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Abstract—Vehicle-to-vehicle (VTV) communications are of
interest for applications within traffic safety and congestion
avoidance, but the development of suitable communications
systems requires accurate models for VTV propagation channels.
This paper presents a new wideband MIMO (multiple-input-
multiple-output) channel model for VTV channels based on
extensive MIMO channel measurements performed at 5.2 GHz
in rural environments in Lund, Sweden. The measured channel
characteristics, in particular the non-stationarity of the channel
statistics, motivate the use of a geometry-based stochastic channel
model (GSCM) instead of the classical tapped-delay line model.
We introduce generalizations of the generic GSCM approach
and find it suitable to distinguish between diffuse and discrete
scattering contributions. The time-variant contributions from
discrete scatterers are tracked over time and delay using a high
resolution algorithm, and our observations motivate their power
being modeled as a combination of a deterministic part and a
stochastic part. The paper gives a full model parameterization
and the model is verified by comparison of MIMO antenna
correlations derived from the channel model to those obtained
directly from measurements.

I. INTRODUCTION
Wireless vehicle-to-vehicle (VTV) communications has re-

cently received a lot of attention, with applications envisioned
to reduce traffic accidents and facilitate traffic flow [1]. As
with many wireless systems under development, the use of
multiple antennas (MIMO) is of interest to enhance reliability
and capacity of the VTV link [2], [3], [4], [5].
It is well-known that wireless system design requires knowl-

edge about the propagation channel characteristics in which
the envisioned system will operate. However, up to this point
few investigations have considered modeling of MIMO VTV
channels and there exists, to the author’s best knowledge, no
current MIMO model fully able to describe the time-varying
nature of the VTV channel reported in measurements [6].
Generally speaking, there are three fundamental approaches

to channel modeling: deterministic, stochastic, and geometry-
based stochastic [7], [8]. The deterministic approach of VTV
modeling has been explored extensively by Wiesbeck and
co-workers [9], [10] and shown to agree well with (single-
antenna) measurements. However, its main drawback is the

This work was partially funded by the SSF Center of Excellence for High-
Speed Wireless Communications (HSWC), the competence center program
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requirement for intensive computations which also makes it
difficult to vary propagation parameters. Stochastic channel
models provide the statistics of the power received with a
certain delay, Doppler shift, angle-of-arrival etc. A tapped
delay-Doppler profile model was developed for the VTV
channel, by Ingram and coworkers [11], [12], however, the
assumption of a fixed Doppler spectrum for every delay does
not represent the non-stationary channel responses reported in
measurements [6].
Geometry-based stochastic channel models (GSCMs) [13],

[14] have previously been found well suited for non-stationary
environments [15], [16], and is the type of model we aim for
in this paper. GSCMs build on placing scatterers at random,
according to a certain statistical distribution, and assigning
them (scattering) properties. Then the signal contributions of
the scatterers are determined from a greatly-simplified ray
tracing, followed by a summation of the total signal at the
receiver. This modeling approach has a number of important
benefits: (i) it can easily handle non-WSSUS channels, (ii)
it provides not only delay and Doppler spectra, but inherently
models the MIMO properties of the channel, (iii) it is possible
to easily change the antenna influence, by simply including a
different antenna pattern, (iv) the environment can be easily
changed, and (v) it is much faster than deterministic ray
tracing, since only single (or double) scattering needs to be
simulated. A few geometrical VTV models with scatterers
placed on regular shapes have been proposed, e.g., [17],
however, their underlying assumption of all scatterers being
static does not agree with results reported in measurements
[18]. In this paper, we present a GSCM for MIMO VTV
channels based on a more realistic placement of static and
dynamic scatterers and parameterize it using results from an
extensive measurement campaign on rural roads near Lund,
Sweden.
The main contributions of this paper are the following:
• We develop a generic modeling approach for VTV chan-
nels based on GSCM. In this context, we extend existing
GSCM structures by prescribing fading characteristics for
specific scatterers.

• Based on the extracted scatterer contributions, we param-
eterize the generic channel model.

• We verify our parameterized model by comparing MIMO
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correlation matrices as obtained from our model to di-
rectly measured ones.

The remainder of the paper is organized as follows: Sec. II
briefly describes the measurement campaign for vehicle-to-
vehicle MIMO channels that serves as the motivation for our
modeling approach and Sec. III points out the most important
channel characteristics to be included in the model. The
channel model is described in Sec. IV and Sec. V compares the
model outcomes with the measured results. Finally, a summary
and conclusions in Sec. VI wraps up the paper.

II. VEHICLE-TO-VEHICLE MIMO CHANNEL
MEASUREMENTS

A. Measurement Setup
VTV channel measurements were performed with the

RUSK LUND channel sounder that performs MIMO mea-
surements based on the “switched array” principle [19] and
records the time-variant complex channel transfer function
H(t, f). A frequency range of 5.2 ± 0.12 GHz was used for
the measurements and with a test signal length of 3.2 μs we
had a path resolution of 1.25 m and a maximum path delay of
959 m. The channel was sampled every 0.3072 ms, during a
time window of roughly 10 s implying a maximum resolvable
Doppler shift of 1.6 kHz, corresponding to a relative speed of
338 km/h at 5.2 GHz.
Transmitter (TX) and receiver (RX) were mounted on the

platforms of separate pickup trucks (at a height of approx-
imately 2.4 m above the street level), each consisting of a
4−element, vertically polarized, circular microstrip antenna
array mounted so that the broadside directions of the antenna
elements were directed at 45, 135, 225 and 315 degrees, where
0 degrees denotes the direction of travel, respectively. Thus, a
4× 4 MIMO system was measured.
We performed measurements on a rural motorway located

near Lund, Sweden (see [20] for analysis of a highway sce-
nario). The surroundings are mainly characterized by roadside
fields, along with some sparsely scattered residential houses,
farm houses and road signs. Little to no traffic prevailed during
the measurements.
Measurements were performed both with TX and RX driv-

ing in the same direction (SM), and with TX and RX driving in
opposite directions (OP). During each measurement, the aim
was to maintain the same speed for TX and RX, though this
speed was varied between different measurements in order to
obtain a larger statistical ensemble. Also, the distance between
TX and RX was kept approximately constant during each
SM measurement, though it varied between different measure-
ments. 32 SM and 12 OP measurements were performed.

III. VTV CHANNEL CHARACTERISTICS
A. Time-Delay Domain
Average power delay profiles (APDPs) were obtained by

inverse discrete Fourier transforming the recorded frequency
responses H(t, f), using a Hanning window to suppress side
lobes, and averaging the squared magnitudes of the resulting
impulse responses h(t, τ) over a sample time corresponding

Fig. 1. Example plot of the time-varying APDP of a SM measurement (the
approximate TX/RX speed was 90 km/h). Several reflections from discrete
scatterers, all static, are visible as diagonal lines.

to a TX movement of 20λ. We draw the following conclu-
sions from the time-delay domain results (see Fig. 1 for a
typical sample plot): (i) the LOS path is always strong, (ii)
significant energy is available through discrete components,
typically represented by a single tap (e.g., the diagonal “lines”
in Fig. 1), (iii) discrete components typically move through
many delay bins during a measurement; this implies that the
common assumption of WSSUS is violated [18], (iv) discrete
components may stem from mobile as well as static scattering
objects, and (v) the LOS is usually followed by a tail of weak
components. Analysis of the amplitude statistics of the taps
immediately following the LOS tap shows that they can be
well described by a Rayleigh distribution [20].

B. Delay-Doppler Domain
Doppler-resolved impulse responses, h(ν, τ), were derived

by Fourier transforming h(t, τ) with respect to t. The fol-
lowing conclusions are drawn: (i) the total Doppler spectrum
can change significantly during a measurement, as scatterers
change their position and speed relative to TX and RX, (ii)
the Doppler spread of discrete scatterers is typically small, (iii)
the tail of weak components not only has a large delay spread,
but also a large Doppler spread. In the sequel, we denote this
part of the channel “diffuse” in order to distinguish it from
the discrete components.
Assuming single reflections only, simple geometric relations

provide the relationship between angles of arrival/departure
and scatterer velocity and thus can tell us whether a scatterer is
mobile or static. We also note that the Doppler shifts produced
by scattering points on a line parallel to the direction of
travel closely matches the Doppler characteristics of the tail
of diffuse components (for details, see [20]).

C. Discrete Scatterer Contribution
Analyzing the time-varying signal contribution of the dis-

crete scatterers, such as the diagonal “lines” of Fig. 1, pro-
vides further insight into the propagation mechanisms. This is
achieved using an algorithm of two steps, briefly summarized
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Fig. 2. High resolution impulse response of the measurement in Fig. 1.

Fig. 3. Extracted paths from Fig. 2 after the second step of the algorithm.

below (the full algorithm is described in [20]). We first
estimate the delays τi and amplitudes ai of each multipath
contribution at each time instant separately, by means of a
high-resolution approach that is based on a serial “search-and-
subtract” approach (similar to the CLEAN method [21]). We
then perform tracking of the time-varying delay and power
of the components over large timescales, utilizing the fine
temporal increment of the measurements. Figs. 2 and 3 show
the outcome of the first and second part of the algorithm,
respectively.
Tracking the discrete components over time and distance

(see Fig. 4 for an example) shows that their contributions
are fading, likely due to one or several (unresolvable) ground
reflections. We thus find that the standard GSCM way of
modeling the complex path amplitudes as non-fading is not
well suited for this type of reflections.

IV. A GEOMETRY-BASED STOCHASTIC MIMO MODEL

A. General Model Outline
We define a geometry as in Fig. 5, where we distin-

guish between three types of point scatterers: mobile discrete,
static discrete, and diffuse. Then, the double-directional, time-
variant, complex impulse response of the channel is given as
the superposition of theN paths (contributions from scatterers)
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Fig. 4. Power as function of propagation distance for Path 3 of Fig. 3. In
the figure is also plotted the low-pass filtered signal (red).

[16], i.e.,

h (t, τ, ) =
NX
i=1

aie
jkdi(t)δ (τ − τi)

× δ (ΩR −ΩR,i) δ (ΩT − ΩT,i) gR(ΩR)gT (ΩT ), (1)

where τi, ΩR,i, and ΩT,i are the excess delay, angle-of-arrival
(AOA), and angle-of-departure (AOD) of path i, gT (ΩT ) and
gR (ΩR) are the TX and RX antenna patterns respectively, ai
is the complex amplitude associated with path i, ejkdi(t) the
corresponding distance-induced phase shift, and k = 2πλ−1

is the wave number. Channel coefficients for all branches of a
MIMO system are easily obtained by summing up all channel
contributions according to (1) at the positions of the respective
antenna elements, using the appropriate antenna patterns [22].
In agreement with our measurement results, the impulse

response of (1) is divided into four parts: (i) the LOS compo-
nent, (ii) discrete components stemming from reflections off
mobile scatterers (MD), (iii) discrete components stemming
from reflections off static scatterers (SD) and (iv) diffuse
components (DI). We thus have (omitting the AOA and AOD
notation for convenience)

h (t, τ) = hLOS (t, τ) +
PX
p=1

hMD (t, τp)

+

QX
q=1

hSD (t, τq) +
RX
r=1

hDI (t, τr) , (2)

where P is the number of mobile discrete scatterers, Q is
the number of static discrete scatterers and R is the number
of diffuse scatterers. We assume single-reflections only,1 and
hence the propagation distance d(t) is immediately given by
the geometry at any time instant t for reflected paths as well
as the LOS path. Furthermore, based on our observations in
Sec. III-C, we assume that the complex amplitudes of the
LOS path as well as the discrete scatterers are fading, i.e.,
aLOS = aLOS (d), ap = ap (d) and aq = aq (d), which is in
contrast to conventional GSCM modeling. With this strategy,

1A more thorough discussion on this and further assumptions, as well as
their justifications, can be found in [20].
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Fig. 5. Geometry for the VTV channel model. A transmitter with coordinates {xT (t), yT (t)}, moving at a speed vT in the direction of the x–axis, is
communicating with a receiver with coordinates {xR(t), yR(t)}, moving at a speed vR. Scatterers are present as three types: mobile discrete scatterers (other
vehicles) with coordinates {xp(t), yp(t)} and a speed vp, static discrete scatterers (road signs and other significant scattering points; in the figure drawn as
road signs only) with coordinates {xq(t), yq(t)} and (static) diffuse scatterers (represented as dots) with coordinates {xr, yr}.

we thus incorporate the combined contributions of several
(unresolvable) paths into a single parameter. The complex
amplitudes of the diffuse scattering points are modeled as in
standard GSCM.

B. Path Amplitudes
1) Discrete Scatterers: For a discrete scatterer p, we divide

the complex amplitude ap into a deterministic (distance-
decaying) part and a stochastic part, i.e.,

ap (dp) = gSe
jφpG

1/2
0,p

µ
dref

dT→p + dp→R

¶np/2
, (3)

where G0,p is the received power at a reference distance dref,
np is the pathloss exponent, φp is the phase shift due to the
scatterer, and gS is the real-valued, slowly varying,2 stochastic
amplitude gain of the scatterer (note that this representation is
similar to the classical model for, narrowband, pathloss [22]).
We stress that even though the model is the same for mobile
and static scatterers, we provide separate sets of model pa-
rameters for each.3 The same model also applies for the LOS
component (with the subindex p replaced by LOS).
The phase φp is found to be only slowly varying, a phe-

nomenon we subscribe to phase drift of the TX/RX oscilla-
tors and noise. We therefore leave out any stochastic phase
modeling and instead follow the classical GSCM approach of
giving the discrete scatterers a uniformly distributed random
phase shift, i.e., φ ∼ U (0, 2π).
Making the assumption that the amplitude gain gS can

be considered stationary, our measurement results show that
GS = 20 log10 gS can be well described by a correlated

2Fig. 4 seems to suggest two random processes, one slow and one fast,
though the variations of the fast fluctuations are very small. However,
investigations show the fast process to be highly specific for our measurement
setup and it is thus not included in our model (see [20] for further details).
3Distinction between reflections stemming from mobile and static objects

is made using their respective Doppler shifts, see Sec. III-B.

Gaussian variable. This simplified approach is more appealing
than that of including various ground reflections into the
model; since the reflected contributions will change over time,
their deterministic modeling is not straightforward. We hence
analyze the distance autocorrelation function of GS , i.e.,

rd (∆d) = E
n
GS,pG

1/2
S,p(d+∆d)

o
. (4)

A commonly used model for describing large-scale fading
is the exponential auto-correlation function [23], but our
estimated distance correlation functions (see Fig. 6) are better
described by a Gaussian function

rd (∆d) = σ2Se
− ln 2

d20.5
(∆d)2

, (5)

where σ2S is the variance of the process and d0.5 is the
0.5−coherence distance defined by rd (d0.5) /rd (0) = 0.5.
2) Diffuse Scatterers: The complex path amplitude of a

diffuse scatterer r is modeled as in classical GSCM by

ar = G0,DIcr

µ
dref

dT→r × dr→R

¶nDI/2
, (6)

where cr ∼ CN ¡0, σ2¢ is complex Gaussian distributed in
agreement with our observations in Sec. III-A. The pathloss
exponent nDI and the reference power G0,DI are the same for
all diffuse scatterers.
Our tracking algorithm only provides information about

discrete scatterers and does hence not directly provide in-
formation about nDI and G0,DI. However, these parameter
can be estimated by means of simulations. First, “diffuse”
impulse responses are derived from the measurement data by
subtracting the LOS component and the discrete components
detected by the tracking algorithm of Sec. III-C. Then the rms
delay spread of the measured “diffuse” channel is determined
as a comparative measure. By comparing these delay spreads
to those obtained from simulations according to our model,
best-fit values of nDI and G0,DI can be estimated. Due to
the randomness of the measured roadside environment, the
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Fig. 6. Top: Large-scale distance correlation ρd = rd (∆d) /rd (0) for path
3 of Fig. 3 (solid) along with a fit to (5) (dashed). Bottom: CDFs of measured
and simulated antenna correlation ρant for a time window of 3 s of an SM
scenario with vT = vR = 50 km/h and dT→R = 100 m. Hij defines the
channel from TX element j to RX element i and antenna elements 1 and
2 have their broadside directions at 135 and 45 degrees, respectively (see
Sec. II-A).

extracted delay spreads vary within each measurement. Since
such variations are not included in our model, we select the
values of nDI and G0,diff that provide the best fit on average.
This approach is similar in spirit to [24], which also extracts
discrete scatterers by high-resolution algorithms, and models
the remainder as diffuse components whose PDF (in the
delay/angle plane) is fixed, and whose parameters are extracted
from best-fit.

C. Scatterer Distributions
The number of point scatterers are derived from densities

χMD, χSD, and χDI, respectively, stating the number of scat-
terers per meter. Then, using the geometry in Fig. 5, we model
the y–coordinate of mobile discrete scatterers by a uniform
discrete probability density function (PDF) where the possible
number of outcomes equals the number of road lanes, Nlanes.
Their initial x–coordinates are modeled by a (continuous)
uniform distribution over the length of the road strip, i.e.,
xp,0 ∼ U [xmin, xmax]. Each mobile scatterer is assigned a
constant speed along the x–axis given by a truncated Gaussian
distribution (to avoid negative speeds in the wrong lane as well
as too high speeds). This approach can easily be extended to
include more complicated traffic models.
The x–coordinates of static discrete scatterers as well as dif-

fuse scatterers are also modeled through xq ∼ U [xmin, xmax]
and xr ∼ U [xmin, xmax]. To model static discrete scatterers at
either side of the road, we split the number of scatterers in two
and derive separate y–coordinates for each side using Gaussian
distributions yq ∼ N (y1,SD, σy,SD) or yq ∼ N (y2,SD, σy,SD),
respectively (note that static scatterers in the middle of the
road correspond to overhead road signs). Diffuse scatterers
are also modeled on each side of the road strip; their y–
coordinates are drawn from uniform distributions, over the
intervals yr ∼ U [y1,DI −WDI/2, y1,DI +WDI/2] or yr ∼
U [y2,DI −WDI/2, y2,DI +WDI/2], where WDI is the width
of the scatterer field. Parameter values are found in Table I.

TABLE I
MODEL PARAMETERS

Parameter Unit LOS MD SD DI

G0 dB −9 −89 + 24n 23
n 1.6 U [0, 3.5] 3.0
μσ 11.7 15.1 14.8 –
μc m 8.0 8.3 2.5 –
dminc m 5.4 2.5 1.4 –
χ m−1 – 0.001 0.05 1
y1 m – – −9.5 −9.5
y2 m – – 9.5 9.5
WDI m – – – 5
Wroad m 8
Nlanes 2

D. Model Parameter Statistics
Our model requires the following signal model parameters:

pathloss exponents n, reference powers G0, large-scale vari-
ances σ2S and large-scale 0.5−coherence distances d0.5; all
of which can be different for different types of scatterers.
By extracting the parameters of all relevant paths using all
available measurement data, we get an ensemble of results
for each model parameter.4 Based on the empirical parameter
CDFs (due to space limitations we refer the reader to [20]),
we find the following parameter models suitable:
• The pathloss exponent n is fixed for the LOS component
(selected as the ensemble median value) and the diffuse
scatterers. For discrete scatterers, n ∼ U (0, nmax).

• The reference power G0 of the discrete scatterers shows
a high correlation with the pathloss exponent (∼ 0.98),
and is therefore modeled as a function of n. G0,DI and
G0,LOS are fixed.

• The coherence distance d0.5 of the stochastic amplitude
process is given by an exponential distribution, though
with a non-zero lowest value d0.5,min.

• The variance σ2S of the stochastic amplitude process
is uncorrelated with d0.5, and given by an exponential
distribution.

All model parameters are given in Table I.

V. COMPARISON WITH MEASUREMENTS
The validity of the model is examined by means of compar-

ing extensive model simulations with the measurement data.5
The metric we use is the measured and modeled MIMO
antenna correlation, i.e., we evaluate the complex correlation
coefficient between every two antenna subchannels. We find
the overall performance of the model satisfactory and we also
note that the model outcome can vary a lot from one simulation
to another; the latter being due to the non-stationary nature of
the channel. Since the correlation outcome depends largely on
the strength and position of the discrete scatterers, an exact

4Discrete parameters are only estimated from the antenna subchannel where
the tracked path is the strongest and only paths spanning over a relative
distance range (defined as 2 (dmax − dmin) / (dmax + dmin)) of more than
0.2 are considered. Furthermore, with the distance ranges over which we
observe the components, the changes in angles-of-arrival and departure are
usually small enough to stay within the antenna 3 dB beamwidth and we thus
make the assumption of a constant antenna gain during the observation.
5A detailed implementation recipe of the model can be found in [20].
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measure of the agreement between measurement and model
is difficult to give, as the number of measurements to our
disposal is relatively small in this aspect. We instead settle for
showing a typical comparison plot; Fig. 6 shows a simulation
of an SM scenario that is compared to a measurement with
the same TX/RX speed and TX-RX separation.
Deviations between model and measurements mainly stem

from the simplifications we use:
• The diffuse scatterer distribution we use in the model
is uniform with a constant density over the road strip,
which is a major simplification of reality where roadside
sections alter between being crowded with scatterers to
being completely empty.

• The TX and RX antenna patterns we use in the model
simulations are calibration measurements of the arrays
only, i.e., without the influence of the cars.

• The spatial distributions of the discrete scatterers are
greatly simplified.

VI. SUMMARY AND CONCLUSIONS

We have presented a model that is suitable to describe the
time-varying properties of a MIMO vehicle-to-vehicle propa-
gation channel. The model is based on extensive measurements
from which we noted that:
• Significant energy is available from scatterers, labeled
discrete, such as cars, houses, and road signs on and next
to the road. Their contributions typically move through
many delay bins during a measurement and thus violate
the commonly adopted WSSUS assumption.

• The time-varying power of discrete components and LOS
is fading.

• The LOS is usually followed by a tail of weaker com-
ponents, labeled diffuse, who give rise to Rayleigh dis-
tributed amplitude statistics in the delay bins immediately
following the LOS.

• The total Doppler spread of the channel is large and the
Doppler spectrum can change rapidly with time.

These observations (though here based on rural motorways,
similar qualitative behavior is experienced in a highway sce-
nario, see [20]), suggest a need for a channel model able to
handle the non-WSSUS conditions typically arising in traffic
environments, and for those reasons we found a geometry-
based stochastic channel model (GSCM) as best suited. The
assumption of single-reflection processes only keeps sim-
ulation runtimes small and thus requires a much smaller
computational effort than comparable ray-tracing approaches.
Model parameters were extracted from all available mea-

surement data using a high resolution algorithm (for signal
parameters) and the measurement environment (for geometry
parameters) and given as constants or statistical distributions.
Finally, comparing simulations of the model to the measure-
ment data we concluded that the model gives a good overall
description of the MIMO VTV channel and can thus be used
for simulations of future wireless systems.
Acknowledgments: The authors gratefully acknowledge Dr.

Helmut Hofstetter for assisting during the measurements.
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