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An Examination of the Robustness of the Vector 

Autoregressive Granger-Causality Test in the Presence of 
GARCH and Variance Shifts 

 
 

Panagiotis Mantalos*,Ghazi Shukur **and Pär Sjölander *** 

 
 

The properties of the Granger-causality test in stationary and stable Vector 
Autoregressive (VAR) models are studied with different types of volatility 
processes imposed on the unconditional variance. For this test, it is 
examined how the size and power properties are affected by different 
magnitudes of GARCH processes and by structural shifts in the volatility. The 
study has been conducted by means of Monte Carlo simulations for different 
sample sizes. Our analysis reveals that substantial GARCH effects influence 
the size properties of the Granger-causality test, especially in small samples. 
The power functions of the test are usually slightly lower in the presence of 
GARCH disturbances compared to the case of white noise residuals. When a 
structural variance break is imposed, the size problem is rather severe, and 
the power functions are lower compared to the case with the pure GARCH-
processes.  

 
Keywords:  Causality test, GARCH, Size and Power, Structural change 
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1. Introduction 
 
In this paper, we aim to examine the properties of the Granger-causality test 
(Granger, 1969) in stationary and stable Vector Autoregressive (VAR) models in the 
presence of Generalised Autoregressive Conditional Heteroscedasticity (GARCH) 
effects and with an imposed structural variance break. The Granger approach to the 
question whether a variable say X1 causes another variable say X2 is to see how 
much of the current value of X2 can be explained by past values of X1. X2 is said to be 
Granger-caused by X1 if X1 helps in the prediction of X2, or equivalently, if the 
coefficients of the lagged X1 are statistically significant in a regression of X2 on X1. 
The same is true for the opposite direction. There is also the possibility of a two-way 
Granger causation case; i.e. X1 Granger causes X2 and X2 Granger causes X1.  
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That is, by means of the Granger-causality test we would like to study whether one 
variable precedes the other variable or if they are contemporaneous. Furthermore, it 
should be stressed that Granger causality is a necessary condition for the true 
existence of causality, however the correlation relationship measured by the use of 
the Granger (1969) causality approach is not a sufficient condition for the real 
causality. Nevertheless, the VAR type of Granger-causality test is very common and 
useful, and therefore very relevant in empirical applications. 
 
Nowadays, it is a stylized fact that the analysis of causality is very sensitive to model 
specification and is almost only valid under conditions when the error terms are fairly 
close to white noise. Despite this, a considerable proportion of the empirical time 
series variables follow some type of GARCH process. These forms of time-varying 
volatility processes are very common in, for example, exchange rates, bond returns, 
commodity returns, inflation rates, interest rates, and generally in different types of 
financial data. The objective of such models can be to provide a volatility measure for 
decisions concerning risk analysis, portfolio selection, derivative pricing, or generally 
just to improve the efficiency of the estimated standard errors. Hence, it is important 
to examine the properties of this commonly used causality test in the presence of 
GARCH disturbances. Especially in financial studies, it is of great importance to 
provide accurate estimates of the persistence of the conditional variance. 
Furthermore, it has long been conjectured that the volatility in financial markets 
exhibits irregular breaks, Diebold (1986), Hendry (1986) and Lamoureux and 
Lastrapes (1990). More recent and related evidence is provided by Andreou and 
Ghysels (2002), Diebold and Inoue (2001), Ewing and Malik (2005), Granger and 
Hyung (1999), and Kholodilin and Yao (2006) among others, which shows that the 
presence of different types of breaks may also explain the findings of long memory, 
particularly the persistence in the volatility equation. Brooks, Clare, and Persand 
(2000), Gallo and Pacini (2000), Lamoureux and Lastrapes (1990), and Lastrapes 
(1989) argue that persistence in volatility is overestimated when standard GARCH 
models are applied to a series with underlying sudden changes in variance. This 
phenomenon is usually defined as so-called excess persistence in the variance. 
Engle, Ito, and Lin (1990) argue that volatilities in financial markets are often 
transmitted to other markets. Due to these reasons, the same event can quite 
possibly affect different markets at different time points and thus making it difficult to 
isolate those events that cause volatility breaks. There are many different 
suggestions for how to detect and adjust time-series models for structural breaks in 
the variance equation (see e.g. Cochran, Mansur and Shaffer, 2007, Ewing and Malik 
(2005), and Inclán and Tiao, 1994). However, all remedies essentially depend on the 
accurate detection of the exact position of the structural change. These methods 
work very well in theory, but are sometimes fairly problematic to apply in practise for 
certain types of real-world data sets. 
 
In fact, it is a very complicated task to detect structural breaks in general, and it is 
even more complicated for variables that can be expected to follow unit root, or near 
unit root, processes. For instance, it can be difficult to distinguish between unit root 
processes and stationary processes with structural breaks. Due to these reasons it is 
highly relevant to study the robustness properties of the VAR Granger-causality test 
under different possible problems in the error process, since there is a high risk for 
misspecification of the underlying process for empirically applied models. 
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The main purpose of this paper is to investigate the properties of the Granger-
causality test in the presence of (GARCH) effects and with breaks in the errors. An 
efficient test should have correct significance levels under the null hypothesis, 
irrespectively of the values of the regression and other distributional parameters. It 
should also have reasonable power against the class of alternative specifications 
under investigation, but low power against other alternatives. The study has been 
conducted by means of Monte Carlo simulations. The size and the power of the test 
have been studied by applying the test on various VAR models when the sample 
sizes, strength in the GARCH effects have been varied. As mentioned in the above 
text, the size and power of the test has also been studied when possible breaks are 
imposed.   
 

The paper is arranged as follows. In the next section we present the model we 
analyse the design of our Monte Carlo experiment. In Section 3, we describe the 
results concerning the size of the test while power is analysed in Section 4. Finally, a 
brief summary and conclusions are presented in Section 5. 

 
2. Methodology and Experimental Design 
 
 
Consider the following data-generating process (DGP) which consists of a two 
dimensional time series generated by a stable VAR(p) process: 
 

1 1 p =  ... +At t t p tX A X X ε− −+ + ,    (1) 
 

where ( )ε ε εt  =   ..., 1t kt, ′  is a zero mean independent white noise process with 

nonsingular covariance matrix Σε  and, for j = 1, ... , k,  Ε ε
τ

jt

2+
< ∞  for some τ > 0. 

The order p of the process is assumed to be known. Let [ ]α p =  vec A   , A1 p, L  be the 
vector of the true parameters, where vec[.] denotes the vectorization operator that 
stacks the columns of the argument matrix. Now, suppose that we are interested in 
testing q independent linear restrictions: 
 
H Ho p p:  R  =  s   vs.     :  R   sα α1 ≠ ,    (2) 
 
where q and s are fixed (q x 1) vectors and R is a fixed [q x 2 ( )k p ] matrix with rank q.  
The process { }tX  is generated by the VAR(p) process in (1), with the $Ai   (i = 1, … p) 

the Ordinary Least Squares (OLS) estimators and ˆ pα  the 2 ( )k p⎡ ⎤⎣ ⎦ dimensional vector, 

consisting of the 2 ( )k p  elements of [ ]$ $ , $α =  vec A   , A1 pL  Then: 

 
( ) ( )1/ 2 ˆ 0,p p pT Nα α− ⇒ Σ ,    (3) 
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where ⇒ denotes weak convergence in distribution and the [ 2 ( )k p  x 2 ( )k p ] 
covariance matrix pΣ  is non-singular. The pα  is the 2 ( )k p⎡ ⎤⎣ ⎦  dimensional vector of 
the true parameters.  
 
Moreover given a consistent estimator ˆ

pΣ , then the Wald test of the null hypothesis 
in (2): 
 

1ˆ ˆ = ( ) ( ) ( )w p p pT R s R R R sλ α α−′ ′− Σ −     (4) 
 
has an asymptotic χ 2 ( )q -distribution under the null hypothesis. With tX  portioned in 
(m) and (k-m) dimensional sub vectors 1

tX  and 2
tX , and Ai  matrices portioned 

conformably, 2
tX  does not Granger-cause the 1

tX  if the following hypothesis is true:  
 
H p0  =  A  0   for   i =  1,   ,  12,i = L -1 .   (5) 
 

The error components ( )ε ε1 2t t,
′
 in (1) and (2) are generated by GARCH(1,1) models, 

i.e., 
 

2
it

2 2 2
1 1

   1,2

 i.i.d.,  E( ) 0, E( ) 1

it it it

it it

it i i iit it

h i

h h

ε υ

υ υ υ

γ φ ϕ ε− −

= =

= =

= + +

�
     (6) 

 
and ( )Cov   =  0ε ε1 2t t . The condition for finite variance is 1<+ ii ϕφ  and the condition 
for finite fourth moment is .123 22

1 <++ iiii ϕϕφφ  Furthermore, if 0>iγ  and 1<+ ii ϕφ , 
then the unconditional variance of the iε  exist and equals ( )iiii ϕφγσ ε −−= 1/2 . In 
addition to the above constraints, the following stationarity conditions must be 
satisfied: 1<iφ , 1<iϕ , and since it is well known that there is a considerable risk that 
the conditional heteroscedasticity may produce negative values it is necessary that 

02 >ith  is obtained for all t. Furthermore, note that when 0==ϕφ , the itε  is reduced 
to iid white noise. 
 
The size and power of the causality test is also examined in the presence of breaks 

in the errors in (1). ( )1t 2t = ,   tε ε ε ′  are iid with covariance matrix Σε , where  
 

2
1

2
2

0
0

t

t
ε

σ
σ

⎛ ⎞
Σ = ⎜ ⎟

⎝ ⎠
.      (7) 
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The effects of neglected changes in volatility are examined through the following 
experiment, where simultaneous and identical changes in volatility are imposed, 

2 2 2
1 2  for 2t t b Tσ σ σ= = ≤  and 2 2 2

1 2 for > 2t t a Tσ σ σ= = ; In this study, we selected  2
bσ = 1 

and 2
aσ  = 0.1. 

 
To illustrate and study the effects of a GARCH(1,1)-process with and without a break 
in the errors on the Granger-causality test in a stable VAR(1) system, we apply 
Monte Carlo methods. We calculate the estimated size by simply observing how 
many times the null is rejected in repeated samples under conditions where the null 
is true. To judge the reasonability of the results we use an approximated 95% 
confidence interval for the actual size (π): 

 

$
$( $)

π
π π

±
−

2
1

 
 

N
     (8) 

 
where $π  is the estimated size and N is the number of replications. 
 
The Monte Carlo experiment has been performed by generating data according to 
the model defined by (1) and (2), 
 

11/ 2

0.02 0.5 0.3
 = 

0.03 0.5t t ty y
T

ε
λ −−

⎡ ⎤ ⎡ ⎤
+ +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
,    (9) 

 
If λ= 0, y t1  is Granger-non-causal for y t2 and if λ≠ 0, y t1  causes y t2 . Therefore, we 
use the λ= 0 to study the size of the test. 
 
We simulate three GARCH versions with a) high persistence, HP, (0.01,0.09,0.9), b) 
medium persistence, MP, (0.05, 0.05, 0.9) and c) low persistence, LP, 
(0.20,0.05,0.75). Finally, simultaneous and identical changes in the tε  are imposed. 
The processes includes a constant term and we fit a VAR(1) :    
 

1 1 = t tty v A y ε−+ + .     (10) 
 
For each model we perform 10 000 replications and use three different nominal 
sizes, namely 1%, 5% and 10%. However, We use simple graphical methods, 
developed and illustrated by Davidson and MacKinnon (1998), which are based on 
the empirical distribution function of the P-values and are easy to interpret. The P 
value plot is used to study the size and the Size-Power curves to study the power of 
the test. Furthermore, to judge the reasonability of the results we use a 95% 
confidence interval for the actual size (π) as:  
 

N
)1(  2 00

0
πππ −

± ,      (11) 

 
where N is the number of replications. Results that lie between these bounds will be 
considered satisfactory. 
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Several factors are expected to affect the size and power properties of causality 
tests. We, therefore, have investigated samples typical for small, medium, large and 
very large sizes. For each time series 20 pre-sample values are generated with zero 
initial conditions, and with net sample sizes of T = 50, 100, 200, 500, 1000. Table 1 
shows the different parameters of our Monte Carlo design. The number of 
replications per model is 10 000 for the size, and 1000 for the power of the test. The 
calculations were performed using GAUSS 6.0. 
 
 

Table 1 - Monte Carlo parameters of the GARCH effects 
 
Level of Persistence Λ γ  φ  ϕ  
High 0 0.01 0.09 0.90 
Medium 0 0.05 0.05 0.90 
Low 0 0.20 0.05 0.75 
High 2 0.01 0.09 0.90 
Medium 2 0.05 0.05 0.90 
Low 2 0.20 0.05 0.75 
 
 
In the following Figures 1 and 2, we show, by simulated data, how these processes 
look like. Figure 1 shows two stable VAR(1) models with GARCH errors and their 
respective residuals for sample sizes of 150 and 500 observations, respectively, 
while Figures 2, shows two stable VAR(1) models with breaks in the errors and for 
the same sample sizes.  
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Figure 1 - VAR(1) with GARCH errors 
 
Figure 1a - 150 observations Figure 1b - Residuals  

Figure 1c - 500 observations Figure 1d - Residuals  
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Figure 2 - VAR(1) with a break in the errors 
 
Figure 2a - 150 observations  Figure 2b - Residuals  

Figure 2c - 500 observations  Figure 2d - Residuals  

 
 
3. Results of the Size of the Test 
 
 
In this section, we present the most important results of our Monte Carlo experiment 
concerning the size of the test. Regarding the P value plots, under the condition 
when the distribution used to compute the ps  is correct, each of the ps should be 
distributed as uniform (0,1) and therefore the resulting graph should be close to the 
45o line as in Figure 3 in the Appendix. 
 
Looking at Tables 2a-e in the Appendix, we can see that the calculated sizes of the 
test over estimate the nominal sizes in all situations more or less regardless whether 
there exist low, medium or high GARCH effects. This is the case when we study a 
small sample of 50 observations. This is also confirmed when we observe the P-
value plots in Figure 3, in the Appendix, in which we only present the size when white 
noise and high GARCH effects are imposed. Here we see that in both cases the test 
over rejects the size, but that the calculated sizes still lay near to the 95% confidence 
interval for nominal size with a slightly higher over rejection when the high GARCH 
magnitudes are present.  
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When the sample size increases to 100 observations, as is illustrated Table 2b and 
Figure 3b, the properties of the test become better but there is still some over 
rejection present. When the sample size is increased to 200 observations the test 
performs well in all cases except for the case with high GARCH effects. In this case 
the test slightly over rejects the nominal size, as can be seen in Table 2c. Figure 3c 
shows that the over rejection is more severe for larger nominal sizes. The same is 
also true when the sample size is equal to 500 observations, as is illustrated in Table 
2d and Figure 3d in the Appendix. In a very large sample, i.e. 1000 observations in 
Table 2e and Figure 3e, the test performs satisfactorily in almost all situations, 
however with one exception in the case when a high GARCH effect is present.  
 
In situations when breaks are also imposed, the test is shown to over estimate the 
nominal size in almost all situations, and this over estimation turn out to be higher 
when the sample size is increased. This is also confirmed from the P-value plots in 
Figure 4, in the Appendix. 
 
In general, we could not find the over rejection to be that severe even in the where 
high GARCH effect is imposed. The test is consistent and converges slowly to its 
nominal size as the sample size increases. On the other hand, the test has not 
shown to be consistent when the breaks are imposed. 

 
4. Analysis of the Power of the Test 
 
 
Using Monte Carlo experiments, the power of the Granger-causality test is evaluated 
in the following segment of the paper. The power of the test is analysed for the 
sample sizes of 50, 100, 200, 500 and 1000 observations. The power functions have 
been calculating for the test in the case of white noise errors and under different 
GARCH effects, and with and without structural variance breaks. For the cases of 
white noise, low persistence and medium persistence of the GARCH, the power 
functions exhibit fairly similar properties. Based on this fact and since we could not 
find any noticeable differences in the performances of the test between these 
combinations regarding the size properties, we only show and compare the power 
functions of the white noise and the high GARCH cases. The power functions of the 
test, when breaks are imposed, are also compared to the cases that are 
characterised by white noise. 
 
The estimation of the power functions are conducted by calculating the rejection 
frequencies in 1000 replications by changing the λ- coefficients, in Equation (9), to 2. 
So-called Size-Power Curves are created in order to illustrate the estimated power 
functions against the nominal size. These estimated power functions of the test are 
compared graphically and presented in Figures 5-9 in the Appendix.  
 
As expected, the power functions are shifted upwards as the sample size increases. 
We observe lower power when the samples are small, while higher power functions 
are observed when the samples are large. A closer examination of the figures shows, 
that most frequently, the power functions are slightly lower in the case of the GARCH 
residuals (the dashed lines) than for the cases of white noise. The power functions 
are even slightly lower in the situations when breaks are imposed.  
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5.  A Brief Summary and Conclusions 
 
 
The size and power properties of the Granger-causality test in stable Vector 
Autoregressive (VAR) models are analysed in the presence of different magnitudes 
of Generalised Autoregressive Conditional Heteroscedasticity (GARCH) 
disturbances, and with and without structural breaks in the (unconditional) variance. 
The study is conducted by the use of Monte Carlo simulations. The size is analysed 
by executing 10 000 replications for each model with 1%, 5%, and 10% nominal size. 
The power properties are examined based on 1000 replications per model and for 
different alternative hypotheses. In the experimental design the GARCH effects are 
defined as low, medium, or high magnitudes, for different numbers of observations.  
 
The size results are illustrated both in the form of tables and by P-value graphs. It is 
found that the Granger-causality test slightly over rejects the nominal sizes especially 
in small samples and in the presence of high GARCH effects. When the sample size 
increases and when the GARCH effects are not too high, we observed less over 
rejection. The Granger-causality test is observed to converge slowly to its nominal 
size as the sample size increases and is therefore statistically consistent. However, 
in the presence of structural breaks in the variance the test suffers from severe over 
rejection of the true null hypothesis. In the presence of structural breaks in the 
variance the test is inconsistent since this over rejection increase when the sample 
size increases.  
 
For illustrative purposes, the power functions are merely presented graphically. As is 
expected, an increasing sample size leads to higher power functions that are shifted 
upwards.  
 
For the most part, the power functions of the Granger-causality test are slightly lower 
in the presence of GARCH errors compared to the cases of white noise residuals, 
and the power is also slightly lower in the cases when structural breaks are imposed 
in the variances.  
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APPENDIX 
 
 
 
Table 2a - Size of the test for 50 observations  
 

Nominal White Noise GARCH(1,1) Break 
  LP MP HP  

0.01 0.0160 0.0151 0.0156 0.0152 0.0337 
0.05 0.0642 0.0643 0.0658 0.0668 0.1010 
0.10 0.1169 0.1222 0.1231 0.1225 0.1654 

 
 
 
Table 2b - Size of the test for 100 observations  
 

Nominal White Noise GARCH(1,1) Break 
  LP MP HP  

0.01 0.0133 0.0126 0.0126 0.0141 0.0410 
0.05 0.0584 0.0579 0.0578 0.0593 0.1159 
0.10 0.1093 0.1069 0.1051 0.1087 0.1857 

 
 
 
Table 2c - Size of the test for 200 observations  
 

Nominal White Noise GARCH(1,1) Break 
  LP MP HP  

0.01 0.0112 0.0119 0.0119 0.0146 0.0431 
0.05 0.0546 0.0528 0.0527 0.0584 0.1206 
0.10 0.1056 0.1036 0.1054 0.1109 0.1889 

 
 
 
Table 2d - Size of the test for 500 observations  
 

Nominal White Noise GARCH(1,1) Break 
  LP MP HP  

0.01 0.0095 0.0107 0.0108 0.0141 0.0453 
0.05 0.0558 0.0544 0.0535 0.0639 0.1218 
0.10 0.1068 0.1031 0.1038 0.1121 0.1934 

 
 
 
Table 2e - Size of the test for 1000 observations  
 

Nominal White Noise GARCH(1,1) Break 
  LP MP HP  

0.01 0.0096 0.0083 0.0084 0.0150 0.0458 
0.05 0.0476 0.0479 0.0496 0.0628 0.1292 
0.10 0.0979 0.1034 0.0997 0.1183 0.2030 
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Figure 3 - P-value plots HP (GARCH) 
 
Figure 3a - 50 observations                                           Figure 3b - 100 observations 

 
Figure 3c - 200 observations                                    Figure 3d - 500 observations 
 

 
Figure 3e - 1000 observations  

 
Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
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Figure 4 - P-value plots when breaks in the errors are imposed  
 
Figure 4a - 50 observations  

 

Figure 4b - 100 observations 

 
Figure 4c - 200 observations 

 

Figure 4d - 500 observations 

 
Figure 4e - 1000 observations 

 

 

Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
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Figure 5 - Power–Size plots of the Granger-causality test for 50 observations 
 
Figure 5a - VAR(1) GARCH-WN Figure 5b - VAR(1) Break-WN 

Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
 
 
Figure 6 - Power-Size plots of the Granger-causality test for 100 observations 
 
Figure 6a - VAR(1) GARCH-WN 

 

Figure 6b - VAR(1) Break-WN 

Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
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Figure 7 - Power-Size plots of the Granger-causality test for 200 observations 
 
Figure 7a - VAR(1) GARCH-WN 

 

Figure 7b - VAR(1) Break-WN 

Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
 
 
Figure 8 - Power-Size plots of the Granger-causality test for 500 observations 
 
Figure 8a - VAR(1) GARCH-WN 

 

Figure 8b - VAR(1) Break-WN 

Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
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Figure 9 - Power-Size plots of the Granger-causality test for 1000 observations 
 
Figure 9a - VAR(1) GARCH-WN 

 

Figure 9b - VAR(1) Break-WN 

Solid lines = White noise. Dot dash line = GARCH. Dot lines = 95% confidence interval for nominal size. 
 
 
 
 
 
 
 
 
 


