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The aim of this work was to assess whether or not oxidative stress had developed in a dwarf shrub bilberry

(Vaccinium myrtillus L.) under long-term exposure to enhanced levels of ultraviolet-B (u.v.-B) radiation. The

bilberry plants were exposed to increased u.v.-B representing a 15% stratospheric ozone depletion for seven full

growing seasons (1991–1997) at Abisko, Swedish Lapland (68° N). The oxidative stress was assessed on leaves and

stems by analysing ascorbate and glutathione concentrations, and activities of the closely related enzymes

ascorbate peroxidase (EC 1\11\1\11) and glutathione reductase (EC 1\6\4\2). The affects of autumnal leaf

senescence and stem cold hardening on these variables were also considered. The results showed that the treatment

caused scarcely any response in the studied variables, indicating that u.v.-B flux representing a 15% ozone

depletion under clear sky conditions is not sufficient to cause oxidative stress in the bilberry. It is suggested that

no strain was evoked since adaptation was possible under such u.v.-B increases. The studied variables did,

however, respond significantly to leaf senescence and especially to stem cold hardening.

Key words: Antioxidants, bilberry, cold hardening, u.v.-B radiation, Vaccinium myrtillus L.



Thinning of the stratospheric ozone layer increases

the flux of ultraviolet-B radiation (u.v.-B; 280–

320 nm) reaching the surface of the Earth. The

ozone layer over the Northern Hemisphere is

decreasing at a rate of 1% per year (Hofmann &

Deshler, 1991). Consequently, a yearly increase in

* To whom correspondence should be addressed.

E-mail : Erja.Taulavuori!oulu.fi

u.v.-B of from 7% in summer to as much as 35% in

winter was recorded between 1989 and 1993 in

Toronto, Canada (Kerr & McElroy, 1993).

As on most living organisms, enhanced u.v.-B

radiation is believed to have negative impacts on

vegetation. Effects such as altered decomposition

rate (Gehrke et al., 1995; Rozema et al., 1997),

reduced growth (Johanson et al., 1995a), impaired

photosynthesis (Bornman, 1989) and damage to

cellular macromolecules (Strid, Chow & Anderson,

1994) have been observed. One mechanism behind
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these changes might be oxidative stress arising from

exposure to u.v.-B (Bornman & Sundby-

Emanuelsson, 1995; Hideg & Vass, 1996; Ormrod,

Schmidt & Livingston, 1997).

Most of the experiments on enhanced u.v.-B have

been carried out in growth chambers and glass-

houses. Responses of plants in controlled conditions,

however, may differ from those in the field con-

ditions, due to the presence of visible light and other

inconstant environmental factors (Krupa & Kickert,

1989). Northern plants, for example, are expected to

be weakly adapted to enhanced u.v.-B radiation

because of their natural protection by the lower solar

angle and thicker ozone layer compared with their

counterparts at lower latitudes (Caldwell,

Robberecht & Billings, 1980). A large quantity of the

published u.v.-B research focusing on the plant

kingdom has been mainly conducted using crops

(Stapleton & Walbot, 1994; Liu, Gitz III &

McClure, 1995; Takeuchi et al., 1996; Dai et al.,

1997) and conifers (Sullivan & Teramura, 1992;

Naidu et al., 1993; Petropoulou et al., 1995; Gordon,

Percy & Riding, 1998). The aim of this investigation

was to assess whether or not u.v.-B under field

conditions causes stress in the bilberry (Vaccinium

myrtillus), one of the main dwarf shrubs in boreal

and sub-arctic ecosystems.

The antioxidant defence system of plants provides

protection against increased free oxygen radical

concentrations (i.e. oxidative stress) in tissues in-

duced by unfavourable environmental conditions

such as low temperatures, drought and high light

intensities (Bowler, Van Montagu & Inze! , 1992;

Allen, 1995). The ascorbate–glutathione cycle re-

moves oxyradicals and their intermediates and is

composed of both enzymatic and non-enzymatic

mechanisms. The former include ascorbate per-

oxidase (APOD), dehydroascorbate reductase and

glutathione reductase (GR), and the latter include

ascorbate (ASA) and glutathione (GSH) (Smith,

Vierheller & Thorne, 1989). The antioxidant system

might also be one of the defence mechanisms

protecting against u.v.-B stress. The ascorbate–

glutathione cycle especially is reported to respond to

enhanced u.v.-B in algae and herbs (Jansen et al.,

1996; Rao, Paliyath & Ormrod, 1996; Dai et al.,

1997; Hideg et al., 1997). Therefore, we investigated

the hypothesis that u.v.-B would modify the anti-

oxidant metabolism in a shrub, V. myrtillus.

Besides responding to various stresses, the anti-

oxidant system undergoes seasonal fluctuation in

perennial species. Autumnal leaf senescence in

deciduous species (Thompson, Legge & Barber,

1987; Taulavuori & Tolvanen, 1995; Bartoli et al.,

1996) and the cold hardening process (Esterbauer &

Grill, 1978; Nakagawara & Sagisaka, 1984;

Anderson, Chevone & Hess, 1992; Hausladen &

Alscher, 1994; Taulavuori et al., 1997a) may alter

antioxidant metabolism. Thus this work was con-

ducted during the period of natural leaf senescence

and stem cold hardening in order to relate the u.v.-

B response of the antioxidant metabolism to its

seasonal changes.

  

Ultraviolet-B exposure system

To address the impact of u.v.-B radiation on a sub-

arctic heath community, an experiment was es-

tablished at Abisko, Swedish Lapland (68.35° N,

18.82° E, 360 m above sea level). The dominant

species of the experimental site include Empetrum

hermaphroditum, Vaccinium myrtillus L., Vaccinium

uliginosum and Vaccinium vitis-idaea with a sparse

cover of Betula pubescens ssp. Czerepanovii. A

detailed description of the vegetation is given by

Sonesson & Lundberg (1974). The experiment was

based in open areas of the heath and concentrated on

the impact of u.v.-B on the understorey shrub com-

munity. Established in the summer of 1990, the

experiment has run for seven growing seasons

(1991–1997), irradiation starting in the spring a few

weeks before all the snow is gone (late April to mid-

May) and running until mid-September. Enhanced

u.v.-B radiation was supplied evenly from metal

frames (2±5¬1±3¬1±5 m high) each with six fluor-

escent lamps (Q-PANEL UVB-313, Cleveland, OH,

USA) as described by Johanson et al. (1995b). To

derive biologically effective u.v.-B radiation (u.v.-

B
BE

), Caldwell’s generalized action spectrum nor-

malized at 300 nm was adopted (Caldwell, 1971). To

filter u.v.-C radiation, u.v.-transmitting Plexiglass2
(Roehm Gmbh, Darmstadt, Germany) holding a

cellulose diacetate filter (0±13 mm, Courtaulds,

Derby, UK) was placed beneath each of the lamps.

For the control frames window glass was used rather

than Plexiglass, which excluded all u.v.-B emission

from the lamps. Ultraviolet-B radiation from the

lamps was supplied daily, centred around noon and

controlled by electronic timers providing stepwise

‘square wave’ increases. Exposure times were

changed every second week to follow the seasonal

change in natural u.v.-B radiation. The model

developed by Bjo$ rn & Murphy (1985) and Bjo$ rn &

Teramura (1993) was used to calculate the daily

increase in u.v.-B radiation resulting from a 15%

ozone depletion under clear skies at Abisko. The

calculated ozone depletion, however, is actually

closer to 18–19% once cloud effects are accounted

for.

Harvesting, non-enzymatic and enzymatic

antioxidant analysis

There were four replicate plots (n¯4) for both the

u.v.-B and control treatments, harvesting of which

was performed three times: on the 20 July, 10
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August and 18 September 1997. Whole bilberry

ramets were cut above ground level, frozen in liquid

nitrogen and stored in a freezer (®70 °C). Leaves

and stems were separated and weighed. Immediately

before analysis, samples were ground to a powder

with a pestle and mortar in liquid nitrogen.

Total and reduced ascorbate (ASA) were analysed

according to Nakagawara & Sagisaka (1984). This

assay is based on the reduction of Fe$+ to Fe#+ by

ASA in acidic solution, and a chelate compound

formed by Fe#+ and bathophenanthroline is de-

tectable at 534 nm. Total ascorbate was determined

through a reduction of dehydroascorbate to ascorbate

by dithiothreitol. After grinding, 3±75 ml of cold 5%

(w}v) trichloroacetic acid was added to the resulting

powder, and grinding was continued until the

mixture was completely homogenous. The homo-

genate was then centrifuged at 16000 g (4 °C) for

10 min. Ascorbate concentrations were calculated

from standard curves. The proportion of reduced

ascorbate (ASA %), which indicates the redox state

of ascorbate, was calculated as a proportion of the

total ascorbate concentration (ASA}total)¬100.

Concentrations of total and oxidized glutathione

were analysed according to Hausladen et al. (1990)

from samples extracted with 2% (w}v) meta-

phosphoric acid, containing 2 m EDTA. The assay

is based on an enzymatic recycling procedure

introduced by Griffith (1980). Glutathione concen-

trations were calculated from standard curves,

reduced glutathione (GSH) obtained by subtracting

oxidized glutathione (GSSG) from the total con-

centration. The proportion of reduced glutathione

(GSH %), which indicates the redox state of gluta-

thione, was calculated as a proportion of the total

glutathione concentration (GSH}total)¬100. Re-

covery of GSH and GSSG, added to the extraction

medium before the extraction of leaf material, was

103 and 97%, respectively. Stem extraction re-

covered 96 and 92%, respectively.

Ascorbate peroxidase (APOD; EC 1\11\1\11)

and glutathione reductase (GR; EC 1\6\4\2) ac-

tivities were determined according to Anderson et al.

(1992). Proteins were extracted with 5 ml of 50 m

PIPES buffer (pH 6±8), 6 m -cysteine hydro-

chloride, 10 m -isoascorbate, 1 m EDTA, 0±3%

Triton2 X-100, 1% polyvinylpyrrolidine (mol. wt

10000), 1% polyclar-AT, and 1 drop of antifoam A

emulsion (Sigma Biochemicals & Reagents). After

centrifugation at 20000 g for 15 min (4 °C) the

remaining insoluble material was re-extracted with

an additional 2 ml of extraction buffer and centri-

fuged as above. The supernatants of the two

extractions were pooled. Immediately before the

enzyme measurement, 3 ml of each extract was gel

filtered with a Econo-Pac2 10DG column (Bio-Rad

Laboratories, Hercules, CA 94547, USA) equil-

ibrated with 50 m Tris-HCl (pH 7±5), containing

1 m EDTA and 1 m -isoascorbate. The APOD

activity was measured spectrophotometrically by

monitoring the ascorbic acid-dependent reduction of

H
#
O

#
at 265 nm. Assays were performed at 25 °C in

a 3 ml reaction mixture containing 1±5 ml of 166 m

HEPES-KOH (pH 7±0), 300 ml 10 m EDTA,

1±5 m Na-ascorbate, and 1 m H
#
O

#
. The GR

activity was measured in a 1 ml reaction mixture at

25 °C as a function of the oxidation of NAD(P)H

(170 m) by GSSG (1 m) in a Tris HCl-buffer

(50 m, pH 7±5), containing 3±0 m MgCl
#
. The

reaction was started by adding NAD(P)H and

monitored by the decrease in absorbance at 340 nm.

Protein concentration in enzyme extracts was

determined according to Bradford (1976).

Data analysis

The effects of treatment and harvest were tested with

 repeated measures (SPSS, 1992).



The results showed that u.v.-B had only a minor (if

any) effect on the antioxidant system of the bilberry.

No differences in ascorbate concentrations (Fig. 1),

ASA % (Table 1), APOD activities (Fig. 2) and

glutathione concentrations (Fig. 3) were found

between control and u.v.-B treated plants at

P!0±05. This holds true for both the leaf and stem

data. The proportion of the reduced glutathione

(GSH %), however, was lowered by u.v.-B treat-
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Figure 1. Total ascorbate concentration (µmol g−" f.wt

³, n¯4) in bilberry (Vaccinium myrtillus) leaves (a) and

stems (b) on three harvest dates (20 July, 10 Aug., 18 Sept.

1997). *, controls ; +, treatment with u.v.-B representing

a 15% ozone depletion.
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Table 1. Proportions of reduced ascorbate (ASA, %³SE) and reduced

glutathione (GSH, %³SE) in the leaves and stems of bilberry (Vaccinium

myrtillus) on three harvest dates (20 July, 10 Aug. and 18 Sept. 1997);

treatments are control and u.v.-B exposure representative of 15% ozone

depletion

July Aug. Sept.

Control u.v.-B Control u.v.-B Control u.v.-B

ASA %

Leaves 70³4 78³8 99³6 93³3 84³6 82³2

Stems 43³2 48³3 59³5 78³7 48³2 50³2

GSH %

Leaves 83³1 80³1 82³1 85³1 83³1 78³2

Stems 89³1 88³1 92³2 95³1 97³1 94³1
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Figure 2. Ascorbate peroxidase (APOD) activity (nkat

mg−" protein ³, n¯4) in bilberry (Vaccinium myrtillus)
leaves (a) and stems (b) on three harvest dates (20 July, 10

Aug., 18 Sept. 1997). *, controls ; +, treatment with u.v.-

B representing a 15% ozone depletion.

ment in leaves (P!0±05) and marginally in stems

(P!0±1) (Table 1). A marginal reduction (P!0±1)

in GR activities was also found in leaves, but not in

stems (Fig. 4).

Leaf senescence significantly increased ascorbate

concentration (P!0±001) and ASA % (P!0±01)

(Fig. 1 and Table 1, respectively). No effect was

observed in other variables studied.

Stem cold hardening had a positive impact on all

the studied variables. It increased ascorbate concen-

trations (Fig. 1), ASA % (Table 1), glutathione

concentrations (Fig. 3) and GSH % (Table 1)

significantly at P!0±001. In addition, APOD (Fig.

2) and GR (Fig. 4) activities increased significantly at

P!0±01.
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Figure 3. Total glutathione concentration (nmol g−" f.wt

³, n¯4) in bilberry (Vaccinium myrtillus) leaves (a) and

stems (b) on three harvest dates (20 July, 10 Aug., 18 Sept.

1997). *, controls ; +, treatment with u.v.-B representing

15% ozone depletion.



Varying responses in antioxidants under u.v.-B

exposure have been reported, depending on species

and intensity of radiation (Strid, 1993; Rao et al.,

1996; Takeuchi et al., 1996; Dai et al., 1997),

revealing no uniform response pattern. For example,

increased APOD activity was reported in Arabidopsis

thaliana under enhanced u.v.-B radiation at the level

of 18 kJ m−" d−" (Rao et al., 1996). By contrast, u.v.-

B exposure at the level of 13 kJ m−" d−" decreased

APOD, catalase and superoxide dismutase activities

and ascorbate level of Oryza sativa, but increased

glutathione level (Dai et al., 1997). Enhanced u.v.-B

in the current work (max. 2±5–5±8 kJ m−" d−" vs.

2±0–4±6 kJ m−" d−") had scarcely any effect on the
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Figure 4. Glutathione reductase (GR) activity (nkat mg−"

protein ³, n¯4) in bilberry (Vaccinium myrtillus)
leaves (a) and stems (b) on three harvest dates (20 July, 10

Aug., 18 Sept. 1997). *, controls ; +, treatment with u.v.-

B representing 15% ozone depletion.

antioxidant defence system (ASA, APOD, GSH,

GR) of the bilberry which might suggest that the

level of radiation used was not sufficient to induce

any overall changes.

The result could also be explained by the adap-

tability of bilberry to slightly enhanced u.v.-B,

especially as the studied plants had experienced it for

seven growing seasons. Enhanced u.v.-B radiation

representing at 15% ozone depletion increases u.v.-

B absorbing pigments of a subarctic grass Calama-

grostis lapponica (Gwynn-Jones & Johanson, 1996).

Such a pigmentation response might well be the

particular adaptation mechanism adequate to cope

with a subtle u.v.-B increase, allowing the plant to

avoid the oxidative stress condition and consequent

response in antioxidant metabolism. Consistent with

this view, no antioxidant response was found in this

Calamagrostis study (unpublished data). In addition,

being a perennial species, bilberry may have greater

adaptability to environmental stressors compared

with annual species: in the context of cold hardening

dehydration of cells may pre-adapt plants to u.v.-B

stress, since drought stress can ameliorate u.v.-B

radiation effects (Tevini, Iwanzik & Teramura,

1983; Teramura, Sullivan & Lydon, 1990). Ir-

respective of the mechanism, the bilberry is ap-

parently quite tolerant of enhanced u.v.-B radiation

representing a 15% ozone depletion.

Leaf senescence significantly increased ascorbate

concentrations and ASA % in this study. Ascorbate

is needed in the detoxification of H
#
O

#
produced in

senescing tissue. It is also a reductant in the

regeneration of a-tocopherol and in the zeaxanthin

cycle, both of which are part of the protective system

in chloroplasts (Alscher, Donahue & Cramer, 1997).

The marked increase in total ascorbate concentration

and ASA % observed in this investigation thus

reflects an enhanced protection against increased

level of reactive oxygen species generated during

senescence.

All components of the antioxidant system studied

generally increased during cold hardening of the

stems, indicating enhanced requirements for pro-

tection against oxidative stress during this process

(Esterbauer & Grill, 1978; Nakagawara & Sagisaka,

1984; Anderson et al., 1992; Hausladen & Alscher,

1994; Polle & Morawe, 1995; Taulavuori et al.,

1997a ; Taulavuori et al., 1997b). This result

highlights the main outcome of the present investi-

gation; although no response to u.v.-B was obtained,

the methods used where shown to be sensitive

enough to respond to seasonal changes. According to

general stress concepts (e.g. Lichtenthaler, 1996) the

response may alternate between positive and nega-

tive. In the present work, however, there were no

difficulties in interpreting the data, since no par-

ticular response to u.v.-B was detected, although

several variables and the tissues of two separate

organs were studied.



To our knowledge, this is the first investigation of

the antioxidant status of a plant species within a

natural community exposed to long-term enhanced

u.v.-B radiation conditions. The antioxidant metab-

olism responded only slightly to u.v.-B exposure,

varying responses occurring in GSH % and GR

activity, depending on harvest date. In addition,

senescence induced varying responses in components

of the antioxidant system, and cold hardening almost

exclusively induced an increase in the levels of non-

enzymatic and enzymatic antioxidants. Thus, it is

concluded that the antioxidant system of bilberry is

capable of resisting the harmful impact of enhanced

u.v.-B radiation at the level imposed in this ex-

periment.
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