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abstract: Understanding and predicting the distribution of or-
ganisms in heterogeneous environments lies at the heart of ecology,
and the theory of density-dependent habitat selection (DDHS) pro-
vides ecologists with an inferential framework linking evolution and
population dynamics. Current theory does not allow for temporal
variation in habitat quality, a serious limitation when confronted
with real ecological systems. We develop both a stochastic equivalent
of the ideal free distribution to study how spatial patterns of habitat
use depend on the magnitude and spatial correlation of environ-
mental stochasticity and also a stochastic habitat selection rule. The
emerging patterns are confronted with deterministic predictions
based on isodar analysis, an established empirical approach to the
analysis of habitat selection patterns. Our simulations highlight some
consistent patterns of habitat use, indicating that it is possible to
make inferences about the habitat selection process based on ob-
served patterns of habitat use. However, isodar analysis gives results
that are contingent on the magnitude and spatial correlation of en-
vironmental stochasticity. Hence, DDHS is better revealed by a mea-
sure of habitat selectivity than by empirical isodars. The detection
of DDHS is but a small component of isodar theory, which remains
an important conceptual framework for linking evolutionary strat-
egies in behavior and population dynamics.
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The fact that different organisms live in different places
or habitats was noted by Victorian naturalists (Cody 1985),
and the scientific study of habitat use and habitat selection
dates back at least to the early 1900s (Grinnell 1917; Mayr
1926; Lack 1933). Since the pioneering papers published
more than 50 years ago (Svärdsson 1949; Morisita 1950),
competition has played a major role in ecological theories
explaining the habitat use of organisms. Starting with the
seminal work on the ideal free distribution (IFD) by
Fretwell and Lucas (1970) and Fretwell (1972), the ideas
about how competition shapes habitat use has been for-
malized into a theory of density-dependent habitat selec-
tion (DDHS; Rosenzweig 1981, 1991). The aim of DDHS
theory is to provide a general explanation for how indi-
viduals ought to be distributed in a spatially heterogeneous
landscape. Today, DDHS theory has extended its explan-
atory domains and now provides a causal link between
individual behavior, population regulation, and commu-
nity structure (Morris 2003a).

Despite the undeniable success and maturation of
DDHS theory (reviewed by Rosenzweig 1991), there is an
important element of the natural world that is ignored in
classical DDHS theory: temporal variation in habitat qual-
ity (but see Morris 2003b). That variation can be a property
of the habitat itself or a consequence of the number of
individuals using the habitat in concert with the conse-
quences of density dependence. Attempts to include tem-
poral variation in habitat quality assume either a constant
rate of movement between habitats, which means that in-
dividuals cannot assess or respond to changes in habitat
quality from year to year (e.g., Schmidt et al. 2000; Holt
and Barfield 2001), or only one of two habitats has fluc-
tuating resources (Recer et al. 1987). In natural systems,
resources fluctuate in both time and space, and such en-
vironmental stochasticity generates spatiotemporal varia-
tion in population density. Hence, if habitat selection the-
ory is going to be useful in practice when decisions about
land use, conservation, or exploitation have to be made
(Lundberg and Jonzén 1999), the theory should allow for
both temporal and spatial fluctuations. On a more fun-
damental level, including temporal variation in habitat
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quality forces us to rethink the whole idea of fitness equal-
ization across space because the fitness concept in tem-
porally fluctuating environments is different from the de-
terministic case (e.g., Metz et al. 1992; Jansen and
Yoshimura 1998). Hence, there are operational as well as
fundamental reasons for trying to move beyond the time-
homogeneous solutions typical of DDHS theory.

The purpose of this article is to analyze habitat selection
in a stochastic setting where habitat quality fluctuates in
both time and space. We will use a simple model system
to describe the habitat-specific population patterns that
result from the interaction between habitat selection, pop-
ulation dynamics, and environmental stochasticity. The
key questions are, What are the emerging patterns of hab-
itat use? and Can observations of such patterns be used
to infer the underlying processes? Our results will be con-
trasted with what is predicted by isodar analysis (Morris
1988), an established empirical approach to the analysis
of habitat use patterns. We would like to emphasize the
distinction between isodars as theory and isodar analysis
as a technique. Isodar analysis is often used to detect
DDHS, but this is only a small part of isodar theory, which
is a conceptual framework for mapping evolutionary strat-
egies in behavior onto their population and community
consequences (Morris 2003a).

Habitat Selection Theory and Isodars

DDHS theory relies on two fundamental assumptions.
First, fitness (W) is defined as per capita population
growth rate and is a function of population density. Let
the fitness of individuals in habitat i be

W p f(N ), (1)i i

where Ni is the population density in habitat i. Further-
more, unless there is an Allee effect (Greene and Stamps
2001; Morris 2002), one assumes that fitness is a negative
function of density over all densities, that is,

df
! 0. (2)

dN

Second, if individuals select habitat according to the IFD
(Fretwell and Lucas 1970), the individuals will be distrib-
uted such that fitness is equalized across habitats, that is,

for all i and j. For any pair of habitats, one canW p Wi j

set and solve for density in the habitat with theW p Wi j

greatest density, Ni. If fitness in each habitat declines lin-
early with density

W p a � b N (3)i i i i

and we solve for Ni, the relationship between Ni and Nj

will also be linear:

a � a bji jN p � N . (4)i jb bi i

This line is called an isodar and specifies the combi-
nations of Ni and Nj that give equal fitness in both habitats
(Morris 1988). Hence, the isodar specifies the evolutionary
attractor and the evolutionarily stable strategy (ESS) for
the spatial distribution of individuals. Depending on the
relative magnitude of the parameters ai , aj , bi , and bj , the
corresponding isodar will have a unique intercept and
slope (see Morris 1988). The relationship between fitness
and density can also be nonlinear (e.g., Possingham 1992;
Rodriguez 1995). Note that the model above may require
a noninteger number of individuals in the two habitats to
equalize fitness across habitats. We nevertheless will talk
about the distribution of individuals when in fact pro-
portions of individuals are distributed.

The idea behind isodar analysis is that the isodars can
be estimated from census data on population density.
Hence, a plot of population density in one habitat against
population density in another habitat should tell us some-
thing about the relationship between fitness and density
in each habitat, given that individuals are distributed ac-
cording to the IFD. More specifically, one treats the pop-
ulation density in the habitat having the lowest density as
the independent variable (Nj in eq. [4]) and population
density in the high-density habitat as the dependent var-
iable (Ni in eq. [4]) and fits a linear regression model to
the data. The point estimates of the intercept and slope
are assumed to be informative with respect to the habitat-
specific relationship between fitness and density (i.e., the
parameters a and b for each habitat). For a detailed treat-
ment of isodar analysis, see Morris (1988).

To find an isodar using empirical data, densities in each
habitat must vary from year to year (otherwise we can
define only a single point in space). But if there areN /Ni j

population fluctuations, then the measure of fitness may
no longer be valid. We will return to this interesting dis-
crepancy in the “Discussion.” However, note that habitats
are sometimes defined by their vegetation (e.g., habitat

, habitat ), and isodars are esti-1 p forest 2 p meadow
mated from such discrete classes of paired habitats that
can be replicated in space. In this article, we let a habitat
be equal to a patch that is repeatedly sampled, and isodar
analysis based on spatial replicates of types of vegetation
is not treated here. Let us now present our theoretical study
system where we will generate temporal variation in pop-
ulation density by including environmental stochasticity
in habitat quality.



Stochastic Habitat Selection Theory E105

Methods

DDHS theory applies to all species independent of their
life-history characteristics or the number of habitats avail-
able in the landscape. We have chosen to analyze a very
simple system to study habitat selection in spatiotempo-
rally fluctuating environments. Consider a two-habitat sys-
tem inhabited by a semelparous species with nonoverlap-
ping generations and an age of maturity equal to 1 year.
We will assume that the fitness of individuals in each hab-
itat is a linear function of population density in that habitat
and has a stochastic element that may or may not be
correlated with the other habitat. At the start of each year,
the adults will select habitat according to the expected
fitness rewards in each habitat. After the habitat selection
process, the adults in each habitat give rise to WiNi de-
scendants. Following reproduction, the adults die, and the
offspring gather in a common pool. At the next time step,
the offspring produced last year are now adults and dis-
tribute themselves between the two habitats according to
the fitness rewards in each habitat. In our model, indi-
viduals will choose their habitat in one of two ways. In
the first way, we assume individuals distribute themselves
so that no individual could do any better by changing
habitat. In the second way, they choose habitats randomly,
favoring the best habitat given the current population den-
sities in each habitat.

Stochastic Fitness Functions

We assume that the adults have full knowledge about the
fitness rewards in each habitat and that they are free to
move without any cost. At each time step t, we let the
fitness functions for each habitat be a density-dependent
random variable

Ni(t)W p logi(t) e ( )Ni(t�1)

2p a � b N � E � 0.5j , (5)i i i(t�1) i(t) i

where ai and bi are the habitat-specific constants, often
referred to as the growth parameter and statistical density
dependence, respectively. Environmental variation is mod-
eled by inserting the random variable Ei(t). We assume that
Ei(t) is drawn from a bivariate normal distribution with
zero mean and a variance-covariance matrix S. The SD
of the environmental stochasticity in habitat i is denoted
ji, and we further assume that the SD of the environmental
stochasticity is equal across habitats. The 0.5j2 term is an
adjustment to ensure that the expected rate of change in

each habitat i at each time step t, , equalsN /Ni(t) i(t�1)

(Hilborn and Mangel 1997).exp (a � b N )i i i

A Deterministic Habitat Selection Process

At each time step t, we assume that all N(t) individuals will
know the value of Wi(t) in both habitats and distribute
themselves such that ; that is, the ideal freeW p W1(t) 2(t)

distribution is achieved at each time step. One reason why
it makes sense to let the habitat selection process be de-
terministic is that we get a simple stochastic equivalent to
the DDHS theory. However, in real ecological systems,
individuals may not be ideal and free. One could think
about the habitat selection process as individuals esti-
mating (with an error) the fitness consequences of settling
in a given habitat. We will therefore add this extra level
of complexity and also study stochastic fitness-driven hab-
itat selection in stochastic environments.

A Stochastic Habitat Selection Process

In practice, individuals are not ideal and free. However,
it is indeed reasonable to assume that individuals assess
the fitness consequences of selecting a given habitat. To
model the kind of patterns generated by fitness-driven
habitat selection under uncertainty, we assume that once
in their life, individuals select habitats with a probability
affected by the expected fitness reward in each habitat at
the time they make the choice. Hence, there is a sequence
of choices in which each individual’s choice is based on
the current number of individuals per habitat as they fill
up. To achieve this mathematically, we let each individual
select habitat 1 in turn with probability P1(t) equal to the
relative fitness of habitat 1 at the time they are selecting
it:

W1(t)P p , (6)1(t) W � W1(t) 2(t)

where P1(t) is updated for each individual as the habitats
fill up. The expected number of individuals in each habitat
will obey the IFD, but because of stochasticity, the actual
number of individuals in each habitat will not follow the
IFD exactly, especially when the total number of individ-
uals is very small.

Population Simulations and Statistics

After selecting habitats, the individuals in each habitat give
rise to offspring, and the sum across the two habitats will
give the population size next year:
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2(a �b N �E �0.5j )i i i(t) i(t) iN p round N e . (7)�(t�1) i(t)[ ]
i

We round off the population size to produce an integer-
valued number of offspring in each habitat (Henson et al.
2001). By implementing a probabilistic but fitness-driven
habitat selection process and rounding the number of pro-
duced offspring, we avoid having to distribute proportions
of individuals (as we do with the deterministic habitat
selection rule above).

In this article, we are most interested in the stochastic
properties of habitat selection, and therefore, we restrict
the values of the deterministic parameters and present only
three scenarios: both habitats are the same (a p a p1 2

and ), habitats show density-dependent1 b p b p 0.021 2

parallel regulation ( , , anda p 1.5 a p 1 b p b p1 2 1 2

), and habitats show density-dependent divergent reg-0.02
ulation ( , , and ). Each ofa p a p 1 b p 0.02 b p 0.041 2 1 2

these parameter combinations gives rise to asymptotically
stable population dynamics and hence, a single equilib-
rium point in the absence of stochasticity. For more details
on the differences between these three forms of regulation
(as well as other types of regulation), see Morris (1988).

For each of the three cases, we let the standard deviation
of the environmental stochasticity (j) vary between 0.1
and 0.5 (j is always identical in the two habitats). We will
also study the effect of spatially correlated environments
by adjusting the variance-covariance matrix, S, such that
the correlation between the environmental stochasticity in
the two habitats is equal to 0 (no correlation, local noise),
0.25, 0.5, 0.75, or 1 (perfect correlation, global noise). For
each regulation scenario, standard deviation, and envi-
ronmental correlation, we simulate the population for 80
generations, discarding the first 30 generations. This is
repeated 100 times for each parameter combination, which
gives us a 100-time series of length 50 years. These Monte
Carlo data are used to calculate the isodar by regressing
N1 on N2 and estimating the slope and the intercept for
the 50 points generated by each parameter combination.
Regression slopes and intercepts are compared with the
predictions based on the deterministic skeleton of the
model. Putting fitness in the two habitats equal to each
other and solving for N1 gives us the linear equation

a � a b1 2 2N p � N . (8)1 2b b1 1

The intercept is a function of the growth parameters and
the strength of density dependence in habitat 1, whereas
the slope is given by the relative strength of density de-
pendence in the two habitats.

Finally, we calculate the proportion of the population

that is found in habitat 1 and whether this proportion
changes with total density in habitats 1 and 2. We call this
statistic “density-dependent (DD) selectivity,” which refers
to the sign of the relationship between the proportion
found in habitat 1 and the total density. Hence, if the
proportion found in habitat 1 declines with total density,
the DD selectivity is negative. The expectation based on
deterministic theory is that the proportion found in the
best habitat should decline with total population density
(DD selectivity is negative) if the regulation is parallel and
stay the same (DD selectivity is 0) if there is divergent
regulation (Morris 1987).

Results

Starting with the deterministic habitat selection pro-
cess, where individuals will be perfectly distributed ac-
cording to the isodars, it is clear that if we add sto-
chasticity that is perfectly correlated between habitats,

, and set the stochastic fitness func-corr{E , E } p 11(t) 2(t)

tions (eq. [5]) equal to each other, the stochastic terms
cancels out:

a � a � E � E b1 2 1(t) 2(t) 2N p � N1(t) 2(t)b b1 1

a � a b1 2 2p � N . (9)2(t)b b1 1

Hence, we will always get the deterministically predicted
isodar slope and intercept as given by equation (8). If the
environmental correlation between habitats deviates from
1, we will get biased estimates of the isodar slope and
intercept (fig. 1). Using the simulated data, we can see
that the slope is always underestimated and the intercept
is consistently overestimated (fig. 1A–1F). The plots of
how the DD selectivity varies with the spatial correlation
of environmental stochasticity show a coherent picture in
accordance with the deterministic predictions (figure 1G–
1I). If the two habitats are identical or if there is divergent
regulation, there is no relationship between the proportion
of the population found in habitat 1 and total density. This
is true for all values of spatial correlation. For parallel
regulation, the DD selectivity is negative (the proportion
found in habitat 1 decreases with total density), and the
negative relationship gets stronger as the spatial correlation
of environmental stochasticity approaches 1.

For a given environmental correlation, there is no effect
of changing the magnitude of environmental stochasticity
(not shown). This result is changed when the habitat se-
lection process is stochastic (eq. [6]). In figure 2 we present
how environmental stochasticity affects the spatial distri-
bution of individuals, assuming stochastic habitat selection
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Figure 1: Box plot of the estimated slopes and intercepts of the isodar analysis (A–F) and “density-dependent selectivity” (G–I), the sign of the
relationship between the proportion found in habitat 1 and the total density in habitats 1 and 2 when habitat selection is deterministic. Data reflect
100 replications of each simulated scenario. The boxes have lines at the lower, median, and upper quartile values. Values outside the box are marked
by rectangles. In all panels, the spatial correlation of the environmental noise varies between 0 (local) and 0.75, but the SD of the normal random
deviate Ei(t) is always equal to 0.2. The other parameter values for the different types of regulation are as follows: identical habitats, a p a p 11 2

and ; parallel regulation, , , and ; divergent regulation, , , and . Theb p b p 0.02 a p 1.5 a p 1 b p b p 0.02 a p a p 1 b p 0.02 b p 0.041 2 1 2 1 2 1 2 1 2

horizontal lines in the upper and middle row panels are the deterministic predictions according to isodar theory (Morris 1988). Bottom row panels
the horizontal lines indicate no relationship between the proportion in habitat 1 and the total population density.

and complete spatial correlation of the environment
(global noise). Starting with identical habitats, we note
that the estimates of the slope and intercept are far from
the deterministic predictions unless the magnitude of the
environmental stochasticity is very high (fig. 2A, 2D).
When there are parallel regulations such that anda 1 a1 2

, we get the best match between the estimates andb p b1 2

the deterministic skeleton for intermediate levels (j p
) of stochasticity (fig. 2B, 2E). An underestimation of0.2

the slope means that we underestimate the ratio of the

density dependence, . A close inspection of figure 2Bb /b2 1

shows that we may conclude that , , orb p b b 1 b1 2 1 2

depending on the magnitude of the environmentalb ! b1 2

stochasticity. Note, however, that we always get a positive
estimate of the intercept, which is what the deterministic
model predicts. However, the point estimates are often far
from the deterministic predictions. Furthermore, the es-
timates are uncertain as indicated by the distance between
the quartiles. In the scenario that assumes divergent reg-
ulation ( ), the estimated slope is consistently wellb ! b1 2
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Figure 2: Box plot of the estimated slopes and intercepts of the isodar analysis (A–F) and the “density-dependence selectivity,” the sign of the
relationship between the proportion found in habitat 1 and the total density in habitats 1 and 2 (G–I) when habitat selection is stochastic. Data
reflect 100 replications of each simulated scenario. The boxes have lines at the lower, median, and upper quartile values. Values outside the box are
marked by rectangles. In all panels, the environmental stochasticity is global; that is, the same noise term is added to both habitats. The magnitude
of the environmental stochasticity refers to the SD of the normal random deviate Ei(t). The other parameter values for the different types of regulation
are as follows: identical habitats, and ; parallel regulation, , , and ; divergent regulation,a p a p 1 b p b p 0.02 a p 1.5 a p 1 b p b p 0.021 2 1 2 1 2 1 2

, , and . A–F, Horizontal lines are the deterministic predictions according to isodar theory (Morris 1988); G–I,a p a p 1 b p 0.02 b p 0.041 2 1 2

horizontal lines indicate no relationship between the proportion in habitat 1 and the total density.

below the deterministic predictions (fig. 2C), but the in-
tercept is estimated as approximately 0 (pthe determin-
istic prediction) when the magnitude of stochasticity

.j p 0.3
The plots of how the DD selectivity varies with the

magnitude of environmental stochasticity when the habitat
selection process is stochastic show a coherent picture (fig.
2G–2I). First, DD selectivity is 0 (as predicted by deter-
ministic theory; Morris 1987) when the habitats are iden-
tical, and this does not change with the magnitude of

environmental stochasticity (fig. 2G). Second, DD selec-
tivity is always negative (i.e., the proportion found in hab-
itat 1 decreases with total density) when there is parallel
regulation (fig. 2H) and always positive when there is di-
vergent regulation (fig. 2I). The negative DD selectivity
for parallel regulation is in accordance with deterministic
predictions, but we would expect DD selectivity to be 0
when regulation is divergent (Morris 1987). Third, the
magnitude of the negative (positive) relationship for par-
allel (divergent) regulation increases with j (fig. 2H, 2I).
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Figure 3: Box plot of the estimated slopes and intercepts of the isodar analysis (A–F) and the “density-dependent selectivity,” the sign of the
relationship between the proportion found in habitat 1 and the total density in habitats 1 and 2 (G–I) when habitat selection is stochastic. Data
reflect 100 replications of each simulated scenario. The boxes have lines at the lower, median, and upper quartile values. Values outside the box are
marked by rectangles. In all panels, the spatial correlation of the environmental stochasticity varies between 0 (local) and 1 (global), but the SD of
the normal random deviate Ei(t) is always equal to 0.2. The other parameter values for the different types of regulation are as follows: identical
habitats, and ; parallel regulation, , , and ; divergent regulation, ,a p a p 1 b p b p 0.02 a p 1.5 a p 1 b p b p 0.02 a p a p 1 b p1 2 1 2 1 2 1 2 1 2 1

, and . A–F, Horizontal lines are the deterministic predictions according to isodar theory (Morris 1988); G–I, horizontal lines indicate0.02 b p 0.042

no relationship between the proportion in habitat 1 and the total density.

Next we look at varying the correlation in environ-
mental stochasticity between habitats, and we continue to
assume that the habitat selection process is stochastic. Let

, and instead we now vary the correlation of thej p 0.2
environmental stochasticity in the two habitats between 0
(local noise) and 1 (global noise as in fig. 2). The general
pattern is that the estimated slope and intercept are closer
to the deterministic predictions as the environmental cor-
relation between habitats approaches 1 (fig. 3A–3F), sim-
ilar to the case with deterministic habitat selection (fig.

1). The only exception is the estimate of the intercept when
there is parallel regulation (fig. 3E).

The effect of increased environmental correlation on
the DD selectivity is similar to the effect of increased mag-
nitude of the environmental stochasticity (fig. 3G–3I).
Again, DD selectivity is consistent with deterministic the-
ory, and the magnitude of the negative (positive) rela-
tionship for parallel (divergent) regulation increases with
environmental correlation. Different values of j ranging
from 0.1 to 0.5 did not change any of the patterns pre-
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sented in figure 3G–3I. Compared with the deterministic
expectations, we always find undermatching; that is, for a
given density, the proportion of the population found in
the suboptimal habitat is too large.

Finally, we reduced the environmental stochasticity to
0 and let the only source of randomness be the proba-
bilistic habitat selection process (eq. [6]), which generates
isodars with a slope of approximately �1 (identical hab-
itats) or �0.9 (parallel and divergent regulation). The in-
tercepts estimated using isodar analysis are far above the
deterministic expectations (due to the negative slope), and
the DD selectivity is equal to 0.

Discussion

Classical models of density-dependent habitat selection are
deterministic, and habitat quality is assumed to be time
invariant. In deriving a stochastic equivalent of the ideal
free distribution, we have studied the effect of temporally
fluctuating habitat quality across two habitats. The im-
mediate effect of including environmental stochasticity is
that the deterministic fitness measure may no longer be
valid (Metz et al. 1992). Hence, it is not clear how indi-
viduals should select a habitat to maximize fitness.

We have chosen to study a theoretical organism that
has either full knowledge about the fitness consequences
of choosing one habitat or the other and at each time step
either selects the best habitat (deterministic habitat selec-
tion) or, in face of uncertainty, selects a habitat with a
probability equal to the relative fitness in that habitat (sto-
chastic habitat selection). Finding the “correct” optimal
evolutionary strategy in a density-dependent and stochas-
tic environment is indeed difficult, and the current trend
is to use invasibility arguments to identify the evolution-
arily unbeatable strategy (Benton and Grant 2000). We
make no claims about having used such a strategy here.
It is clear that the deterministic habitat selection process
should be an ESS when the individuals have perfect in-
formation. However, when the individuals do not have
perfect information, it is not clear to what extent the sto-
chastic habitat selection rule implemented here would also
be ESS. The motivation for the implemented rule is simply
that individuals are not ideal and free, but it is reasonable
to assume that individuals somehow assess the fitness con-
sequences of selecting a given habitat. Letting the prob-
ability of selecting a given habitat at a given time be equal
to the relative fitness of that habitat at each time step is
a simple way of weighing the fitness functions. It would
of course be interesting, given a certain amount of knowl-
edge, to evaluate different habitat selection strategies from
the perspective of game theory and search for ESS solu-
tions. However, a full-blown ESS analysis is out of scope
here; such an analysis may be the next step to study habitat

selection in a stochastic environment in the face of un-
certainty. Schmidt et al. (2000) suggest ways for finding
ESS behaviors for similar sorts of dilemmas, and their
article provides a starting point.

In conclusion, we think the two approaches described
here are reasonable null models for ideal and free habitat
selection, with and without perfect knowledge, respec-
tively. Furthermore, the logic of our analysis makes it easy
to compare the results with predictions from classical
DDHS theory. The results are patterns of habitat use that
are very different from what is predicted by the deter-
ministic DDHS theory.

DDHS Is Better Revealed by Density-Dependent
Selectivity than by Isodars

So what kinds of patterns emerge from the underlying
processes modeled here? For example, can we determine
from census data whether regulation is equivalent (iden-
tical habitats), parallel, or divergent? If we regress popu-
lation density in the high-density habitat on population
density in the low-density habitat, we get an estimated
isodar slope and intercept. If habitat selection is deter-
ministic and perfect, the isodar slope and intercept are
always underestimated and overestimated, respectively,
unless environmental stochasticity between habitats is per-
fectly correlated. Assuming stochastic habitat selection, the
general pattern is that the slope and the intercept increases
or decreases, respectively, with the magnitude and spatial
correlation of the environmental stochasticity. This means
that there are several combinations of spatial correlation,
magnitude of environmental stochasticity (j), and types
of regulation that generate similar or identical patterns.
Unless we have prior knowledge about the magnitude and
spatial correlation of the environmental stochasticity, there
is no way the isodar analysis can separate the different
scenarios with any reasonable degree of certainty (cf. pan-
els A–C as well as D–F in figs. 2, 3). This is similar to the
problem of estimating density dependence in serially cor-
related environment and a special case of making inference
about processes by analyzing patterns (Jonzén et al. 2002;
Wiegand et al. 2003). Sometimes, however, the isodar anal-
ysis finds the correct relationships, as in the case of parallel
regulation (figs. 2E, 3E). Here the isodar analysis correctly
identifies the intercept as positive throughout the range of
magnitudes of the environmental stochasticity (j) and spa-
tial correlation of environmental stochasticity, even though
the point estimates are biased compared to the determin-
istic predictions.

DD selectivity seems to be the most instructive measure
of density-dependent habitat selection when the habitat
selection process is stochastic. When the habitats are iden-
tical, the DD selectivity is always 0 (on average, 50% of
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Figure 4: Effect of the stochastic habitat selection process and environmental stochasticity on the relationship between population densities in
habitats 1 (N1) and 2 (N2). In the absence of randomness (or complex intrinsic dynamics), the populations would settle at an equilibrium point
(marked by the cross). Implementing a stochastic but fitness-driven habitat selection rule generates a negative relationship between N1 and N2

(circles). By introducing environmental stochasticity, especially if spatially correlated and of high magnitude, the population densities become positively
correlated (squares).

the population is found in each habitat independent of
total population density), but it gets negative (positive)
when regulation is parallel (divergent). These patterns are
robust to variation in the magnitude and spatial correla-
tion of environmental stochasticity. The deterministic pre-
diction is that when regulation is divergent, the proportion
found in each habitat should be independent of population
density (Morris 1987). This is the case when the habitat
selection process is deterministic (fig. 1I). When habitat
selection is probabilistic, in the divergent case, we find a
positive relationship between the proportion in habitat 1
and the total density. This is because the expected fitness
in the two habitats is very similar at low density, which
means that the sampling errors in the habitat selection will
be more important at low density than at high density. At
low density, variability in the proportion found in each
habitat increases. This variability is also biased toward
lower values. Hence, deviations are simply more likely in
this direction because the probability of being in habitat
1, P1, is naturally bounded between 0 and 1, and the ex-
pectation E(P1) is above 0.5; that is, habitat 1 has the

highest equilibrium density. Another general finding is that
the proportion found in the best habitat is less than ex-
pected based on the deterministic theory. Such “under-
matching” is also a very general empirical finding when
analyzing the distribution of foraging animals (Kennedy
and Gray 1994; but see Earn and Johnstone 1997 for a
systematic error in many empirical studies).

The Role of Stochastic Habitat Selection

The reason why the isodar slope and intercept change the
way they do in relation to the magnitude and spatial cor-
relation of the environmental stochasticity when habitat
selection is probabilistic can be understood by reducing
the environmental stochasticity to 0. Now the only vari-
ation in population density is due to the stochastic fitness-
driven habitat selection rule that gives an isodar with a
negative slope (fig. 4, open circles), which is completely
inconsistent with deterministic theory. Remember that
without stochastic variation in habitat selection, we would
get only a single point in space (fig. 4, X). The smallN /N1 2
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deviations from the negative slope are due to the rounding
of the continuous-state model (eq. [7]), and this is the
only effect of the rounding. If we now increase the mag-
nitude of the environmental stochasticity, the relative im-
portance of this source of variation increases, and by in-
creasing the spatial correlation of the environmental
stochasticity, the two populations get more similar (fig. 4,
open squares). Hence, we get a positive slope and a lower
intercept. This is an interesting difference between the de-
terministic DDHS theory and the stochastic habitat selec-
tion model presented here. The DDHS prediction is that
two identical habitats should generate an isodar having a
slope of 1 and a 0 intercept (Morris 1988). If we reduce
the environmental stochasticity to 0 in our model, the
corresponding isodar slope is �1. The reason for that is
that we are letting the fitness-driven habitat selection be
a stochastic process. Hence, the randomness in the habitat
selection process adds a form of demographic stochasticity
in behavior, and it would be difficult to argue that indi-
viduals would be able to do better than the fitness-driven
habitat selection rule implemented here. Having said that,
we would like to emphasize that the effect of the stochastic
habitat selection rule is minor when reasonable levels of
stochasticity are introduced (cf. figs. 1, 3).

The Problem of Estimating Empirical Isodars

There are basically two approaches for observational data
to test for density-dependent habitat selection: isodar anal-
ysis (Morris 1988) and a test based on a change in habitat
selectivity with population density (Rosenzweig and
Abramsky 1985). Whereas the Rosenzweig/Abramsky test
is reasonably robust at detecting habitat selection, it does
not quantify differences in habitat quality. Isodar analysis,
in contrast, may give us some idea about the underlying
fitness functions, but if environmental stochasticity is
present, we may get misleading results. As we have shown
here, isodar analysis is often a rather blunt tool for making
an inference about habitat selection from time series data.
However, one should remember that most isodar analyses
have been built with discrete classes of paired habitats that
can be replicated in space, where a habitat is often defined
as a type of vegetation. That is a situation not dealt with
in this article, where replication of measurements is in
time only.

Furthermore, the method cannot identify density-
dependent habitat selection from a situation where two
regulated populations, one in each habitat without dis-
persal, have temporally correlated dynamics. Morris (1988,
p. 265) approached this shortcoming in two ways, either
by suggesting that “If our interest is focused on relative
abundance and distribution, we have no need to differ-
entiate between the two alternatives because each gives us

the same answer” or by suggesting alternative methods. If
we are interested only in estimating the underlying fitness
functions given by the local population parameters (ai and
bi in this study), we recommend formulating a model that
is explicit about spatial covariance in environmental
stochasticity.

In general, plots of densities in two different habitats
over time may be hard to interpret without an underlying
process model that is fitted using maximum likelihood
estimation, and failing to account for spatial patterns can
lead to biased parameter estimates and erroneous conclu-
sions (this study). A maximum likelihood framework for
analyzing space–time series data on local population abun-
dance estimates, where local populations share the envi-
ronment but are not connected by dispersal, is described
by Dennis et al. (1998).

Isodars as Theory

Though isodar analyses may be misleading (depends on
scale and intent), individuals still select habitats, and this
will necessarily result in a relationship between habitats
connected by dispersal. A different question is to what
extent the observed patterns correspond to the predicted
isodar in a given model formulation. Therefore, we have
to separate the issues of using isodars as analytical tools
in theoretical analysis (isodars being the evolutionary at-
tractors for fitness optimizing individuals) and the em-
pirical problem of trying to reconstruct them from data
analysis. Those are different things, and our concern in
this article is mainly the latter. Isodars must exist; the
questions are what they look like, to what extent they are
manifested, and what it takes to estimate them from data.
One must also remember that the detection of density-
dependent habitat selection is but a small component of
isodar theory. Hence, the isodar theory and habitat selec-
tion theory in general remain an important conceptual
framework for linking evolutionary strategies in behavior
onto their population and community consequences
(Morris 2003a).

The Role of Isodars in Empirical Studies

We do not suggest that throwing out isodar analysis will
solve the problems raised here. In fact, we would certainly
recommend that anyone interested in understanding why
individuals are distributed the way they are should plot
pairwise densities. For some situations, the assumptions
behind the isodar analysis may be more likely to be ful-
filled, for example, if we have experimental data where we
can reduce environmental stochasticity. Either way, we
would recommend that isodar analysis be used as an ex-
ploratory rather than a confirmatory tool. As such, it could
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help to generate hypotheses about the underlying pro-
cesses, similar to the role of descriptive time series analysis
in population dynamics (Berryman and Turchin 2001).
The most appropriate use of empirical isodars may be to
identify relevant scales of habitat selection. Isodar analysis
may sometimes be a clever approach for doing that (see
Morris 1992), but the question remains of how we should
formulate our models to make robust inference when spa-
tiotemporal patterns of stochasticity make the isodar anal-
ysis inappropriate.
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