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Abstract

We investigate the problem of de�ning propagating constants and modes in

metallic waveguides of an arbitrary cross section, �lled with a homogeneous bi-

isotropic material. The approach follows the guidelines of the classical theory

for the isotropic, homogeneous, lossless waveguide: starting with the Maxwell

system, we formulate a spectral problem where the (square of the) propagation

constant shows up as the eigenvalue and the corresponding mode as the eigen-

vector. The di�culty that arises, and this is a feature of chirality, is that the

eigenvalue is involved in the boundary conditions. The main result is that the

problem is solvable whenever the Dirichlet problem for the Helmholtz equation

in the cross section is solvable. The analysis also con�rms the splitting in left

and circularly polarized waves.

1 Introduction

Wave propagation in bi-isotropic materials is well documented in the literature. The
monographs [15] and [17] develop the relevant theory in a systematic way, and they
also give an extensive list of references of the accomplishments in the �eld. As a
branch of mathematical physics, bi-isotropic materials have also been studied quite
well, see e.g. [25] and the references therein. An investigation of the transmission
line problem with bi-isotropic material is given by Olyslager [19].

On the other hand, the theory of a guided wave seems to go back in the history
to the years of Lord Rayleigh [22], and a systematic account of it can be found
in [6]. We also refer to [27] for some early discussions about the nomenclature and
the problem of the mode ordering and classi�cation in an arbitrary waveguide. By
a waveguide we here mean a cylinder with a bounded cross section modeled as a
cylindrical domain with an axis parallel to the z-axis in an Oxyz realization of the
3-space. The cylindrical geometry provides a screened environment, which results
in high signal to noise ratio (SNR) in applications involving measurements.

The electromagnetic propagation in a waveguide is principally characterized by
three items:

geometry: the shape of the cross section of the cylinder or waveguide

walls: the properties of the medium from which the cylinder is manufactured

material: the properties of the medium enclosed by the walls of the cylinder

In this paper, we adopt a waveguide with perfectly conducting walls and an arbitrary
cross section that encloses a homogeneous bi-isotropic medium. From the mathe-
matical point of view, geometry describes the domain, walls provide the boundary
conditions and the material de�nes the appropriate di�erential equation.

The circular chiral waveguide, referred as �chirowaveguide�, drew some attention
in the 90's. In fact, the topic was already discussed a few years earlier [11]. In [12]
a complete solution was provided and a dispersion relation was obtained. The (nu-
merical) solution of this equation gives the propagation constants. Reinert et al. [23]



2

discussed the theory of the inverse problem. A theory concerning the chirowaveguide
with an arbitrary cross section was presented in Ref. 20. For the bi-isotropic waveg-
uide a similar treatment was made in Ref. 17. However, the eigenvalue problem
(and the operator it concerns) is not very clear in neither of these two references.
Early numerical treatments are published by Svedin [26], who implements a FEM
method for the propagation problem in a chirowaveguide.

The main aim of this article is to formulate the eigenvalue problem for the
metallic homogeneous bi-isotropic waveguide and discuss its solvability, providing
a solid mathematical foundation for future reference. The approach follows the
guidelines of the classical theory for the metallic isotropic, homogeneous, lossless
waveguide, as it is described in [5, Ch. 4], [10, Ch. IX.4], [13, Ch. 8]. Actually, we
give two possible forms for the eigenvalue problem; roughly speaking one complicates
the operator and the other complicates the boundary conditions. This reveals clearly
that the existence of chirality leads always the problem to a non-standard form.

Taking these complicated boundary conditions as the starting point, we refor-
mulate the problem as a functional di�erential equation (FDE), which involves the
Dirichlet-to-Neumann operator for the 2D Helmholtz equation of the cross section.
The (implicit) dispersion equation can be realized as the condition for the FDE to
admit non-trivial solutions. The solutions of the dispersion equation (expected to
consist of a complex sequence with no accumulation points) provide the propagation
constants. Going back to the FDE, its corresponding solutions serve as boundary
data for the Dirichlet problem for the 2D Helmholtz equation in the cross section.
Thus, if we know the corresponding Dirichlet Green function, we can construct the
modes of the waveguide.

As an intermediate result, we show that there exists a natural splitting of the
�eld in left and right circularly polarized components. This fact con�rms the Bohren
transformation, proposed already in 1974 [2]. Actually, the Bohren transformation
has been used extensively in the study of chiral media described by the Drude�
Born�Fedorov constitutive relations, see [1] and references therein. Actually, what
is new here is that we do not assume a priori this splitting as in the majority of the
existent work, but we con�rm that this is an essential step for the solution.

The paper is organized as follows: in Section 2, the notation and the basic equa-
tions are introduced. The waveguide geometry and the perfect conductor boundary
condition are discussed in Section 3. In Section 4 we justify the quest for propagation
constants via a separation of variables technique, and in Section 5 we formulate the
spectral problem in an operator pencil form. Section 6 contains a transformation to
a more standard form. One method of solution, utilizing the Dirichlet-to-Neumann
(DtN) mapping is discussed in Section 7. In Section 8 we reconsider the problem
employing the Null-�eld approach. Section 10 contains a summary of our results
and gives directions for further investigations. In the �nal appendices we survey
various mathematical facts that are used in the text.



3

2 Prerequisites

In this section we formally determine the equation that is used in this paper.

2.1 The Maxwell system and material modeling

In the absence of sources the Maxwell equations are{
iωD = −∇×H
iωB = ∇×E

(M)

We have here assumed time harmonic waves with (angular) frequency ω (the time
convention is taken to be e−iωt). The bi-isotropic material is modeled by the consti-
tutive relations {

D = εE + ξH

B = ζE + µH
(CR)

or equivalently, {
D = εµ−ξζ

µ
E + ξ

µ
B

H = − ζ
µ
E + 1

µ
B

(CR′)

This is the Lindell et al. model [17], which is widely used as a model for bi-isotropic
materials. Other, equivalent formulations are also frequently used, see Ref. 17. The
parameters ε, ξ, ζ, µ are complex numbers, which, in general, are dependent on the
spatial variables and the frequency ω. We pose now two postulates concerning these
parameters.

Assumption 1 (Spatial homogeneity). ε, ξ, ζ, µ are independent of the spatial
variables r := xx̂+ yŷ + zẑ ∈ Ω ⊂ R3.

Assumption 2 (Invertibility of the constitutive matrix). d := εµ− ζξ 6= 0.

We substitute (CR) into (M) to obtain{
iω(εE + ξH) = −∇×H
iω(ζE + µH) = ∇×E

(2.1)

and if we substitute (CR′) into (M),{
iω(dE + ξB) = ζ∇×E −∇×B

iωB = ∇×E
(2.1′)

One crucial characteristic of the time harmonic Maxwell system is that we can
calculate the one �eld as a function of the other (this is known as the impedance
operator and this fact is not so evident in the time domain). If we choose to work
with the electric �eld here, then the knowledge of E implies the knowledge of H
also, via the equation

H =
1

iωµ
(−iωζE +∇×E) (2.2)
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If, alternatively, we choose to work with the magnetic �ux density, the electric �eld
is calculated as

E =
1

iωd
(iω(ζ − ξ)B −∇×B) (2.2′)

In other words, the time harmonic Maxwell system can be reduced to an equation
involving only three components.

In order to eliminate H and E from (2.1) and (2.1′), respectively, we use (2.2)
and (2.2′), respectively. After some straightforward calculations, we �nd that both
E and B satisfy the vectorial PDE

∇×∇×A− 2ωχ∇×A− ω2dA = 0 (*)

where A is either E or B, and the chirality parameter χ is denoted by

χ := i
ζ − ξ

2

This is in general a complex number and it serves as a measure of the chirality
of the material. The equation (*) describes the propagation of the electric �eld
or the magnetic �ux density inside an arbitrary domain Ω which is occupied by a
bi-isotropic material.

Remark 1. The material parameters enter only via the chirality χ and the determi-
nant d.

Remark 2. The reason we choose to work either with the electric �eld or the magnetic
�ux is because the boundary conditions is simply expressed in these �elds.

2.2 The Gauss equations

Due to (M), the �elds D, B are incompressible, i.e.,

∇ ·D = ∇ ·B = 0 (G)

and, by using (CR) {
∇ · (εE + ξH) = 0

∇ · (ζE + µH) = 0
(2.3)

However, the two assumptions (of homogeneity and invertibility) lead to incompress-
ible �elds E, H , that is

∇ ·E = ∇ ·H = 0 (2.4)

The well known vector identity ∇ × ∇ ×A = ∇(∇ ·A) − ∇2A and (G) or (2.4)
turn (*) into

∇2A+ 2ωχ∇×A+ ω2dA = 0 (?)

The analysis of equation (?) in a waveguide geometry is the subject of our paper.
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3 Waveguide geometry and boundary conditions

We now turn our attention to cylindrical domains which represent waveguides. Es-
pecially, we will consider an in�nite waveguide described by

Ω := Ω⊥ × R

where Ω⊥ ⊂ R2 is a bounded, connected domain with a su�ciently smooth (Lipschitz
continuity is usually su�cient) boundary Γ⊥ := ∂Ω⊥. We will refer to R2 as the
transverse plane and to Ω⊥ as the cross section of the waveguide. The axis R of the
waveguide is often referred as the longitudinal line. The wall of the waveguide is the
boundary Γ := Γ⊥ × R. We denote by ν̂ = νxx̂ + νyŷ ∈ R2 the outward normal to
the curve Γ⊥ in the transverse plane. Then as a vector in R3, n̂ = νxx̂+ νyŷ is the
outward normal to the wall Γ.

Assumption 3 (PEC). The wall Γ is a perfect conductor.

This is applicable, for instance, if the waveguide is a metallic wall. The PEC
wall is modeled by the boundary condition

n̂×E = 0 on Γ (BC)

A simple calculation gives

n̂×E = νyEzx̂− νxEzŷ + (νxEy − νyEx)ẑ

Since νx, νy cannot vanish simultaneously, we have

Ez = 0 on Γ (BCz)

Consider, in the sequel, the transverse �eld

E⊥ := Exx̂+ Eyŷ

and the 2× 2 matrix

V :=

[
0 1
−1 0

]
Seen as an operator in R2, V acts as a clockwise π/2 rotation. Furthermore, V is
antisymmetric and V 2 = −I. Now τ̂ = −V ν̂ is a tangential unit vector on Γ⊥ and
we deduce that

τ̂ ·E⊥ = 0 on Γ (BC⊥)

Remark 3. The boundary condition (BC) implies that the normal component of B
vanishes on Γ. To see this, use the following equality

iωn̂ ·B = n̂ · ∇ ×E = −∇Γ · (n̂×E) on Γ (3.1)

where ∇Γ is the surface gradient de�ned by

∇Γf := ∇f − ∂f

∂n̂
n̂,

where the right-hand side is evaluated on the surface Γ, see [18, Sec. 3.3.4]. Actu-
ally (3.1), which is valid for a Lipschitz boundary, and (BC), show that

n̂ ·B = ν̂ ·B⊥ = 0 on Γ (BC′⊥)
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4 Separation of the longitudinal variable

The structure of the waveguide problem allows us to look at (?) as an evolution
problem of second order with respect to the longitudinal variable z ∈ R. First of
all, we can formally write

∇2 = ∇2
⊥ + ∂2

zz

We decompose the �eld A into a transverse and a longitudinal part as:

A =

(
A⊥
Az

)
The curl operator can then formally be expressed in a matrix notation as

∇×A =

[
−∂zV V∇⊥
∇⊥ · V 0

](
A⊥
Az

)
The transverse gradient ∇⊥ (transverse gradient ∇⊥·) is understood as a column
(row) vector. Equation (?) is then written

∂2
zz

(
A⊥
Az

)
− 2ωχ∂z

[
V 0
0 0

](
A⊥
Az

)
+ (∇2

⊥ + 2ωχC0 + ω2dI)

(
A⊥
Az

)
= 0 (4.1)

where

C0 :=

[
0 V∇⊥

∇⊥ · V 0

]
Consider

(
A⊥
Az

)
as a function of z ∈ R with values in a product function space

over Ω⊥. Equation (4.1) can be viewed as a second order evolution problem (with
respect to the variable z) and having as state space the aforementioned function
space. Augmented with initial conditions, the equation becomes a Cauchy problem.
However, in general, it is not expected that such conditions are available. In fact, we
proceed by applying a separation of variables techniques, i.e., we search for solutions
of the special form

A(r) = ϕ(z)u(ρ), z ∈ R ρ := xx̂+ yŷ ∈ Ω⊥

We impose the initial condition ϕ(0) = 1 for normalization. Substituting to (4.1)
we obtain the system{

ϕ′′(z)u⊥ − 2ωχϕ′(z)V u⊥ +ϕ(z)(∇2
⊥u⊥ + 2ωχ∇⊥uz + ω2du⊥) = 0

ϕ′′(z)uz +ϕ(z)(∇2
⊥uz + 2ωχ∇⊥ · u⊥ + ω2duz) = 0

(4.2)

The second equation in (4.2) implies that

ϕ′′

ϕ
= constant

Using this fact, the �rst equation in (4.2) gives also

ϕ′

ϕ
= constant (4.3)
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Denoting the (generally complex) constant γ in (4.3), and using the initial condition
for ϕ we obtain that ϕ(z) = eγz. Thus, all special solutions have the form

A(r) = eγzu(ρ), z ∈ R, ρ ∈ Ω⊥ (SS)

5 Outlook of the problem

We are now in a position to pose the propagation problem to a metallic bi-isotropic
waveguide. The curl operator, restricted to the subspace of functions of the form
given in (SS), is

Cγ :=

[
−γV V∇⊥
∇⊥ · V 0

]
and it acts on functions of the transverse variables (x, y) ∈ Ω⊥, i.e.,

u :=

(
u⊥
uz

)
In this context, γ is a �xed parameter. Equation (2.4), i.e., the Gauss equation,
reads

∇⊥ · u⊥ + γuz = 0 (5.1)

The boundary conditions (BC⊥) and (BCz) are written

τ̂ · u⊥ = 0 and uz = 0 on Γ⊥ (5.2)

or, equivalently, (BC′⊥) turns into

n̂ · u⊥ = 0 on Γ⊥ (5.3)

We will use (5.2) in this paper.
The formal square of the operator Cγ is the transverse Helmholtz operator, i.e.,

C2
γ = −γ2I−∇2

⊥, were the Laplacian∇2
⊥ applies to each of the Cartesian components

of the �eld. The details of this calculation is given in Appendix B. Equation (4.1)
becomes, in accordance with (?),

C2
γu− 2ωχCγu− ω2du = 0 (5.4)

We agree to call a pair γ ∈ C, u : Ω⊥ → C3 (non�zero function) a solution
of (5.4) if it turns the equation into an identity. The complex number γ is called an
eigenvalue or a propagation constant and the function u a corresponding mode of the
waveguide. According to this terminology, the bi-isotropic waveguide propagation
problem is called well-posed if the propagation constants of the waveguide form a
sequence (γn) ⊂ C with the following properties:

• it has no accumulation points other than ∞, and

• it can be ordered in such a way that

| γ1 | 6 ... 6 | γn | 6 ...→∞
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We will now reformulate (5.4) as an eigenvalue problem. De�ne formally the operator

P (γ) = C2
γ − 2ωχCγ − ω2dI

To simplify the notation we denominate

f(ω) := 2ωχ(ω) , g(ω) := ω2d(ω)

and thus we obtain an operator pencil with parameter γ

P (γ) = C2
γ − f(ω)Cγ − g(ω)I

which is quadratic with respect to γ.
We say that γ is an eigenvalue of P (·) if there is a non-zero �eld u (corresponding

eigenvector) such that P (γ)u = 0. Using this terminology, γ, u, is a solution of (5.4)
(i.e., γ is a propagation constant and u a corresponding mode) if and only if γ is
an eigenvalue of P (·) with corresponding eigenvector u.

6 Reduction to a standard form

In Section 5, we transformed our waveguide propagation problem into an eigenvalue
problem for a quadratic operator pencil. The special form of this pencil (it is a
trinomial of Cγ) allows us to simplify the situation even more. We will factorize
the pencil, namely, by applying an elementary �completing the square� method.
Actually, we can write

Pγ(λ) = C2
γ − f(ω)Cγ − g(ω)I =

= C2
γ − 2

f(ω)

2
Cγ +

(
f(ω)

2
I

)2

− f(ω)2

4
I − g(ω)I =

=

(
Cγ −

f(ω)

2
I

)2

−
(

1

2

√
f(ω)2 + 4g(ω)I

)2

In the last equation we can apply the �di�erence of squares� identity since the
operators commute trivially. Thus we obtain

Pγ(ω) =

(
Cγ −

f(ω)−
√
f(ω)2 + 4g(ω)

2
I

)(
Cγ −

f(ω) +
√
f(ω)2 + 4g(ω)

2
I

)

=

(
Cγ −

f(ω) +
√
f(ω)2 + 4g(ω)

2
I

)(
Cγ −

f(ω)−
√
f(ω)2 + 4g(ω)

2
I

)
(6.1)

For notational convenience we introduce

κ± = κ±(ω) :=
f(ω)±

√
f(ω)2 + 4g(ω)

2
= ω(χ±

√
χ2 + d) (6.2)



9

and we then have

P (γ) = (Cγ − κ+I)(Cγ − κ−I) = (Cγ − κ−I)(Cγ − κ+I) (6.3)

Actually κ± are the roots of the quadratic equation

x2 − f(ω)x− g(ω) = 0 (6.4)

Remark 4. The left-hand side of (6.4) we recognize the characteristic polynomial of
the 2× 2 matrix

M := iω

[
0 −1
1 0

] [
ε ξ
ζ µ

]
= iω

[
−ζ −µ
ε ξ

]
and κ+, κ− are exactly the eigenvalues of this matrix. This is because the solution
of equation (*) is a Beltrami �eld; for a further discussion, see [16]. Moreover, due
to invertibility hypothesis d 6= 0, κ+, κ− are non-zero.

Remark 5. The operations concerning Cγ must be handled with care since it is a
matrix with unbounded di�erential operator entries. Actually, as we have already
noted, Cγ is formally the curl operator restricted to functions of the form (SS).

The following result is evident.

Proposition 6.1. If either κ+ or κ− is an eigenvalue of Cγ, with a corresponding
eigenvector u, then γ is an eigenvalue of P (·), with corresponding eigenvector u.

We are really interested in the opposite statement, viz.,

Proposition 6.2. Let γ be an eigenvalue of P (·), with a corresponding eigenvector
u. Then there are three possibilities:
a) κ+ is an eigenvalue of Cγ, with a corresponding eigenvector u, or
b) κ− is an eigenvalue of Cγ, with a corresponding eigenvector u, or
c) κ+ is an eigenvalue of Cγ, with a corresponding eigenvector (Cγ − κ−I)u and κ−
is an eigenvalue of Cγ, with a corresponding eigenvector (Cγ − κ+I)u.

We investigate the consequences of this proposition in the next three subsections.

6.1 First case, a) or b)

Suppose that u is an eigenvector of Cγ corresponding to κ+ or κ−. By (A.2) we
have that uz is then an eigenfunction of the (minus) Laplacian, corresponding to the
eigenvalue k2

+ := κ2
+ + γ2 or k2

− := κ2
− + γ2. The condition for vanishing k± = 0 is{

γ = ±iκ+ = ±iω(χ+
√
χ2 + d)

γ = ±iκ− = ±iω(χ−
√
χ2 + d)

respectively.
Taking (5.2) into account, we have that uz is an eigenfunction of the (minus)

Dirichlet Laplacian. By the �rst equation in (A.1) and the fact that uz = 0 on
the boundary, we �nd that n̂ · u⊥ = 0 on Γ⊥. Finally, (A.3) gives that uz also
satis�es the Neumann boundary condition ∂uz/∂n̂ = 0 on Γz. So, uz is also an
eigenfunction of the (minus) Neumann Laplacian. This forces uz to vanish and we
obtain the trivial solution uz ≡ 0.
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6.2 Second case, c)

We suppose that υ± := Cγu− κ∓u is an eigenfunction of Cγ corresponding to κ±.
The initial �eld u can be recovered by

u =
υ+ − υ−
κ+ − κ−

(6.5)

The longitudinal �eld υ±z is an eigenfunction of the (minus) Laplacian corresponding
to the eigenvalue k2

± := κ2
± + γ2, i.e., we obtain the Helmholtz equations

∇2
⊥υ±z + k2

±υ±z = 0 (6.6)

Equivalently, we formulate the formal eigenvalue problem for a matrix operator[
−∇2

⊥ − κ2
+I 0

0 −∇2
⊥ − κ2

−I

](
υ+z

υ−z

)
= γ2

(
υ+z

υ−z

)
(6.7)

The boundary conditions are coupled and can be found by using (6.5); actually,

υ+z − υ−z = (κ+ − κ−)uz, τ̂ · υ+⊥ − τ̂ · υ−⊥ = (κ+ − κ−)τ̂ · u⊥

The �rst equation gives
υ+z = υ−z on Γ⊥ (6.8)

whereas, by using (A.3), we calculate

υ±⊥ =
γ

k2
±
∇⊥υ±z +

κ±
k2
±
V∇⊥υ±z

and by taking the scalar product with τ̂ , we �nd

γ

k2
+

∂υ+z

∂τ̂
− κ+

k2
+

∂υ+z

∂n̂
=

γ

k2
−

∂υ−z
∂τ̂
− κ−
k2
−

∂υ−z
∂n̂

on Γ⊥ (6.9)

The problem (6.7), (6.8), (6.9) is of interior transmission problem type, which arises
in the inverse scattering theory, and the problem has initiated great research e�orts
during the last years, see [8]. The important fact is that the well-posedness of the
waveguide propagation problem has now been transformed to a problem of pure
mathematical nature. The big di�culty here is that the eigenvalue is involved in
the boundary condition (6.9).

7 Operator solution of the problem � DtN map-

ping

The purpose of this section is to give an outline of a possible way to solve the
problem employing the Dirichlet-to-Neumann (DtN) mapping.
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To start with, let ρ = ρ(θ) = x(θ)x̂+ y(θ)ŷ, 0 6 θ 6 2π be a parametrization of
the curve Γ⊥. We assume that the curve is oriented in the positive direction. The
tangential vector is given by

τ̂ (θ) =
ẋ(θ)x̂+ ẏ(θ)ŷ

ṙ(θ)

where

ṙ(θ) :=

√
| ẋ(θ) |2 + | ẏ(θ) |2

Introduce now an auxiliary function ϕ : [0, 2π] → C that prescribes the common
values of υ+z, υ−z on Γ⊥ according to (6.8):

υ+z(ρ(θ)) = ϕ(θ) = υ−z(ρ(θ))

We have then
∂υ+z

∂τ̂ (θ)
=
ϕ̇(θ)

ṙ(θ)
=

∂υ−z
∂τ̂ (θ)

Let now Λ± := Λk± be the formal Dirichlet�to�Neumann mapping for the equa-
tion (6.6), see appendix D. Then the boundary condition (6.9) is rewritten as
follows

γ

k2
+

ϕ̇(θ)

ṙ(θ)
− κ+

k2
+

(Λ+ϕ)(θ) =
γ

k2
−

ϕ̇(θ)

ṙ(θ)
− κ−
k2
−

(Λ−ϕ)(θ) for 0 6 θ 6 2π (7.1)

Equation (7.1) is, in general, a functional di�erential equation (FDE) with respect
to ϕ. The problem actually reads{

γ(k2
− − k2

+)ϕ̇(θ) = (Qϕ)(θ) for 0 6 θ 6 2π

ϕ(0) = ϕ(2π)
(FDE)

We leave the term γ(k2
+− k2

−) in the left-hand side of the equation in order to allow
it to vanish; this is the case of non-chiral isotropic media. The operator Q is de�ned
formally as

(Qϕ)(θ) := ṙ(θ)[κ+k
2
−(Λ+ϕ)(θ)− κ−k2

+(Λ−ϕ)(θ)]

and it is expected to be unbounded. After this, the (implicit) dispersion equation
should be seen as a condition for (FDE) to have non-trivial solutions.

When κ± are known, the dispersion relation is an equation with respect to γ;
from this one can calculate the propagation constants. Once a propagation constant
is known, we can solve (FDE) to obtain (a non-zero) ϕ. For this, we need the
Dirichlet Green function G± := Gk± and then we can reconstruct the original mode
u by employing (6.5). This means that we can calculate the electric �eld E and,
consequently, the magnetic �eld H .

Remark 6. In the case of isotropic media, ξ = ζ = 0, we have that

κ± = ±ω√εµ
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Consequently k2
+ = k2

− = ω2εµ := k2 and (FDE) degenerates to

Λkϕ = 0

which admits only the trivial solution. Then both υ+z, υ−z are eigenfunctions of the
(minus) Dirichlet Laplacian corresponding to the eigenvalue k2. If we choose them
to have opposite signs then we actually retrieve the TM modes.

7.1 Circular cross section

In this section, we illustrate how the operator solution is directly applicable to the
known case of the circular cross section, see [12] and [17, Section 4.3]. We start
with the Helmholtz equation (C.1) and we take Ω⊥ to be the interior of the circle
of radius a. The standard parametrization for the circle is x = a cos θ, y = a sin θ,
0 6 θ 6 2π. It is well known that the (unique) solution of the Dirichlet problem for
the Helmholtz equation, with Dirichlet data ϕ, is represented in polar coordinates
as (k is the wave number in the Helmholtz equation)

υ(ρ, θ) =
∞∑

m=−∞

Jm(kρ)

Jm(ka)
ϕ̂(m)eimθ , 0 6 ρ 6 a, 0 6 θ < 2π (7.2)

Here Jm is the Bessel function of �rst kind and order m and ϕ̂(m) is the mth Fourier
coe�cient of ϕ, i.e.,

ϕ̂(m) :=
1

2π

∫ 2π

0

ϕ(θ′)e−imθ′ dθ′

We know also that the normal derivation at angle θ on the circle coincides with the
partial derivation with respect to ρ at the point (a, θ). This remark gives immedi-
ately the DtN operator from (7.2) as follows.

(Λkϕ)(θ) =
∞∑

m=−∞

k
J ′m(ka)

Jm(ka)
ϕ̂(m)eimθ (7.3)

From (7.3) we get

(Λ±ϕ)(θ) =
∞∑

m=−∞

k±
J ′m(k±a)

Jm(k±a)
ϕ̂(m)eimθ

and, by substituting into the equation in (FDE), we obtain

γ(k2
− − k2

+)
∞∑

m=−∞

imϕ̂(m)eimθ = a

[
κ+k

2
−

∞∑
m=−∞

k+
J ′m(k+a)

Jm(k+a)
ϕ̂(m)eimθ−

−κ−k2
+

∞∑
m=−∞

k−
J ′m(k−a)

Jm(k−a)
ϕ̂(m)eimθ

]
(7.4)
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By equating the Fourier coe�cients, we obtain after a rearrangement of the terms

k2
+Jm(k+a) [imγJm(k−a)− aκ−k−J ′m(k−a)]−

− k2
−Jm(k−a) [imγJm(k+a)− aκ+k+J

′
m(k+a)] = 0 (7.5)

This is exactly the (implicit with respect to γ) dispersion equation obtained in [12].
Equation (7.5) can be solved numerically, and it is observed (but is not proved) that
for every m = 0,±1,±2, ... there exist a countably in�nite number of roots. As a
consequence, we expect a double sequence (γmn) of propagation constants with no
�nite accumulation point and diverging to in�nity when either m→∞ or n→∞.
This con�rms the well-posedness of the problem. Graphs of γmn as a function of ω
are found in [12].

Let us now �x a propagation constant γmn. Then in (7.5) only the coe�cient
ϕ̂(m) is allowed to be nonzero and thus we �nd as Dirichlet data the function

φm(θ) = Ameimθ

Am is an arbitrary constant (it can be taken equal to 1). By putting

kmn± =
√
κ2
± + γ2

mn

we calculate the corresponding circularly polarized longitudinal �elds

υmnz± (ρ, θ) =
Jm(kmn± ρ)

Jm(kmn± a)
eimθ

from which the electric �eld is obtained.

8 Matrix solution of the problem � Null-�eld ap-

proach

We revisit the problem of �nding the propagation constant γ. This time we employ
the Null-�eld approach. This approach originates from pioneer work done by Peter
Waterman in the 1960's and 70's [28, 29]. The method has later been generalized by
several authors, and also been applied to the waveguide problem, see e.g., [4].

The goal is to solve the Helmholtz equation (6.6) with the boundary conditions
given in (6.8) and (6.9). We represent the solutions v±z by∮

Γ⊥

(
Φk±(ρ;ρ′)ν̂(ρ′) · ∇′⊥v±z(ρ′)− v±z(ρ′)ν̂(r′) · ∇′⊥Φk±(ρ;ρ′)

)
d`′

=

{
v±z(ρ), ρ ∈ Ω⊥

0, ρ ∈ R3 \ Ω⊥

(8.1)

where the line element on the bounding curve is denoted d` and where the free space
Green's function is

Φk(ρ;ρ′) =
i

4
H

(1)
0 (k|ρ− ρ′|)
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The lower part of the representation (8.1) is often called the extinction part, and
this part is utilized in the solution of the propagation problem in this section.

The Green function has an expansion in cylindrical wave functions [3]

Φk(ρ;ρ′) =
iπ

2

∑
m

um(kρ>)v†m(kρ<) =
iπ

2

∑
m

u†m(kρ>)vm(kρ<) (8.2)

where ρ>(ρ<) denotes the largest(smallest) vector of the ρ and ρ′, and where the
cylindrical wave functions, um and vm, are de�ned in terms of Hankel and Bessel
functions as 

um(kρ) =

√
1

2π
H(1)
m (kρ)eimφ

vm(kρ) =

√
1

2π
Jm(kρ)eimφ

(8.3)

where m = 0,±1,±2, . . ., and the superscript † indicates that i → −i in the expo-
nential. Note that the symbol † does not correspond to the complex conjugate of
the functions.

This expansion of the Green function in (8.2) implies for an ρ outside the circum-
scribing circle of the waveguide that the extinction part of the representation (8.1)
in a two-dimensional system becomes∮

Γ⊥

((
v†m(k+ρ

′) 0
0 v†m(k−ρ

′)

)(∂v+z(ρ′)
∂ν

∂v−z(ρ′)
∂ν

)
−

(
∂v†m(k+ρ′)

∂ν
0

0 ∂v†m(k−ρ′)
∂ν

)(
v+z(ρ

′)
v−z(ρ

′)

))
d`′

=

(
0
0

)
, ∀m

Eliminating the surface �elds ∂v−(ρ)
∂ν

and v−(ρ) by the use of the boundary conditions
in (6.8) and (6.9), we get∮

Γ⊥

((
v†m(k+ρ) 0

0 v†m(k−ρ)

)( ∂v+z(ρ)
∂ν

γ
κ−

∂v+z(ρ)
∂τ

− γ
k2
+

k2
−
κ−

∂v+z(ρ)
∂τ

+ κ+

k2
+

k2
−
κ−

∂v+z(ρ)
∂ν

)

−

(
∂v†m(k+ρ)

∂ν
0

0 ∂v†m(k−ρ)
∂ν

)(
v+z(ρ)
v+z(ρ)

))
d` =

(
0
0

)
, ∀m

(8.4)

These are the Null-�eld equations.
The surface �elds v+z(ρ) and ∂

∂ν
v+z(ρ) are unknown, and we expand them in

terms of the arbitrary bases {fm(ρ)}m∈I and {gm(ρ)}m∈I , respectively, for some
index set I, i.e.,

v+z(ρ) =
∑
m∈I

αmfm(ρ)

∂v+z(ρ)

∂τ
=
∑
m∈I

αm
∂fm(ρ)

∂τ

∂v+z(ρ)

∂ν
=
∑
m∈I

βmgm(ρ), ρ ∈ Γ⊥ (8.5)
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Note that the expansion of the �eld v+z(ρ) and its tangential derivative has the
same expansion coe�cients. By insertion of the surface �eld expansions in (8.4) we
get

∑
m′∈I

∮
Γ⊥

((
v†m(k+ρ) 0

0 v†m(k−ρ)

)(
βm′gm′(ρ)

αm′
γ
κ−

(
1− k2

−
k2
+

)
∂fm′ (ρ)

∂τ
+ βm′

κ+

κ−

k2
−
k2
+
gm′(ρ)

)

− αm′
(
∂v†m(k+ρ)

∂ν
0

0 ∂v†m(k−ρ)
∂ν

)(
fm′(ρ)
fm′(ρ)

))
d` =

(
0
0

)
, ∀m

This system of equations are most conveniently written as∑
m′

(
Q1
mm′ Q2

mm′

Q3
mm′ Q4

mm′

)(
αm′
βm′

)
=

(
0
0

)
, ∀m (8.6)

where the in�nite-dimensional matrices Q1,2,3,4 are de�ned as

Q1
mm′ = −

∮
Γ⊥

∂v†m(k+ρ)

∂ν
fm′(ρ) d`

Q2
mm′ =

∮
Γ⊥

v†m(k+ρ)gm′(ρ) d`

Q3
mm′ = −

∮
Γ⊥

∂v†m(k−ρ)

∂ν
fm′(ρ) +

γ

κ−

(
k2
−

k2
+

− 1

)
v†m(k−ρ)

∂fm′(ρ)

∂τ
d`

Q4
mm′ =

κ+

κ−

k2
−

k2
+

∮
Γ⊥

v†m(k−ρ)gm′(ρ) d`

(8.7)

To have a non-trivial solution to the propagation problem we require

det

(
Q1
mm′ Q2

mm′

Q3
mm′ Q4

mm′

)
= 0 (8.8)

This determinant equation determines the propagation constant γ of the waveguide.

8.1 Cylindrical expansion functions

The sets of basis, {fm(ρ)}m∈I and {gm(ρ)}m∈I , are arbitrary. Interestingly, there
is a speci�c set of expansion functions that results in a more compact form of de-
terminant equation. These are the regular cylindrical functions vm de�ned in (8.3).
In (8.5) choose 

fm(ρ) = vm(k+ρ)

gm(ρ) =
∂vm(k+ρ)

∂ν

m = 0,±1,±2, . . . (8.9)
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These sets of expansion functions can be proven to be linearly independent and
complete1 for any k in L2(Γ⊥), but not necessarily a (Schauder) basis [14]. With
this choice, the �rst row in (8.6) reads∑

m′

∮
Γ⊥

(
βm′v

†
m(k+ρ)

∂vm′(k+ρ)

∂ν
− αm′

∂v†m(k+ρ)

∂ν
vm′(k+ρ)

)
d` = 0, ∀m

Now use the identity∮
Γ⊥

(
v†m(k+ρ)

∂vm′(k+ρ)

∂ν
− ∂v†m(k+ρ)

∂ν
vm′(k+ρ)

)
d` = 0, ∀m,m′

and we obtain ∑
m′

(βm′ − αm′)
∮

Γ⊥

v†m(k+ρ)
∂vm′(k+ρ)

∂ν
d` = 0, ∀m

Under the assumption that the cylindrical functions in (8.9) are a basis, the matrix

Amm′ =

∮
Γ⊥

v†m(k+ρ)
∂vm′(k+ρ)

∂ν
d`

is invertible [14], implying βm = αm, and the second row in (8.6) becomes∑
m′

Qmm′αm′ = 0

where the in�nite-dimensional matrix Q is de�ned as

Qmm′ =

∮
Γ⊥

(
v†m(k−ρ)

(
γ

κ−

(
1−

k2
−

k2
+

)
∂vm′(k+ρ)

∂τ
+
κ+

κ−

k2
−

k2
+

∂vm′(k+ρ)

∂ν

)

− ∂v†m(k−ρ)

∂ν
vm′(k+ρ)

)
d`′

(8.10)

Again, to have a non-trivial solution to the problem we need detQ = 0.

8.2 Implementation

Let ρ = ρ(φ)ρ̂ be a parametrization of the contour Γ⊥ w.r.t. the azimuth angle
φ ∈ (0, 2π). Then

τ̂ =
ρ′(φ)ρ̂+ ρ(φ)φ̂√
(ρ′(φ))2 + (ρ(φ))2

,

and

ν̂ =
ρ(φ)ρ̂− ρ′(φ)φ̂√
(ρ′(φ))2 + (ρ(φ))2

, d` =

∣∣∣∣dρ(φ)

dφ

∣∣∣∣ dφ =

√
(ρ′(φ))2 + (ρ(φ))2 dφ

1Carefully avoiding internal resonances.
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Trigonometric functions Use the Fourier system

fm(ρ) = gm(ρ) =

√
1

2π
eimφ

This system is orthonormal over [0, 2π), i.e.,∫ 2π

0

fm(ρ(φ))fm′(ρ(φ)) dφ = δmm′

and it is forms a (Riesz) basis for a star-shaped domain, see [21] for the result on
the spherical harmonics.

With this set of expansion functions, the Q matrices in (8.7) are

Q1
mm′ =− 1

2π

∫ 2π

0

J ′m(k+ρ(φ))k+ρ(φ)ei(m′−m)φ dφ

− im

2π

∫ 2π

0

Jm(k+ρ(φ))
ρ′(φ)

ρ(φ)
ei(m′−m)φ dφ

Q2
mm′ =

1

2π

∫ 2π

0

Jm(k+ρ(φ))

√
(ρ′(φ))2 + (ρ(φ))2ei(m′−m)φ dφ

Q3
mm′ =− 1

2π

∫ 2π

0

J ′m(k−ρ(φ))k−ρ(φ)ei(m′−m)φ dφ

− im

2π

∫ 2π

0

Jm(k−ρ(φ))
ρ′(φ)

ρ(φ)
ei(m′−m)φ dφ

+
im′γ

κ−

(
1−

k2
−

k2
+

)
1

2π

∫ 2π

0

Jm(k−ρ(φ))ei(m′−m)φ dφ

Q4
mm′ =

1

2π

κ+

κ−

k2
−

k2
+

∫ 2π

0

Jm(k−ρ(φ))

√
(ρ′(φ))2 + (ρ(φ))2ei(m′−m)φ dφ

8.2.1 Circular cross section

For a circular cross section ρ = a, these Q-matrices are diagonal in the m index with
entries 

Q1
mm′ = −δmm′J ′m(k+a)k+a

Q2
mm′ = δmm′Jm(k+a)a

Q3
mm′ = −δmm′

(
J ′m(k−a)k−a−

imγ

κ−

(
1−

k2
−

k2
+

)
Jm(k−a)

)
Q4
mm′ = δmm′

κ+

κ−

k2
−

k2
+

Jm(k−a)a

and the condition that the determinant in (8.8) vanishes becomes for each m = m′

index
Q1
mmQ

4
mm −Q2

mmQ
3
mm = 0
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The explicit form of this expression is

k+ak
2
−a

2κ+aJ
′
m(k+a)Jm(k−a)− k2

+a
2k−aκ−aJm(k+a)J ′m(k−a)

+ imγa
(
k2

+a
2 − k2

−a
2
)
Jm(k+a)Jm(k−a) = 0

(8.11)

which is identical to (7.5), and for an isotropic material (k = k− = k+) reduces to

J ′m(ka)Jm(ka) = 0

Similarly, using the Q-matrix in (8.10) gives

Qmm =Jm(k−a)

(
γ

κ−

(
1−

k2
−

k2
+

)
im

a
Jm(k+a) +

κ+

κ−

k2
−

k2
+

k+J
′
m(k+a)

)
a

− k−J ′m(k−a)Jm(k+a)a

and the condition of vanishing determinant again gives the same result as above.

9 Numerical illustration

In this section, we illustrate the analysis presented in this paper by a numerical
example, and, for simplicity, we adopt a waveguide with a circular cross section.
The dispersion relation for this geometry is given as the roots to a transcendental
equation explicitly given in Section 7.1 and 8.2.1, see (7.5) and (8.11), respectively.
Dispersion relations for this geometry and constant material parameters have pre-
viously been published in the literature, see e.g., [11, 12]. These materials are all
lossless, and therefore the propagating modes show no damping. However, disper-
sion e�ects are always present at least to some extent, and here we illustrate the
theory with a more realistic material model that includes dispersion and losses.

All realistic material shows dispersion e�ects � at least in some frequency in-
terval, and, moreover, the chirality parameter χ cannot assume a non-zero value at
zero frequency. To our knowledge, the only known dispersion model for bi-isotropic
e�ects is Condon's model [9, 17]. In order to model a passive material, the proper
models for the permittivity and the permeability have to be adopted. A disper-
sive model, that is passive, is the following combined Lorentz-Debye model for the
permittivity and permeability and Condon's model for the chirality parameter, i.e.,

ε(ω) = 1−
ω2
pe

ω2 − ω2
0 + iωνe

+
ατ

1− iωτ

µ(ω) = 1−
ω2
pm

ω2 − ω2
0 + iωνm

ξ(ω) = −ζ(ω) =
iωωc

ω2 − ω2
0 + iωνc

The dispersion curve, i.e., the curve of γa in the complex γa-plane as a function
of the normalized frequency k0a = ωa/c0, for the lowest order mode is displayed
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Figure 1: The dispersion relation of the lowest order mode for non-chiral material
data in Table 2 in the complex γa-plane, i.e., ωc = 0. The curve shows the propa-
gation constant γa as a function of the normalized frequency k0a. The dots along
the curve show the normalized frequency k0a = 0, 0.1, 0.2, . . . , 5. The curve starts
at γa = −2.405 at zero frequency. The inserts show the real and imaginary parts of
γa as a function of k0a.

in Figures 1�4 for three di�erent values of the azimuthal index m = 0,±1. The
lowest order mode for m = 0 starts at γa = −2.405 (TM) at zero frequency, and
for m = ±1 the curves start at γa = −1.841 (TE) at zero frequency. The data of
the dispersive material is explicitly displayed in Table 2. For reference, we display
the non-chiral, ωc = 0, dispersion curve in Figure 1. The loop is inherent with
the resonance characteristic of the material, and notice also that the propagation
constant is no longer purely real or imaginary, but in general a complex number due
to losses. The loop is traversed very quickly � a fact that is due to the small losses
of the material.

The Figures 2�4 show the distinctive di�erence between the di�erent modes
corresponding to m = 0, m = +1, and m = −1 � the loop is more narrow in
m = +1 than in m = −1, and m = 0 lies somewhere in between. This is due to the
sign of our chirality parameter. Notice that for m = ±1, the points corresponding
to zero frequency, k0a = 0, are di�erent from the starting points of the non-chiral
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Figure 2: The dispersion relation of the lowest order mode for material data in
Table 2 in the complex γa-plane. The curve shows the propagation constant γa as a
function of the normalized frequency k0a for m = 0. The dots along the curve show
the normalized frequency k0a = 0, 0.1, 0.2, . . . , 5. The curve starts at γa = −2.405
at zero frequency. The inserts show the real and imaginary parts of γa as a function
of k0a.

and the m = 0 curves.
The asymptotic behavior of the curve γa as k0a→∞ approaches Re γa ≈ −0.1,

which corresponds well to the order of magnitude of the losses in the material, i.e.,
ατ = 0.1 and τc0/a = 0.2. In fact, under the assumption that the frequency is high
enough so that only the Debye term in ε(ω) contributes to its imaginary part, and
Re ε ≈ 1, µ ≈ 1, and ξ ≈ 0, we have

γa ≈ −k0a Im ε

2
+ ik0a ⇒ γa ≈ −1

2

k2
0aατ

2c0

1 + k2
0τ

2c2
0

+ ik0a ⇒ γa ≈ −0.125 + 5i
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Figure 3: The dispersion relation of the lowest order mode for material data in
Table 2 in the complex γa-plane. The curve shows the propagation constant γa as a
function of the normalized frequency k0a for m = 1. The dots along the curve show
the normalized frequency k0a = 0, 0.1, 0.2, . . . , 5. The curve starts at γa = −1.841
at zero frequency. The inserts show the real and imaginary parts of γa as a function
of k0a.

10 Conclusions and further research

In this paper, we have considered the propagation problem inside a metallic wave-
guide �lled with a homogeneous, bi-isotropic medium. We de�ne propagation con-
stants and modes and their spectral problems. We present this problem in two ap-
proaches; roughly speaking, one form has a complicated operator but simple bound-
ary conditions, whereas the other has a simple operator but complicated boundary
conditions. Following the second approach, we reduce the problem into a functional
di�erential equation on the line, which is directly subject to mathematical analysis.

Actually, we have a solution to the bi-isotropic waveguide problem whenever we
can solve the Dirichlet problem for the 2D Helmholtz in the cross section. Two dif-
ferent methods of solving the problem are suggested � one employing the Dirichlet-
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Figure 4: The dispersion relation of the lowest order mode for material data in
Table 2 in the complex γa-plane. The curve shows the propagation constant γa
as a function of the normalized frequency k0a for m = −1. The dots along the
curve show the normalized frequency k0a = 0, 0.1, 0.2, . . . , 5. The curve starts at
γa = −1.841 at zero frequency. The inserts show the real and imaginary parts of
γa as a function of k0a.

to-Neumann mapping, and the other utilizing the integral representation of the
solutions to the Helmholtz equation, i.e., the Null-�eld approach. Both these meth-
ods have potential to solve the propagation problem for a more general cross section
geometry than the circular one, which, to our knowledge, is the only case treated in
full detail.

We �nish with some suggestions for further investigations that can extend and
enrich the present work.

Solvability of (FDE). To prove in a rigorous mathematical manner that (FDE)
has a discrete spectrum.

Other geometries. To obtain analytical or numerical solutions for geometries dif-
ferent than the circular one. The rectangular waveguide is of special interest.

More complicated media. To consider mediums described by more parameters
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ωpea/c0 = ωpma/c0 = 0.5
ω0a/c0 = 2
νea/c0 = νma/c0 = νca/c0 = 0.1
ωca/c0 = 0.04
ατ = 0.1
τc0/a = 0.2

Table 2: The data of the dispersive bi-isotropic material in Figures 1�4.

with the full 6× 6 material matrix as the �nal goal.

The inverse problem. To determine the parameters of the bi-isotropic medium
by applying measurements of the material slab in the waveguide. We are
particularly interested in this problem and in [24] a method to calculate the
propagation constants of an arbitrary linear material is developed. The ba-
sic question is if the knowledge of the propagation constants is su�cient to
determine the material.
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Appendix A Eigenvalues and eigenvectors of Cγ

Here, we consider brie�y the formal eigenvalue�eigenvector problem for the operator
Cγ, i.e., the equation Cγυ = λυ. This is equivalent to the system{

−γV υ⊥ + V∇⊥υz = λυ⊥

∇⊥ · V υ⊥ = λυz
(A.1)

Solving with respect to the longitudinal �eld υz we �nd

−∇2
⊥υz = (λ2 + γ2)υz (A.2)

Thereby, υz is an eigenvector of the minus transverse Laplacian corresponding to
the eigenvalue λ2 + γ2. The transverse �eld is then calculated by the �rst equation
in (A.1) and it is given by

υ⊥ =
γ

λ2 + γ2
∇⊥υz +

λ

λ2 + γ2
V∇⊥υz (A.3)

As a consequence, υ is completely determined by its longitudinal part. More pre-
cisely, (A.2) reduces the situation to an eigenvalue�eigenvector problem for the
Laplacian. To study the same problem rigorously in domains, one has just to assign
the boundary condition for υz.
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Appendix B The operator C2
γ

As a �rst step we formally calculate

C2
γ =

[
−γV V∇⊥
∇⊥ · V 0

] [
−γV V∇⊥
∇⊥ · V 0

]
=

[
−γ2I2 + V∇⊥∇⊥ · V γ∇⊥

γ∇⊥· −∇⊥ · ∇⊥

]
We have now

V∇⊥∇⊥ · V =

(
∂y
−∂x

)(
−∂y ∂x

)
=

[
−∂2

yy ∂y∂x
∂x∂y −∂2

xx

]
On the right-hand side of this equation we add and subtract the matrix[

∂2
xx 0
0 ∂2

yy

]
This way, we obtain

V∇⊥∇⊥ · V =

[
−∇2

⊥
0 −∇2

⊥

]
+

[
∂2
xx ∂2

xy

∂2
xy ∂2

yy

]
= −∇2

⊥I2 +∇⊥∇⊥·

Thus

C2
γ =

[
(−γ2 −∇2

⊥)I2 +∇⊥∇⊥· γ∇⊥
γ∇⊥· −∇2

⊥

]
Apply C2

γ to a �eld satisfying Gauss equation (5.1)

C2
γ

(
u⊥
uz

)
=

(
(−γ2 −∇2

⊥)u⊥ +∇⊥∇⊥ · u⊥ + γ∇⊥uz
γ∇⊥ · u⊥ −∇2

⊥uz

)
=

(
(−γ2 −∇2

⊥)u⊥ − γ∇⊥uz + γ∇⊥uz
−γ2uz −∇2

⊥uz

)
= (−γ2 −∇2

⊥)

(
u⊥
uz

)

Appendix C The 2D Helmholtz equation

We concentrate some facts concerning the equation

∇2
⊥υ + k2υ = 0 in Ω⊥ (C.1)

where Ω⊥ ⊂ R2 is a bounded domain with boundary Γ⊥ (a closed curve) and k ∈ C
is a constant. The relevant material is exposed in full detail in [7]. Let ν̂ be the
exterior normal on Γ⊥. It is known that the function

Φk(ρ;ρ′) =
i

4
H

(1)
0 (k%),

where % := |ρ− ρ′ | de�nes a solution of the Helmholtz equation for ρ 6= ρ′. Actu-
ally, Φk de�nes a fundamental solution with a pole at ρ′. If υ solves (C.1), then we
have the Green's representation formula∮

Γ⊥

(
Φk(ρ;ρ′)

∂υ

∂ν̂
(ρ′)− ∂Φk(ρ;ρ′)

∂ν̂(ρ′)
υ(ρ′)

)
d`(ρ′) =

{
υ(ρ) , if ρ ∈ Ω⊥

0 , if ρ ∈ Ωext
⊥

(C.2)
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Here by Ωext
⊥ we denote the set R2 \ Ω⊥, Ω⊥ := Ω⊥ ∪ Γ⊥.

Now consider a function h(ρ;ρ′), de�ned for ρ ∈ Ω⊥, ρ
′ ∈ Ω⊥, which solves the

Dirichlet problem {
∇2
⊥ρ′h(ρ;ρ′) = 0 for ρ ∈ Ω⊥

h(ρ;ρ′) = −Φk(ρ;ρ′) for ρ′ ∈ Γ⊥
(C.3)

Then the function

Gk(ρ;ρ′) := − ∂

∂ν̂(ρ′)
[Φk(ρ;ρ′) + h(ρ;ρ′)] (C.4)

is called the Dirichlet Green function and solves actually the Dirichlet problem
for (C.1); the function

υ(ρ) :=

∮
Γ⊥

Gk(ρ;ρ′)ϕ(ρ′) d`(ρ′) , ρ ∈ Ω⊥ (C.5)

satis�es (C.1) and υ = ϕ on Γ⊥.

Appendix D The Dirichlet-to-Neumann mapping

Let υ be a solution of (C.1). The Dirichlet-to-Neumann (DtN) mapping (or opera-
tor) Λk is de�ned formally as

Λk : υ|Γ⊥ 7→
∂υ

∂ν̂

Suppose that the Dirichlet problem for (C.1) is uniquely solvable (incidentally, this
has to do with the shape of Γ⊥ and whether k2 is not an eigenvalue of the Dirichlet
Laplacian). In that case, we have a list of consequences.

1. The problem (C.3) has a unique solution.

2. We can construct the Dirichlet Green function Gk.

3. We have the integral representation (C.5) for the solution of the Dirichlet
problem.

4. The DtN operator is a well de�ned univalued function and is given by the
formula

(Λkf)(ρ) =
∂

∂ν̂(ρ)

∮
Γ⊥

Gk(ρ;ρ′)f(ρ′) d`(ρ′) , ρ ∈ Γ⊥ (D.1)

We can clearly see that the constructions of the solution to the Dirichlet problem, of
the Dirichlet Green function and of the DtN mapping are, more or less, equivalent
processes. Actually, if we know the Dirichlet data and Λk, then we can construct
the solution by using (C.2). The knowledge of the Green function gives us Λk

via (D.1), but the di�erentiation with respect to the exterior normal, i.e., the partial
di�erentiation, under the integral sign needs, in general, a careful interpretation.
Since di�erentiation is involved, Λk is expected to be an unbounded linear operator.
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