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Abstract

Type 2 diabetes mellitus (T2DM) results from interaction between genetic and 
environmental factors. The worldwide prevalence of T2DM is increasing rapidly due to 
reduction in physical activity, increase in dietary intake, and the aging of the population. 
This thesis has focused on dissecting the genetic contribution in T2DM using large-
scale genomic approaches with a particular emphasis on analysis of gene transcripts in 
different tissues, predominantly muscle.

In paper I, we identified TXNIP as a gene whose expression is powerfully suppressed 
by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely 
correlated to total body measures of glucose uptake. Forced expression of TXNIP in 
cultured adipocytes significantly reduced glucose uptake, while silencing with RNA 
interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming 
that the gene product is also a regulator of glucose uptake. TXNIP expression is 
consistently elevated in the muscle of pre-diabetics and diabetics, although in a panel of 
4,450 Scandinavian individuals, we found no evidence for association between common 
genetic variation in the TXNIP gene and T2DM. TXNIP regulates both insulin-
dependent and insulin-independent pathways of glucose uptake in human skeletal 
muscle. Combined with recent studies that have implicated TXNIP in pancreatic β-cell 
glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose 
homeostasis preceding overt T2DM.

In paper II, we investigated molecular mechanisms associated with insulin sensitivity 
in skeletal muscle by relating global skeletal muscle gene expression to physiological 
measures of the insulin sensitivity. We identified 70 genes positively and 110 genes 
inversely correlated with insulin sensitivity in human skeletal muscle. Most notably, 
genes involved in a mammalian target-of-rapamycin signaling pathway were positively 
whereas genes encoding extracellular matrix structural constituent such as extracellular 
matrix-receptor, cell communication, and focal adhesion pathways were inversely 
correlated with insulin sensitivity. More specifically, expression of CPT1B was positively 
and that of LEO1 inversely correlated with insulin sensitivity, a finding which was 
replicated in an independent study of 9 non-diabetic men. These data suggest that 
a high capacity of fat oxidation in mitochondria is reflected by a high expression of 
CPT1B which is a marker of insulin sensitivity.

In paper III, we investigated molecular mechanisms associated with maximal oxygen 
uptake (VO

2max
) and type 1 fibers in human skeletal muscle. We identified 66 genes 

positively and 83 genes inversely correlated with VO
2max

 and 171 genes positively and 
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217 genes inversely correlated with percentage of type 1 fibers in human skeletal muscle. 
Genes involved in oxidative phosphorylation (OXPHOS) showed high expression in 
individuals with high VO

2max
, whereas the opposite was not the case in individuals 

with low VO
2max

. Instead, genes such as AHNAK and BCL6 were associated with low 
VO

2max
. Also, expression of the OXPHOS genes, NDUFB5 and ATP5C1, increased 

with exercise training and decreased with aging. In contrast, expression of AHNAK 
in skeletal muscle decreased with exercise training and increased with aging. These 
findings indicate that VO

2max
 closely reflects expression of OXPHOS genes, particularly 

that of NDUFB5 and ATP5C1 in skeletal muscle and high expression of these genes 
suggest good muscle fitness. In contrast, a high expression of AHNAK was associated 
with a low VO

2max
 and poor muscle fitness.

In paper IV, we combined results from the Diabetes Genetics Initiative (DGI) and
the Wellcome Trust Case Control Consortium (WTCCC) genome-wide association 
(GWA) studies with genome-wide expression profiling in pancreas, adipose tissue, 
liver, and skeletal muscle in patients with or without T2DM or animal models thereof 
to identify novel T2DM susceptibility loci. We identified 453 single nucleotide 
polymorphisms (SNPs) associated with T2DM with P < 0.01 in at least one of the 
GWA studies and 150 genes that were located in vicinity of these SNPs. Out of these 
150 genes, we identified 41 genes differentially expressed using publicly available gene 
expression profiling data. Most notably, we were able to identify four genes namely 
IGF2BP2, CDKAL1, TSPAN8, and NOTCH2 for which SNPs located in vicinity of 
these genes have shown association with T2DM in different populations. In addition, 
we identified a SNP (rs27582) in the CAST gene which was associated with future risk 
of T2DM (odds ratio (OR) = 1.10, 95% CI: 1.00-1.20, P < 0.05) in a prospective study 
of 16,061 Swedish individuals followed for more than 25 years; this association was 
stronger in lean individuals (OR = 1.19, 95% CI: 1.03-1.36, P = 0.024). Moreover in 
the Botnia Prospective Study (BPS) involving 2,770 individuals followed for more than 
7 years, carriers of the A-allele were more insulin resistant than carriers of the G-allele 
as indicated by higher fasting insulin concentrations (regression coefficient (β) = 0.048, 
P = 0.017) and higher HOMA-IR index (β = 0.044, P = 0.025) as well as lower insulin 
sensitivity index during OGTT (β = -0.039, P = 0.039) at follow-up.
In conclusion, using gene expression in different tissues from patients with T2DM and 
animal models is a powerful tool for prioritizing SNPs from GWA studies for replication 
studies. We thereby identified association of a variant (rs27582) in the CAST gene with 
T2DM and insulin resistance.

Keywords: Type 2 diabetes mellitus, Insulin sensitivity, Skeletal muscle, Gene expression 
profiling, TXNIP, Maximal oxygen uptake, Type 1 fibers, CPT1B, NDUFB5, ATP5C1, 
AHNAK, CAST, Genome-wide association studies.
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Introduction

About 250 million people suffer from type 2 diabetes mellitus (T2DM) in the world 
today and prevalence of the disease is increasing worldwide due to reduction in physical 
activity, increase in dietary intake, and the aging of the population. Several large-scale 
genomic approaches have been employed to identify genes predisposing to T2DM such 
as deoxyribonucleic acid (DNA) microarrays and genome-wide association (GWA) 
studies. DNA microarrays can be used to measure levels of messenger ribonucleic 
acid (mRNA) in biological samples for more than 20,000 gene transcripts. Moreover, 
GWA studies offer an unbiased approach to identify genetic variants that influence 
susceptibility to disease.

This thesis describes the use of these genomic approaches for identifying different 
sets of genes regulated by insulin, correlated with insulin sensitivity, and associated 
with maximal oxygen uptake (VO

2max
) and type 1 fibers in human skeletal muscle. 

In addition, it presents an approach for prioritizing single nucleotide polymorphisms 
(SNPs) from GWA studies for further replication in other samples and examination of 
their pathophysiological role in T2DM etiology.

Diabetes mellitus

Diabetes mellitus is a pathological state in which the blood glucose concentration is 
chronically raised. It was already described as a disease in the Ebers Papyrus dating 
back to 1500 BC1. Diabetes mellitus is caused by defects in insulin secretion, insulin 
action, or both resulting from a complex interaction of genes, and environmental 
factors2. Diabetes mellitus is broadly classified into four different etiological categories 
designated as type 1 diabetes mellitus, T2DM, gestational diabetes mellitus, and other 
specific types2. T2DM accounts for 90-95% of all cases of diabetes mellitus. T2DM is a 
key risk factor for vascular complications, stroke, kidney failure, neuropathy, blindness, 
and amputation3.

Epidemiology of T2DM

T2DM is a major health concern today. Prevalence of T2DM is increasing rapidly 
worldwide and it has been predicted that about 366 million people will be affected 
by T2DM in the year 20304. There are large ethnic and geographic variations in the 
prevalence of T2DM5,6. Asians, Hispanics, African-Americans, and Pima Indians appear 
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to have much higher incidence of T2DM as compared to European populations7. 
Moreover, the “westernized lifestyle” is strongly associated with an increase in the 
prevalence of T2DM across all ethnic groups7. According to Centers for Disease Control 
and Prevention, incidence of T2DM in the United States has increased by 90% during 
the last 10 years8. Also, it is no longer a disease of the elderly as the age at onset has 
decreased. It occurs among children and adolescents as well9.

Diagnosis

The World Health Organization (WHO) diagnostic criteria for diabetes mellitus are 
based on either measurements of the fasting plasma glucose concentration or a 2-hour 
plasma glucose concentration after drinking a solution of 75g glucose; oral glucose 
tolerance test (OGTT)10 (Table 1). In a symptomless patient the measurements need 
to be repeated to confirm the diagnosis. Impaired fasting glucose (IFG) and impaired 
glucose tolerance (IGT) represent early abnormalities of glucose metabolism and are 
considered as pre-diabetic conditions. Individuals with IFG or IGT have 40% higher 
risk of developing T2DM11.

Table 1: Criteria for the diagnosis of diabetes mellitus and other categories of 
hyperglycaemia

Glucose (mmol/l) Impaired fasting 
glucose

Impaired glucose 
tolerance

Diabetes mellitus

FPG ≥ 6.1 to < 7.0 - ≥ 7.0

2 hours after OGTT - ≥ 7.8 to < 11.1 ≥ 11.1

Abbreviations: FPG, fasting plasma glucose concentration; OGTT, oral glucose tolerance test.

Risk factors for T2DM

Risk factors for development of T2DM comprise of genetic (family history of the 
disease) as well as non-genetic factors such as low birth weight, obesity, excess food 
intake, physical inactivity, and aging12. Hence, T2DM is considered as a multifactorial 
polygenic disease where common variations in several genes interact (epistasis) to cause 
the disease especially when exposed to the affluent environment of too much food and 
too little exercise. Evidence for genetic susceptibility to T2DM comes from studies 
demonstrating difference in incidence of T2DM between different populations5,6 as 
well as twins studies13,14. Moreover, the lifetime risk for developing T2DM in offspring 
of one T2DM parent is about 40%15 and the ratio of the risk for a sibling of a T2DM 
individual to that of the general population (λ

s
) is about 3.5-416,17.
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Pathophysiology of T2DM

T2DM is characterized by impaired insulin secretion and action, the latter manifested 
as peripheral and hepatic insulin resistance (poor suppression of excessive glucose 
production from the liver by insulin)18. Insulin resistance impairs glucose uptake by 
insulin sensitive tissues (e.g., skeletal muscle, liver, and adipose tissue) and increases 
hepatic glucose production; these effects contribute to elevation in glucose concentration  
and increases ambient plasma free-fatty acids (FFAs) concentration19. The FFAs are 
the main form in which energy is transferred from stores in adipose tissue to other 
sites in the body for metabolic utilization. However, elevated levels of FFAs can impair 
glucose utilization in skeletal muscle, promote glucose production by the liver, and 
impair pancreatic β-cell function20. The pancreatic β-cell is initially able to compensate 
by secreting more insulin to maintain normal glucose levels. As insulin resistance and 
compensatory hyperinsulinemia progress, the pancreatic β-cell compensation fails. A 
decline in insulin secretion and an increase in hepatic glucose production lead to overt 
T2DM (Figure 1)21.

Insulin resistance

Physical activity and agingVariants in genesDiet

Liver Muscle Adipose Pancreas
tissue

Glucose uptake Glucose uptake InsulinGlucose output

Tg Tg
Insulin

FFAs

Hyperglycemia T2DM

Excessive blood
glucose

Figure 1: Pathophysiology of T2DM.

Overeating and physical inactivity along with pre-disposed genetic risk and aging can leads to 
insulin resistance. In insulin resistant state hepatic glucose production along with storage of 
triglycerides (Tg) are increased while glucose uptake is decreased in skeletal muscle and adipose 
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tissue which leads to mild hyperglycemia and higher plasma free-fatty acids (FFAs) concentration; 
which results in hyperinsulinemia because small increases in glucose concentration stimulate 
β-cells to overproduce insulin to restore normal glycemic levels but eventually impaired insulin 
secretion from pancreatic β-cells and hyperglycemia leads to T2DM.

Skeletal muscle

About 40% of the body’s mass is composed of skeletal muscle. Muscle is made up 
of fascicule which are grouped together and surrounded by a connective tissue called 
epimysium. The fasciculus contains muscle fibers which are made up of many myofibrils 
that are highly organized bundles of long polymers of myosin and actin proteins (Figure 
2)22.

Tendon
Muscle belly

Epimysium (deep fascia)

Fasciculus

Endomysium
(between fibres)

Sarcolemma

Sarcoplasm

Myofibril

Myofilaments: actin and myosin

Nuclei

Single muscle fibre

Perimysium

Tendon
Muscle belly

Epimysium (deep fascia)

Fasciculus

  Endomysium
(between fibers)

Sarcolemma

Sarcoplasm

Myofibril

Myofilaments: actin and myosin

Nuclei

Single muscle fiber

Perimysium

Figure 2: Basic structure of skeletal muscle.

Each end of the muscle is connected to a tendon, which connects to the bone mediating the 
body’s lever system. The muscle is made up of fascicule containing the muscle fibers, which are 
made up of myofibrils and ultimately the myofilaments actin and myosin. This figure is adapted 
from Kraemer WJ et al.22
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Muscle fiber types
Muscle fibers are classified based upon their functional capabilities and enzymatic 
profiles. Muscle fibers are broadly classified into two distinct fiber types: (1) Type 1 
(slow-twitch) muscle fiber and (2) Type 2 (fast-twitch) muscle fibers; the latter further 
subdivided into type 2A and type 2B. Type 1 fibers contain many relatively large size 
mitochondria and generate energy for adenosine triphosphate (ATP) synthesis by 
aerobic energy transfer. Type 2 fibers contain fewer mitochondria and possess rapid 
contraction speed and high capacity for anaerobic ATP production in glycolysis. Type 
2A fibers are considered as fast-twitch oxidative glycolytic fibers while type 2B fibers 
are considered as anaerobic glycolytic fibers which possess the greatest potential for 
anaerobic energy transfer22,23. A low proportion of type 1 fibers and high proportion 
of type 2B fibers is associated with decreased mitochondrial function/numbers in the 
insulin-resistant offspring of T2DM patients24 and predicts T2DM25.

Pathophysiology of insulin resistance in skeletal muscle

Insulin resistance is a key feature of the pre-diabetic state and a predictor of T2DM26,27. 
Insulin resistance can be observed 10–20 years before the onset of overt T2DM28,29. It is 
also seen in healthy glucose tolerant first degree relatives of patients with T2DM30. Insulin 
resistance in skeletal muscle has been attributed to different pathological conditions such 
as impaired glycogen synthesis31,32, accumulation of lipids with subsequent impairment 
of insulin signaling33, and mitochondrial dysfunction and oxidative stress34. However, 
the underlying molecular mechanisms associated with insulin resistance are still poorly 
understood. In an attempt to elucidate the underlying pathophysiology, we have 
investigated the molecular mechanisms associated with insulin sensitivity in skeletal 
muscle in paper II. Moreover, we have studied novel mechanisms of skeletal muscle 
insulin resistance and have identified mediators of glucose homeostasis in paper I.

Impaired muscle glycogen synthesis
Skeletal muscle is the principal site of glucose uptake in the postprandial state35. After 
entering the cell, glucose is phosphorylated by hexokinase and either stored as glycogen 
via the activation of glycogen synthase, or catabolized to generate ATP via glycolysis and 
oxidative phosphorylation (OXPHOS) in the mitochondira36. Using nuclear magnetic 
resonance (NMR) spectroscopy, which measures the concentration of intracellular 
metabolites noninvasively, it has been shown that impaired muscle glycogen synthesis 
plays a major role in causing insulin resistance in T2DM patients26. Impaired glucose 
transport and/or hexokinase activity may account for the impairment of muscle 
glycogen synthesis observed in insulin-resistant subjects including obese individuals, 
T2DM patients, and their offspring37-39.
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GLUT4 Glucose

Plasma glucose

UDP-glucose

Glycogen
synthase

Glucose-6-phosphate

Glycogen

Hexokinase

Figure 3: The pathway of muscle glycogen synthesis.

Uptake of glucose into the muscle cell occurs via glucose transporter 4 (GLUT4), whereupon 
it is phosphorylated by hexokinase to glucose-6-phosphate (G6P). After isomerization to G1P 
and activation to uridine 5’-diphosphate (UDP)-glucose, the final step is polymerization into 
glycogen by glycogen synthase. This figure is adapted from Petersen KF et al.37

Free fatty acid induced insulin resistance
Increased plasma FFAs concentration is strongly associated with insulin resistance. 
In a classic series of studies, Randle and colleagues demonstrated that FFAs compete 
with glucose for substrate oxidation which leads to decreased glucose oxidation when 
FFAs are elevated40. They proposed that an increase in FFAs causes elevation of the 
intramitochondrial acetyl-coenzyme A (acetyl-CoA)/CoA and NADH/NAD+ ratios 
with subsequent inactivation of pyruvate dehydrogenase. This event in turn would 
cause an increase in intracellular citrate concentrations, which leads to inhibition of 
phosphofructokinase and subsequent accumulation of glucose-6-phosphate. The 
resulting increased concentration of glucose-6-phophate would inhibit hexokinase II 
activity and increase intracellular glucose concentration and decrease glucose uptake 
(Figure 4).
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Citrate

HK PFK PDH

-

Acetyl-CoA
       CoA

    NADH
      NAD+

GLUT4

Glucose G-6-P Pyruvate

Plasma glucose Fatty acid

- -

Figure 4: Mechanism of fatty acid–induced insulin resistance in skeletal muscle as 
proposed by Randle et al.40

An increase in fatty acid concentration results in an elevation of the intramitochondrial acetyl-
CoA/CoA and NADH/NAD+ ratios, with subsequent inactivation of pyruvate dehydrogenase 
(PDH). This in turn causes citrate concentrations to increase, leading to inhibition of 
phosphofructokinase (PFK). Subsequent increases in intracellular glucose-6-phosphate 
concentration would inhibit hexokinase II (HK) activity, which would result in an increase 
in intracellular glucose concentration and a decrease in muscle glucose uptake. This figure is 
adapted from Shulman GI et al.41

However, Shulman and colleagues have challenged this hypothesis by a series of 
studies which employed in-vivo tracer and NMR42,43. They demonstrated that elevated 
plasma FFAs concentrations cause a reduction in intracellular glucose concentration42. 
After entering the muscle cell, FFAs promote the intramyocellular accumulation of 
fatty acid-derived metabolites such as fatty acyl-CoA and diacylglycerol which leads 
to impaired insulin signaling via the activation of protein kinase C (PKC) isoforms 
(Figure 5). This event in turn promotes a serine/threonine phosphorylation cascade and 
increases serine phosphorylation of the insulin receptor substrate 1 and 2 (IRS-1 and 
IRS-2), which in turn leads to decreased tyrosine phosphorylation of IRS-1, decreased 
activity of phosphatidylinositol-3 kinase (PI3K), and ultimately decreased translocation 
of glucose transporter 4 (GLUT4) and glucose transport44-46. Also, FFAs produce low-
grade inflammation by activating nuclear factor-kappa beta which leads to release of 
several proinflammatory and proatherogenic cytokines47.
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Figure 5: Proposed alternative mechanism for fatty acid–induced insulin resistance in 
human skeletal muscle.

An increase in delivery of fatty acids to muscle or a decrease in intracellular metabolism of 
fatty acids leads to an increase in intracellular fatty acid metabolites such as diacylglycerol, fatty 
acyl-CoA, and ceramides. These metabolites activate a serine/threonine kinase cascade (possibly 
initiated by protein kinase C (PKC) isoforms) leading to phosphorylation of serine/threonine 
sites on insulin receptor substrates (IRS-1 and IRS-2), which in turn reduces the ability of the 
insulin receptor substrates to activate phosphatidylinositol-3 kinase (PI3K). As a consequence, 
glucose transport activity and other events downstream of insulin receptor signaling are 
diminished. This figure is adapted from Shulman GI et al.41

Oxidative stress and mitochondrial dysfunction
Oxidative stress is defined as a persistent imbalance between the production of highly 
reactive molecular species (such as superoxide and hydrogen peroxide) and antioxidant 
defenses48. Mitochondria play a key role in energy homeostasis by metabolizing 
nutrients and producing ATP and heat and thereby supply more than 95% of the 
total energy required for the cell. Imbalance between energy intake and expenditure 
leads to mitochondrial dysfunction, characterized by a reduced mitochondrial oxidative 
capacity49. Inefficient nutrient oxidation and a low ratio of ATP production/oxygen 
consumption result in an increased formation of reactive oxygen species (ROS) and 
ultimately lead to oxidative stress34. Mitochondrial dysfunction and oxidative stress are 
associated with insulin resistance34,50-55 (Figure 6). Also, the quantity and morphology 
of mitochondria are correlated with mitochondrial oxidative capacity56. Fewer and 
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smaller-sized mitochondria are observed in skeletal muscle of T2DM patients57,58. 
Mitochondrial dysfunction predisposes to intramyocellular lipid accumulation, which 
provides a link to insulin resistance33 through the mechanisms described earlier in 
Figure 5.

In addition, several defects in insulin signaling are associated with insulin resistance36.

Mitochondrial
 dysfunction

Polymorphisms Overloaded FFAs Hyperglycemia

        ROS

Mutations Mitochondrial biogenesis Aging

β-oxidataion ROS ATP

Insulin resistance
T2DM

Figure 6: Mechanism of mitochondrial dysfunction.

Excess food intake, including overloaded free-fatty acids (FFAs) or hyperglycemia conditions, 
increases reactive oxygen species (ROS) production and reduces mitochondrial biogenesis, 
causing mitochondrial dysfunction. Mitochondrial dysfunction leads to decreased β-oxidation 
and adenosine triphosphate (ATP) production and increased ROS production, resulting in 
insulin resistance and T2DM. This figure is adapted from Kim JA et al.34

Physical activity

Physical activity is defined as body movement produced by muscle action which 
substantially contributes to energy expenditure59. Physical inactivity is an independent 
risk factor for T2DM60,61. Also, several prospective studies have concluded that physically 
active individuals have a 33-50% lower risk of developing T2DM62-64. Physical activity 
has been shown to increase glycogen synthase activity, muscle mass, and mitochondrial 
biogenesis, leading to improvement in insulin sensitivity (Figure 7)34,65-67. In addition, 
physical activity reduces the risk for a wide spectrum of other diseases including 
cardiovascular disease, colon cancer, breast cancer, prostate cancer, osteoporosis, and 
depression68.
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Figure 7: Improvement of mitochondrial function by exercise can improve insulin 
sensitivity, which leads to normal metabolism. This figure is adapted from Kim JA et 
al.34

Maximal oxygen uptake (VO
2max

)
VO

2max
 is defined as the highest oxygen uptake achievable by an individual for a 

given exercise profile and is widely used as a measure of physical fitness. Moreover, 
the VO

2max
 provides useful information about long-term energy system capacity. Many 

factors influence VO
2max

 e.g., physical activity, heredity, gender, body composition, and 
age. Several studies have reported heritability of VO

2max
 ranging from 40 to 70%69-72. 

Untrained individuals with T2DM have been shown to have lower VO
2max

 compared to 
untrained healthy control individuals. Also, a low VO

2max
 predicts T2DM73,74. There are 

several potential mechanisms by which a low VO
2max

 could increase risk for T2DM such 
as mitochondrial dysfunction75, a change in muscle fiber type25, and insulin resistance76. 
In addition, there is a relatively strong positive correlation between insulin sensitivity 
and VO

2max
77, and exercise training can increase both VO

2max
 and insulin sensitivity78. 

Intriguingly, one study suggested that after exercise, VO
2max

 correlated with insulin 
sensitivity only in individuals without but not in individuals with a family history of 
T2DM, suggesting that in people genetically predisposed to T2DM, an increase in 
VO

2max
 does not translate into improved insulin sensitivity79. Moreover, a high VO

2max
 is 

associated with a high proportion of type 1 fibers80. We have also investigated molecular 
mechanisms associated with VO

2max
 and type 1 fibers in skeletal muscle in paper III.
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Methods for evaluating the genetic component of T2DM

The human genome comprises about 3 billion base pairs and only 0.1% of it contains 
polymorphic changes, which includes SNP, insertions, deletions, and repetitive elements 
of variable copy number81-83. The most frequent type of these changes is a SNP which 
is a difference between chromosomes in the base present at a particular site in the 
DNA sequence84,85. Identifying the inherited contribution to human disease involves 
linking genomic variation to clinical phenotype86. However the identification of this 
relationship is challenging for complex diseases such as T2DM because of interactions 
between genes and between genes and environment, heterogeneity, and limited 
statistical power due to insufficient number of samples. Several approaches are being 
used in the search for genes predisposing to T2DM. The candidate gene approach aims 
at the identification of genes based upon information of their biochemical function87. 
The random gene search assumes no knowledge of the underlying defects. Positional 
cloning aims at localizing the disease gene on the basis of its position in the genome.

Association studies
Association studies are performed in case-control samples to evaluate if the specific allele 
is more frequent in a group of cases than in ethnically matched control subjects (Figure 
8A). To avoid the population-stratification problem in case-control studies, association 
studies can be performed in family-based samples by estimating haplotype relative risk 
(HRR) or using transmission disequilibrium test (TDT)88 (Figure 8B-D). However, 
collecting a larger number of family-based samples is challenging for late onset disease 
such as T2DM as many subjects’ parents might not be alive.
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A Case-control association studies
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Figure 8: Association studies.

(A) Case–control association studies compare allele frequencies between a patient cohort and an 
ethnically matched control cohort. (B) Family-based association studies overcome the problem 
of ethnic matching by ascertaining patients as well as their parents. Non-transmitted alleles from 
parents can be used as controls. (C) In the haplotype relative risk method (HRR), the allele 
from each parent that is not present in the patient is used as a control. (D) In the transmission 
disequilibrium test (TDT), each allele, in this example allele A, is tested separately. Only parents 
heterozygous for allele A are relevant. A heterozygous parent is expected to give allele A to 50% 
of his/her offspring; however, if allele A is a predisposing factor, it is transmitted more often than 
expected to affected offspring (4/4 times = 100%, in this small example). This figure is adapted 
from Burmeister M et al.88
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Gene expression studies
Gene expression is regulated at multiple levels including transcription, ribonucleic acid 
(RNA) processing, mRNA transport, mRNA translation, and mRNA degradation. The 
amount of a protein that a cell expresses depends on many different parameters such 
as tissue, the developmental state of the organism, and the metabolic state of the cell. 
Gene expression studies can be used for gene discovery, detecting gene function or 
modifications, drug discovery, and identification of potentially important genes involved 
in the pathogenesis of a disease. Several techniques are available to measure expression 
of individual gene (i.e., real-time polymerase chain reaction (RT-PCR) and northern 
blot) or thousands of genes simultaneously (i.e., serial analysis of gene expression and 
DNA microarray).

Global gene expression profiling

Global gene expression profiling provides a powerful and unbiased approach for 
examining the expression of tens of thousands of gene transcripts simultaneously. DNA 
microarrays constitute a miniaturized, ordered arrangement of nucleic acid fragments 
derived from individual genes located at defined positions on a solid surface which 
enables the analysis of thousands of genes in parallel by specific hybridization89,90. There 
are mainly two kinds of DNA microarrays: (1) complementary-DNA (cDNA) arrays 
and (2) oligonucleotide arrays. In the cDNA arrays, about 100-5000 base long probes (a 
labeled single-stranded DNA molecule of specific base sequence) are spotted on a glass 
slide by microrobots called DNA arrayers. In oligonucleotide arrays, in situ synthesis 
produces the short 25-mers probes by photolithography (Affymetrix oligonucleotide 
arrays) or the long 60-mers probes by inkjet technology (Agilent oligonucleotide 
arrays). The key difference between the two microarray formats is the length of the 
probe as in oligonucleotide arrays the probes are of constant length while in cDNA 
arrays the lengths of the probes differ between spots. Hence, in oligonucleotide arrays 
fluorescence intensities between different spots are comparable, whereas in cDNA arrays 
the florescence intensity of each spot from the samples always requires to be compared 
to controls. There are several platforms available for global gene expression profiling91-93. 
We have used Affymetrix and Agilent oligonucleotide arrays in our studies.

Affymetrix oligonucleotide arrays
Affymetrix oligonucleotide arrays are manufactured based on two techniques: 
photolithography and solid-phase DNA synthesis94,95. The probes are selected from 
a region 600 bases proximal to the polyadenylation site (3’ end) of gene, cDNA, or 
expressed sequence tags (ESTs) (Figure 9). The probes are designed based on a set 
of empirically derived parameters96-98 and selected to hybridize with high affinity and 
specificity. Typically 11 probe pairs (consisting a perfect match (PM) probe and a 
corresponding mismatch (MM) probe) defined as a probeset, are selected from the 
gene region (Figure 9). The MM probe has a single base mismatch in the middle of the 
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sequence unlike the PM probe sequence. The MM is designed to provide measures of 
background and non-specific hybridization and aids in determining if hybridization to 
the PM is specific.

B. 
5' 3'

mRNA reference sequence

Spaced DNA probe pairs

T G T G AT G G T G G G A AT G G G T C AG A AG G AC T C C TAT G T G G G T G AC G AG G C C. . . . . .

Reference sequence

A AT G G G T C AG A A G G AC T C C TAT G T G G G T G
A AT G G G T C AG A A C G AC T C C TAT G T G G G T G

Perfect Match Oligo
Mismatch Oligo

Fluorescence Intensity Image

Perfect match probe cells

Mismatch probe cellsMismatch probe cells

Perfect match probe cells

Perfect match probe
Mismatch probe

Reference sequence
Spaced DNA probe pairs

mRNA reference sequence

Fluorescence intensity image

5’ 3’

Figure 9: Expression probe and array design.

Oligonucleotide probes are chosen based on uniqueness criteria and composition design rules. 
For eukaryotic organisms, probes are chosen typically from the 3´ end of the gene or transcript 
(nearer to the poly(A) tail) to reduce problems that may arise from the use of partially degraded 
mRNA. The use of the perfect match (PM) minus mismatch (MM) differences averaged across 
a set of probes greatly reduces the contribution of background and cross-hybridization and 
increases the quantitative accuracy and reproducibility of the measurements. This figure is 
adapted from Lipshutz RJ et al.95

Agilent oligonucleotide arrays
The Agilent oligonucleotide arrays are manufactured using an in situ-synthetic scheme 
based on ink-jet process99-101. The long 60-mer probes are designed in silico using empirical 
measurements that increases hybridization sensitivity100,102. The 60-mers provide certain 
advantages as only one 60-mers probe per gene or transcript is required compared with 
11 perfect match and mismatch probe pairs for each probe set used by Affymetrix. This 
makes the Agilent array somewhat more tolerant to sequence mismatches and increases 
sensitivity partly due to larger area available for hybridization91. Nevertheless, there is a 
strong concordance between these two platforms103.
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Global gene expression profiling for T2DM

Several global gene expression profiling studies have been performed in the field of 
T2DM research. Using this approach, expression of genes regulating OXPHOS 
pathway, including their master regulator, PPARGC1A, has been shown to be 
downregulated in skeletal muscle of patients with T2DM104 and their non-diabetic 
first-degree relatives105. Also, expression of genes from this pathway in particular from 
the electron transport chain, was downregulated in visceral adipose tissue of patient 
with T2DM independently of obesity106. Gene expression has also been studied in 
pancreatic islets from T2DM patients although the numbers for obvious reasons (islets 
from islet transplantation programs) have been small. One study compared global 
gene expression profiling in pancreatic islets isolated from five humans with T2DM 
to seven normal glucose-tolerant islet donors and identified decreases in expression of 
transcription factor ARNT, HNF4alpha, IRS2, Akt2, and genes involved in glucose 
metabolism107.

Analysis of microarray data

Microarray data analysis can be sub-divided into three categories: (1) Pre-processing of 
microarray data, (2) Analysis of differentially expressed genes, and (3) Pathway analysis 
of microarray data.

Pre-processing of microarray data
Pre-processing of microarray data involves several processes namely image analysis, 
background adjustment, and normalization. Image analysis is used to summarize the 
information in each spot and to estimate the level of expression of each probe from 
the pixel intensities in the scanned images108. Background adjustment is employed 
to adjust observed probe intensities for non-specific hybridization and noise in the 
optical detection system109. Normalization compensates for non-biological variations 
between experiments due to different efficiencies of reverse transcription, labeling, 
or hybridization reactions, physical problems with the arrays, reagent batch effects, 
and laboratory conditions. For Affymetrix array data, summarization is also needed to 
obtain an overall measure of RNA transcripts by combining the background adjusted 
and normalized intensities of multiple probes. A substantial number of the Affymetrix 
array’s original probe groupings and mappings are shown to be inaccurate110. Several 
approaches such as Affyproberminer110 or the Entrez Gene database based can be applied 
to regroup the individual probes into more consistent probesets and remap these to the 
correct sets of genes.

Several statistical methods are available for pre-processing of Affymetrix arrays111. 
Affymetrix’s microarray suite version 5.0 (MAS5.0) performs ideal mismatch based 
background adjustment or adjusts for background noise level using estimates of the 
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distribution of probe intensities, scaling based normalization, and one-step Tukey 
Biweight based summarization112. The model based expression index (MBEI) uses 
the invariant set normalization method to normalize arrays and implements a model 
to estimate the background subtraction113,114. The robust multi-array average (RMA) 
method estimates the background adjustment by convoluting the signal and noise 
distributions from the PM probe intensities and performs quantile normalization and 
summarization based on a multi-array model fit using the median polish algorithm109,115. 
The GC-content robust multi-array average (GC-RMA) is a modified RMA procedure 
and includes the additional background adjustment using sequence information to 
estimate probe affinity for non-specific binding116. The probe logarithmic intensity error 
(PLIER) method (Affymetrix) estimates the measure of RNA transcript for the entire 
probe set by utilizing probe affinities, empirical probe performance, and by handling 
error appropriately across low and high concentrations and implements quantile based 
normalization. The variance stabilizing normalization117, position-dependent nearest 
neighbor method118, factor analysis for robust microarray summarization119, and several 
other methods111 can also be employed for pre-processing of Affymetrix microarray 
data. The model-based algorithms which integrate information from multiple arrays to 
calculate the expression of a gene are expected to provide more reproducible results120. 
However, methods used for pre-processing can have a major impact on the results121 
and one study has reported only 27 to 36% overlap between different methods120. 
Therefore, the best approach might be to compare results from several of these methods 
to obtain a reliable list of differentially expressed genes122.

For the two-color Agilent arrays, simple loess within array normalization without 
background subtraction method has shown to produce consistent results123. 
Moreover, data filtering should be conducted to eliminate data that are not reliably 
detected over all samples124,125.

Analysis of differentially expressed genes
Several statistical methods can be applied to identify differentially expressed genes. For 
interclass two group comparison with an adequate number of replicate samples, the 
Student’s t-test or the Wilcoxon rank-sum test or setting a simple fold change cut-off 
(typically between 1.5 to 3.0) can be used. However, global gene expression profiling 
studies involve the simultaneous testing of thousands of statistical hypotheses. Hence, 
approaches based on false discovery rate (FDR) (which is defined as the expected 
proportion of false positives among the tests where the null hypothesis was rejected) 
are adapted to provide correction for multiple hypothesis testing126-128. The significance 
analysis of microarrays (SAM) algorithm is based on a modified t-test and estimates 
the FDR using permutations under the assumption that all null hypotheses are true129. 
The patterns from gene expression130, linear models and empirical Bayes131, weighted 
analysis of general microarray experiments132, rank product method133, data-adaptive test 
statistics134, integrating differing statistics via a distance synthesis135, and several other 
methods136 can also be employed to detect differentially expressed genes. The selection 
of differentially expressed genes heavily depends on the choice of the methods used and 
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performance of these methods is affected by sample size, distributional assumption, and 
variance structure137. Hence, it is advisable to explore the characteristic of the data first 
and then apply the most appropriate testing method under the given situation137.
Spearman’s or Pearson’s correlation coefficients and corresponding hypothesis testing 
procedures can be used to examine the association of each gene’s expression with the 
quantitative phenotype. Spearman partial correlation or Pearson partial correlation or 
regression analysis can be use to explore the association after adjustment for covariates.

Pathway analysis of microarray data
Pathway analysis of microarray data evaluates gene expression profiles of a priori defined 
biological pathways in association with disease phenotype. The gene set enrichment 
analysis (GSEA) method calculates a score (called an enrichment score (ES)) for a given 
gene set based on rank of genes and infers statistical significance of each ES against ES 
background distribution calculated by permuting the class labels, which preserves gene-
gene correlations and provides a more accurate null model138. Moreover, web-based 
gene set analysis (WebGestalt) identifies whether a group of differentially expressed 
genes is enriched in Kyoto encyclopedia of genes and genomes (KEGG) pathway 
or gene ontology (GO) database (i.e., biological process, molecular function, and 
cellular component) by using overlap statistics such as the cumulative hypergeometric 
distribution139. Several other methods are also available for inferring GO categories 
from a group of differentially expressed genes140-142. However, there are a number of 
methodological issues to consider in the interpretation of the results based on pathway 
analysis143.

In addition, global gene expression profiling data can also be use for class prediction 
and class discovery144.

Genome-wide association studies

GWA studies offer a great potential to identify genetic polymorphisms contributing to 
complex human diseases by examining association of more than 500,000 SNPs with 
disease145. Several platforms are available for GWA studies including the Affymetrix 
Genechip® and Illumina BeadChip platform146. Several statistical issues need to be 
considered in the analysis of such large-scale genetic studies147,148. A number of GWA 
studies have identified novel genomic regions influencing risk for T2DM149-153. However, 
the challenge remains to prioritize SNPs from GWA studies for further replication in 
other samples146; even if one would try to replicate only the top 1% with strongest 
genetic evidence at least 5,000 SNPs need to be genotyped in replication studies for 
GWA studies including 500,000 SNPs. Genetic variation can influence gene expression 
by altering transcript stability or rate of transcription or splicing154. Hence, we have 
presented an approach for prioritizing SNPs from GWA studies by combining the 
results from these studies with genome-wide expression profiling of target tissues (i.e. 
pancreas, adipose tissue, liver, and skeletal muscle) of T2DM in paper IV.
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Aims

The aim of this thesis was to try to dissect the genetics of T2DM using large-scale 
genomic approaches with a particular focus on analysis of gene transcripts in different 
tissues, predominantly muscle. The specific aims were:

To identify mediators of glucose homeostasis and to investigate I. 
whether these mediators are causally involved in the development of 
T2DM.

To investigate molecular mechanisms associated with insulin sensitivity II. 
in skeletal muscle by relating global skeletal muscle gene expression to 
physiological measures of insulin sensitivity.

To investigate molecular mechanisms associated with VOIII. 
2max

 and type 
1 fibers in human skeletal muscle.

To combine GWA studies with genome-wide expression profiling IV. 
of target tissues (i.e. pancreas, adipose tissue, liver, and muscle) of 
T2DM in order to identify novel T2DM susceptibility loci and to 
understand their pathophysiological role in T2DM etiology.
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Study participants

Paper I

To identify genes whose expression is responsive to the action of insulin in human 
skeletal muscle, participants from three different clinical studies (paper I-studies A, 
B, and C) were included. Paper I-study A consisted of 6 non-diabetic men (age 55 ± 
2 years, body mass index (BMI) 32 ± 1 kg/m2), paper I-study B consisted of 6 non-
diabetic volunteers (4 men and 2 women, age 66 ± 3 years, BMI 28 ± 2 kg/m2), and 
paper I-study C consisted of 96 young non-diabetic twins (28 monozygotic and 20 
dizygotic pairs, 56 men and 40 women, age 28 [26–29] years, BMI 24 [22–25] kg/m2). 
In paper I-studies A and C, skeletal muscle biopsies from the vastus lateralis muscle 
were obtained before and after a 2-hour hyperinsulinemic euglycemic clamp (Figure 
10). Indirect calorimetry was performed during the basal and insulin-stimulated steady 
state periods to estimate rates of glucose and lipid oxidation. Also, an intravenous 
glucose tolerance test (IVGTT) was performed prior to the clamp to characterize the 
first-phase insulin response to glucose. In paper I-study B, skeletal muscle biopsies were 
obtained before and after a 3-hour hyperinsulinemic euglycemic clamp.

 -70  -40 -30  0  90  120 min

Indirect 
calorimetry

IVGTT

Biopsy Biopsy

Indirect 
calorimetry

Hyperinsulinemic euglycemic clamp

Figure 10: Design of the hyperinsulinemic, euglycemic clamp protocol.

Muscle biopsies were obtained before and after a hyperinsulinemic euglycemic clamp. An 
intravenous glucose tolerance test (IVGTT) was administered prior to the clamp and indirect 
calorimetry was performed in the basal state as well as at the end of the clamp.
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For mutation screening of the thioredoxin interacting protein (TXNIP), we included 48 
individuals, 23 of whom showed expression of TXNIP in muscle in the highest quartile, 
while 25 had TXNIP expression in lowest quartile from our previous studies104,155.

To study the association between TXNIP variants and T2DM, we included 4,450 
individuals. The sample population consisted of 333 Scandinavian parent–offspring 
trios, 1,189 discordant Scandinavian sib-pairs, and 1,094 case-control pairs (969 from 
Scandinavia and 125 from Canada). All case-control pairs were individually matched 
for sex, age, region of origin, and BMI as previously described156.

Paper II

To identify genes which were correlated with insulin sensitivity in participants from two 
different studies (paper II-studies A, and B) were included. Paper II-study A consisted 
of 39 non-diabetic men (age 38 [35–41] years, BMI 28 [27–30] kg/m2) from Malmö, 
Sweden. To replicate the findings from paper II-study A, we studied an additional 10 
young non-diabetic men without any family history of diabetes in paper II-study B (age 
24-27 years, BMI 25 [23–26] kg/m2). Two participants (one from each paper II-studies 
A and B) with extreme values of insulin sensitivity (more than 1.5 * interquartile range) 
were excluded from the analyses.

Paper III

To identify genes correlated with VO
2max

 and type 1 fibers, participants from two 
different studies (paper III-studies A, and B) were included. Paper III-study A consisted 
of 43 age-matched men (age 66 [65–67] years, BMI 25 [23–28] kg/m2) from our 
previously published studies104,157. To replicate the findings from paper III-study A and 
to examine the influence of aging on gene expression, we included the young twins 
from paper I-study C as well as 78 elderly non-diabetic twins in paper III-study B (18 
monozygotic and 21 dizygotic pairs, 34 men and 44 women, age 63 [60–64] years, 
BMI 26 [24–29] kg/m2)158.

The muscle biopsies were obtained from the vastus lateralis muscle under local anesthesia 
from the participants using a modified Bergström needle in paper I, II, and III159.

Paper IV

To prioritize SNPs from GWA studies for further replication, we analyzed whether 
genes in their neighborhood showed differences in their expression in published gene 
expression profiling studies in key tissues (i.e. pancreas, adipose tissue, liver, and skeletal 
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muscle)104,107,160,161. In addition, we analyzed the expression patterns in whole pancreas 
of 3-weeks old NIDDM1I (which is a well-characterized insulin-deficient congenic 
strain derived from the Goto-Kakizaki rat, an animal model for T2DM)162 and control 
F344 rats.

To replicate the key findings, we have included participants from several studies namely 
the Malmö case-control study, two prospective cohorts (Malmö Preventive Project 
(MPP) and Botnia Prospective Study (BPS)). The Malmö case-control study consisted 
2,830 T2DM patients from the Malmö Diabetes Registry163 and 3,550 controls from 
the Malmö Diet and Cancer study164. All T2DM patients were of Scandinavian origin, 
had age at onset > 35 years, connecting peptide ≥ 0.3 nmol/l and no glutamic acid 
decarboxylase antibody. The MPP study included 16,061 participants, 2,263 of whom 
developed T2DM during a median follow-up period of 24.4 years165. The BPS included 
2,770 participants, 138 of whom developed T2DM during a median follow-up period 
of 7.6 years17. 2,328 non-diabetic individuals in the BPS with available longitudinal 
measurements of insulin secretion and action were included in the analyses.

All studies were approved by local ethics committees and all participants gave their 
informed consent for participation. All studies were conducted in accordance with the 
principles of the Helsinki Declaration.
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Methods

Phenotypic characterization

The participants’ body weight and height were measured in light clothing and BMI 
was calculated as weight (kg) divided by height-squared (m2). Body composition (lean 
body mass and fat mass) was determined by dual energy X-ray absorptiometry (DEXA) 
scanning using a Norland XR-36 scanner or electrical bioimpedance. Glucose tolerance 
was determined by a 75g OGTT and classified in accordance with WHO criteria10.

Oral glucose tolerance test (OGTT)

The OGTT is a method to determine how quickly glucose is cleared from the blood166. 
It is a widely used technique for diagnosis of diabetes mellitus. After an overnight fast, 
the subject is given a solution of 75g glucose to drink. Blood samples are then collected 
at certain time-points for analysis of glucose and insulin.

Laboratory methods

All laboratory specimens were obtained after overnight fasting. Plasma glucose 
concentrations were analyzed using an automated glucose oxidation method (Glucose 
Analyzer 2, Beckman instruments, Fullerton, CA). Plasma insulin concentrations were 
measured using an immunoassay (Delfia, Turku, Finland).

Measurements

Insulin sensitivity index (ISI) from the OGTT was calculated as 10,000/√(fasting 
plasma-glucose x fasting plasma-insulin x mean OGTT

glucose
 x mean OGTT

insulin
)167. 

The basal insulin resistance index (HOMA-IR) was calculated from fasting insulin 
and glucose concentrations168. β-cell function was assessed as corrected insulin response 
during OGTT (CIR = 100 x insulin at 30 min or 40 min in MPP/[glucose at 30 min or 
40 min in MPP x (glucose 30 min or 40 min in MPP -3.89)]) or as disposition index, 
i.e. insulin secretion adjusted for insulin sensitivity (DI = CIRxISI)169.
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Hyperinsulinemic euglycemic clamp

The hyperinsulinemic euglycemic clamp is a gold standard method for investigating 
and quantifying insulin resistance170. This technique measures the amount of glucose 
needed to compensate for an increased insulin level without causing hypoglycemia. After 
an overnight fast, a specific dose of insulin (40 mU/m2/min) was infused intravenously 
at a constant rate over a 2 to 3 hour period.  In order to compensate for the insulin 
infusion, glucose (180 g/l) was infused to maintain blood glucose levels between 5 and 
5.5 mmol/l. The rate of glucose infusion was determined by measuring the plasma 
glucose concentrations every 5-10 min. The rate of glucose infusion during the last 
30 min of the test was used to determine insulin sensitivity and was expressed as mg/
kg-lean body mass/min. In paper II, we used the homeostasis model assessment (1/
HOMA = 22.5 / (fasting plasma insulin (μU/ml) x fasting plasma glucose (mmol/l))) 
as a surrogate measure of insulin sensitivity171,172.

Indirect calorimetry

Indirect calorimetry is a method to quantify energy expenditure and respiratory 
quotient by measuring oxygen consumption and carbon dioxide production173. Indirect 
calorimetry was performed during basal and insulin-stimulated steady state periods 
of hyperinsulinemic euglycemic clamp using a computerized flow-through canopy gas 
analyzer system (Deltatrac, Datex, Helsinki, Finland). Inhaled and exhaled air flow was 
analyzed for oxygen content using a paramagnetic differential oxygen sensor and for 
carbon dioxide tension using an infrared carbon dioxide sensor174,175.

Maximal oxygen uptake (VO
2max

) measurement

In paper III, VO
2max

 was measured using an incremental work-conducted upright 
exercise test with a bicycle ergometer (Monark Varberg, Halland, Sweden) combined 
with continuous analysis of expiratory gases and minute ventilation. The exercise was 
started at a workload varying from 30 to 100 W depending on the previous history of 
endurance training or exercise habits and was then increased by 20–50 W every 3 min 
until a perceived exhaustion or a respiratory quotient of 1.0 was reached. VO

2max
 was 

defined as the oxygen uptake measured during the last 30 seconds of exercise and was 
expressed per kilogram of total body weight. Fiber-type composition was determined 
as previously described176. We quantified and calculated the fibers using the COMFAS 
image analysis system (Scan Beam).



43

Human adipocyte cell culture and treatment

A human preadipocyte cell line derived from subcutaneous white adipose tissue from 
a patient with Simpson Golabi Behmel syndrome was allowed to differentiate. These 
cells exhibit a high capacity for adipose differentiation, which results in mature fat cells, 
which are both biochemically and functionally similar to primary human adipocytes177. 
The mature adipocytes were treated for four hours with glucose (1, 5, or 25 mM) in the 
presence or absence of the physiological concentration of insulin (1 nM).

RNA extraction and hybridization

RNA from adipocyte cell cultures was extracted using the RNeasy Mini Kit (Qiagen, 
Germany). RNA from skeletal muscle biopsies was extracted using the guanidinium 
thiocyanate method178 or TRI reagent (Sigma-Aldrich, St. Louis, MO). cDNA was 
synthesized from total RNA using random hexamer primers (Life Technologies, MD) 
and Superscript II Rnase H- Reverse Transciptase (Life Technologies, MD).
In paper I, RNA from human skeletal muscle biopsies was hybridized to the Affymetrix 
HG-U133A arrays in paper I-study A and Affymetrix Hu6800 arrays in paper I-study B. 
In paper II, we have used the Affymetrix Custom Array NuGO-Hs1a520180 arrays in 
paper II-study A and the one-color (Cy3, green) Agilent Whole Human Genome Oligo 
Microarray (G4112A) in paper II-study B. In paper IV, RNA from whole pancreases of 
3-week old NIDDM1I and F344 rats was hybridized to the Affymetrix Rat Genome 
230 2.0 arrays.

Real-time polymerase chain reaction (real-time PCR)

The TaqMan real-time PCR is a technique to quantify gene expression. It is based 
on the 5’ to 3’ exonuclease activity of the Taq polymerase179. The probe which has a 
reporter fluorescent dye attached to its 5’ end and a quencher attached to its 3’ end, 
hybridizes to the target gene (Figure 11). During PCR amplification, the quencher is 
cleaved by the 5′ nuclease activity of Taq polymerase resulting in the accumulation of 
reporter fluorescence. The release of the fluorescent dye during amplification allows for 
rapid detection and quantification of cDNA180. The real-time PCR was performed using 
the ABI PRISM 7900 sequence detection systems (Applied Biosystems, Foster City, 
CA). Primers and probes for different genes namely, TXNIP, G0S2, BCL6, NDUFB5, 
ATP5C1, and AHNAK mRNA, were purchased as a ready-to use mix of primers and 
FAM-labeled probes (Applied Biosystems, Foster City, CA). Cyclophilin A was used 
as an endogenous control to standardize the amount of cDNA added to the reactions 
using a ready-to-use mix of primers and a VIC-labeled probe (Applied Biosystems, 
Foster City, CA). All samples were run in duplicate, and data were calculated using the 
standard curve method and expressed as a ratio to the cyclophilin A reference.
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Figure 11: Principle of real-time PCR.

This technique exploits the fluorescence resonance energy transfer (FRET) principle. According 
to this principle the fluorescent dye, when excited, transfers the energy to the quencher dye 
when they are in close proximity. The fluorescence labeled probe anneals between the forward 
and reverse primer sites and is cleaved by the Taq DNA polymerase in each PCR cycle. This 
cleavage results in loss of FRET and fluorescence can be detected, which is proportional to 
the initial level of cDNA. R = reporter (FAM, TET or VIC), Q = quencher (TAMRA or non-
fluorescent). This figure is adapted from ABI Prism 7900 sequence detection systems (Applied 
Biosystems, Foster City, CA, USA) user manual.
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RNA interference, viral transduction, and glucose uptake 
assays

RNA interference (RNAi) is a mechanism by which short RNA oligonucleotides can 
mediate repression of complementary genes. The RNAi works through inhibition of 
mRNA translation, destruction of mRNA, or silencing of the promoter which governs 
expression of the mRNA. In paper I, human myoblast cells were transfected with 
short interfering RNA (siRNA) directed against TXNIP (Dharmacon, Chicago, IL) 
as described previously181. In addition, 3T3-L1 mouse fibroblast cells were transfected 
with mouse Txnip-specific siRNA species (individual siRNA sequences, Ambion, 
Austin, TX).

Viral transduction is a method to transduce genes into mammalian cells and cause over-
expression of proteins. Human TXNIP was subcloned into the pCDH1-MCS1-EF1-
Puro vector (System Biosciences, Mountain View, CA). A vector containing TXNIP 
or an empty vector was transfected into 293TN cells (ATCC) with Fugene 6 (Roche, 
Basel, Switzerland) to generate pseudoviral particles.
Glucose uptake assays on virally infected adipocytes, siRNA gene-silenced adipocytes, 
and siRNA gene-silenced human myoblast cells were performed with insulin stimulation 
and subsequent measurement of lysate radioactivity using scintillation counting and 
the data were expressed in pmol/(mg lysate protein-min). These experiments were 
performed by the groups of Richard Lee, Brigham and Women’s Hospital, Cambridge, 
MA, and Juleen Zierath, Karolinska Institute, Stockholm, Sweden.

Sequencing

Sequencing of the TXNIP gene was performed using Cycle Sequencing kit (Applied 
Biosystems, Foster City, CA) from genomic DNA with an ABI3730 DNA Analyzer. 
Each base was called using the PHRED software package182,183, and quality scores were 
assigned. Sequence assembly and analysis were performed using the Staden software 
package184.

Genotyping using TaqMan allelic discrimination

The TaqMan allelic discrimination method is a sequence-specific method for SNP 
genotyping. The allelic discrimination assay contains two TaqMan probes, one probe 
for each allele of the SNP. Each probe consists of an oligonucleotide with a reporter 
fluorescent dye at 5’ end and a quencher at 3’ end185. During the amplification phase 
of PCR, the TaqMan probes hybridize only to the perfectly matching DNA target and 
not to those with a one base mismatch186. Cleavage of the hybridized probe separates 
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the quencher from the reporter, which results in fluorescence of the reporter dye. The 
SNP genotype is inferred by monitoring the fluorescence of the reaction mixture187. 
As the probes are distinguished by different fluorophores, emission of only one of the 
signals corresponds to homozygosity while emission of both signals corresponds to 
heterozygosity188,189. Allelic discrimination was performed using the ABI PRISM 7900 
sequence detection system (Applied Biosystems, Foster City, CA).

Genotyping using MassARRAY technology

The principle of the MassARRAY system is that an oligonucleotide probe is extended 
over a SNP site in a PCR product with the use of dideoxynucleotide triphosphates 
(ddNTPs) terminators which produce different size products for each allele of a 
SNP190. The extended products are analyzed using SEQUENOM matrix-assisted laser 
desorption/ionization-time of flight (MALDI-TOF) mass spectrometry which allows 
precise determination of the size of products generated, which is used to determine 
SNP genotype191. A large number of SNPs can be genotyped simultaneously using this 
technology (Sequenom, San Diego, CA).

Statistical analysis

Data are presented as mean ± standard deviation (SD) or mean ± standard error of the 
mean (SEM) or median with an interquartile range were appropriate.

Mostly, non-parametric statistics were used due to small sample sizes and the fact that 
variables were not normally distributed. For two-group comparisons we have used 
Mann-Whitney U test for unpaired comparisons and Wilcoxon’s signed rank sum test 
for paired comparisons. The association between two variables was assessed by Spearman 
rank correlation analysis. Normally distributed variables were analyzed using Student’s 
t-test with equal variance for unpaired comparisons, and paired Student’s t-test for 
paired comparisons between two groups or two-way analysis of variance (ANOVA) 
for comparing three or more groups. Two-tailed P < 0.05 was considered statistically 
significant.

Allele and genotype frequencies were compared by χ2 statistics and/or Fisher’s exact 
test and by McNemar’s statistics in the matched case-control study. The Hardy-
Weinberg equilibrium was assessed by χ2 test. Multiple linear regression analysis was 
used to determine genotype and quantitative phenotype correlations after adjusting 
for potential confounding effects of other covariates such as age, sex, BMI, and family 
dependence. Multiple logistic regression analysis was performed to assess association 
between a genotype and occurrence of T2DM after adjusting for different covariates. 
In paper I, the Mantel-Haenszel meta-analysis was performed to combine results from 
different sample populations.
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Generalized estimating equations (GEE) were used to fit general linear models for the 
twin data in papers I and III. The GEE model was used to adjust for interdependence 
between twins155,192. In this model the correlation was allowed to be different for 
monozygotic and dizygotic twins. Variables included in the model were selected using 
a backward selection regression.

A global scaling normalization was performed to normalize the gene expression profiling 
data in paper I. To eliminate data that were not reliably detected over all samples, 
the MAS5.0 present/absent calls based filtering was performed which classified each 
gene as expressed above background (present call) or not (absent or marginal call) for 
Affymetrix arrays in all papers125. In paper I, the SAM method129 with the fold change 
values > 1.5, delta = 0.37, and median false discovery rate = 0% was used for paired data 
to identify insulin-regulated genes from study A. Normalized gene expression data from 
previously published microarray studies104,105,161,193,194 were used for analyzing expression 
of individual genes. In paper II-study A, three different procedures for normalization 
and summarization were used namely GC-RMA, PLIER, and RMA for the Affymetrix 
arrays. For one-color Agilent arrays in paper II-study B, a quantile-based normalization 
between arrays without background subtraction was performed195. To identify genes 
whose expression correlated consistently with VO

2max
 and percentage of type 1 fibers, 

we have used normalized gene expression data from our previous microarray study 
in paper III104. Spearman partial correlation analysis was performed to determine the 
individual effects of each gene expression on different quantitative phenotypes (e.g., a 
surrogate measure of insulin sensitivity (1/HOMA) in paper II, VO

2max
 and percentage 

of type 1 fibers in paper III) after adjusting for different sets of covariates (such as 
BMI, age, and family history of T2DM in paper II-study A, BMI and age in paper 
II-study B, and BMI and T2DM in paper III-study A). In paper IV, normalization 
of raw data from different published gene expression profiling studies104,107,160,161 was 
performed using four different methods, namely MAS5.0, GC-RMA, PLIER, and 
RMA. Due to the hypothesis generating nature of this study, we accepted genes that 
were significantly altered in diabetes or associated phenotypes with a P < 0.05 in at least 
one normalization method.

The GSEA138 of metabolic pathways was performed between two groups divided by 
mean values of VO

2max
 as well as percentage of type 1 fibers in paper III. Also, The 

KEGG pathway analysis of genes of interest was performed using WebGestalt139 which 
implements a hypergeometric test in papers II and III.

All statistical analyses were performed using Number Cruncher Statistical Systems 
software (NCSS, Kaysville, UT), STATA (StataCorp, College Station, TX), SPSS 
(SPSS, Chicago, IL), MATLAB (The MathWorks, Natick, MA), GSEA, PLINK, and 
R statistical software.
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Results

Paper I: TXNIP regulates peripheral glucose metabolism in 
humans

The aim of this paper was to identify mediators of glucose homeostasis and to investigate 
whether these mediators are causally involved in the development of T2DM.

We obtained skeletal muscle biopsies from non-diabetic participants before and after 
a euglycemic hyperinsulinemic clamp using two different clinical protocols (paper 
I-studies A and B) each of which examined six individuals and then profiled gene 
expression in these biopsies using Affymetrix arrays. Expression of G0S2 was induced 
by insulin and expression of TXNIP and BCL6 was repressed by insulin in both studies. 
These findings were independently validated by real-time PCR in a third clamp protocol 
(paper I-study C) that involved a panel of 96 young non-diabetic individuals (Figure 
12).
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Figure 12: Effects of insulin on TXNIP expression in human muscle in vivo.

TXNIP mRNA levels were measured in skeletal muscle biopsies of healthy individuals before 
and after the hyperinsulinemic euglycemic clamp (N = 96, P < 1 x 10-14). Levels were measured 
using real-time PCR and normalized to cyclophilin A mRNA. Inset shows the distribution of 
expression changes over individuals.
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We analyzed two previously published microarray datasets from muscle of T2DM 
patients and controls104,105 and found that TXNIP expression was elevated in IGT (1.95-
fold, P = 0.02) or T2DM patients (1.60-fold, P = 0.01) but not in healthy individuals 
with a family history of T2DM (1.05-fold, P = 0.67). Moreover, Txnip gene was highly 
expressed (1.50-fold, P < 0.05) in the muscle of mice treated with streptozotocin, an 
agent that is selectively toxic to pancreatic β-cells and results in insulin deficiency and 
hyperglycemia194. Txnip expression levels reverted (0.53-fold, P < 0.05) to baseline in 
the muscle of these mice following treatment with insulin, which normalizes circulating 
glucose levels. However, in mice with knock-out of the insulin-receptor in skeletal 
muscle161, insulin treatment of streptozotocin-diabetic mice failed to suppress Txnip 
expression (1.33-fold increase with insulin, P = 0.08), despite the fact that glucose was 
well controlled in these mice. These findings indicate that the suppression of Txnip by 
insulin is not simply secondary to a reduction in circulating glucose concentrations, but 
rather or in addition, requires intact insulin receptor signaling.
We performed in vitro assays of TXNIP expression in a human adipocyte cell line that is 
known to respond to insulin by stimulating glucose uptake. TXNIP expression increased 
following elevations in glucose concentration, and was suppressed by insulin. Together, 
these cell culture studies confirm that TXNIP expression is reciprocally regulated by 
insulin and glucose in human muscle and fat tissues.

Using gene expression data from skeletal muscle of normal glucose tolerance (NGT), 
IGT, and T2DM patients from our previously published study104, we found that TXNIP 
expression is inversely correlated with the total body rate of insulin-stimulated glucose. 
This relationship is robust in NGT (r = -0.57, P = 0.02) or IGT (r = -0.86, P < 0.01), 
but not in patients with T2DM (r = -0.21, P = 0.41). We also related the expression 
of skeletal muscle TXNIP to glucose uptake in 96 healthy, young individuals. Using a 
GEE model, we modeled insulin-stimulated glucose uptake as a function of age, sex, 
basal and insulin-stimulated TXNIP expression, zygosity, birth weight, percentage of 
body fat, BMI, and VO

2max
. Basal (P = 0.02) and insulin-stimulated (P < 0.01) TXNIP 

expression as well as BMI (P < 0.01) were inversely correlated, while VO
2max

 (P < 0.01) 
was positively correlated with insulin-stimulated glucose uptake (Table 2). These data 
are consistent with the notion that TXNIP is an independent determinant of insulin-
stimulated glucose uptake in humans.

Table 2: Factors influencing insulin-stimulated glucose uptake in humans

Factors Regression coefficients 95 % CI P

Low High

TXNIP before clamp -4.18 -7.76 -0.61 0.02
TXNIP after clamp -20.29 -35.20 -5.39 < 0.01

BMI -0.35 -0.53 -0.16 < 0.01
VO

2max
0.11 0.03 0.18 < 0.01

The GEE model was used to determine whether basal and insulin-stimulated TXNIP expression, age, sex, 

birth weight, zygosity, percentage of body fat, BMI, or VO
2max

 influence insulin-stimulated glucose uptake.
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To directly test if TXNIP may regulate glucose uptake, we used genetic manipulations to 
alter the gene expression in mouse and human cell lines. We performed in vitro studies 
on an insulin-sensitive cell line, the adipocyte differentiated 3T3-L1. A 2-fold forced 
overexpression of TXNIP using lentiviral transduction resulted in both diminished 
basal and insulin-stimulated glucose uptake (59% and 28% reduction, respectively). 
In agreement with this result, forced reduction of TXNIP expression by siRNA gene 
silencing achieved the opposite effect and enhanced both basal and insulin-stimulated 
glucose uptake (157% and 61%, respectively). In addition, we examined the effects 
of TXNIP siRNA gene silencing in primary human skeletal muscle myocytes. Again, 
we observed a significant increase in both basal and insulin-stimulated glucose uptake. 
Together, these in vitro studies indicate that changes in TXNIP expression can directly 
influence glucose uptake in insulin-responsive cells.

To determine whether genetic variation in TXNIP may be associated with measures 
of insulin resistance or T2DM in humans, we assessed the pattern of common genetic 
variation encompassing the TXNIP gene using data from the HapMap project and by 
re-sequencing the gene. We then performed a genetic association study of nine “tag” 
SNPs that capture the most of the common variation observed within the vicinity of 
this gene. In 4,450 Scandinavian individuals, no significant association was detected 
between SNPs in TXNIP and T2DM or between the genotypes and four quantitative 
phenotypes: fasting glucose, fasting insulin, HOMA-IR as a measure of insulin 
resistance, and HOMA-β as a measure of insulin secretion.

In conclusion, TXNIP regulates both insulin-dependent and insulin-independent 
pathways of glucose uptake in human skeletal muscle. Combined with recent studies 
that have implicated TXNIP in pancreatic β-cell glucose toxicity, our data suggest 
that TXNIP might play a key role in defective glucose homeostasis preceding overt 
T2DM.

Paper II: Relationship between insulin sensitivity and gene 
expression in human skeletal muscle

The aim of this paper was to investigate molecular mechanisms associated with insulin 
sensitivity in skeletal muscle by relating global skeletal muscle gene expression to 
physiological measures of insulin sensitivity.

We obtained serial muscle biopsies from 38 non-diabetic participants in paper II-study 
A and then profiled gene expression in biopsies using the Affymetrix oligonucleotide 
microarrays. We used the 1/HOMA as a surrogate measure of insulin sensitivity. We 
identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity 
in human skeletal muscle. Among genes positively correlated with insulin sensitivity we 
found two, TSC2 and ULK1, involved in the mammalian target-of-rapamycin (mTOR) 
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signaling pathway using WebGestalt (P < 0.01). Other positively correlated genes had 
various functions, e.g., CAMK2A (r = 0.37, P = 0.03) from the Wnt signaling pathway, 
UCP2 (r = 0.56, P < 0.01) from a family of inner mitochondrial membrane proteins, 
and CPT1B (r = 0.47, P < 0.01) from peroxisome proliferator-activated receptor (PPAR) 
signaling pathway. We found six genes (COL1A1, COL1A2, COL3A1, LAMA4, MYL6, 
and RAP1A) involved in focal adhesion (P < 1 x 10-4), cell communication (P < 1 x 10-

3), and extracellular matrix (ECM)-receptor interaction (P < 1 x 10-3) pathways among 
the genes inversely correlated with insulin sensitivity.

To replicate the finding from paper II-study A, we included 9 non-diabetic participants 
in paper II-study B. We again used 1/HOMA as a surrogate measure of insulin sensitivity. 
We performed skeletal muscle gene expression profiling from these participants using 
the Agilent oligonucleotide microarrays. SIRT2 (r = 0.95, P < 0.01), FBXW5 (r = 0.95, 
P < 0.01), RAB11FIP5 (r = 0.93, P < 0.01), CPT1B (r = 0.85, P = 0.02), C16orf86 (r 
= 0.79, P = 0.04), UCKL1 (r = 0.77, P = 0.04), and ARFGAP2 (r = 0.76, P < 0.05) 
were positively correlated while ZNF613 (r = -0.81, P = 0.03), UTP6 (r = -0.81, P = 
0.03), and LEO1 (r = -0.78, P = 0.04) were inversely correlated with insulin sensitivity 
in this study. Moreover, a recent study has shown that the skeletal muscle expression 
of CPT1B was increased in response to treatment with a PPARδ agonist196 and this 
agonist is shown to increase mitochondrial biogenesis in muscle by enhancing fatty 
acid catabolism197. Taken together, these findings point at the possibility that beneficial 
effect of PPARδ agonist is in part regulated by CPT1B.
We conclude that a high capacity of fat oxidation in mitochondria is reflected by a high 
expression of CPT1B which is a marker of insulin sensitivity.

Paper III: Molecular correlates for maximal oxygen uptake 
and type 1 fibers

The aim of this paper was to investigate molecular mechanisms associated with VO
2max

 
and type 1 fibers in human skeletal muscle.

To identify genes whose expression was consistently correlated with VO
2max

 and type 1 
fibers, we reanalyzed our previously published gene expression data from human skeletal 
muscle in paper III-study A104. We observed a modest positive correlation between 
VO

2max
 and percentage of type 1 fibers (r = 0.37, P = 0.03) in these 43 individuals. 

We identified 66 genes positively correlated and 83 genes inversely correlated with 
VO

2max
. Among positively correlated genes, we found 13 genes involved in OXPHOS 

using WebGestalt (P < 1 x 10-19), i.e., NDUFS3, NDUFS8, NDUFB4, NDUFB5, and 
NDUFB11 from complex I, UQCRB and UQCRC2 from complex III, COX5A, COX5B, 
and COX6A1 from complex IV, and ATP5C1, ATP5G3, and ATP6V0C from complex 
V (Figure 13A). There were no OXPHOS genes among genes inversely correlated with 
VO

2max
. Instead, this list comprised genes with varying function, including AHNAK 
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(r = -0.50, P < 0.01), NACA (r = -0.46, P < 0.01), and BCL6 (r = -0.42, P < 0.01). 
We performed a GSEA139 of metabolic pathways by comparing groups with VO

2max
 

below or above the mean of VO
2max

 in all individuals. We hereby identified three gene 
sets (OXPHOS-CR, the electron transport chain, and oxidative phosphorylation) to 
be significantly enriched in the high-VO

2max
 group but none in the low-VO

2max
 group 

(Table 3). Among the list of genes correlated with VO
2max

, we also identified 6 genes 
(ATP5C1, NDUFB5, PTP4A1, MTCH2, TSG101, and GOLGA7) whose expression 
was consistently increased whereas the expression of 10 genes (PSMB1, AHNAK, 
CIRBP, ABCA8, ZBTB20, FOXO1, HNRPA3P1, TTC3, CYLD, and ZNF611) was 
decreased after 3 months of endurance training193.

Table 3 Gene sets enriched in high VO
2max

 group

Gene Set Size ES NES P FDR, q-value FWER, P

OXPHOS-CR 77 0.66 1.91 0.002 0.049 0.097
Electron transport chain 80 0.65 1.89 0.006 0.031 0.115

MAP00190 oxidative 
phosphorylation

42 0.56 1.84 0.004 0.039 0.191

OXPHOS-CR, a subset of genes involved in oxidative phosphorylation; ES, enrichment score; NES, 
normalized enrichment score; FDR, False discovery rate; FWER, family-wise error rate. Size refers to 
numbers of genes in the gene set.

We identified 171 probe sets positively correlated and 217 probe sets inversely correlated 
with percentage of type 1 fibers. There were 15 OXPHOS genes whose expression 
correlated positively with percentage of type 1 fibers using WebGestalt (P < 1 x 10-16), 
i.e., NDUFB4, NDUFC2, UQCRB, UQCRC2, UQCRQ, COX5A, COX7A2, COX7B, 
ATP5C1, ATP5J2, ATP5G3, ATP5L, ATP5O, ATP6V1D, and ATP5F1 (Figure 13B).
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Figure 13: List of genes from the oxidative phosphorylation pathway positively 
correlated with (A) Maximal oxygen uptake (VO

2max
). and (B) Percentage of type 1 

fibers.

For replication of some of the above findings by applying real-time PCR to archived 
RNA samples from skeletal muscle of 154 non-diabetic individuals in paper III-study 
B, we selected four genes namely NDUFB5, ATP5C1, AHNAK, and BCL6, for the 
following reasons: (1) NDUFB5 because its expression was positively correlated with 
VO

2max
 and increased after training, and also because a study has shown that expression 

of NDUFB5 decreases after a high-fat diet198; (2) ATP5C1 because its expression was 
positively correlated with VO

2max
 and type 1 fibers and increased after training; (3) 

AHNAK because its expression was strongly inversely correlated with VO
2max

 and 
decreased after training; and (4) BCL6 expression because we previously have shown 
that its expression is influenced by insulin in paper I.

We used a GEE to model expression of these genes individually as a function of age, 
sex, BMI, and zygosity. Interestingly, the expression of NDUFB5 (6.33 ± 0.25 vs. 7.70 
± 0.26, P < 0.01) and ATP5C1 (1.13 ± 0.06 vs. 1.59 ± 0.08, P < 0.01) was reduced, 
whereas expression of AHNAK (2.01 ± 0.12 vs. 1.36 ± 0.09, P < 0.01) was increased in 
elderly compared with young individuals. We also modeled VO

2max
 as a function of age, 

sex, BMI, zygosity, and expression of individual genes (NDUFB5, ATP5C1, AHNAK, 
and BCL6). Expression of NDUFB5 (P = 0.03; Table 4) and ATP5C1 (P = 0.02; Table 
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4) but not of AHNAK (regression coefficient β = -0.10, 95% confidence interval (CI) 
= -1.34 –1.14, P = 0.87) or BCL6 (β = 3.13, 95% CI = -2.65– 8.91, P = 0.29) was 
significantly correlated with VO

2max
.

Table 4 Genetic and non-genetic factors influencing VO
2max

 in humans

Factors Regression coefficients 95 % CI P
Low High

NDUFB5
Expression 0.44 0.04 0.84 0.03

BMI -0.69 -0.96 -0.42 < 0.01
Age -0.29 -0.36 -0.22 < 0.01
Sex -6.35 -8.69 -3.99 < 0.01

ATP5C1
Expression 0.95 0.15 1.74 0.02

BMI -0.85 -1.02 -0.67 < 0.01
Age -0.28 -0.35 -0.21 < 0.01
Sex -7.44 -9.93 -4.95 < 0.01

The generalized estimating equation model was used to determine whether BMI, age, sex, zygosity, and 
expression of individual genes (NDUFB5 and ATP5C1) influence VO

2max
. 

Abbreviations: CI, confidence interval.

In conclusion, VO
2max

 closely reflects expression of OXPHOS genes, particularly that of 
NDUFB5 and ATP5C1, in skeletal muscle. The expression of these genes was decreased 
with aging and increased with exercise training. Increased expression of these genes 
thereby seems to reflect good muscle fitness. In contrast, expression of AHNAK was 
associated with low VO

2max
, increased with aging, and decreased with exercise training. 

Increased expression of AHNAK thus seems to be a marker of poor muscle fitness.

Paper IV: Prioritizing genes for follow-up from genome wide 
association studies using information on gene expression in 
tissues relevant for type 2 diabetes mellitus

The aim of this paper was to combine GWA studies with genome-wide expression 
profiling of target tissues (i.e. pancreas, adipose tissue, liver, and skeletal muscle) of 
T2DM in order to identify novel T2DM susceptibility loci and to understand their 
pathophysiological role in T2DM etiology.

To identify novel T2DM susceptibility loci, we compiled results from two previously 
reported GWA studies which used the Affymetrix GeneChip® Human Mapping 500K 
Array Set containing 500,000 SNPs149,153. For first stage of SNPs selection, we identified 
453 SNPs associated with T2DM with P < 0.01 in at least one of the GWA study (Figure 
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14) and 150 genes were located in the vicinity of these SNPs. To determine whether 
any of these genes exhibit altered expression in diabetes or associated phenotypes in 
humans or rodents, we analyzed gene expression profiling data from pancreas, adipose 
tissue, liver, and skeletal muscle104,107,160,161. Out of these 150 genes, we identified 41 
genes differentially expressed in these studies. 11 genes were differentially expressed in 
at least two studies (Table 5).

Liver Muscle Adipose Pancreas
tissue

29919902 5412 2154056 23754

P<0.05 P<0.01 P<0.01 P<0.05

453 unique SNPs

150 corresponding genes

41 differentially expressed genes

GWA results from DGI, and WTCCC 16 SNPs genotyped

Gene expression profiling

DGI WTCCC DGI WTCCC

Figure 14: Schematic diagram of prioritizing SNPs from GWA studies.

453 SNPs were associated with T2DM with P < 0.01 in at least one of the GWA study149,153 and 
150 genes were located in vicinity of these SNPs. Out of these 150 genes, 41 were differentially 
expressed in different gene expression profiling studies104,107,160,161. 16 SNPs from 7 genes were 
selected based upon the results from the GWA studies for replication in well powered Malmö 
case-control study.
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Table 5: Genes differentially expressed in at least two different studies

Gene 
Symbol

Entrez 
GeneID

Dataset Fold-change P

ERAP1 51752 T2DM vs. NGT human pancreatic islets 2.18 0.018
 Diabetic vs. healthy rat pancreas 0.83 0.006
 NIDDM1I vs. F344 rat pancreas 1.26 0.025

HNRNPC 3183 T2DM vs. NGT human pancreatic islets 0.55 0.007
 NIDDM1I vs. F344 rat pancreas 0.92 0.011
 T2DM vs. NGT human skeletal muscle 1.36 0.029

NCOR1 9611 T2DM vs. NGT human pancreatic islets 1.28 0.021
 Diabetic vs. healthy mice skeletal muscle 1.47 < 0.001

CAST 831 T2DM vs. NGT human pancreatic islets 1.31 0.048
 Liver of 12 weeks old ZDF vs. ZLC -0.68§ -

PQLC1 80148 T2DM vs. NGT human pancreatic islets 1.44 0.004
 Diabetic vs. healthy rat pancreas 0.81 < 0.001

CADPS 8618 NIDDM1I vs. F344 rat pancreas 1.19 0.043
 Diabetic vs. healthy rat pancreas 0.60 0.011

TGFB3 7043 NIDDM1I vs. F344 rat pancreas 1.16 0.009
 Diabetic vs. healthy rat pancreas 0.77 < 0.001

KCNS3 3790 Diabetic vs. healthy rat pancreas 0.66 0.039
 T2DM vs. NGT human skeletal muscle 0.83 0.029

SAMD4A 23034 T2DM vs. NGT human skeletal muscle 0.59 0.024
 NIDDM1I vs. F344 rat pancreas 0.63 0.019

FAM45A 55855 NIDDM1I vs. F344 rat pancreas 0.88 0.023
 Muscle of 12 weeks old ZDF vs. ZLC -0.62§ -

ACTN1 87 NIDDM1I vs. F344 rat pancreas 1.18 0.015
 Muscle of 12 weeks old ZDF vs. ZLC 0.62§ -

§Expression ratios are shown as log2 scale of normalized mean signal intensities of ZDF to ZLC
rats.

We selected 5 genes namely - HNRNPC, NCOR1, CAST, KCNS3, and FAM45A as
these genes were differentially expressed in two different tissues for further investigation 
(Table 5). Furthermore, ZBTB16 was selected because it has been shown to interact with 
NCOR1 and act as a transcriptional repressor. Similarly, protein-protein interactions 
have been reported between MSRA and TXNIP which involves TRX. Since TXNIP is 
a regulator of insulin-dependent and insulin-independent pathways of glucose uptake 
in human skeletal muscle and is involved in pancreatic β-cell apoptosis, we decided 
to investigate MSRA further. We selected 16 SNPs from 7 genes for replication in 
a well powered Malmö case-control study consisting of 2,830 T2DM patients and 
3,550 controls. However, we were not able to replicate association of these 16 SNPs 
with T2DM in the Malmö case-control study. Though we further genotyped a SNP 
(rs27582) in the calpastatin (CAST) gene in two prospective cohorts from the MPP 
study and the BPS, for the following reasons: (1) the SNP was strongly associated with 
T2DM in the DGI (P = 0.007) and the WTCCC (P = 0.008) studies, (2) CAST gene 
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expression was increased in human pancreatic islets from T2DM patients compared 
to controls (1.31-fold, P < 0.05; Table 5), (3) Cast gene expression was decreased in 
liver of Zucker diabetic fatty (ZDF) rats compared to and Zucker lean control (ZLC) 
rats (1.60-fold; Table 5), and (4) CAST is an endogenous inhibitor of calpains and 
a member of this family, CAPN10, has been associated with T2DM199. In the MPP 
study, carriers of rs27582 AA/AG genotypes had a higher risk of future T2DM than 
GG genotype carriers (odds ratio (OR) = 1.10, 95% CI: 1.00-1.20, P < 0.05 adjusted 
for BMI at follow-up; OR = 1.09, 95% CI: 1.00-1.19, P = 0.069 adjusted for BMI at 
baseline), this effect was particularly strong in individuals with BMI below the median 
(below median at follow-up; OR = 1.19, 95% CI: 1.03-1.36, P = 0.024; below median 
of BMI at baseline; OR =  1.25, 95% CI: 1.08-1.43, P = 0.005).

We also investigated whether a SNP (rs27582) in the CAST gene would influence 
insulin secretion and action during the 7.6 year follow-up in the BPS. Carriers of the 
A-allele were more insulin resistant than carrier of the G-allele as indicated by higher 
fasting insulin concentrations (regression coefficient (β) = 0.048, P = 0.017) and higher 
HOMA-IR index (β = 0.044, P = 0.025) as well as lower insulin sensitivity index 
during OGTT (β = -0.039, P = 0.039) at follow-up.

In conclusion, using gene expression in different tissues from patients with T2DM and 
animal models is a powerful tool for prioritizing SNPs from GWA study for replication 
studies. We thereby identified association of a variant (rs27582) in the CAST gene with 
T2DM and insulin resistance.
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Discussion

The search for susceptibility genes for T2DM is a challenging task due to polygenic 
nature of the disease and the interaction between genetic and non-genetic factors (e.g. 
diet, physical activity, and aging) contributing to the disease. Identifying individuals 
at high risk of developing the disease is a prerequisite for disease prevention. Also, 
development of efficacious anti-diabetic treatments depends heavily on a deeper 
understanding of the molecular events that lead to T2DM. Recent advances in high-
throughput technologies related to biomedical research have provided tremendous 
opportunities for understanding the pathogenesis of T2DM. This thesis has focused on 
the identification of genes regulated by insulin, correlated with insulin sensitivity, and 
associated with VO

2max
 and type 1 fibers in human skeletal muscle as well as described 

an approach for prioritizing SNPs from GWA studies.

Methodology

Gene expression profiling studies, which enable the simultaneous investigation of more 
than 20,000 genes, allow a more comprehensive understanding of the genes involved 
in a wide variety of biological processes200. However, after the initial euphoria over 
the successful development of gene expression profiling technology; there are several 
caveats with data analysis and interpretation associated with this technology. The 
complex nature of a microarray experiment introduces many sources of variations 
which includes sample extraction, sample quality, array design (i.e., probe length and 
sequence homology to other sequences and replicates), labeling protocol, hybridization 
conditions, wash conditions, choice of scanning instrument, image processing, data 
normalization and analysis, data quality assessment, and interpretation of results201. 
Several standardization projects have been pursued by the Microarray Gene Expression 
Data Society to facilitate the sharing of data generated using the microarray technologies. 
The best known among these standardization projects is the Minimum Information 
About a Microarray Experiment (MIAME), which describes the minimum information 
required to ensure that microarray data can be easily interpreted and that results derived 
from its analysis can be independently verified202. Although, this MIAME standard is 
appropriate for reporting methodological and design aspects of microarray experiments; 
it does not address data analysis and validation. Moreover, gene expression profiles are 
strongly influenced by gender and age, therefore, these confounding factors need to 
be considered while designing of microarray experiments. Also, the site from which a 
biopsy sample is obtained can have an effect on the gene expression profiles due to large 
functional and morphologic heterogeneity of muscle tissue203.
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Several statistical algorithms have been developed for background correction, 
normalization, and summarization of Affymetrix microarray data. The ideal probe set 
algorithm should compare information about probe characteristics, based upon the 
performance of each probe across arrays, and use this to give a better estimate of transcript 
abundance. The model-based algorithms, e.g., dchip, RMA, PLIER, and GC-RMA, 
have been developed based upon these principles. Moreover, the statistical analysis of 
microarray data is challenging due to the fact that a large numbers of comparisons are 
made in parallel204. This hampers many studies employing only a small number of 
replicates with a considerable risk of false positive findings. The required sample size 
for microarray experiments predominantly depends on the distribution of the truly 
differentially expressed genes i.e. when the fold-change differences are small, a large 
sample size is needed to control for the FDR205. Moreover, differences in gene expression 
are usually modest and would often not reach significant when correction for multiple 
hypothesis testing. To address this problem we exploited several strategies. In paper II-
study A, we used three different model-based algorithms to calculate gene expression 
from Affymetrix array data. We required that all three methods namely GC-RMA, 
PLIER, and RMA should show consistent results. Only in paper IV due to hypothesis 
generating nature of the study, we used a less stringent cut-off with P < 0.05 in at least 
one of these methods. In addition, we have integrated the results of our microarray 
analysis with previously published microarray data by re-analyzing these data104,105,107,16

0,161,193,194. This approach was successfully implemented by Coletta and colleagues who 
showed that the transcription factor HES1 was regulated by insulin in human skeletal 
muscle206. However, further validation using alternative methods (e.g. real-time PCR) is 
still necessary to extrapolate results for broad use of the data. Hence, we have validated 
our key findings in independent clinical studies using different quantitation platforms 
(e.g. real-time PCR) which have provided biological and technical replication of our 
microarray experiments.

Prioritizing SNPs from GWA studies for further replication in other samples is 
challenging task due to the fact that effect sizes of individual SNPs are usually very 
small and would often not reach significance after correction for multiple hypothesis 
testing. To address this issue several strategies have been developed including meta-
analysis of GWA studies and Gene Relationships Across Implicated Loci (GRAIL)207. 
The meta-analysis of several GWA studies from different populations is very powerful 
approach for identifying variants with modest effects. Six novel loci associated with 
T2DM have been identified using this approach152. However, there are several 
difficulties in integrating GWA studies from different platforms and also this strategy 
requires large-scale GWA studies in several populations. The GRAIL is a web-tool to 
examine relationships between genes in different disease associated loci. It is based upon 
similarities in the published scientific text among the associated genes. We used the 
GRAIL for 453 SNPs associated with T2DM from paper IV (Figure 14), but could 
only identify one gene (HHEX) for which neighboring SNPs have been associated with 
T2DM151. Also, a more general approach e.g. GeneMiner (which is a meta-analysis 
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approach that integrates data of heterogeneous origin e.g. DNA microarrays and 
complementing qualitative data covering several human and mouse tissues related to 
T2DM) has identified several functional T2DM candidate genes208. However using this 
approach, we were not able to identify any of the 22 genes for which there is genome-
wide significant evidence for association with T2DM209. In paper IV, we tested a novel 
approach for prioritizing SNPs from GWA studies by combining the results from these 
studies with publicly available genome-wide expression profiling data of target tissues 
(i.e. pancreas, adipose tissue, liver, and skeletal muscle) of T2DM. Notably, we were able 
to identify four genes namely IGF2BP2, CDKAL1, TSPAN8, and NOTCH2 for which 
neighboring SNPs have consistently shown to be associated with T2DM in several 
populations149,152,153,209.

TXNIP

In paper I, we have combined human physiology, genome-wide expression profiling, 
and cellular studies to identify TXNIP as a physiologic regulator of peripheral glucose 
uptake in humans. A study has shown that TXNIP is glucose inducible in pancreatic 
β-cells and mediates β-cell death through apoptosis210. Together, these findings suggest 
that TXNIP may be involved in glucose toxicity both in β-cells and in the periphery, 
helping to reconcile the dynamic relationship between insulin deficiency and impaired 
glucose uptake that is observed in the pre-diabetic state (Figure 15). Although in a 
panel of 4,450 individuals, we found no evidence for association between common 
genetic variation in the TXNIP gene and T2DM; another study has shown that a 
genetic variation within the TXNIP gene is associated with hypertriglyceridemia and 
increased diastolic blood pressure in patients with T2DM211.

Pancreas Skeletal muscleGlucose

TXNIP

Glucose
Insulin

Glucose uptake

β-cell
apoptosis

TXNIP

Figure 15: Role of TXNIP in glucose toxicity in the β-cell and in impaired glucose 
uptake in the periphery.
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Insulin deficiency or hyperglycemia can increase TXNIP levels in muscle, resulting in impaired 
peripheral glucose uptake. The pancreatic β-cell is initially able to compensate by secreting more 
insulin, but eventually the β-cell compensation fails. The resulting hyperglycemia may then 
elevate pancreatic β-cell TXNIP expression, which can induce apoptosis210. The loss of β-cells, 
in turn, results in decreased insulin production that further exacerbates peripheral IGT. The 
vicious cycle would eventually spiral to T2DM.

Thioredoxin is a multifunctional protein and acts as an intracellular oxidoreducatase 
that associates with thioredoxin reductase and thioredoxin peroxidase to reduce oxidized 
proteins and scavenge free radicals212-214. TXNIP interacts directly with the reduced 
form of thioredoxin and thereby negatively regulates the expression and function of 
thioredoxin215-218. In addition, TXNIP has multifunctional roles in a variety of cellular 
functions including growth inhibition, transcriptional regulation, natural killer cells 
development, and lipid metabolism219. A recent study has shown that TXNIP is a key 
regulator of PPARα expression and signaling, and coordinated regulation of PPARα and 
insulin secretion by TXNIP is crucial in the feeding–fasting nutritional transition220.

TXNIP expression is induced by glucocorticoids221 and by glucose, and TXNIP elevations 
can stimulate ROS production222 and suppresses thioredoxin-mediated antioxidant 
function. Hence, TXNIP represents a candidate intermediate linking diabetogenic 
stimuli to ROS production. In addition, we have observed an inverse correlation in the 
expression of TXNIP and the genes regulating mitochondrial OXPHOS, and previous 
studies have shown that TXNIP can serve as a transcriptional repressor223. Taken 
together, these data raise the possibility that TXNIP may contribute to the elevations in 
ROS and mitochondrial dysfunction that accompany insulin resistance.

Over-expression of TXNIP is associated with chronic diabetic neuropathy224, and 
diabetic nephropathy225 which is related to collagen synthesis. Moreover, elevated levels 
of TXNIP can enhance the atherosclerotic process by increasing vascular inflammation 
through inhibition of thioredoxin–ASK1 interaction effect on the negative regulation 
of TNF-mediated stimulation of JNK, p38, and VCAM1 expression226,227 (Figure 16). 
While expression of TXNIP is downregulated in various types of human cancer cells 
derived from breast cancer, colon cancer, prostate cancer, bladder cancer, gastrointestinal 
cancer, malignant pheochromocytomas, and high-grade B cell lymphoma228. Taken 
together, TXNIP plays crucial role in cancer and metabolic diseases.
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Figure 16: Schematic diagram showing the role of TXNIP in glucose and its related 
diseases.

Hyperglycemia-induced reactive oxygen species (ROS) in T2DM up-regulates TXNIP and 
suppresses thioredoxin (TRX) mediated antioxidant function222. Over-expression of TXNIP 
enhances β-cell death and impairs insulin secretion229,230, which may result in further aggravation 
of T2DM. In T2DM patients, increased TXNIP is associated with chronic diabetic neuropathy224 
and diabetic nephropathy225, which may be related to collagen synthesis. TXNIP also enhances 
the atherosclerotic process by increasing vascular inflammation through inhibition of TRX–
apoptosis signal–regulating kinase 1 (ASK1) interaction activity on the negative regulation of 
tumor necrosis factor (TNF)-mediated stimulation of c-jun N-terminal kinase (JNK), p38, 
and vascular cell adhesion molecule-1 (VCAM1) expression226,227. This figure is adapted from 
Kaimul AM et al.228

CPT1B

In paper II, we have identified that expression of carnitine palmitoyltransferase 1B 
(CPT1B) is positively correlated with insulin sensitivity in human skeletal muscle. 
CPT1B regulates transport of long-chain fatty acyl-CoAs from the cytoplasm into the 
mitochondria and often considered a regulatory step in lipid oxidation. The Krüppel-
like transcription factor 5 (KLF5) together with C/EBP-β regulate expression of CPT1B 
as well as UCP2 in skeletal muscle as promoter regions of these genes contain binding 
motifs for the transcription factor CCAAT/enhancer binding protein (C/EBP)231. 
Moreover, expression of these genes was up-regulated in the Klf5-knockout heterozygous 
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mice (Klf5+/-) which is resistant to high fat-induced obesity, hypercholesterolemia, 
and glucose intolerance231. The expression of CPT1B in skeletal muscle was increased 
in response to treatment with a PPARδ agonist196. This PPARδ agonist is shown to 
increase mitochondrial biogenesis in muscle by enhancing fatty acid catabolism197. 
These findings point at the possibility that beneficial effect of PPARδ agonist is in part 
regulated by CPT1B.

NDUFB5

In paper III, we have identified that expression of NADH dehydrogenase (ubiquinone) 
1 beta subcomplex, 5 (NDUFB5) is positively correlated with VO

2max
 in human skeletal 

muscle. NDUFB5 is located on the inner mitochondrial membrane. It transfers 
electrons from NADH to the respiratory chain. Intriguingly, expression of this gene 
was decreased in human skeletal muscle after a 3-day isoenergetic high-fat diet as well 
as in mouse muscle after 21 days of high-fat feeding198. No mutations in the gene, 
which is located on chromosome 3 have been linked with human pathology. However, 
increased expression of this gene in skeletal muscle seems to reflect fitness of muscle, as 
the expression increased with endurance training and decreased with aging.

ATP5C1

In paper III, we have found that expression of ATP synthase, H+ transporting, 
mitochondrial F1 complex, gamma polypeptide 1 (ATP5C1) is positively correlated 
with VO

2max
 and percentage of type 1 fibers, increased with endurance training, and 

decreased with aging in human skeletal muscle. The ATP5C1 gene on chromosome 10p 
encodes for a subunit of the soluble catalytic portion of mitochondrial ATP synthase, 
which catalyzes ATP synthesis during oxidative phosphorylation, thereby utilizing an 
electrochemical gradient of protons across the inner membrane. No obvious pathology 
has been associated with ATP5C1, and we could not observe any association between 
common variants in this gene and T2DM or/and related metabolic traits in the DGI 
scan149.

AHNAK

In paper III, we have shown that enhanced expression of AHNAK nucleoprotein 
(AHNAK) reflects poor muscle fitness; as the expression level was associated with 
low VO

2max
 and increased with aging but decreased with exercise training in human 

skeletal muscle. AHNAK encodes for a very large protein, desmoyokin (700 kDa), the 
carboxylterminal domain of which has been ascribed a stabilizing effect on muscle 
contractility via interaction with actin232. AHNAK also seems to mediate activation of 
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phospholipase C and release of arachidonic acid through protein kinase C233. This opens 
up the interesting possibility that AHNAK could represent a link to inflammation. In 
fact, AHNAK was recently suggested to mediate the repressing effect of arachidonic 
acid on glucose transporter GLUT4 expression in muscle and interfere with 
phosphatidylinositol 3-kinase-Akt signaling. Moreover, AHNAK has been suggested to 
link actin with L-type Ca2+ channels in cardiomyocytes234.

CAST

In paper IV, we have identified a SNP (rs27582) in the CAST gene that was 
associated with T2DM in 16,061 Swedish individuals, particularly in lean individuals. 
Furthermore, this SNP was also associated with more severe insulin resistance. CAST 
is an inhibitor of calpains which bind to CAST in a calcium-dependent, reversible 
manner235. Calpains play a key role in the regulation of insulin secretion and insulin 
action236. Taken together, these data raise the possibility that the variation in the CAST 
gene might affect the activity of the calpastatin-calpain system and thereby alters insulin 
action and eventually secretion.

Future challenges

A major future challenge for dissecting the pathogenesis of complex diseases is the need 
for integration of data from the various high-throughput platforms such as whole-
genome sequencing, GWA studies, studies of genetic differences in terms of copy number 
variations (comparative genomic hybridization arrays), whole-genome methylation 
profiling, transcriptome profiling (gene expression arrays, exon arrays, and massive-scale 
RNA sequencing), protein-DNA binding (chromatin immunoprecipitations (ChIP)-
chip), micro-RNA arrays, proteomics (protein arrays), and metabolomics. However, 
cross-platform integration is an intricate task as different data types are interrelated 
in a complex manner through a highly sophisticated biological network. In general, 
understanding the combined effects of genetics and environmental factors contributing 
to T2DM through a systems biology framework will enable the advancement of 
personalized medicine237.
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Summary

The main findings of the studies included in this thesis are:
TXNIP•  gene expression is reciprocally regulated by insulin and by 
glucose.
TXNIP•  expression levels are consistently elevated in humans with T2DM 
and pre-diabetes.
Elevation in • TXNIP expression can inhibit glucose uptake.
In a panel of 4,450 Scandinavian individuals, we found no evidence for • 
association between common genetic variation in the TXNIP gene and 
T2DM.
Genes from various biochemical pathways were related to insulin sensitivity. • 
Notably, genes from the mTOR signaling pathway correlated positively 
while genes involved in extracellular matrix structural constituent such as 
focal adhesion, cell communication, and ECM-receptor pathways were 
inversely correlated with insulin sensitivity.
Expression of • CPT1B was positively and that of LEO1 inversely correlated 
with insulin sensitivity, a finding which was replicated in an independent 
study of 9 non-diabetic men.
VO• 

2max
 closely reflects expression of OXPHOS genes, particularly that of 

NDUFB5 and ATP5C1 in skeletal muscle.
The expression of • NDUFB5 and ATP5C1 was increased with exercise 
training and decreased with aging. High expression of these genes reflects 
good muscle fitness.
In contrast, expression of • AHNAK was associated with low VO

2max
, 

decreased with exercise training, increased with aging. High expression of 
AHNAK reflects poor muscle fitness.
A variant (rs27582) in • CAST gene is associated with T2DM and insulin 
resistance. 
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Conclusions

TXNIP regulates both insulin-dependent and insulin-independent pathways • 
of glucose uptake in human skeletal muscle. Combined with recent studies that 
have implicated TXNIP in pancreatic beta-cell glucotoxicity, our data suggest 
that TXNIP might play a key role in defective glucose homeostasis preceding 
overt T2DM.
A high capacity of fat oxidation in mitochondria is reflected by a high expression • 
of CPT1B which is a marker of insulin sensitivity.
VO• 

2max
 closely reflects expression of OXPHOS genes while expression of 

AHNAK was associated with low VO
2max

.
A variant (rs27582) in • CAST gene is associated with T2DM and insulin 
resistance. More generally, we proposed a novel approach for prioritizing SNPs 
from GWA studies.
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Populärvetenskaplig sammanfattning

Omkring 250 miljoner människor lider av diabetes mellitus typ 2 (T2DM) i 
världen i dag och förekomsten av sjukdomen ökar i hela världen på grund av 
minskad fysisk aktivitet, ökat energiintag, och den åldrande befolkningen. T2DM 
är ett sjukdomstillstånd där blodglukoskoncentrationen är kroniskt förhöjd. T2DM 
kännetecknas av nedsatt insulinsekretion och verkan, den senare manifesteras som 
perifer och hepatisk insulinresistens (dålig dämpning av glukosproduktionen från levern 
av insulin). Riskfaktorer för utveckling av T2DM omfattar genetiska (familjehistoria av 
sjukdomen) och icke-genetiska faktorer såsom låg födelsevikt, fetma, högt födointag, 
fysisk inaktivitet, och åldrande. Därför betraktas T2DM som en av flera polygeniska 
sjukdomar där gemensamma förändringar i flera gener samverkar för att orsaka sjukdom 
när de utsätts för en miljö av för mycket mat och för lite motion (epistasis). Flera 
storskaliga genetiska metoder har används för att identifiera gener som predisponerar 
för T2DM. DNA microarrays används för att mäta nivåerna av mRNA i biologiska 
prover för mer än 20,000 gentranskript. Helgenomskannar (GWA) erbjuder en 
objektiv metod för att identifiera genetiska varianter som påverkar känsligheten för att 
få sjukdomen. Denna avhandling har fokuserat på att analysera det genetiska bidraget 
till T2DM genom att använda storskaliga genetiska metoder med en särskilt fokus på 
analys av gentranskript i olika vävnader, huvudsakligen muskel.

I paper I har vi identifierat TXNIP som en gen vars uttryck är kraftfullt minskat av 
insulin, men stimulerat av glukos. Hos friska individer, var uttrycket omvänt korrelerat 
till kroppens totala glukosupptag. Tvingat uttryck av TXNIP i odlade adipocyter minskar 
avsevärt glukosupptaget, medan dämpning med RNA-interferens i adipocyter och i 
skelettmuskulatur förbättrar glukosupptaget, vilket bekräftar att genprodukten också är 
en regulator av glukosupptag. TXNIP uttrycket är genomgående förhöjt i muskeln i pre-
diabetiker och diabetiker, men i en panel bestående av 4,450 skandinaviska individer, 
kunde vi inte hitta några bevis för ett samband mellan vanliga genetiska variationer i 
TXNIP genen och T2DM. Slutsatsen var att TXNIP reglerar både insulin-beroende 
och insulin-oberoende vägar av glukosupptag i människans skelettmuskulatur. I 
kombination med nyligen genomförda studier som involverade TXNIP i glukostoxicitet 
av bukspottkörtelns β-celler, tyder våra data på att TXNIP kan spela en nyckelroll i 
defekt glukoshomeostas föregående fastställd T2DM.

I paper II undersökte vi molekylära mekanismer i samband med känsligheten för 
insulin i skelettmuskulatur genom att jämföra skelettmuskulaturens genuttryck med 
fysiologiska mätningar av insulinkänsligheten. Vi har identifierat 70 gener positivt och 
110 gener omvänt korrelerade med insulinkänsligheten i människans skelettmuskulatur. 
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Anmärkningsvärt är att gener som är inblandade i en signalväg hos däggdjur target-of-
rapamycin var positivt medan gener som kodar för extracellulär matrix strukturella 
komponenter såsom extracellulär matrix-receptor, cellkommunikation, och fokal 
vidhäftningssignalvägar var omvänt korrelerad med insulin känslighet. Mer specifikt var 
uttrycket för CPT1B positivt och det för LEO1 omvänt korrelerat med känsligheten för 
insulin, ett konstaterande som reproducerades i en oberoende undersökning av 9 icke-
diabetiska män. Dessa data tyder på att en hög kapacitet av fettoxidation i mitokondrierna 
återspeglas i ett högt uttryck av CPT1B som är en markör för insulinkänsligheten.

I paper III undersökte vi molekylära mekanismer i samband med maximal syreupptagning 
(VO

2max
) och typ 1 fibrer i människans skelettmuskulatur. Vi har identifierat 66 gener 

positivt och 83 gener omvänt korrelerade med VO
2max

 och 171 gener positivt och 217 
gener omvänt korrelerade med andel av typ 1 fibrer i människans skelettmuskulatur. 
Gener som är inblandade i oxidativ fosforylering (OXPHOS) visade högt uttryck hos 
individer med hög VO

2max
, medan det motsatta inte var fallet hos individer med låg 

VO
2max

. I stället var gener som AHNAK och BCL6 förenade med låg VO
2max

. Uttrycket 
av OXPHOS generna NDUFB5 och ATP5C1 ökade med träning och minskade med 
åldrande. Uttryck av AHNAK i skelettmuskel minskade med träning och ökade med 
åldrande. Dessa resultat visar att VO

2max
 nära återspeglar uttryck av OXPHOS gener 

särskilt av NDUFB5 och ATP5C1 i skelettmuskler och högt uttryck av dessa gener 
tyder på god muskelkondition. I motsats var ett högt uttryck av AHNAK förenat med 
en låg VO

2max
 och dålig muskelfitness.

I paper IV kombinerade vi GWA studier för T2DM med profilering av genuttrycket 
i målvävnaderna (bukspottkörtel, fettvävnad, lever och skelettmuskulatur) för att 
hitta nya riskgener för T2DM. Genom att använda denna metod identifierade vi en 
enbaspolymorfi (SNP) (rs27582) i CAST genen som associerades med T2DM i 16,061 
svenska personer och denna association är tydligast i magra individer. Vi har även sett 
en association mellan denna SNP och insulinresistens. Mer allmänt har vi föreslagit en 
ny strategi för prioritering av SNPs från GWA studier.
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