i~ d

dtΦ
[2] = 0, and

then solve for the stationary Φ[2], which depends only on Φ[1]. As an example,
Eq. (5.25) gives12

Φ[2]
b′b(−kσ` + k′σ′`′; 0) =

1
Eb′ + Ek′ − Eb − Ek + i0+

×
{
−

∑
a

fkTb′a(k)
[
Φ[1]

ba(k′)
]∗

+
∑

c′
(1− fk′)T ∗c′b′(k

′)Φ[1]
c′b(k)

−
∑

c′

[
Φ[1]

c′b′(k
′)

]∗
(−fk)Tc′b(k)−

∑
a

Φ[1]
b′a(k)fk′T

∗
ba(k′)

}
.

(5.27)

Inserting the result in Eq. (5.26) leads to an expression for the time-dependence
of the vector Φ̃ =

(
Φ[0],Φ[1]

)
,

i~
d
dt

Φ̃ =
(

E
00

M
01

M
10

M
11

)
Φ̃ = M̃Φ̃. (5.28)

where the sub-matrix M
11

is not diagonal. I.e. it is not possible to express Φ[1]

solely in terms of Φ[0] thereby reducing the problem to a generalized master
equation.

11The matrix M is sometimes denoted a superoperator, as it acts on the density matrix,
and not on a state vector.

12A factor of−i0+Φ
[2]
b′b(−kσ`+k′σ′`′; 0) has been added to ensure decay of initial conditions

as t0 → −∞.
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The explicit, and completely general, expression for the equation of motion
for the elements in the vector Φ̃ is found in Eqs. (10)-(11) in Paper II, and is
the main result of that paper.

Inspecting the structure of the equation of motion for the 0- and 1-ehp
elements shows that they have the generic structure

i~
d
dt

Φ[0]
bb′ = (Eb − Eb′)Φ

[0]
bb′ +

∑
TΦ[1], (5.29)

i~
d
dt

Φ[1](k) = (Ec − Eb − Ek)Φ[1](k) +
∑ [

fkTΦ[0]
cb − (1− fk)TΦ[0]

c′b′

]

+
∑

k′

[
fkTT (∗)

∆E − Ek ± Ek′
Φ[1]

ji −
(1− fk)TT (∗)

∆E − Ek ± Ek′
Φ[1]

lk

]
, (5.30)

with ∆E being the energy difference between two dot states involved. That is
in Eq. (5.28) the sub-matrices M

10
and M

01
contain elements proportional to

the tunneling amplitude T , and the matrix M
11

involves terms proportional

to T 2. Solving for the stationary Φ̃ together with the normalization
∑

b Φ[0]
bb =

1, involves inversion of the matrix M̃, and the resulting inverse matrix will
contain all powers of T , and so will the stationary occupations and coherences.
Consequently, this is not a systematic expansion in powers of the tunneling
coupling.

This contrasts, e.g., the generalized master equation approach in the sequen-
tial tunneling approximation, where all terms in the kinetic equation related to
scattering between the dot states are proportional to |T |2. Upon inverting the
matrix, the occupations become zeroth-order in |T |2, and the resulting current
is proportional to |T |2, i.e. the coupling strength Γ.

In conclusion, the standard generalized master equation scheme has been
extended by also deriving a kinetic equation for the elements of the total density
matrix involving states with at most a single electron-hole pair. In deriving the
latter equation, all processes including up to two electron-hole pairs are taken
into account, but in the kinetic equation for those elements approximations
were made in order to close the equations.

The resulting set of equations do not give a systematic expansion of the
0- and 1-ehp elements in powers of the tunneling amplitude, but is rather a
non-perturbative approach, as some coherent processes between the leads and
the dots are fully kept.

In the next section the applied approximation scheme is discussed in more
detail.
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5.4 The applied approximation scheme in the
2vN approach

In deriving the closed set of equations for the elements of the total density
matrix involving zero or a single electron-hole pair, Eq. (5.28), three approx-
imations were applied; (i) only coherent processes involving transitions of at
most two different k-states are considered, (ii) the time-dependence of terms
generating two-electron transition processes is neglected, which corresponds to
the Markov limit [52], and (iii) the level occupations in the leads, fkσ`, is un-
affected by the couplings to the dot, i.e. the densities in the leads and on the
dot can be factorized.

The first approximation is necessary in order to truncate the equation of
motion for the total density matrix, i.e. the Liouville space is restricted to only
contain elements with a total of at most two electron-hole pairs. The physical
motivation behind is that if the coupling between the leads and the dot is suf-
ficiently weak, the states containing three or more electrons-hole pairs decay
so fast that the dynamics of the elements with up to 2 electron-hole pairs are
unaffected by these terms, i.e., ρ[3](t) ' 0. The validity of the assumption de-
pends on the time-scale between consecutive tunneling events (set by 1/Γ) and
the temperature of the leads which determine the decay time of the excitations
in the leads. As a consequence, this assumption is assumed to break down for
temperatures much lower than the coupling constant. The applicability of the
assumption also depends on the geometry of the contacts.

The third approximation is also related to the properties of the leads. If the
leads are assumed to be large reservoirs, the occupations of the lead states are
unaffected by the coupling to the dot, and an effective decoupling is performed,
ρ ≈ ρleads ⊗ ρdot. This is only valid if the relaxation time of the leads is short
compared to the time between consecutive tunneling events.

The second approximation is only applied to the elements with two electron-
hole pairs. In the kinetic equation for these elements, they are, due to the first
assumption, coupled solely to one electron-hole pair elements. The assumption
is that the 1-ehp elements are evolving slowly in time compared to the 2-ehp
elements, and consequently can be considered as local in time. I.e. in the
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solution of Eq. (5.18),

ρ
[2]
b′g−kσ`+k′σ′`′;bg(t) =

1
i~

∫ t

−∞
dt′e(Eb+Ek−Eb′Ek′+i0+)(t−t′)/~

× [−
∑

a

Tb′a(k)ρ[1]
agk+k′;bg(t

′) + ...
]

' 1
i~

[−
∑

a

Tb′a(k)ρ[1]
agk+k′;bg(t) + ...

]

∫ t

−∞
dt′e(Eb+Ek−Eb′Ek′+i0+)(t−t′)/~,

(5.31)

where the assumption ρ
[1]
agk+k′;bg(t

′) ' ρ
[1]
agk+k′;bg(t) has been used, which allows

for an analytic evaluation of the integral. The assumption becomes exact in
the stationary limit.

If the above mentioned approximations are valid, it was proven analytically
in Paper II that for a single spinless level the method gives the exact result
for the stationary current. For the non-interacting Anderson model and the
non-interacting double quantum dot structure, it was verified numerically that
the exact results are obtained.

The validity of the approach for time-dependent problems has not been
carefully investigated. As the Markov approximation is invoked, it might not
be valid for strongly time-dependent systems, where non-Markovian effects
are important due to memory effects, which are also relevant when evaluating
higher-order moments, such as e.g., the noise [51, 53]. As an example, the
current through a single spinless level was presented in Paper II Sec. III.

5.5 Comparison with other methods

Two different cases are considered. Either an expansion to lowest order in the
lead-dot coupling, i.e. the sequential tunneling regime, or the full 2vN ap-
proach. Both will be discussed below.

The sequential tunneling expression for the reduced dot density matrix el-
ements is derived by neglecting the 2-ehp elements in the square-bracket in
Eq. (5.24), and the resulting equation of motion for Φ[1]

cb only depends on 0-ehp
elements. I.e. in Eq. (5.28) the sub-matrix M

11
has been replaced by the diag-

onal sub-matrix E
11

. Taking the stationary limit, i~ d
dtΦ

[1]
cb = 0, and inserting

the expression into the equation of motion for the 0-ehp elements, it ends up
with a kinetic equation solely for the elements of the reduced dot density ma-
trix, Φ[0]

bb′ , where all terms describing scattering are proportional to |T |2. The
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resulting set of generalized master equations is shown in Paper III App. A and
is denoted the first-order von Neumann (1vN) result.

The generalized master equations in the 1vN approach is similar to the set
derived using the WBR approach (or the DRTT technique).13 However, in
the 1vN approach the time evolution of the density matrix elements is done
in the Schrödinger picture, while in the WBR approach the time evolution is
performed in the interaction picture, which gives a difference due to the Markov
approximation for the off-diagonal elements Φ[0]

bb′(t
′):

Solving Eq. (5.24) while neglecting the 2-ehp elements, gives

Φ[1]
cb (kσ`)(t) =

1
i~

∫ t

−∞
dt′ei(Eb+Ek−Ec+i0+)(t−t′)/~

[∑

b′
Tcb′(k)Φ[0]

b′b(t
′)fk −

∑

c′
Φ[0]

cc′(t
′)Tc′b(k)(1− fk)

]

(5.32)

In the 1vN approach, the procedure continues as for the 2-ehp elements in the
2vN approach in Eq. (5.31) by approximating Φ[0]

b′b(t
′) ' Φ[0]

b′b(t) and then per-
form the integral analytically. This approach is exact in the stationary limit.
Another possibility is that the off-diagonal elements, describing a superposi-
tion between the two dot states with different energies, oscillate according to
Φ[0]

b′b(t
′) ' Φ[0]

b′b(t)e
−i(Eb′−Eb)(t−t′)/~, which also allows for an analytic evalu-

ation of the integral. The latter approximation corresponds to evolving the
density matrix in time and applying the Markov approximation in the interac-
tion picture, as in the WBR approach.

The difference between the 1vN and the WBR approaches results in slightly
different energy denominators for the WBR equation system compared to the
expression found in Eq. (A2) in Paper III. As a consequence the occupations
of the lead states are evaluated at different energies, but in the high-bias limit
the results of the methods are identical. For the double quantum dot system
described in Chap. 6, only minor numerical differences between the two ap-
proximation schemes are found, even at finite bias.14

An approach which also goes beyond the order-by-order expansion was, as
mentioned in Sec. 5.2, derived by Schoeller et al. in the framework of the
diagrammatic real-time transport theory (DRTT), which is the so-called reso-
nant tunneling approximation (RTA). In the RTA approximation, elements in
the full density matrix of the system consisting of up to a single electron-hole

13According to Ref. [37] an extension of WBR to higher-order in the tunneling coupling
and the DRTT approach give identical results to all orders in the tunneling coupling in an
order-by-order expansion.

14For a further discussion of these issues, see Ref. [54].



42 Density matrix quantum transport

pair are kept, similar to the ρ
[1]
cg−k,b elements in the 2vN approach. For the

single-level Anderson model with spin-degenerate levels and infinite Coulomb
repulsion, it was shown in Paper III that exactly the same analytic expression
is obtained using both methods. However, as they derive a propagator for the
elements on the Keldysh contour, a direct comparison for arbitrary model sys-
tems is difficult. A possible difference between the methods might be that the
DRTT-RTA is formulated in the interaction picture, which might give the same
deviation between the methods as for the first-order results presented above.15

The advantage of the 2vN scheme could be that it gives a closed expression
valid for arbitrary model systems, see Eqs. (10),(11) in Paper II.

The DRTT-RTA was originally developed for metallic dots [31], and later
used to explain experiments [56, 57] on a single quantum defect in point con-
tacts showing Kondo physics, [32, 33, 42]. It was found that it gave reasonable
results for temperatures smaller than the Kondo temperature, but it was not
valid all the way to zero temperature. Later the DRTT-RTA method was ap-
plied to explain experiments on a single quantum dot in the Coulomb blockade
regime, where the barriers were very asymmetric. The broadening at the onset
of the current showed a clear dependence on the direction of the bias [58].16

Finally, Utsumi et al. considered a single-level quantum dot coupled to ferro-
magnetic leads and extended the DRTT-RTA by including further diagrams to
account for the level renormalization and the splitting of the Kondo peak in
nonequilibrium situations [59].17

In a recent paper, Jin et al. also consider quantum transport in the same
spirit as in the 2vN approach by keeping correlations between the leads and
the dot by performing an expansion in the tunneling Hamiltonian [60]. They
report a proof that they obtain the 2vN approach as an expansion to second
order.

5.6 Discussion and conclusion

In summary, a method was presented which goes beyond the standard gener-
alized master equation approach by not only considering the elements of the
reduced dot density matrix, but also taking the elements with a single electron-
hole pair into account. Thereby higher-order effects, such as interference or

15For the single spinless level it can be proven that the 2vN approximation scheme gives
the exact result, while the alternative derivation, as presented for the 1vN approach, is only
exact in the wide-band limit (Paper III and [55]). We are not sure about the result of the
DRTT-RTA method.

16The exact same results would have been obtained using the 2vN approach.
17An interesting problem could be to figure out if this level renormalization is contained

in the 2vN scheme.
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cotunneling, can be treated and temperatures below the scale set by the cou-
pling constant can be accessed, Γ/kBT ≥ 1. Moreover, it can describe some
features in the low-temperature regime where strong correlations between the
lead and the dot electrons are present, although not being able to fully account
for strong-coupling effects such as, e.g., the Kondo effect. Interactions on the
dot are treated exactly by working in a basis of many-particle states. Finally,
the set of equations presented in Eqs. (10),(11) in Paper II are completely gen-
eral and can be applied to any model system where the many-body eigenstates
of the dot and the coupling to leads are known. This allows, in principle, for a
straightforward numerical implementation.

The disadvantage of the method is the complexity and how it scales with
the number of single-particle states. A system with N single-particle states
has

∑N
M=0

N !
M !(N−M)! = 2N many-particle states, and the number of elements

in the reduced dot density matrix will be at most18

No of Φ[0]s =
N∑

M=0

[
N !

M !(N −M)!

]2

=
4NΓ(N + 1

2 )√
πN !

, (5.33)

as only superpositions between states with the same number of electrons are
non-vanishing. This number is the maximum dimension of the Liouville-space
of the generalized master equations, and the number of elements in the matrix
describing the transition is the square of this number.

The 2vN approach contains the same number of 0-ehp elements plus an
additional number of 1-ehp elements. The latter connect the many-particle
states with M and M − 1 electrons, giving at most

No of Φ[1]s =
N∑

M=1

[
N !

M !(N −M)!

] [
N !

(M − 1)!(N −M + 1)!

]

=
N4N

(N + 1)!
Γ(N + 1

2 )√
π

.

(5.34)

This number should then be multiplied by the number of k-states in the dis-
cretization, and it should be taken into account that the Φ[1]s are complex.
For a system with N = 1, 2, 3, 4, 5, 6, . . . single-particle states, there are the
possibility of 2, 6, 20, 70, 252, 924, . . . Φ[0]-elements, and 1, 4, 15, 56, 210, 792, . . .
Φ[1]-elements, where the latter should be multiplied by the number of k-states.
However, for a specific model system the number of both 0- and 1-ehp elements
will be significantly reduced due to, e.g., spin selection rules.

This gives, even for a relative small number of single-particle states, a huge
number of density matrix elements, where a direct matrix inversion is un-
tractable. When solving the equations, the discrete set of k-states was changed

18In this section Γ denotes the Gamma function.
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to an energy integral
∑

k → ∫
dE

∑
k D(E)δ(E − Ek) with D(E) being the

density of states, transforming the problem from matrix inversion to solving a
set of coupled integro-differential equations.19

Another important issue is about the mathematical foundation for density-
matrix based approaches. Loosely formulated, it is required of the kinetic
equation for the reduced dot density matrix that at all times it preserves the
hermicity, the sum of all eigenvalues are 1, and the density-matrix stays a
positive-definite matrix [36, 61]. This assures that the eigenvalues, i.e. the
probabilities for the occupations of the dot states, are real, bound to the interval
[0, 1], and the sum of all probabilities equals one. If the parameters in the
kinetic equation are time-independent, there exists a most general form for the
equation of motion established by Lindblad in 1976 [36, 62].

However, for tens of years it has been known that Wangness-Bloch-Redfield
types of derivations of the kinetic equation for the density matrix, based on
a microscopic Hamiltonian, may cause negative occupation probabilities and
frequently does so, see Ref. [61] and references therein. Possible cures have
been proposed, especially in the context of two-level systems coupled to an en-
vironment [61, 63]. Negative probabilities have frequently been observed using
the 1vN approach and in some, but rare occasions, also for the 2vN approach.
The latter problem is further discussed in Chap. 8.

In Chap. 6-8 the 2vN approach is applied to various model systems.

19For an example, see Paper II Sec. III.



6

The double quantum dot

When a discrete level is coupled to a continuum of states, it gets broadened
in energy and shifted due to level renormalization [64]. The simple physical
picture is that when coupled to the continuum of states, the discrete level
is no longer an eigenstate of the system. That is if the system is initially
in the discrete state, say before the coupling is switched on, the state will
decay in time when the coupling is present. Following standard second-order
perturbation theory, the decay of the state is associated with a finite energy
width and the level energy gets shifted. When considering a tunneling set up,
the situation gets further complicated due to the filled states in the leads and
the many-body interactions on the dot.

Much experimental and theoretical work has addressed the properties of
transport through single quantum dots, and as a natural extension also the
properties of coupled quantum dots and even quantum dot arrays have been
widely studied [29, 30, 65]. In this chapter the serial double quantum dot
(DQD) is studied, see Fig. 6.1. The system is interesting because it offers
the possibility to study the interplay between the internal coherent oscillations
between the dot states and the influence of the coupling to leads, the latter
inducing broadening of the levels and level renormalization. In this chapter,
the focus is in particular on negative differential conductance (NDC) in DQDs
due to this interplay. Previous work is reviewed and results obtained using the
1vN and 2vN formalisms presented in Chap. 5 are shown. The content of this
chapter is extracted from Paper III.

6.1 The DQD Hamiltonian and a simple exam-
ple

In order to simplify the discussion, in the rest of this chapter only spinless
electrons are considered, which can be realized physically by applying a large
magnetic field. Each dot is assumed to contain only a single level contributing
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Figure 6.1: Sketch of a serial double quantum dot.

to the transport. Under these assumptions the Hamiltonian can be written as

H =Eαd†αdα + Eβd†βdβ + Ud†αdαd†βdβ +
(
Ωd†βdα + h.c

)

+
∑

k`

Ek`c
†
k`ck` +

∑

k

(
tkLd†αckL + tkRd†βckR + h.c.

)
,

(6.1)

with U being the Coulomb energy for occupying both dots, Ω the inter-dot
tunneling coupling and α/β denoting the left/right dot, respectively. The first
term in the second line accounts for the leads, with index ` = L/R for the
left/right lead, and levels counted by k. The last term is the lead-dot tunneling
coupling. The lead-dot coupling parameters tk` are parametrized by Γ`(E) =
2π

∑
k |tk`|2δ(E − Ek`). Here the constant value Γ` is used for |E| ≤ 0.95W

and Γ`(E) = 0 for |E| > W . For 0.95W < |E| < W interpolation with an
elliptic behavior is applied in order to avoid discontinuities. Furthermore, the
total coupling is defined as Γ = ΓL + ΓR.1

Before applying the 1vN and 2vN methods it is necessary to diagonalize the
double dot part of the Hamiltonian and obtain the many-particle eigenstates

1This is not the usual convention for the coupling in DQDs as the levels in each dot are
broadened by Γα, α = L, R, rather than the sum of the two. However, here the convention
used in Paper III is applied.
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and their energies. The many-particle energies are

E0 = 0, (empty state) (6.2)

E1 =
1
2

(
ρ−

√
∆2 + 4Ω2

)
, (bonding state) (6.3)

E2 =
1
2

(
ρ +

√
∆2 + 4Ω2

)
, (anti-bonding state) (6.4)

Ed = Eα + Eβ + U = E1 + E2 + U, (double-occupied state), (6.5)

with ρ = Eα + Eβ and the detuning ∆ = Eα − Eβ . The corresponding (nor-
malized) eigenvectors are

1〉 = 1√
1+C2

−

[
C− α〉+ β〉]

2〉 = 1√
1+C2

+

[
C+ α〉+ β〉] (6.6)

with C± = ∆±√∆2+4Ω2

2Ω . From the many-particle states the tunneling matrix
elements Tba(k`) can be obtained using the procedure described in Paper II
App. A. In the rest of this chapter, only symmetric bias µL = −µR = eV/2 is
considered.

Current will flow through the system whenever a one-particle excitation
becomes energetically allowed and is effectively blocked when no one-particle
excitations are within the bias window. As there are four possible single-particle
transitions ( 0〉 ↔ 1〉 , 2〉, and 1〉 , 2〉 ↔ d〉), at most four steps can be
observed in the IV -curve.

Below the 1vN and 2vN results are benchmarked against the results ob-
tained using the generalized master equations by Gurvitz et al. and Stoof et
al. in the limit where only the transitions 0〉 ↔ 1〉 , 2〉 are allowed [29, 66]

I1 =
e

~
Ω2ΓR

Ω2(2 + ΓR/ΓL) + (ΓR/2)2 + ∆2
, (6.7)

and in the limit where all excitations are within the bias window (Elatari et al.
[38])

I2 =
e

~
ΓLΓRΓΩ2

(4Ω2 + ΓLΓR)(Γ/2)2 + ∆2ΓLΓR
. (6.8)

These formulas are exact in the limit where all allowed single-particle exci-
tations are well inside the bias window. That is for a transition from a dot
state with N electrons to a state with (N + 1)-electrons, the addition energy
EN+1 − EN is further away from both chemical potentials of the leads, µ`,
than the sum of the broadening due the leads and the temperature, |(EN+1 −
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EN ) − µ`| À kBT + Γ. Furthermore, the Eqs. (6.7)-(6.8) were derived under
the assumption that the current flows from the left to the right lead.2

As an example consider Fig. 6.2, where the simple expressions are com-
pared to the full 2vN calculation. As ρ = Eα + Eβ = 0 the onsets of the
transitions 0〉 ↔ 1〉 , 2〉 are supposed to happen at the same bias voltage, i.e.
at eV = −2E1 = 2E2. The next onset is expected at the transition 2〉 ↔ d〉,
i.e. at eV = 2(E1+U), and the last onset ( 1〉 ↔ d〉) at eV = 2(E2+U). These
values are marked with vertical lines in the figure and good agreement is found.
In the Coulomb blockade regime where only the transitions 0〉 ↔ 1〉 , 2〉
are allowed, the value of the current agrees reasonably with the value I1 from
Eq. (6.7), while at eV →∞ the current indeed reaches the value I2 of Eq. (6.8).

It has been shown that the 2vN method gives the onset of the current
at the molecular levels of the DQD rather than at the single-particle levels.
This is due to the fact that the method works in the eigenbasis of the dot
Hamiltonian, thereby taking both the internal coherent oscillations and the
Coulomb interaction fully into account. Furthermore, the results in both the
Coulomb blockade regime and infinite-bias limit agree well with the results
obtained by others.3

Furthermore, the current was calculated in the high-bias regime with all
transitions well inside the bias window (not shown), and excellent agreement
with Eq. (6.8) was found for all values of the interdot coupling Ω, showing that
the 2vN method works even for the lead-dot couplings being much stronger
than the interdot coupling.

6.2 Negative differential conductance in double-
quantum dots

As discussed in Chap. 4 the levels in a quantum dot are electrostatically influ-
enced by the coupling to the leads and the nearby gates. In Chap. 4 only a
common back gate was used while in this chapter it is assumed that two gates
are present, offering control over the individual levels. For a symmetric bias,

2Notice that Eq. (6.7) is not symmetric with respect to the interchange ΓL ↔ ΓR, as
in the regime where double-occupation is forbidden the filling of the dot can happen in two
different ways, 0〉 → 1〉 , 2〉, which happens through the left contact, while when occupied
the dot can only be emptied in one way, which is through the right contact.

3In Chap. 8 the importance of working in the many-particle (Fock) basis when treating
nonlinear transport is further discussed.
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Figure 6.2: The current versus the bias voltage calculated with the 2vN ap-
proach for the parameters ΓL = ΓR = Γ/2, Ω = 5Γ/2, Eα,β = ±Γ/2, U = 8Γ,
kBT = 0.1Γ and W = 30Γ. The bias voltage is applied symmetrically.

the levels will then move according to

Eα = E0
α + λα

eVbias

2
− ηαeV α

gate, (6.9)

Eβ = E0
β − λβ

eVbias

2
− ηβeV β

gate. (6.10)

Here E0
i are the equilibrium energy levels for Vbias = Vg = 0, λα, λβ are the

lever arms due to the applied bias voltage for the respective dot levels, and
ηα, ηβ are the lever arms due to the gate voltages, see also Chap. 4. This al-
lows for an independent control of Vbias, the level detuning ∆ = Eα −Eβ , and
the average level position ρ = Eα + Eβ .

Assuming fixed gate voltage, the levels will slide across each other when
sweeping the bias voltage and thereby change the detuning ∆. The maximum
current is obtained when the levels are aligned, giving pronounced resonance
features in the IV -curves.4 The crossing of the levels gives rise to negative
differential conductance and as it is caused by the electrostatic environment of
the dot, it will be denoted electrostatically induced NDC. Below it is assumed
that the influence of the bias voltage is exactly balanced by the gate voltages
such that the detuning ∆ is kept fixed, thereby removing the electrostatically
induced NDC.

4For a discussion of the resonance features, see also Chap. 4.
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Quantum mechanical effects might also lead to NDC in double quantum
dots, which have been discussed by various authors: i) J. Aghassi et al. [67]
studied the current and the shot noise in the limit where the interdot coupling
is much stronger than the coupling to leads, Ω À Γ. They found that NDC only
occurs if the spacial symmetry of the structure is broken, either by detuning of
the levels, ∆ 6= 0, or asymmetric barriers, ΓL 6= ΓR. ii) In the opposite limit,
Ω ¿ Γ, I. Djuric et al. [68] showed that for aligned levels, ∆ = 0, NDC occur at
the transitions 1〉 , 2〉 → d〉 for a certain ratio between the lead-dot coupling
and the interdot tunneling coupling. As explained below, the NDC is caused
by decoherence. Finally, iii) also in the weak interdot coupling limit, Ω ¿ Γ,
and for ∆ À Ω, B. Wunsch et al. [69] found that the current is asymmetric
with respect to reversal of bias voltage, and that pronounced NDC occurs after
the onset of the transitions 0〉 → 1〉 , 2〉. They assign these effects to the
level renormalization due to the coupling to leads.

In all three works the current is calculated to lowest order in the lead-dot
coupling Γ, i.e. only in the sequential tunneling limit. For the works ii) and
iii), where they consider the weak inter-dot tunneling limit, it is not a priori
obvious that this is justified as the sequential tunneling expression is derived
under the assumption that the levels are only weakly coupled to the leads.
Furthermore, they use the local basis, α〉 , β〉 and do not diagonalize the dot
part of the Hamiltonian, which leads to simpler analytical expressions. The
application of the local basis is reasonable in iii) where kBT À |E1 −E2|, but
not in ii), where ∆ = 0.

Below the same parameter regimes as in ii) and iii) are considered using
the 1vN and 2vN approaches from Chap 5.

6.3 Applying the 1vN and 2vN methods to the
DQD problem

When applying the 1vN formalism two different versions are used. In Paper
III App. A the general set of 1vN equations are shown, where the scattering
rates are of the form (c` are constants depending on the explicit form of the
couplings)

∑

k`

Tba(k`)T ∗b′a′(k`)f`(Ek)
Ek − Eb′ + Ea − i0+

−→
∑

`

c`

[
i

2
Γ`(Eb′ − Ea)f`(Eb′ − Ea) + P

∫
dE

2π

Γ`(E)f`(E)
E − Eb′ + Ea

] (6.11)

where the sum over k` has been changed to an integral, see Sec. 5.6, and f` is
the Fermi function evaluated using the chemical potential µ`. The imaginary
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part in Eq. (6.11) is the (in-) scattering rate. The real part causes a shift of
the levels which is often neglected but plays a key role in the discussion below.

The 1vN calculations where the real parts are omitted are denoted “1vN-
noR”. Otherwise the real parts are included and the calculations are denoted
“1vN”.

Consider first NDC due to decoherence and assume fixed couplings to leads.
At first sight it appears counter-intuitive that for small Ω the current is larger in
the Coulomb blockade regime than when double occupation is allowed, I1 > I2.
Qualitatively this can be explained as different broadening of the levels in the
different regimes, see Paper III Sec. IVD, or alternatively as being due to the
quantum Zeno effect, see Ref. [30] Sec. II. In the latter description, localized dot
states, positive bias µL > µR and all transitions well inside the bias window are
assumed. The current flows through the system via a scattering process moving
an electron from the left lead onto the left dot. Then the electron passes from
the left to the right dot via a coherent evolution, i.e., the system is in a coherent
superposition between the left and the right dot state and the off-diagonal
elements of the reduced dot density matrix are non-vanishing. Now the leads
can be viewed as observers destroying the coherent superposition between the
dot states by adding/removing electrons to/from the system. In the Coulomb
blockade regime only the right lead acts as an observer as double occupation is
forbidden. When double occupation is allowed, both contacts act as observers
thereby diminishing the current by destroying the superposition.5 In the limit
Ω À ΓL,R the internal oscillations are much faster than the scattering rate due
to the coupling to leads, and the current increases monotonously.

In Ref. [68] they apply a formalism developed by B. Dong et al. [70], where
a set of generalized rate equations were derived by applying the nonequilibrium
Green function formalism. At the plateaus with double occupation being either
forbidden or allowed, they find expressions which agree exactly with the results
in Eqs. (6.7)-(6.8), and they notice that for vanishing detuning, ∆ = 0, I1 > I2

if Ω <
√

ΓLΓR/2, such that NDC occurs at the transitions at 1〉 , 2〉 → d〉.
Several aspects are questionable. First of all, the applied generalized master

equation formalism is derived in the local basis, i.e. the internal oscillations
due to the interdot tunneling Ω are not treated exactly.6 As a consequence,
the transitions happen at the energies of the localized levels Eα,β and not at
the eigenenergies E1,2, which are the correct intrinsic energies of the dot. The
applied approach is only reasonable when the smearing of the levels caused
by the temperature is larger than the energy difference |Eα − Eβ |. Secondly,

5In Ref. [30] this is taken as an example of the importance of using a set of generalized
master equations and not classical rate equations, where in the latter the off-diagonal elements
are neglected.

6The same formalism was previously discussed in Ref. [71], where it was shown to fail for
the spin-model treated in Chap. 7 due to non-hermicity of the derived density matrix.
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the current is only calculated to lowest order in the coupling, whereby the
broadenings of the transitions are only given by the temperature, not taking the
quantum mechanical level broadening into account. Considering temperatures
kBT < Γ, they treat a regime where the sequential tunneling result is not
valid. Finally, they do not consider the real parts of the scattering rates, which
is important especially in the regime Ω < Γ` as discussed below.

Figure 6.3 shows the results obtained using the 1vNnoR and 2vN ap-
proaches. For Ω =

√
ΓLΓR/2 = Γ/10 the 1vNnoR approach gives an IV -

characteristic which does not show a single long plateau with the value I1 = I2,
but shows some further structure at the onset of the different transitions. It
is also noticed that the onset of the transition 0〉 ↔ 1〉 , 2〉 is seen in the
1vNnoR calculation, but is washed out in the 2vN calculation due to the level
broadening. In Ref. [68] only a single step is seen, as they work in the local
basis without diagonalizing the dot part of the Hamiltonian.

For Ω <
√

ΓLΓR/2 the 1vNnoR approach does indeed reach the value I1

when double-occupation is forbidden. At the step where double occupation
becomes possible NDC is observed, and the width of the step is due to the
temperature and the two different values for the onset of the transitions 2〉 →
d〉 and 1〉 → d〉. On the contrary, the 2vN approach does not reach the

plateau value I1, and the NDC is much weaker. This is due to the smearing of
the level caused by the coupling to leads but also by the level renormalization
not included in the 1vNnoR approach. In Paper III Fig. 4 calculations using
the 1vN and 2vN approaches for larger values of the Coulomb interaction, U ,
show that even for U À Ω,Γ no plateau value I1 is reached, emphasizing the
importance of the real parts.7

In conclusion, it has been shown that the onsets of the transitions happen
at the molecular levels found by diagonalizing the dot Hamiltonian, rather than
at the energies of the localized levels. Furthermore, the NDC effect discussed
in Ref. [68] is significantly diminished due to both level renormalization and
broadening induced by the coupling to leads.

In the work by B. Wunsch et al. [69], NDC in double quantum dots due
to level renomalization is considered. They also work in the local basis, which
is justified as they in order to simplify the analysis and interpretation assume
|E1 − E2| ≤ Γ ¿ kBT , i.e. the smearing due to temperature is much larger
than the level spacing between the states.8 They use the Diagrammtic Real-
time Transport Theory (see Sec. 5.2) in the sequential tunneling limit, where
they keep the real parts of the scattering rates.

The main finding in this work is that for finite Coulomb interaction the
level in each dot is dragged closer to the chemical potential of the nearest lead.

7Notice that the value I1 in Eq. (6.7) where derived in the limit U →∞.
8The advantage of working in the local basis is that it is simpler to obtain analytic results.
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Figure 6.3: The current versus the bias voltage calculated using the 2vN and
1vNnoR approaches for two different values of Ω using the parameters ΓL =
ΓR = Γ/2, Eα,β = Γ/2, U = 2Γ, kBT = 0.05Γ and W = 30Γ.

I

eVbias

Figure 6.4: Sketch of the level renormalization described in Ref. [69] for large
Coulomb interaction, see also Eq. (6.12). The arrows indicate how the levels
move relative to the chemical potential of the nearest lead, and the dashed line
indicates the plateau value of the current in case of no level renormalization.
First the level renormalization gives a decrease of the detuning between the lev-
els, causing an overshoot of the current as compared to the plateau value. This
is followed by an increased detuning causing a significant negative differential
conductance. See in particular Fig. 6.5d for ∆ = Γ/4.
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The effect is largest when the level is close to the chemical potential of the lead
and disappears when it is far away. For symmetric bias, µL/R = ±eV/2, they
find the analytic expression for the level renormalization (see also Eq. (9) and
Fig. 2 in Ref. [69]),9

δEα/β = φL/R(ρ/2)− 2φL/R(ρ/2 + U) + φL/R(ρ/2 + Uintra) (6.12)

with φ`(E) = Γ`

2π ReΨ( 1
2 + i

2π
E−µ`

kBT ), and Ψ being the digamma function. The
energy Uintra is the intradot Coulomb energy, which in their work serves as
a high-energy cut-off, with Uintra being by far the largest energy. The level
renormalization leads to an effective detuning of the levels, ∆eff = Eα + δEα−
(Eβ + δEβ). Being in a situation as sketched in Fig. 6.4 with a symmetrically
applied bias, the detuning is first decreased, ∆eff < ∆, giving a clear overshoot
at the first plateau, and then increased, ∆eff > ∆, leading to a significant NDC.

However, as they consider the weak internal coupling limit, Ω < ΓL,R, it is
not clear that higher-order coupling effects will not alter this finding. Moreover,
within their approximation scheme, the temperature and the tunnel coupling
become independent energy scales.

Using the 1vN, 1vNnoR and 2vN methods the different parameter regimes
were treated in Paper III. As an overview, consider Fig. 6.5a-c calculated using
the 1vN approach using Ω <

√
ΓLΓR/2, Ω =

√
ΓLΓR/2 and Ω >

√
ΓLΓR/2,

respectively. In Fig. 6.5a for ∆ ' 0 one clearly sees NDC due to decoherence
at the transition 1〉 , 2〉 → d〉, occurring around eVbias ' 20Γ. In Fig. 6.5b
this effect has disappeared giving an almost constant current away from zero
bias, and in Fig. 6.5c the current increases monotonically with the bias voltage
for all values of the detuning ∆.

The level renormalization is visible as the bending of the resonance lines
around the ‘∆ = 0’-line in Fig. 6.5a-c. The effect is most pronounced in the
weak interdot coupling limit (Ω <

√
ΓLΓR/2, a) and almost disappears in the

opposite limit (c). If the level renormalization is neglected in the scattering
rates, the resonance line will be straight (not shown). In Fig. 6.5d-f IV -curves
corresponding to cuts along horizontal lines in the contour plots in Fig. 6.5a-
c are shown, i.e. ∆ is kept fixed. The calculations are done using the 1vN,
1vNnoR and the 2vN methods.

The calculations presented in Fig. 6.5 show that the level renormalization is
pronounced for small interdot tunneling coupling leading to a significant NDC,
which is not included if the real parts of the scattering rates are neglected. For
increasing interdot coupling the effect disappears as the states become more
delocalized over the structure, i.e. coupling the bonding and anti-bonding
states more equally to both leads. For temperatures kBT = Γ only small

9In [69] they work within the approximation |E1 −E2| ≤ Γ ¿ kBT and consequently the
energies E1,2 are replaced by their common average value ρ/2.
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deviations between the 1vN and the 2vN approaches are observed, but for
kBT < Γ the 1vN method overestimates the level renormalization (see Paper
III Fig. 3). Moreover, in the non-interacting limit, U = 0, the 1vN method
overshoots at the transition 0〉 → 1〉 , 2〉 and gives a weak but physically
wrong NDC even for kBT = Γ, as shown in Paper III Fig. 4. In this case it
can be obtained from an exact nonequilibrium Green function calculation that
no level renormalization occurs. It was verified numerically that for U = 0 the
2vN calculation yields exactly the nonequilibrium Green function result.

6.4 Discussion and conclusion

Two quantum mechanical sources of negative differential conductance in double
quantum dots have been discussed. For the NDC due to decoherence occur-
ring at weak interdot coupling, the importance of working in the diagonalized
basis of the dot Hamiltonian was shown. This gave a weak NDC not only
given by the temperature, as predicted by calculations performed in the local
basis. For NDC due to level renormalization, a more complete picture was pre-
sented by considering all values of the ratio between the interdot coupling and
the coupling to leads, and also discussing the temperature dependence. For
temperatures comparable to the coupling to leads, good agreement between
the 1vN approach including the real parts of the coupling constants and the
2vN approach was found. For lower temperatures, the first-order approach
overestimates the level renormalization.
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Figure 6.5: The contour plots a-c show the current versus the bias voltage and
the detuning ∆ using the 1vN approach for Ω/Γ = 0.1, 0.25 and 2, respectively.
The other parameters are ΓL = ΓR = Γ/2, Eα + Eβ = 0, U = 10Γ, kBT = Γ
and W = 35Γ. The figures d-f are calculated using the 1vN, 1vNnoR and 2vN
approaches and correspond to cuts along horizontal lines in Figs. a-c. The
same values for the detuning ∆ are used in Figs. d and e. From Paper III.
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The FAB model

Many electronic devices are based on controlling the flow of electrons via their
charge by altering the electrostatic environment, as, e.g., in transistors. How-
ever, it is also possible to take advantage of the spin of the electrons when
designing electronic components, and the field of research is frequently named
spintronics.

For several decades it has been possible to form layered structures of differ-
ent materials using so-called epitaxial growth. Sandwiching an insulating layer
between two ferromagnetic films, Julliere showed that the tunneling resistance
of the device depends on whether the magnetizations of the ferromagnetic films
are parallel or antiparallel [72], which is denoted the magnetoresistance. Later,
two groups almost simultaneously discovered that structures consisting of layers
with ferromagnetic/non-magnetic/ferromagnetic materials displayed a strong
dependence on an applied in-plane magnetic field [73, 74, 75]. The effect was
named giant magnetoresistance (GMR) and found almost immediately com-
mercial use for read heads in modern hard drives and for magnetic sensors. For
mesoscopic systems, spintronics has received an enormous attention, especially
theoretically due to the proposal of the spin transistor by Datta and Das [76].

In the context of quantum dots, where the Coulomb interaction between the
electrons plays a significant role, investigations of the possibilities for taking
advantage of the electron spin are an active field of research. For isolated single
or double quantum dots, the research deals with the manipulation of the spins
using a combination of applied magnetic fields, electric gates and exploiting
the local magnetic environment, see, e.g., [77]. The research is in particular
driven by the perspectives for implementing devices for quantum computers in
solid state materials [78]. In transport devices the possibility of using the spin
has also been investigated, e.g., by attaching ferromagnetic contacts to various
types of quantum dots [79, 80, 81], and one such device will be discussed in this
chapter. It is described by a single-level Anderson model with ferromagnetic
contacts, and in addition a magnetic field is applied noncollinearly with the
magnetizations of the leads. The model is named the Ferromagnetic Anderson
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φ

B

Figure 7.1: A sketch of the FAB model with two polarized leads and an applied
magnetic field.

model with an applied magnetic B-field, in short FAB.1 For the bare level at
resonance, the model shows in the linear conductance regime a strong depen-
dence on the angle between the magnetizations of the leads and the applied
magnetic field, and the Coulomb interaction. This is explained as an interplay
between interference and interaction, which makes the model a challenge and
a benchmark for theoretical formalisms describing transport through quantum
dots.

In this chapter, the 2vN transport formalism presented in Chap. 5 is applied
to the FAB model in both the linear response regime and for finite bias. In
the linear response regime the results are compared to density-matrix renor-
malization group (DMRG) calculations, while for finite bias the role of the
non-diagonal elements of the density matrix and the failure of a mean-field
solution are discussed. The material in this chapter is based on Paper IV.

7.1 The FAB Hamiltonian

Imagine a physical system consisting of a quantum dot coupled to ferromag-
netic leads, such as, e.g., a carbon nanotube coupled to leads via ferromagnetic
Ni contacts [81], where the magnetizations of the leads are assumed to be un-
affected by the applied magnetic field, see Fig. 7.1. The validity of the latter
assumption can be questioned, but it might be realized in magnetic thin-films
where the magnetic moments are strongly pinned in the plane of the films. In
this thesis, as well as in Paper IV, only parallel magnetizations of the leads are
considered.

1This model was previously studied in Refs. [71, 82] and also in Ref. [83].
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Based on this physical system, a model Hamiltonian with three parts is
considered,

H = HLR + HT + HD, (7.1)

where
HLR =

∑

α=L,R,kσ

ξα,kσc†α,kσcα,kσ. (7.2)

Here σ =↑ / ↓ is the spin of the electrons, α denotes the left or right electrodes,
which are assumed to be polarized along the z-axis (the spin quantization axis),
either parallel or anti-parallel. The quantum dot is subjected to a magnetic
field B, which is tilted by an angle φ with respect to the z-axis and lies within
the xz-plane. Note that the negative sign of the electron charge is neglected
for simplicity. Thus, the energetically preferred spin direction is pointing in
the direction of B. The dot-Hamiltonian reads (nσ = d†σdσ)

HD =
∑

σ

ξ0d
†
σdσ + Un↑n↓ −

∑

σσ′
µBB · τττσσ′d

†
σdσ′ , (7.3)

where ξ0 is the orbital quantum dot energy, B = |µBB| represents the magnetic
field splitting, τττ is a vector containing the Pauli spin matrices, and U is the
Coulomb energy for double occupancy. In a spin basis parallel to B, the dot
Hamiltonian is diagonalized as

HD =
∑

σ

(ξ0 − σ̃B)d†σ̃dσ̃ + Un↑̃n↓̃, (7.4)

where the dσ and dσ̃ operators are related by the unitary rotation

dσ =
∑

σ̃

Rσσ̃dσ̃, R =
(

cos(φ/2) sin(φ/2)
− sin(φ/2) cos(φ/2)

)
. (7.5)

Finally, the tunneling Hamiltonian is

HT =
∑

α=L,R

∑

kσ

(
tα,kσc†α,kσdσ + h.c.

)
=

∑

α=L,R

∑

kσσ̃

(
tα,kσRσσ̃c†α,kσdσ̃ + h.c.

)
.

(7.6)
Here the tunneling matrix element tα,kσ can be spin dependent, because the
states in the leads depend on the spin direction.

The energy-dependent coupling constants are defined as

Γα(ε) = 2π
∑

kσ

|tα,kσ|2δ(ε− ξα,kσ) =
∑

σ

Γα,σ(ε), (7.7)

and below Pα denote the polarization of the tunneling from lead α defined
through Γα,σ(ε) = 1

2 (1 + σPα) Γα(ε). Notice that Pα ∈ [−1, 1] such that Pα =
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±1 corresponds to full spin-↑ / ↓ polarization and Pα = 0 corresponds to
unpolarized leads. For parallel (antiparallel) polarization of the leads the Pα’s
have the same (opposite) sign. Finally, the total coupling constant is Γ(ε) =
ΓL(ε) + ΓR(ε) and Γ0 = Γ(0).

For the 2vN calculation, the many-body eigenstates of the system are
needed, which are

{
0〉 , ↑̃

〉
, ↓̃

〉
, 2〉

}
, where 2〉 = d†↓̃d

†
↑̃|0〉, with the ener-

gies 0, E↑̃ = ξ0 −B, E↓̃ = ξ0 + B and E2 = E↑̃ + E↓̃ + U , respectively.

In Ref. [82] it was shown that for fully polarized leads with parallel magneti-
zations, the bare level on resonance, ξ0 = 0, and vanishing Coulomb repulsion,
U = 0, the linear conductance versus the angle φ becomes (h is Planck’s con-
stant):

Gnon−int =
e2

h

Γ0
LΓ0

R

B2

cos2 φ

1 + cos2 φ [(Γ0
L + Γ0

R)/2B]2
. (7.8)

Qualitatively the result can be understood as in the basis where the dot Hamil-
tonian is diagonal the bare level is split into two levels at ∓B, each broadened
by the coupling to leads depending on the angle φ as cos2 φ/2 and sin2 φ/2,
respectively. This gives the spectral functions sketched in Fig. 7.2a. Electrons
tunnel through the two resonances giving destructive interference at φ = π/2,
i.e., when the levels are equally wide. At φ = 0, π one of the levels is pinched
off and transport is only through the opposite level, see Fig. 7.2a.

Under the same conditions as stated above, the linear conductance can be
obtained in the cotunneling regime ([Γ0

L + Γ0
R]/B ¿ 1) even in the presence of

Coulomb interactions by applying the T -matrix formalism [82]:2

Gcotun =
e2Γ0

LΓ0
R

h

[
cos2(φ/2)
−B

+
sin2(φ/2)
B + U

]2

. (7.9)

In this regime, the conductance shows a cross-over from the behavior with
anti-resonances at φ = π/2 for the non-interacting case, to a spin-valve effect
for U → ∞ with Gcotun ∝ cos4(φ/2), i.e. the anti-resonance around φ = π/2
disappears and the conductance vanishes instead for φ = π, see Fig. 7.2b.

7.2 The linear response regime

In the linear response regime the FAB model shows, as pointed out above,
some interesting features when the linear conductance is plotted versus the
angle between the magnetizations of the leads, showing a strong dependence of
the Coulomb interaction on the dot.

2Another application of the T -matrix formalism is shown in Chap. 8.
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Figure 7.2: a) Schematic energy spectrum in the linear conductance regime for
the non-interacting case. The bare resonant level is split due to the magnetic
field. The widths of the two resonances depend on the angle φ as cos2(φ/2)
and sin2(φ/2), respectively. b) The linear conductance, Eq. (7.9), showing the
anti-resonances for noninteracting electrons (full line, U = 0) and the spin
valve behavior for strongly interacting electrons (dashed line, U = 100B) as a
function of the angle between the magnetizations of the dot and the applied
magnetic field.

The analysis presented in Refs. [71, 82] is only valid in the regime with
vanishing Coulomb interaction or in the cotunneling regime B À Γ0. The goal
of Paper IV is to also include the regime where the strength of the coupling to
leads and the magnetic field strength are comparable, B ∼ Γ0, and also include
arbitrary Coulomb interaction. This regime is considered to be complicated as
broadening as well as Coulomb interactions have to be properly accounted for.3

Density-matrix renormalizations group calculations were carried out by D.
Bohr and P. Schmitteckert giving numerically exact results used for benchmark-
ing. The calculations are limited to the linear response regime, zero tempera-
ture and partial polarization, where the latter gives a smearing of the angular
dependence discussed above. However, the physical picture remains unchanged.
Furthermore, it was found in Paper IV that within a Hartree-Fock approxima-
tion the nonequilibrium Green function method leads to almost identical results
even for large Coulomb repulsion, which is rather surprising as mean-field so-
lutions are known to be problematic in the Coulomb blockade regime [84]. The
success of the mean-field solution was explained in terms of the occupations
of the dot levels in the diagonal basis for the situation sketched in Fig. 7.2a,

3Notice that the FAB Hamiltonian, and consequently all results are symmetric with re-
spect to φ → 2π − φ. It is therefore sufficient to show results for angles in the interval
φ ∈ [0, π].
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where one level is above and the other below the chemical potentials of the
leads, see Paper IV. Below the focus is instead on results of the 2vN method
for the linear response regime, which are not included in Paper IV.

For the T -matrix calculations, a constant coupling constant, Γ0, is used
below, while for the DMRG and the 2vN calculations an elliptic, energy-
dependent coupling constant defined as Γ(E) = Γ0

√
W 2 − E2/W with a band-

width W = 10Γ0 is used for the 2vN calculation and W = 2Γ0 for the
DMRG calculation. For the 2vN results the linear conductance is defined as
G = I/eVbias, with I being the current and eVbias = µL − µR a small applied
bias voltage. For the bare level at resonance, ξ0 = 0, the current versus the
angle φ is calculated for B = 2Γ0 for a symmetric bias, fixing the chemical
potentials at µL = −µR = 0.05Γ0 and the temperature at kBT = 0.05Γ0 such
that eVbias, kBT ¿ B, Γ0.

The results are shown in Fig. 7.3. For the noninteracting case, U = 0, the
nonequilibrium Green function result was calculated for comparison and an
exact match with the 2vN approach was found (not shown). For U ≥ 0 the
2vN results are compared to the T -matrix results, which is a generalization of
Eq. (7.9) to arbitrary polarization (see App. A in Paper IV), and for U/Γ0 =
0, 0.5, 4, 6 also with the DMRG results. For the latter very good agreement
was found for all values of the Coulomb interaction despite the fact that the
DMRG result is the true linear conductance calculated for zero temperature
and a different energy-dependence of the coupling constants were used in the
DMRG and the 2vN calculations.

Numerically the 2vN method is difficult to apply in the linear response
regime and for low temperatures, where a fine energy-discretization of the leads
is needed. Therefore results could not be obtained for many angles for U -values
in the interval U = 2Γ0 − 4Γ0. For B = Γ0/2,Γ0 calculations were also done,
but for a detailed comparison very low temperatures and small bias voltages are
required, which are difficult to handle numerically. However, the calculations
seem to indicate the correct behaviour also in this regime (not shown).

The T -matrix results for the linear conductance were derived for zero tem-
perature, but energy-independent coupling constants were used. In Fig. 7.3 the
deviation of the T -matrix result as compared to the other approaches might
be due to the fact that the derivation of the T -matrix conductance assumes
B À Γ0, giving (almost) full occupation of the lower level which might not
hold for B = 2Γ0 [71, 82].

It is concluded that the 2vN method is indeed capable of handling both
the influence of interactions and interference in the linear response regime,
but numerically it is difficult to obtain results for all angles. The numerical
problems for some angles are partly due to the fact that for these angles one of
the levels is almost decoupled from the leads in case of highly polarized leads,
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Figure 7.3: The T -matrix cotunneling results (full lines), DMRG results (‘o’)
and 2vN results (‘x’) for the linear conductance versus the angle φ for the bare
level at resonance, ξ0 = 0. Notice that the DMRG results are only calcu-
lated for U/Γ0 = 0, 0.5, 4, 6. It is the true zero-bias conductance for vanishing
temperature which is calculated with the T -matrix and the DMRG methods.
For the 2vN results the temperature is kBT = 0.05Γ0 and a small finite bias,
µL = −µR = 0.05Γ0 is used. The linear conductance is defined as G = I/eVbias,
where I is the current. The coupling constants are defined in the main text.
The other parameters are: B = 2Γ0, ΓL = ΓR = Γ0/2 and PL = PR = 0.8.
The DMRG calculations were performed by D. Bohr and P. Schmitteckert.

making it hard to obtain the correct occupations of the levels.

7.3 The finite bias regime

For finite bias two different setups are considered. In the first example, taken
from Paper IV, the FAB model is solved using the 2vN method, and the results
are compared with results obtained using the nonequilibrium Green function
formalism within a mean-field approximation. It is found that the mean-field
approximation is not able to capture the blockade regime.4 Secondly, a setup
related to FAB is considered, which was used by S. Datta [85] in order to

4The general discussion of mean-field approximations applied to transport through nanos-
tructures is postponed to Chap. 8.
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illustrate the importance of the correct treatment of Coulomb interaction, co-
herences and broadening in quantum transport.

In Paper IV, the FAB model with the bare level at resonance and the
magnetic field B = 2Γ0 is treated. For a symmetric bias, µL = −µR = eVbias/2
the full IV -curve is calculated using the 2vN method and the nonequilibrium
Green function method within a mean-field approximation, see Fig. 7.4a and
Fig. 7.4b, respectively.5 In the mean-field calculation, the interaction part of
the Hamiltonian, U

[
n↑̃

〈
n↓̃

〉
+ n↓̃

〈
n↑̃

〉]
, is replaced with

HHartree = U
[
d†↑̃d↑̃

〈
d†↓̃d↓̃

〉
+ d†↓̃d↓̃

〈
d†↑̃d↑̃

〉]
, (7.10)

HFock = −U
[
d†↑̃d↓̃

〈
d†↓̃d↑̃

〉
+ d†↓̃d↑̃

〈
d†↑̃d↓̃

〉]
, (7.11)

denoting the Hartree and the Fock part of the interaction.6

As discussed in Chap. 6, shoulders in the current are expected whenever
a single-particle excitation enters the bias window. For the parameters used
in Fig. 7.4 this first happens at eVbias = 2|E↑̃,↓̃| = 4Γ0 when the transitions

0〉 → ↑̃
〉

, ↓̃
〉

become possible. The next shoulder should appear for the

transition ↓̃
〉
→ 2〉 at the bias voltage eVbias = 2(E↓̃+U) = 12Γ0, and finally

the last shoulder is expected at eVbias = 2(E↑̃ + U) = 20Γ0 for the transition

↑̃
〉
→ 2〉.
This behaviour is indeed observed in Fig. 7.4a. In Eq. (10) in Paper IV

it is shown that for the angles φ = 0, π, the couplings to the eigenstates are
Γα,↑̃(↓̃)(ε) = (1±P )Γα(ε)/2, respectively, giving a strong(weak) coupling of the
spin-↑̃(↓̃) state.

For φ = 0, transport after the first shoulder is dominated by tunneling
through the lower level with spin-↑̃, while occupation of the other level tends
to block the current due to Coulomb interaction. At the second shoulder, the
current rises as transport becomes possible even if the spin-↓̃ state is occupied.

For φ = π the strengths of the couplings are reversed and after the first
shoulder, the current is mainly due to transport through the upper level with
spin-↓̃. The value of the current is slightly less than for φ = 0 as the occupation
of the blocking state (spin-↑̃) is larger than for φ = 0 due to the lower energy
of the spin-↑̃ state. After the second shoulder at eVbias = 12Γ0, the blocking
spin-↑̃ state can be filled in two different ways. Either by the process 0〉 → ↑̃

〉

5The details of the nonequilibrium Green function calculation is found in Paper IV.
6Often the Fock term is neglected, but for situations where spin is not conserved, e.g.,

due to tunneling to leads, this procedure gives a basis-dependent approximation and a non-
vanishing Fock term.
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or the process 2〉 → ↑̃
〉
, leading to a larger blocking than at the first shoulder

and consequently a lower value of the current. Between the first and the second
shoulder negative differential conductance occurs.

The mean-field solution completely misses these blocking features as seen
in Fig. 7.4b. Here the current increases monotonously for all angles and the
second shoulder is not visible. The example illustrates the failure of mean-field
solutions when blocking of states is essential. These issues are further discussed
in Chap. 8.

In Ref. [85] S. Datta proposed a nonequilibrium Green function formalism
formulated in a many-body Fock space, where the goal was to account properly
for the Coulomb effects, the coherences and the broadening of the levels.7 As
a test of the method, he used a model system very similar to the FAB model
described in the present chapter. Here the same type of calculations are done
for the FAB model using the 2vN formalism.

Again the Hamiltonian in Eq. (7.1) is considered, but a different notation for
the polarization is used, where the couplings are specified directly Γα,σ(E) =
2π

∑
kσ |tα,kσ|2δ(ε − ξα,kσ). Here σ is the spin of the lead states. A coupling

constant Γ(E) is defined, which takes the constant value Γ for |E| ≤ 0.95W and
Γ(E) = 0 for |E| > W , while for 0.95W < |E| < W an elliptic interpolation as
in Chap. 6 is used.

In Fig. 7.5 the results for different values of E↓ and ΓR↑ are shown, where
the couplings Γασ(E) for the individual spin and lead indices are defined as
multiples of Γ(E). Two different angles between the parallel magnetizations
of the leads and the applied magnetic field are considered: φ = 0 (full lines)
and φ = π/2 (‘+’). As described above, a change in the current is expected
whenever single-particle excitations enter the bias window. Consider first un-
polarized leads and equal energies, E↑̃ = E↓̃ = 50Γ, corresponding to the black
curve and black pluses in Fig. 7.5. A monotonous increase of the current is
seen for both angles and the results are identical. This is indeed the correct
behaviour as the two different angles only correspond to a change of basis. For
φ = 0 the dot basis is identical to the lead spin basis, and for φ = π/2 the dot
spins are superpositions of the leads spins. The description of the transport is
however very different, as for φ = 0 the off-diagonal elements of the density-
matrix vanishes as spin is conserved, whereas for φ = π/2 the magnitudes of
the off-diagonal elements are comparable to the diagonal ones. Neglecting the
off-diagonal elements would lead to a basis dependent IV -characteristic, which
emphasizes the importance of the off-diagonal elements in quantum transport.

Also for identical level energies, E↑̃ = E↓̃ = 50Γ, and φ = 0 but with polar-
ized leads, the current shows a decrease after eVbias = 50Γ due to a blocking of

7Here coherence is used in the sense of nonvanishing off-diagonal elements of the density
matrix.
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Figure 7.4: The current versus bias voltage for five different angles φ obtained
using the 2vN density-matrix formalism (a) and the mean-field Hartree-Fock
approach (b). The parameters are: ξ0 = 0, B = 2Γ0, U = 8Γ0 and kBT =
0.1Γ0, PL = PR = 0.8 and the bias is applied symmetrically. For the 2vN-
method a constant density-of states with a half band-width W = 20Γ0 and a
5% cut-off at the ends is used (see the main text), while for the Hartree-Fock
calculation the wide-band limit is assumed, i.e. the real-part of the self-energy
was neglected. From Paper IV.
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Figure 7.5: The current versus bias voltage for the angle φ = 0 (full lines) and
φ = π/2 (‘+’). The right chemical potential is kept at zero, i.e. the bias voltage
corresponds to eVbias = µL. The fixed parameters are: ΓL↑ = ΓR↑ = ΓL↓ =
10Γ, kBT = 2.5Γ, U = 100Γ, E↑ = 50Γ, and the bandwidth W = 250Γ.

the current by the spin-↓̃ state (red curve). As the two states with spin-↑̃, ↓̃ are
degenerate, the same IV -curve should be obtained for φ = π/2 (red pluses), as
it just corresponds to a rotation of the dot basis. This is indeed observed.

For spin-split levels E↑̃ = 50Γ and E↓̃ = 70Γ, the curves for unpolarized
leads are again identical for the two different angles, as the different angles
only correspond to a change of the dot spin basis (the blue curve and blue
pluses in Fig. 7.5). However, for spin-polarized leads and spin-split dot levels
the situation is different for the two angles, as the dot levels are no longer
degenerate. For φ = 0 (green curve) spin-blockade occurs when the spin-↓̃
level gets occupied around eVbias = 70, whereas for φ = π/2 (green pluses) the
spin-blockade is lifted as the dot spins are superpositions of the lead spins.

Finally, it should be noticed that the broadening at the onsets of the shoul-
ders are comparable to the coupling to leads rather than the energy scale set
by the temperature.
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7.4 Discussion and conclusion

In this chapter the transport properties of the Ferromagnetic Anderson model
with an applied magnetic B-field (FAB) were discussed.

In the linear response it was shown that for sufficiently low temperatures and
small bias voltages, the linear conductance calculated using the 2vN method
was almost identical to density-matrix renormalization group calculations in
the cotunneling regime. An approximate analytic result could in this regime
be obtained using the T -matrix formalism. It was also discussed that the 2vN
approach is not well suited for the linear response regime at low temperatures
when one of the states is weakly coupled, as it requires a fine energy discretiza-
tion of the leads, and it is difficult to obtain the stationary occupations.

In Paper IV, the success of the mean-field nonequilibrium Green function
solution in the linear response regime is further discussed. It is also shown that
the frequently used Hubbard-I approximation for the nonequilibrium Green
function completely fails, even mathematically, for the FAB model due to the
noncollinear leads and the spin-split levels.

The calculations for finite bias using the 2vN method illustrate the impor-
tance of off-diagonal elements in quantum transport and show for the FAB-
model the basis-independence of the 2vN formalism. Furthermore, the 2vN
method is capable of treating Coulomb blockade, which is not correctly de-
scribed by a mean-field approximation. The latter issue is further discussed in
the coming chapter.



8

Inelastic cotunneling in single
quantum dots

Much work on quantum dots have focused on the sequential tunneling limit,
where electrons pass through the structure whenever single-electron transi-
tions are within the bias window, as discussed for the double quantum dot in
Chap. 4. For a single quantum dot, the current plotted versus bias and gate
voltage shows clear Coulomb blockade diamonds where the sides of the dia-
mond mark the onset of sequential tunneling [8]. For enhanced couplings to
leads higher-order processes may cause additional features within the Coulomb
diamond as seen in experiments and shown schematically Fig. 8.1, and for a
2vN calculation in Fig. 8.2. These higher-order processes are so-called cotun-
neling events, where, e.g., two electrons tunnel almost simultaneously, thereby
overcoming the Coulomb blockade [86]. This is possible due to the uncertainty
principle, and is further discussed below.

Focusing on zero gate voltage in the schematic drawing in Fig. 8.1, i.e., the
middle of the diamond, at low-bias the current has a finite value even deep in-
side the Coulomb blockade regime. This is due to elastic cotunneling processes,
where electron tunnels through the structure via a virtual state, as sketched
in Fig. 8.1. The energy of the dot is unchanged by the elastic cotunneling
processes. For a further increase of the bias voltage a vertical ridge appears in
case of non-degenerate states, defining the onset of inelastic cotunneling. Also
in these processes transport is due to virtual states, but the final energy of the
quantum dot may change, hence the term inelastic. The energy is provided
by the leads. The onset of inelastic cotunneling occurs when the bias voltage
matches the energy between the ground and the excited state.1

Experimentally inelastic cotunneling has been studied in various types of

1Also in the strong-coupling regime and for low temperatures, a zero-bias anomaly can
occur inside Coulomb diamonds with an odd occupation number. This is the so-called Kondo
effect (for a popular review, see [22]). In the discussion below, it is assumed that the tem-
perature is so high that the Kondo effect plays no role.
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quantum dots, e.g., gate-defined dots in two-dimensional electron gases [87, 88],
gate defined ring-like structures with dots embedded in the arms [89, 90], single-
molecules [91], carbon nanotube quantum dots [92, 93] and quantum dots in
InAs-InP nanowires [15].

Besides from raising some fundamental questions about phase coherence
of inelastic processes and decoherence due to interactions [89, 90], inelastic
cotunneling can also be used as a spectroscopic tool for probing the spectrum
of excited states. The advantage of inelastic cotunneling is that in an IV -curve
the width of the onset of inelastic cotunneling is less broadened than the onset
of sequential tunneling, thereby offering increased resolution [94].2 This has
been exploited in measurements of, e.g., the Zeeman splitting using inelastic
spin-flip cotunneling [94], or the singlet-triplet splitting involving both the spin
and the orbital degrees of freedom [87, 88].3

As it takes place in the Coulomb blockade regime, inelastic cotunneling
is interesting from a theoretical point of view because it combines strong in-
teractions with tunneling processes beyond sequential tunneling, and several
aspects have been addressed. For few electron quantum dots with discrete en-
ergy levels, the studies include, e.g., the current, the thermopower [97], the
noise properties [50], level-renormalization [92], three-terminal devices [98] and
the width of the onset of inelastic cotunneling [99].

In this chapter the model Hamiltonian is first presented and some examples
of how to calculate the scattering rates are discussed, see Sec. 8.1. In the
finite-bias regime where inelastic cotunneling is present, mean-field methods fail
which is discussed in Sec. 8.2, and the findings are compared to results obtained
using the 1vN and 2vN approaches presented in Chap. 5. The broadening at
the onset of inelastic cotunneling is treated in Sec. 8.3. Finally, in Sec. 8.4 some
limitations of the 2vN method which can be probed in the elastic cotunneling
regime are discussed. Also the failure of the order-by-order expansion in the
inelastic cotunneling regime is considered. The conclusion on the findings is
found in Sec. 8.5. The contents of this chapter have so far not been published
elsewhere.

8.1 The Hamiltonian and some simple scatter-
ing rate calculations

In this section the Hamiltonian for the system is presented but before consid-
ering the results obtained using the 1vN and 2vN approaches in Sec. 8.2, it

2The width of the onset is further discussed in Sec. 8.3.
3Inelastic electron transport spectroscopy (IETS) has also been used in STM-

measurements of, e.g., the vibrational spectrum of single molecules [95], and the Zeeman
splitting in a single Mn-atom on a surface [96].
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Figure 8.1: The stability diagram for the two-level model discussed in the
text. The edges of the diamond are due to the onset of sequential tunneling
where a chemical potential of the dot aligns with a chemical potential in one
of the leads. The vertical lines inside the diamond mark the onset of inelastic
cotunneling, while the dashed lines outside the diamond marks the onset of
tunneling through excited states.

is discussed how to obtain the pure second-order scattering rates which give a
better physical picture of the involved processes than the 2vN approach pro-
vide.

To simplify the discussion, a model with only two spinless levels is consid-
ered such that the Hamiltonian reads

H =
∑

k,`=L,R

Ek`c
†
k`ck` +

∑

k`n

[
Vk`nc†k`dn + h.c

]
+

∑
n

End†ndn + Ud†1d1d
†
2d2,

(8.1)
with n = 1, 2 denoting the two dot states. The first term is the Hamiltonian of
the leads, and the last two terms are the two single-particle states of the dot
and the interaction between them. The second term is the tunnel Hamiltonian
with the tunneling amplitudes Vk`n. Below it is assumed that Vk`n = x`ntk,
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Figure 8.2: The differential conductance versus bias voltage and gate voltage,
where the bias voltage is applied symmetrically, µL = µR = eVbias/2. The
levels in the dot are assumed to have the gate dependence En = E0

n− eVg with
e = |e| and n = 1, 2. The four coupling amplitudes are xL1 = −xL2 = xR1 =
xR2 = 1/

√
2, i.e. Γ`n = Γ/2, the temperature is kBT = Γ/4 and W = 25Γ. The

dashed lines mark the expected onsets of sequential tunneling (the boundaries
of the diamond), the onset of inelastic cotunneling (the vertical lines), and
the tunneling through excited states (the lines outside the diamond), see also
Fig. 8.1. a) E0

1 = −10Γ, E0
2 = −5Γ and U = 15Γ. b) E0

1 = −10Γ, E0
2 = 0, and

U = 10Γ.

i.e. the coupling between both dot states and the lead states have a fixed phase
factor x`n,4 and tk is assumed to be a real number. The coupling constants
are defined as Γ`n(E) = 2π

∑
k |Vk`n|2δ(E − Ek`n) = |x`n|2Γ(E). For the 2vN

calculations a constant value Γ for |E| ≤ 0.95W is used, and it is assumed that
Γ(E) = 0 for |E| > W . For 0.95W < |E| < W an elliptic interpolation is
applied.

4This is important when considering, e.g., the Aharanov-Bohm effect which depends on
the phase difference between different transport paths. If there is no fixed phase relation
between the lead and the dot states, the transport paths will add up incoherently and no
Aharanov-Bohm oscillations are visible. Experimentally a fixed phase relation is obtained by
using a ring-like structure as a wave guide to couple the leads and the quantum dots, where
only a few modes in the wave guide are accessible, see, e.g., [89, 90, 100, 101].
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Cotunneling scattering rates

Using the Hamiltonian above, the system can be in the four different many-
particle states denoted 0〉 , 1〉 , 2〉 , d〉 = d†2d

†
1 0〉, with energies 0, E1, E2, Ed,

respectively. It is assumed that E2 ≥ E1. The different states and the leading
order tunneling processes between them is shown in Fig. 8.3 for a situation
with the state 1〉 being the ground state.

Using the so-called T -matrix approach, the tunneling rates can be calculated
beyond sequential tunneling [102]. Here the second-order rates are calculated
for the two-level model described above.5 Of the second-order processes only
the rates describing transport processes where an electron is transferred through
the system via a virtual process are considered, while the number of electrons
on the dot is left unchanged. For the system considered here, the dot state is
either identical before and after the process (elastic cotunneling), or the state
is changed ( 1〉 → 2〉 or vice versa). For E1 < E2, the latter corresponds to
an inelastic cotunneling process.

For the cotunneling rates the notation γRL
mn is used for a process where the

dot is initially in the state n〉 and ends up in the state m〉, while an elec-
tron has been transferred from the left to the right contact. In total there are
twelve processes: γ00, γ11, γ22, γdd, γ12, γ21 with LR and RL. Processes
where no electrons are transferred through the quantum dot are neglected al-
though they might give a level renormalization of the dot energies. In this
semi-phenomenological approach such processes are neglected, and below only
the rates γ11 and γ21 are discussed.

The second-order scattering rates are calculated as follows [102]:
Assume that initially the dot is in state n〉 and the leads are in a state νLνR〉,
i.e. the initial state is i〉 = νLνRn〉 with energy Ei = EνLνR + En. The
probability for the leads to be in the state νLνR is denoted WνLνR

= WνL
WνR

,
as the leads are assumed uncorrelated. In the final state an electron k′L has
been transferred from left to right ending up in the state kR, and the dot state
has changed from n〉 to m〉, i.e. the final state is fkk′〉 = c†kRd†mck′Ldn i〉
with energy Ei−En−Ek′L +Em +EkR. According to the T -matrix formalism
the second-order scattering rates are [102]

γRL
mn = 2π

∑

kk′

∑
νLνR

WνLνR

∣∣∣∣〈fkk′ HT
1

Ei −H0
HT i〉

∣∣∣∣
2

δ(Efkk′ − Ei) (8.2)

The matrix elements can now be calculated for various initial states. As an
example, the rate γRL

11 describing the coherent sum of the elastic processes
1〉 → 0〉 → 1〉 and 1〉 → d〉 → 1〉 transferring electrons from the left to

5For critical comments about the T -matrix procedure, see [37].
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Figure 8.3: The model with two single-particle states and the four many-
particle state 0〉 , 1〉 , 2〉 , d〉, with 1〉 being the ground state. The energy
of the excited state 2〉 is in this sketch assumed to be higher than the right
chemical potential. The other situation is shown in Fig. 8.5, and discussed in
Sec. 8.3. The arrows show the leading order transport processes linking the
different states, where the blue arrows mark the sequential tunneling processes
and the red show the cotunneling processes. For the cotunneling processes
transport is due to almost simultaneous tunneling of two electrons thereby
overcoming the Coulomb blockade, as explained in the main text.

right lead is (for details, see App. C)

γRL
11 =

Γ2

2π

∫
dE

∣∣∣x
∗
L1xR1

E1 − E
+

xR2x
∗
L2

E2 + U − E

∣∣∣
2

nF (E−µL)[1−nF (E−µR)], (8.3)

and the rate γRL
21 describing the sum of the inelastic processes 1〉 → 0〉 → 2〉

and 1〉 → d〉 → 2〉 is

γRL
21 =

Γ2

2π

∫
dE

∣∣∣xR1x
∗
L2

E1 − E
− xR1x

∗
L2

E2 + U − E

∣∣∣
2

nF (E + E2 − E1 − µL)[1− nF (E − µR)],
(8.4)

where nF (E) = [1 + eE/kBT ]−1 is the Fermi function, and energy-independent
coupling constants are assumed (the Wide-Band Limit).

Two observations can be made: For vanishing temperature, kBT = 0, the
inelastic cotunneling rate γRL

21 is only finite above the bias-threshold eVbias >
E2 − E1, giving direct access to the excitation energy of the quantum dot
from the IV -curve. Secondly, for finite temperatures the expressions for the
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cotunneling rates diverge and a regularization procedure is needed. Turek et
al. suggested adding +iΓ by hand in the denominators and neglecting the part
proportional to 1/Γ, which correspond to an on-shell contribution, i.e. the
sequential tunneling result [97]. The remainder is the cotunneling rate. This
procedure was used, e.g., in Refs. [98, 103, 104], giving analytic expressions for
the cotunneling rates in terms of polygamma functions.

In certain situations, the cotunneling rates exceed the values of the sequen-
tial tunneling rates. One example is shown in Fig. 8.3, with 1〉 being the
ground state where E1 < µL,R and E2 + U > µL, µR. Here sequential tun-
neling is blocked and transport occurs via elastic sequential processes due to
the cotunneling rates γ11 or via the inelastic cotunneling processes through γ21.

Below the 2vN approach is applied over the full bias-range. As the method
contains processes beyond second-order in the tunneling coupling, level renor-
malization as well as broadening of the level is included, and no regularization
procedure is needed. The second-order expressions derived above are used to
explain the findings in the cotunneling regime.

8.2 Mean-field vs. Generalized Master Equa-
tions

When treating quantum transport through nanodevices such as, e.g., molecules,
molecular wires, Au or Pt contacts, an often used tool is density-functional the-
ory (DFT) [105], which is often embedded in a nonequilibrium Green function
framework [106]. DFT allows for the inclusion of the chemical structures of the
devices, and these methods are frequently denoted ab-initio methods and are
widely used in the field of molecular electronics.

Density-functional theory provides (in principle) exact results for the ground
state properties of the systems but is effectively a mean-field method out
of equilibrium, giving significant problems in the Coulomb blockade regime.
Within the DFT framework attempts to overcome some of these problems have
been proposed [107, 108], as well as the extension to Time-Dependent Density-
Function Theory (TDDFT). In TDDFT the transport problem is transformed
into a time-dependent one-particle scheme in a formally exact way. Here the
major problem consists in finding sufficiently accurate action functionals for
exchange and correlation effects [109].

Mean-field methods are essentially single-particle theories, where the effects
of many-particle interactions are included via self-consistent calculations of
averages between single-particle operators. Another approach is to work in the
(many-particle) Fock-space as proposed for semiconducting quantum dots by
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C.W.J. Beenakker [110] and used, e.g., in Refs. [111, 112]. In the Fock-space
formulation interactions on the dot are treated exactly. Another example is the
Diagrammatic Real-time Transport Theory discussed in Chap. 5. In the context
of molecular electronics, the problems of self-consistent methods have been put
forward by Datta and collaborators, e.g., pointing out the incorrect step heights
in IV -curves as compared to Fock-space master equations [113, 114, 115].

Also for simplified model systems, mean-field methods have been applied.
For a double quantum dot, bistability in the IV -curve leading to hysteresis
was observed in Ref. [116], but these findings were questioned in Ref. [117]
based on a master equation approach. For the Anderson model with a single
spin-degenerate level, Horváth et al. also found that the mean-field solution
incorrectly predicts a bistability for certain parameters [84].

The current versus bias voltage has been calculated for the two-level model
introduced in Sec. 8.1 using the 1vN and 2vN methods as well as nonequilib-
rium Green functions within a mean-field approximation. In the latter, the
interaction part of the Hamiltonian Ud†1d1d

†
2d2 is replaced with the mean-field

interaction

Ud†1d1d
†
2d2 → U

{[
d†1d1

〈
d†2d2

〉
+ d†2d2

〈
d†1d1

〉]

−
[
d†1d2

〈
d†2d1

〉
+ d†2d1

〈
d†1d2

〉]}
,

(8.5)

where the first [. . .]-bracket is the Hartree term and the second the Fock term,
similarly to Eqs. (7.10)-(7.11). This gives the effective single-particle levels
E1(2) + U

〈
d†2(1)d2(1)

〉
, where the (generalized) occupations

〈
d†ndm

〉
(n, m =

1, 2) have to be found self-consistently. The calculation is identical to the one
for the FAB model discussed in Chap. 7 and Paper IV.

Results for the two-level model

In Fig. 8.4 results for the two-level model defined in Eq. (8.1) are presented.
The lower level is below the equilibrium chemical potentials, E1 < 0, for two
different values of E1 and the other level is placed above, E2 > 0. The chemical
potential of the right contact is fixed while the left chemical potential is raised,
µL = eVbias.

For low bias voltages, the system is in the Coulomb blockade regime and
the 1vN method shows almost vanishing current for µL < E2 + U , whereafter
it abruptly rises to its final value. Virtually no difference is observed between
the curves for E1 = −4Γ and E1 = −2Γ, respectively. The 2vN method gives,
on the contrary, a finite current even in the Coulomb blockade regime. For
0 ≤ µL ≤ |E2 − E1| only elastic cotunneling processes contribute to the current,
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Figure 8.4: a) The current versus bias voltage for two different values of E1

calculated using mean-field nonequilibrium Green functions, 1vN and 2vN. The
chemical potentials are µL = eVbias and µR = 0. The phase factors are all
equal x`n = 1/

√
2, i.e. Γ`n = Γ/2. The other parameters are: E2 = 16Γ,

U = 20Γ, kBT = Γ/10 and W = 50Γ. The arrows indicate the direction
of the bias voltage sweeps in the mean-field calculations. Note that the two
1vN results fall almost on top of each other. b) The low-bias regime for the
same parameters as in a), but with the 1vN results replaced by the scattering
expression Iel.cotun = 1

~ (γ
RL
11 − γLR

11 ) calculated for kBT = 0.

and this is denoted the elastic cotunneling regime. The current agrees very well
with Iel. cotun = 1

~ (γ
RL
11 −γLR

11 ) calculated for kBT = 0 using Eq. (8.3), where it
is noticed that at zero temperature the rate γLR

11 vanishes. This approximation
for the current is valid when the state 1〉 is almost fully occupied.6 The onset
of inelastic cotunneling is expected for µL = |E2 − E1| [see Eq. (8.4)] which is
indeed seen for both values of E1. A careful inspection shows a small dip in
the current after the value µL = E2, see Fig. 8.4b. One can speculate that this
is due to a small thermal occupation of this level. In the inelastic cotunneling
regime, |E2 −E1| ≤ µL ≤ E2 + U , the current is a sum of elastic and inelastic
cotunneling processes plus additional so-called cotunneling assisted sequential
tunneling processes, which is further discussed in the next section. Finally,
at µL = E2 + U (the high-bias regime) the current rises to the final value
which slightly overshoots the 1vN result, as the latter does not take the elastic
cotunneling processes through the lower level into account. This is particularly
pronounced for E1 = −2Γ.

The mean-field nonequilibrium Green function results in Fig. 8.4 show a
completely different behaviour. In the elastic cotunneling regime, the results

6The T -matrix approach was used in a similar setup for the FAB-model discussed in
Chap. 7 and in Ref. [82].
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agree with the 2vN and Iel. cotun results, but the onset of inelastic cotunneling
is missing. Instead a sudden switching of the current occurs before the onset
of sequential tunneling at µL = E2 + U , and the final value of the current is
significantly larger than the 2vN result. Sweeping the current in the opposite
direction leads to a clear bistability where the current shows a sudden drop at
a smaller bias voltage than the onset. The bistability can be understood in
terms of the occupation of the lower level. In the elastic cotunneling regime
and for increasing bias voltage, the lower level is almost fully occupied and the
upper level almost completely empty. In the inelastic cotunneling regime the
lower level starts to get emptied and the upper level starts to get occupied,
thereby raising the lower level to the new position E1 + U

〈
d†2d2

〉
. The lower

level is eventually placed above the right chemical potential µL = 0, allowing
for sequential tunneling through the level. This leads to a too high plateau
value in the high-bias regime. Sweeping the current backwards leads to the
opposite scenario.

It is concluded that the mean-field approximation is not able to produce
the correct IV -characteristic in the inelastic cotunneling regime where excited
states get populated. In the high-bias regime it overestimates the current as
compared to the generalized master equation results. Both the elastic cotun-
neling regime, the onset of inelastic cotunneling, as well as the high-bias limit
are captured by the 2vN approach.

8.3 Broadening at the onset of inelastic cotun-
neling

Consider a discrete level coupled to a continuum of states. In Chap. 6 it was
discussed how the coupling gives a renormalization of the level. In addition,
if the system is initially prepared in the discrete state it will decay to the
continuum, as the discrete state is not an eigenstate of the system due to
the coupling [64]. To second order in the tunneling amplitude, the decay in
time can be written as an exponential such that the occupation of the state
is ∝ exp(−Γt), with Γ denoting the inverse of the characteristic lifetime. By
Fourier transformation this corresponds in frequency space to a broadening of
the discrete level, where Γ is the linewidth.

In a tunneling experiment, the linewidths of the levels give a broadening of
the onsets of the current plateaus. As mentioned above, the onset of the in-
elastic cotunneling processes is expected to be less broadened than the onset of
sequential tunneling. In the present section work on this topic is reviewed and
calculations using the 2vN approach are presented. I gratefully acknowledge
Matthias H. Hettler for suggesting this work.
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Consider first the onset of sequential tunneling at zero temperature. The
zero-temperature broadening of the onset of sequential tunneling is often de-
noted the intrinsic linewidth [118] or the lifetime broadening [87]. For a single
non-interacting level, the intrinsic linewidth is ΓL +ΓR, which can be obtained,
e.g., from a nonequilibrium Green function calculation [35]. In an IV -curve,
the onset of sequential is therefore broadened by the same amount, most easily
obtained from the differential conductance, dI/dVbias. For the spin-degenerate,
single-level Anderson model with strong Coulomb repulsion, the width of the
onset of sequential tunneling depends on the asymmetry of the barriers as
shown experimentally and theoretically by Könemann et al. [58].7

For finite temperatures, the total broadening is due to both the intrinsic
linewidth and the temperature broadening, where the latter stems from the
finite temperature of the leads. For vanishing intrinsic linewidth, the temper-
ature broadening is proportional to kBT and is in general dominant at high
temperatures, kBT À ΓL, ΓR. This is clearly seen experimentally as, e.g., in
Fig. 2 in Ref. [119].

Below the onset of inelastic cotunneling is discussed for the two-level model
presented in Sec. 8.1, and it is assumed that µL > µR = 0 and E1 < E2. At
the onset, which happens at eVbias = |E1 − E2|, two scenarios are possible: i)
the excited state 2〉 is below both chemical potentials, E2 < µL, µR, or ii) the
state 2〉 is above the right chemical potential, µR < E2 < µL, see Fig. 8.5.
For situation i) the system can after an inelastic process end up in the state
2〉. In this case, either elastic cotunneling processes 2〉 → 0〉 → 2〉 occur,

or the system enters the ground state via the inelastic cotunneling process
2〉 → 0〉 → 1〉. As no sequential processes are possible, the intrinsic linewidth

of the state 2〉 is expected to be much smaller than ΓL + ΓR and rather given
in terms of the cotunneling rates γ22 and γ12. For the other case, ii), several
transport paths are available if the system ends up in the excited state 2〉. A
sequence of sequential tunneling processes 2〉 → 0〉 → 2〉 are possible and
eventually the system enters the ground state via 2〉 → 0〉 → 1〉. Theses
processes are named cotunneling assisted sequential tunneling (CAST), and
were discussed theoretically in, e.g., Refs. [48, 99, 120], and both experimentally
and theoretically in Ref. [47].8 As the excited state 2〉 can decay by sequential
tunneling to the right contact, the intrinsic width of the onset is anticipated to
be proportional to ΓR [87].

As for the sequential tunneling case there is also a temperature dependent

7In that work the theoretical calculations are performed using the Diagrammatic Real-
time Transport Theory within the Resonant Tunneling Approximation, see Sec. 5.5.

8Within the Coulomb diamond, the CAST processes give a gate-dependent angular shape
before the sequential lines but after the onset of inelastic cotunneling, which is seen in the
conductance plot in Fig. 8.2a.
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Figure 8.5: The two different situations after the onset of inelastic cotunneling
discussed in the main text. The onset happens when the bias voltage matches
the excitation energy, µL−µR = |E2−E1|, whereafter an inelastic cotunneling
process is possible. This is shown as a-b in the figures. With the excited state
being occupied, there are two possibilities: In i) the current is blocked as the
energy level E2 is below the chemical potential of both contacts. The excited
state can only decay via another inelastic process. In ii) the energy level E2 is
above the chemical potential of the right contact and an additional sequential
tunneling process is possible.

contribution to the onset of inelastic cotunneling. For a vanishing intrinsic
linewidth, the broadening at the onset of inelastic cotunneling is 5.44kBT as
shown in Ref. [118], where also an analytic expression for the shape of the onset
is presented. However, this expression was derived for vibrational modes in a
tunneling barrier where the tunnel matrix elements are independent of the level
energies, which is not the case for cotunneling through quantum dots, see, e.g.,
the second-order matrix element in Eq. (8.2).

To our knowledge only a few transport experiments on quantum dots in-
vestigating the width of the onset of inelastic cotunneling have been carried
out. One example is by Franceschi et al. [87] for a gate-defined quantum dot
in a two-dimensional electron gas. Here they report finding a width depend-
ing on whether CAST processes are possible or not. However, no systematic
investigation of the temperature dependence of the linewidth is performed.

In a recent work, Aghassi et al. investigated theoretically the onset of in-
elastic cotunneling using the Diagrammatic Real-time Transport Theory for
the spin-split single-level Anderson model [99]. They calculated the tunneling
rates to second-order in the coupling constant, Γ, and found that for both sit-
uations i) and ii) outlined above, the width of the onset is proportional to the
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temperature and no intrinsic linewidth is observed. However, as only tunneling
processes to second order in the coupling constant are included, they are lim-
ited to the regime kBT > Γ and can only conclude that the observed linewidth
for situation ii) is much smaller than ΓR. Moreover, they use an order-by-order
expansion to second-order in the tunneling coupling [see Eq. (5.10)], i.e. elastic
and inelastic cotunneling processes are just included but all higher-order pro-
cesses are neglected. Therefore the intrinsic linewidth at the onset of inelastic
cotunneling might not be captured.

In Chap. 5 it was pointed out that for non-interacting systems where no
inelastic cotunneling can occur, the 2vN approach gives the exact broadening
at the onset of sequential tunneling, showing that the method in this situation
includes all relevant higher-order processes. Therefore it was investigated if
the method could also give some numerical insight into the intrinsic linewidth
at the onset of inelastic cotunneling for the two-level model discussed in the
present chapter. To reduce the computational effort, infinite Coulomb repulsion
is assumed, U → ∞, by removing the state d〉 from the Hilbert space. The
bias is applied by only raising the chemical potential of the left contact, µL =
eVbias, and keeping µR = 0. When taking the second-derivative of the current,
d2I/dV 2

bias, a peak appears at the onset of inelastic cotunneling. The width at
the onset of inelastic cotunneling is defined as the full-width at half-maximum
(FWHM) of this peak in accordance with Refs. [87, 99, 118].

The results are shown in Fig. 8.6, where the upper panels show the dif-
ferential conductance, dI/dVbias, while the lower panels show the FWHM of
the peak in the second-derivative of the current at the onset of inelastic co-
tunneling. In the latter, the lines are FWHM = 5.44kBT , corresponding to
pure temperature broadening. Figures 8.5a-b and Figs. 8.5c-d correspond to
the situations i) and ii) in Fig. 8.5, respectively, and for both cases the onset of
inelastic cotunneling is found at eVbias = E2 − E1 as expected. Compare also
the shape of the differential conductance around the onset with Fig. 4.3.

Numerically it was difficult to obtain the second-derivatives and conse-
quently to find the values for the FWHM, in particular for elevated tem-
peratures. Therefore the values for the FWHM should be taken as approx-
imate. However, it can be concluded that for both situations the results show
only broadening due to temperature with a linewidth approximately given by
5.44kBT in agreement with Ref. [118], and no intrinsic linewidth is observed.
Therefore the findings suggest that for both situations the intrinsic linewidth
is smaller than ∼ 5% of Γ. This contradicts the conclusion in Ref. [87] based
on experimental findings, but where no temperature dependence of the width
was shown.

In conclusion, the calculations have shown that even when CAST processes
are available, the 2vN approach shows no intrinsic linewidth. However, it
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remains an open question whether the linewidth is actually less than a few
percent of Γ, or if the transport processes contributing to the width is not
included in the 2vN approach and even higher-order tunneling processes must
be taken into account.

8.4 Shortcomings of the 2vN approach and the
order-by-order expansion

During the work with the spinless two-level model, a shortcoming of the 2vN
method was found. It is related to the implicit summation of higher-order
processes when applying the equation of motion technique.

Consider the elastic cotunneling regime, eVbias < |E1 − E2|, in a situation
with the state 1〉 being the ground state as shown in Fig. 8.3. Assuming
|E1|, E2 + U À Γ, eVbias the factor | . . . |2 in Eq. (8.3) is approximated by
a constant and taken outside the integral, and the current is evaluated as
Iel. cotun = 1

~
(
γRL
11 − γLR

11

)
. Evaluating the resulting integral over the product

of the Fermi functions, the conductance in the linear response regime becomes9

Gel. cotun =
e2Γ2

2π~

∣∣∣∣
x∗L1xR1

E1
+

x∗R2xL2

E2 + U

∣∣∣∣
2

. (8.6)

For identical phase factors, e.g., x`n = 1, the linear conductance vanishes
at the particle-hole symmetric point, E1 = −(E2 + U), i.e. both the first-
and the second-order contributions to the conductance vanishes. For nonzero
temperatures and a (small) finite bias, second-order contributions are finite but
higher-order processes may still dominate.

The current in the low-bias regime was calculated using the 2vN approach
setting all phase factors equal, and an unphysical negative current was found
at the particle-hole symmetric point (not shown). This shows that when tun-
neling processes beyond second order in the tunnneling coupling are dominant,
the 2vN method may fail as only a subset of processes beyond second order is
included and not automatically the dominant ones.

Finally, the problem of the order-by-order expansion of the generalized mas-
ter equation discussed in Sec. 5.2 is revisited, see Eq. (5.10). As explained
below, the order-by-order expansion gets problems for the two-level model in
the regime where cotunneling processes dominate when only processes up to
second-order in the coupling constant are taken into account.

For simplicity the spin-split single-level Anderson model is considered, where
no off-diagonal elements are present due to spin conservation, and also infi-
nite Coulomb repulsion is assumed. Consider now a situation with the state

9See also [71, 82].
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1〉 = ↑〉 being the ground state and the state 2〉 = ↓〉 being the excited
state. In the order-by-order expansion, the tunneling rates and the densities
are expanded in powers of the tunneling coupling as shown in Eq. (5.10). As
pointed out by Weymann el al. [49] and discussed in Refs. [48, 121], a problem
occurs when the excited state is below both chemical potentials, corresponding
to situation i) in Sec. 8.3. Expanding the occupations in powers of Γ, the oc-
cupation of the excited state, P2 = P

(0)
2 + P

(1)
2 + . . ., vanishes to zeroth order

in Γ as sequential tunneling is exponentially suppressed due to the Coulomb
energy, i.e. P

(0)
2 = 0. However, for a sufficiently large bias voltage, the excited

state can get populated via an inelastic cotunneling process from the ground
state, γ21P

(0)
1 , which is second order in Γ. The problem now occurs because to

second order in Γ the system cannot decay, as the decay can only happen via
another inelastic process, γ12P

(1)
2 , which is third order in Γ. The consequence

is a pumping of the excited state. As pointed out in Ref. [121] this may happen
whenever all lowest order couplings to some state are suppressed.10

Different cross-over scheme have been proposed to handle this shortcoming
of the order-by-order expansion [48, 49, 121], but the prize to pay is that the
final result is no longer only second-order in the tunneling coupling but contains
a subset of higher-order processes.

8.5 Discussion and conclusion

In this chapter it has been shown that the nonequilibrium Green function
method with a Hartree-Fock mean-field interaction provides both quantitatively
and qualitatively wrong results for the spinless two-level model in the inelastic
cotunneling regime as well as in the high-bias regime. This is in line with
findings in other theoretical work, e.g. Refs. [113, 84]. In the elastic cotunneling
regime, the nonequilibrium Green function, the 2vN and the T -matrix solutions
gave almost identical results. The 2vN method gave also the onset of inelastic
cotunneling at the expected bias voltage, which matches the excitation energy.

Regarding the broadening of the onset of inelastic cotunneling, the results
are inconclusive but so far no intrinsic linewidth has been observed for any
of the two cases mentioned above. Hopefully further investigations will show
whether this is because the 2vN method is unable to capture the intrinsic
linewidth, or because the linewidth is much smaller than expected.

Finally, a shortcoming of the 2vN method in the elastic cotunneling regime
at the particle-hole symmetric point was discussed, which was due to vanishing
first- and second-order couplings. For similar reasons, the second-order expan-
sion of a generalized master equation can also get problems due to a pumping
of the upper level.

10For the 2vN approach no such pumping of the upper level has been observed.
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Figure 8.6: The derivative of the current, dI/dVbias, and the full-width-half-
maximum (FWHM) of the peak in the second- derivative, d2I/dV 2

bias, at the
onset of inelastic cotunneling for infinite Coulomb repulsion, U → ∞. The
bias is applied by raising µL = eVbias. Figure a-b are for E1 = −8Γ and
E2 = −3Γ, corresponding to situation i) in Fig. 8.5, while c-d are calculated
for E1 = −5Γ and E2 = 5Γ, i.e. situation ii) in Fig. 8.5. The full lines in
Fig. b and d are the FWHM = 5.44kBT . The other parameters are in all plots
xL1 = −xL2 = xR1 = xR2 = 1/

√
2, and W = 20Γ.
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Summary and outlook

In this thesis the topic of transport through nanostructures has been addressed.
After a general introduction to the subject, a thorough analysis of transport
spectroscopy data obtained from a double dot in an InAs-InP nanowire was
presented in Chap. 4. Based on a capacitance model, it was explained how the
various lines in the data could be related to the capacitances. Due to the lack
of gate control for the individual dots, two relations between the capacitances
were missing. From an electrostatic model for the nanowire, it was justified
that also lead-next-to-nearest-dot capacitances should be included for a double
dot embedded in a heterostructure nanowire. These capacitances are normally
neglected in double dot systems with gate-defined dots [17].

In Chap. 5 an overview of the problem of calculating electron transport
through nanostructures was presented with a particular focus on density-matrix
based approaches, also denoted generalized master equations. The advantage of
the density-matrix approach when formulated in a many-particle basis is that
all interactions within the nanostructure are taken fully into account. Then a
newly developed method, the 2vN approach, was presented. Formulated in a
many-particle basis, it extends previous work on generalized master equations
by not only treating the (generalized) occupations, but also including processes
with up to two electron-hole pairs by applying a straightforward approximation
scheme. Thus processes beyond sequential tunneling are included, such as, e.g.,
cotunneling processes, where electrons tunnel via virtual states. The method
is not limited to the linear response regime, but is applicable over the full bias
range. Steps in the current are not only broadened due to the temperature of
the leads, but they also acquire a finite broadening because of the coupling to
leads. The method is applicable for temperatures lower than the energy scale
set by the coupling to leads, but cannot account for strong correlations close
to zero temperature, as causing, e.g., the Kondo effect.

The method was applied to a double dot system in Chap. 6, where particular
focus was given to the quantum mechanical level renormalization due to the
coupling to leads, which can lead to negative differential conductance. The
findings were compared to a first-order generalized master equation approach
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and good agreement was found for temperatures larger than the energy scale
set by the coupling to leads. The work also emphasized the importance of
working in the molecular basis, i.e. using the basis where the Hamiltonian of
the central region is diagonal, in order to correctly describe the onset of the
different steps in the current.

A spintronics model with a single level coupled to ferromagnetic leads with
parallel magnetizations was discussed in Chap. 7, where a magnetic field was
applied noncollinearly with the magnetization of the leads. With one level
above the chemical potentials of the leads and the other below, the linear con-
ductance shows a strong dependence on the angle between the magnetizations
of the leads and the applied magnetic field, where the behaviour depends on
the strength of the Coulomb interaction. The results obtained using the 2vN
approach were compared to calculations performed by others using a density-
matrix renormalization group scheme, as well as a scattering approach. For
finite bias, the IV -curve also depended strongly on the angle between the mag-
netizations of the leads and the applied magnetic field, leading to negative
differential conductance in some parameter regimes. It was also shown that
the non-equilibrium Green function method with a mean-field approximation
for the interaction was not even capable of describing this feature qualitatively.
Finally, an example showing the importance of a correct treatment of the off-
diagonal density matrix elements was included.

As a last application of the 2vN method, the phenomenon denoted inelastic
cotunneling was addressed in Chap. 8. This is maybe the most prominent ex-
ample, as it illustrates the need for a method which can correctly describe the
Coulomb interaction between the electrons and also handle both sequential and
cotunneling processes at temperatures lower than the energy scale set by the
coupling to leads. It was shown that this is not the case for the mean-field ap-
proximation as it leads to a bistable solution due to an insufficient description
of the Coulomb interaction. However, it also revealed that in certain situations
the 2vN approach can yield physically incorrect results as further discussed
below.

As the 2vN method, forming the core of this thesis, is a new way of including
broadening of many-particle states within a density matrix formalism, the work
presented in this thesis raises some fundamental and practical questions, and
provides various opportunities for further research.

As mentioned in the final remarks in Chap. 5, it is well established that
generalized master equation methods can have shortcomings leading to the
occurrence of negative densities in certain parameter regimes. This has also
been observed for the 1vN approach. For the 2vN approach an unphysical
negative linear conductance occurs in the regime where sequential tunneling is
blocked and elastic cotunneling amplitudes cancel due to interference, as dis-



Summary and outlook 87

cussed in Sec. 8.4. Under the same conditions, negative densities may occur.
It would be interesting to further explore the limitations of the 2vN approach
in order to identify other potentially problematic regimes, and set up clear
criteria for when the method safely can be applied, or develop a new approxi-
mate scheme without these drawbacks. Moreover, so far analytical results are
only available for two particularly simple model systems, namely for a single
level without spin, and the Anderson model with degenerate levels and infi-
nite Coulomb repulsion. This is due to the complicated equations of motion
for the terms containing a single electron-hole pair, which have the form of
integro-differential equations. Further analytical results for other systems will
require more insight in the analytical structure and probably also some further
model-dependent approximations.

Apart from the more fundamental aspects, also the task of establishing
an efficient numerical implementation of the 2vN method is unsolved. So far
only systems with at most two single-particle levels, i.e. containing four many-
particle states, have been treated, but dealing with larger systems will require
automatized numerical schemes.

The results presented in this thesis are all for the steady-state values of the
current, and so far little attention has been devoted to the time-dependence of
the 2vN equations, where the only example is shown in Sec. III in Paper II. In
the derivations of the 2vN equations the Markov approximation was applied,
which might limit the validity of the method for time-dependent problems,
but maybe it is possible to modify the derivation to better account for the
time-dependence. E.g., Ref. [37] might provide helpful ideas in this context.

An even more interesting topic is the calculation of higher-order cumulants,
such as, e.g., the noise, using full-counting statistics. It has previously been
shown that the higher-order cumulants can give access to information not avail-
able in the average current, such as, e.g., the transport mechanism in quantum
shuttles [39], or bunching of electrons in the inelastic cotunneling regime for
transport through a single dot [50]. Some preliminary studies were performed
for the 2vN method for different model systems, but some of the results were
clearly wrong. It would be interesting to figure out whether this is due to nu-
merical problems or, more likely, due to the applied approximation scheme used
for deriving the 2vN equations. One source for the unphysical results could be
the application of the Markov approximation, see, e.g., Ref. [51].

The work in thesis is about the theoretical description of quantum trans-
port through nanostructures. The method introduced, 2vN, is based on the
many-particle density matrix formalism and includes transport processes be-
yond sequential tunneling. Several other density-matrix based approaches are
available, in particular methods which only include transport processes to low-
est order in the coupling, while transport beyond sequential tunneling is less
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studied. Especially in this context, this thesis may provide a useful step in a
developing field.



Appendices





A

The capacitance model for a
double quantum dot

From classical electrostatics it is known that the charge Qi on the ith conductor
connected to N other conductors is

Qi =
N∑

j=0

Cij(Vi − Vj) (A.1)

where the zeroth conductor is defined to be grounded, V0 = 0.
For the system shown in Fig. 4.1, the charges on the two dots can be ex-

pressed as1

Q1 = CL1(V1 − VL) + CR1(V1 − VR) + Cg1(V1 − Vg) + Cm(V1 − V2), (A.2)
Q2 = CL2(V2 − VL) + CR2(V2 − VR) + Cg2(V2 − Vg) + Cm(V2 − V1), (A.3)

which can be arranged on the form

V =
(

V1

V2

)
= C−1

(
Q1 + CL1VL + CR1VR + Cg1Vg

Q2 + CR2VR + CL2VL + Cg2Vg

)
(A.4)

with C being the capacitance matrix for system consisting of the two dots,

C =
(

C1 −Cm

−Cm C2

)
, (A.5)

where C1 = CL1 + CR1 + Cg1 + Cm and C2 = CR2 + CL2 + Cg2 + Cm.
Defining Q1 = −eN1 and Q2 = −eN2, with e = |e|, the electrostatic energy

of the conductor network in terms of the voltages and the charges on the dots

1The derivation is similar to Ref. [17]. Note also that S(ource) and D(rain) have been
replaced with L(eft) and R(ight), respectively.
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is2

U(N1, N2, VL, VR, Vg) =
1
2

V · (CV)

=
1
2
EC1N

2
1 +

1
2
EC2N

2
2 + ECmN1N2

+
1

C1C2 − C2
m

[
− e(Cg2Vg + CR2VR + CL2VL)(N2C1 + N1Cm)

− e(Cg1Vg + CL1VL + CR1VR)(N2Cm + N1C2)

+
1
2
(Cg1Vg + CL1VL + CR1VR)2C2

+
1
2
(Cg2Vg + CR2VR + CL2VL)2C1

+ (Cg1Vg + CL1VL + CR1VR)(Cg2Vg + CR2VR + CL2VL)Cm

]
.

(A.6)

with

EC1 =
e2

C1

(
1

1− C2
m

C1C2

)
, EC2 =

e2

C2

(
1

1− C2
m

C1C2

)
, (A.7)

ECm =
e2

Cm

(
1

C1C2
C2

m
− 1

)
.

The chemical potentials µ1,2 of the dots due to electrostatics are defined as
the energies of the last added electron, and for a symmetrically applied bias
voltage it becomes [see also Eqs. (4.1,4.2)]

µ1(N1, N2, V, Vg)
≡ U(N1, N2,−V/2, V/2, Vg)− U(N1 − 1, N2,−V/2, V/2, Vg)

=
1
2
EC1(2N1 − 1) + ECmN2 − eα1

gVg + eα1
V

V

2
.

(A.8)

and

µ2(N1, N2, V, Vg)
≡ U(N1, N2,−V/2, V/2, Vg)− U(N1, N2 − 1,−V/2, V/2, Vg)

=
1
2
EC2(2N2 − 1) + ECmN1 − eα2

gVg − eα2
V

V

2
.

(A.9)

2Often we will not write the voltage dependence explicitly.
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where the lever arms

α1
V =

C2(CL1 − CR1) + Cm(CL2 − CR2)
C1C2 − C2

m

, (A.10)

α2
V =

Cm(CR1 − CL1) + C1(CR2 − CL2)
C1C2 − C2

m

, (A.11)

α1
g =

C2Cg1 + Cg2Cm

C1C2 − C2
m

, (A.12)

α2
g =

C1Cg2 + Cg1Cm

C1C2 − C2
m

, (A.13)

have been introduced. The lever arms express the change in the chemical po-
tentials of the dots due to a change in bias or gate voltage.

The change in chemical potential for adding an electron to dot 1 at fixed
bias and gate voltage is called the addition energy (or the charging energy) and
is defined as µ1(N1 + 1, N2) − µ1(N1, N2) = EC1, where a similar expression
holds for dot 2. Due to the cross-capacitance, Cm, the chemical potential in
one dot is changed when adding a charge to the other,
µ1(N1, N2 + 1)− µ1(N1, N2) = µ2(N1 + 1, N2)− µ1(N1, N2) = ECm.

In summary, there are seven capacitances, Cg1, Cg2, CL1, CL2, CR1, CR2

and Cm which have to be fixed from the experimental data in order to determine
the charging energies EC1, EC2 and ECm. As explained below, the experimen-
tal data can only provide five relations between the capacitances and therefore
we have to fix CL2/CL1 and CR1/CR2 based on electrostatic modelling of the
nanowire in order to solve for the capacitances.
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B

Extracting capacitances from
double quantum dot data

In this appendix, it is shown how to extract the capacitances from the experi-
mental data for the double quantum dot system described in Chap. 4.

In Fig. 4.2a, the distances between the dashed green lines are related to
the interdot charging energy ECm: At fixed bias voltage and being on a dashed
green line µL = µ1(N1, N2, V, Vg), lowering the gate voltage leads to a change
in occupation of dot 2 thereby changing the chemical potential of dot 1. At
the dashed green line below, with the gate voltage Vg −∆V green

g , the chemical
potential of dot 1 is again aligned with the chemical potential of the left lead,
but the occupation of dot 2 has changed by one, i.e. µL = µ1(N1, N2−1, V, Vg−
∆V green

g ), see Fig. 4.4. Subtracting the two expressions gives

∆V green
g =

ECm

α1
g

=
1
α1

g

e2

Cm

(
1

C1C2
C2

m
− 1

)
. (B.1)

Two neighbouring dashed red lines both correspond to the alignment of
the right chemical potential with the chemical potential of dot 2, but with the
occupation of dot 2 changed by one, see Fig. 4.4. Also at fixed bias voltage,
the distance ∆V red

g between the dashed red lines gives the relations, µR =
µ1(N1, N2, V, Vg) = µ1(N1, N2 − 1, V, Vg −∆V red

g ), leading to

∆V red
g =

EC2

α2
g

=
1
α2

g

e2

C2

(
1

1− C2
m

C1C2

)
. (B.2)

Along the dashed green lines, the filling of dot 1 and 2 is constant and the left
chemical potential is aligned with the chemical potential of dot 1. Choosing
two points on the line, (Vbias,Vg) and (Vbias + ∆Vbias,Vg − ∆Vg) and using
eVbias/2 = µ1(N1, N2, Vbias, Vg) and e(Vbias + ∆Vbias)/2 = µ1(N1, N2, Vbias +
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∆Vbias, Vg −∆Vg), gives the slope of the dashed green line

αgreen =
α1

V − 1
2α1

g

=
C2([CL1 − CR1]− C1) + Cm(Cm − [CR2 − CL2])

2(Cg2Cm + C2Cg1)
. (B.3)

Similarly, using that along the red dashed lines the chemical potential of
the right lead is aligned with chemical potential of dot 2, the slopes are

αred =
1− α2

V

2α2
g

=
C1(C2 − [CR2 − CL2]) + Cm([CL1 − CR1]− Cm)

2(Cg2C1 + CmCg1)
. (B.4)

Finally, on the resonance lines, the chemical potential in dot 1 for an elec-
tron filling in the two dots being N1, N2, respectively, is aligned with the
chemical potential in dot 2 for a filling of the dots N1 − 1 and N2 + 1, i.e.
µ1(N1, N2, Vbias, Vg) = µ∗2(N1 − 1, N2 + 1, Vbias, Vg), where the ‘*’ indicates,
that the tunneling through dot 2 might happen through an excited state. The
slopes of the resonance lines are

αresonance =
α1

V + α2
V

2
[
α1

g − α2
g

] =
[CR2 − CL2](C1 − Cm) + [CL1 − CR1](C2 − Cm)

2[Cg2(Cm − C1) + Cg1(C2 − Cm)]
.

(B.5)
In total, five relations between the capacitances have been obtained.



C

Cotunneling rates for the single
quantum dot

The cotunneling rates γRL
11 and γLR

11

First the rate γRL
11 is considered with the initial state i〉 = νLνR1〉 and the

final states fkk′〉 = c†kRck′L i〉, where the energies are Ei = EνLνR
+ E1

and Efkk′ = Ei − Ek′L + EkR, respectively. There are two different transport
processes: 1〉 → 0〉 → 1〉 and 1〉 → d〉 → 1〉, and as they have the same
final state they interfere with each other.

According to Eq. (8.2), the cotunneling rate is

γRL
11 = 2π

∑

kk′

∑
νLνR

WνLνR

∣∣∣
∑

k1k2

{
〈fkk′ V ∗

k2L1d
†
1ck2L

1
Ei −H0

Vk1R1c
†
k1Rd1 i〉

+ 〈fkk′ Vk2R2c
†
k2Rd2

1
Ei −H0

V ∗
k1L2d

†
2ck1L i〉

}∣∣∣
2

δ(Efkk′ − Ei)

= 2π
∑

kk′

∑
νLνR

WνLνR
δ(Efkk′ − Ei)

∣∣∣
∑

k1k2

{ V ∗
k2L1Vk1R1

Ei − (Ei + Ek1R − E1)
〈i c†k′LckRd†1ck2Lc†k1Rd1 i〉

+
Vk2R2V

∗
k1L2

Ei − (Ei − Ek1L + E2 + U)
〈i c†k′LckRc†k2Rd2d

†
2ck1L i〉

}∣∣∣
2

= 2π
∑

kk′

∑
νLνR

WνLνR

∣∣∣
∑

k1k2

{V ∗
k2L1Vk1R1

E1 − Ek1R
〈i c†k′LckRck2Lc†k1R i〉

+
Vk2R2V

∗
k1L2

Ek1L −E2 − U
〈i c†k′LckRc†k2Rck1L i〉

}∣∣∣
2

δ(Efkk′ − Ei),

(C.1)
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and finally

γRL
11 = 2π

∑

kk′

∑
νLνR

WνLνR

∣∣∣
∑

k1k2

{−V ∗
k2L1Vk1R1

E1 − Ek1R
〈i c†k′Lck2LckRc†k1R i〉

+
Vk2R2V

∗
k1L2

Ek1L − E2 − U
〈i c†k′Lck1LckRc†k2R i〉

}∣∣∣
2

δ(Efkk′ − Ei).

(C.2)

Carrying out the sums over k1k2 and inserting the energies gives

γRL
11 = 2π

∑

kk′

∑
νLνR

WνLνR

∣∣∣
(−V ∗

k′L1VkR1

E1 − EkR
+

VkR2V
∗
k′L2

Ek′L − E2 − U

)

〈i c†k′Lck′L[1− c†kRckR] i〉
∣∣∣
2

δ(EkR − Ek′L).

(C.3)

As the matrix elements are either 0, 1 they can be taken outside the square.
Moreover, it holds that

∑
νLνR

WνLνR 〈νLνR c†k′Lck′L[1− c†kRckR] νLνR〉

=

(∑
νL

WνL
〈νL c†k′Lck′L νL〉

)(∑
νR

WνR
〈νR [1− c†kRckR] νR〉

)

= fk′L[1− fkR],
(C.4)

with fk′L = nF (Ek′L − µL) being the Fermi function, not to be confused with
the state fkk′〉. In the first equality a complete set of lead states have been
inserted. When carrying out the internal sums, the definition of the Fermi
function has been used.

Inserting Eq. (C.4) in Eq. (C.3) gives

γRL
11 = 2π

∑

kk′
fk′L[1− fkR]

∣∣∣V
∗
k′L1VkR1

E1 − EkR
+

VkR2V
∗
k′L2

E2 + U − Ek′L

∣∣∣
2

δ(EkR − Ek′L)

= 2π
∑

kk′
fk′L[1− fkR]|tk′L|2|tkR|2

∣∣∣ x∗L1xR1

E1 − EkR
+

xR2x
∗
L2

E2 + U − Ek′L

∣∣∣
2

δ(EkR − Ek′L)

= 2π

∫
dE

∫
dE′∑

kk′
|tk′L|2δ(E′ − Ek′L)|tkR|2δ(E − EkR)

∣∣∣x
∗
L1xR1

E1 − E
+

xR2x
∗
L2

E2 + U − E′

∣∣∣
2

nF (E′ − µL)[1− nF (E − µR)]δ(E − E′).

(C.5)
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Introducing the coupling constants, Γ`(E) = 2π
∑

k |tk`|2δ(E − Ek`), leads to

γRL
11 =

1
2π

∫
dE

∫
dE′ΓL(E′)ΓR(E)

∣∣∣x
∗
L1xR1

E1 − E
+

xR2x
∗
L2

E2 + U − E′

∣∣∣
2

nF (E′ − µL)[1− nF (E − µR)]δ(E − E′).
(C.6)

Carrying out one of the integrals and assuming the Wide Band Limit, i.e.
Γ`(E) = Γ`, we obtain the final result

γRL
11 =

ΓLΓR

2π

∫
dE

∣∣∣x
∗
L1xR1

E1 − E
+

xR2x
∗
L2

E2 + U − E

∣∣∣
2

nF (E − µL)[1− nF (E − µR)]

(C.7)

The rate for electron transport in the opposite direction, γLR
11 , is found by

interchanging L ↔ R in Eq. (C.7).

The cotunneling rates γLR
21 and γRL

21

Starting with the rate γRL
21 , in this case there are two nonvanishing matrix

elements, which come from the processes 1〉 → 0〉 → 2〉 and 1〉 → d〉 → 2〉.
The initial state is i〉 = νLνR1〉 with energy Ei = EνLνR + E1, and the final
states are fkk′〉 = d†2c

†
kRck′Ld1 i〉 with energies Efkk′ = Ei−E1 +E2−Ek′L +

EkR.
The absolute square in Eq. (8.2) becomes
∣∣∣∣∣
∑

k1k2

{
〈fkk′ V ∗

k2L2d
†
2ck2L

1
Ei −H0

Vk1R1c
†
k1Rd1 i〉

+ 〈fkk′ Vk2R1c
†
k2Rd1

1
Ei −H0

V ∗
k1L2d

†
2ck1L i〉

}∣∣∣∣∣

2

=

∣∣∣∣∣
∑

k1k2

{ V ∗
k2L2Vk1R1

Ei − (Ei − E1 + Ek1R)
〈i d†1c

†
k′LckRd2d

†
2ck2Lc†k1Rd1 i〉

+
Vk2R1V

∗
k1L2

Ei − (Ei − Ek1L + E2 + U)
〈i d†1c

†
k′LckRd2c

†
k2Rd1d

†
2ck1L i〉

}∣∣∣∣∣

2

=

∣∣∣∣∣
V ∗

k′L2VkR1

E1 − EkR
〈i d†1c

†
k′LckRd2d

†
2ck′Lc†kRd1 i〉

+
VkR1V

∗
k′L2

Ek′L − E2 − U
〈i d†1c

†
k′LckRd2c

†
kRd1d

†
2ck′L i〉

∣∣∣∣∣

2

.

(C.8)
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The two matrix elements become

〈i d†1c
†
k′LckRd2d

†
2ck′Lc†kRd1 i〉 = −〈νLνR c†k′Lck′L[1−c†kRckR] νLνR〉 , (C.9)

〈i d†1c
†
k′LckRd2c

†
kRd1d

†
2ck′L i〉 = −〈νLνR c†k′Lck′L[1− c†kRckR] νLνR〉 ,

(C.10)
so after summing over νLνR, Eq. (C.8) becomes

| · · · |2 = |tk′L|2|tkR|2
∣∣∣∣

x∗L2xR1

E1 − EkR
+

x∗L2xR1

Ek′L − E2 − U

∣∣∣∣
2

fk′L[1− fkR] (C.11)

The energy differences between the initial and final states are Efkk′ −Ei =
EkR+E2−E1−Ek′L, which in the Wide Band Limit leads to [see Eqs. (C.5,C.7)]

γRL
21 =

ΓLΓR

2π

∫
dE

∣∣∣x
∗
L2xR1

E1 − E
− x∗L2xR1

E2 + U − E

∣∣∣
2

nF (E + E2 − E1 − µL)[1− nF (E − µR)].
(C.12)

Again, the rate γLR
21 is found by interchanging L ↔ R.
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