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Abstract

Aim: The adiponutrin gene family consists of five genes (PNPLA1-5) coding for proteins with both lipolytic and lipogenic
properties. PNPLA3 has previously been associated with adult obesity. Here we investigated the possible association
between genetic variants in these genes and childhood and adolescent obesity.

Methods/Results: Polymorphisms in the five genes of the adiponutrin gene family were selected and genotyped using the
Sequenom platform in a childhood and adolescent obesity case-control study. Six variants in PNPLAT showed association
with obesity (rs9380559, rs12212459, rs1467912, rs4713951, rs10947600, and rs12199580, p<<0.05 after adjustment for age
and gender). Three variants in PNPLA3 showed association with obesity before, but not after, adjustment for age and gender
(rs139051, rs12483959, and rs2072907, p>0.05). When analyzing these SNPs in relation to phenotypes, two SNPs in the
PNPLA3 gene showed association with insulin sensitivity (rs12483959: = —0.053, p=0.016, and rs2072907: = —0.049,
p=0.024). No associations were seen for PNPLA2, PNPLA4, and PNPLA5.

Conclusions: Genetic variation in the adiponutrin gene family does not seem to contribute strongly to obesity in children
and adolescents. PNPLAT exhibited a modest effect on obesity and PNPLA3 on insulin sensitivity. These data, however,

require confirmation in other cohorts and ethnic groups.
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Introduction

A new family of genes with conserved patatin and lipase
domains has recently been identified and given the name patatin-
like phospholipase family [1-3]. The family consists of nine genes,
and of these, five genes form a subgroup called the adiponutrin
family [3]. This subfamily include patatin-like phospholipase 1
(PNPLAI), adipose triglyceride lipase (A7GL/PNPLA2), adiponu-
trin (ADPN/PNPLA3), gene sequence 2 (PNPLA4) and GS2-like
(PNPLA)S). It is believed that members of the adiponutrin family
complement the hormone sensitive lipase (HSL) as responsible for
adipocyte triacylglycerol lipase activity. Mice lacking HSL display
a lean phenotype and accumulate diglycerides suggesting that
HSL is the main enzyme for the second step of lipolysis and that
other enzymes are responsible for the first step [4-6]. Several
studies indicate that the protein encoded by PNPLA2 is one of the
enzymes responsible for this first step in lipolysis [3,7]. Less is
known about the function of the other members but data indicates
that they retain both lipolytic and lipogenic properties [1-3].

All members of the adiponutrin gene family are highly
expressed in the adipose tissue. Expression increases during
adipocyte differentiation and is regulated in by nutritional
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challenges [1-3]. For example, PNPLA3 is downregulated in the
adipose tissue of insulin resistant subjects and upregulated in a
glucose dependent fashion in response to insulin stimulation [8].
Two studies have demonstrated genetic association between
PNPLA2 and PNPLAS with type 2 diabetes and obesity,
respectively [8-10]. Far less is known about the other three
members of the family, PNPLAI, PNPLA4 and PNPLAS. The aim
of this study was to investigate the genetic relevance of all five
genes in the adiponutrin family in the pathogenesis of childhood
obesity and insulin resistance.

Results

In total, 61 out of 85 selected SNPs were successfully genotyped
using the Sequenom platform in a childhood and adolescent obesity
case-control material (Table S1 and Figures S1, S2, S3, S4, S5).
Clinical characteristics for this cohort have been presented
previously and are summarized in Table 1 [11]. Gender distribution
was similar between the obese and non-obese children. By definition,
the obese group was younger than the normal weight controls
(Table 1). The obese subjects all showed a significant degree of
msulin resistance (HOMA-IR: 3.04 [2.11-4.49], n=297).
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Table 1. Clinical characteristics of the child obesity case-
control study.

Non-obese Obese p-value
Gender (m/f) 234/257 226/240 0.79
Age (years) 17 (16-18) 13 (10-15) <0.001
Weight (kg) 61 (55-69) 91 (73-109) <0.001
Length (m) 1.72 (1.66-1.79) 1.61 (1.51-1.70) <0.001
BMI (kg/m?) 20.7 (19.5-22.3) 34.3 (30.9-38.3) <0.001
BMI-SDS 0.36 (—0.16-1.03) 5.98 (5.14-7.04)" <0.001

p-values are calculated using Wilcoxon Rank Sum test or chi? test for distributions.

Apatients with data available were 463. BMI-SDS - Body Mass Index - Standard
Deviation Score.

doi:10.1371/journal.pone.0005327.t001

Logistic regression identified six variants in PNPLAI that show
association with obesity when adjusting for age and gender
(rs9380559, rs12212459, rs1467912, rs4713951, rs10947600 and
the coding rs12199580, Table 2 and Table S2). Three variants in
PNPLA3 showed association with obesity (rs139051, rs12483959
and 1rs2072907, Table 2 and Table S2). This association was
unaffected by adjustment for gender but attenuated when
adjusting for age (data not shown). No variants in the PNPLAZ,
PNPLA4 and PNPLAS were associated with obesity in this cohort
(Table S2).

The associated SNPs were further analyzed for association with
phenotypes related to obesity in the group of obese children and
adolescents (Table 3). Similar data for the control group was not
available. PNPLAI variants rs12212459 and rs1467912 showed
association with BMlI-standard deviation score (SDS) after
adjusting for age and gender (Table 3). Adjusting for insulin
resistance defined by HOMA-IR did affect this observation
(B=0.30, p=0.025 and P=0.40, p=0.0029, respectively).
PNPLAI SNP rs10947600 was associated with both body weight
(n=330, GG: 104.3[85.1-124.8] kg, GA: 94.1[78.3-111.9] kg,
AA: 94.4[79.3-109.0] kg, p= —3.38, p=0.018) and glucose levels
n=292, GG: 4.9[4.7-5.3] mmol/L, GA: 4.9[4.6-5.2] mmol/L,
AA: 4.7[4.5-5.1] mmol/L, p=—0.0077, p=0.032) and PNPLAI
SNP rs12199580 with glucose levels (n =289, CC: 4.9[4.7-5.3]
mmol/L, CA: 5.0[4.6-5.2] mmol/L, AA: 4.7[4.5-5.1] mmol/L,
B=—0.0085, p=0.016).

PNPLA Gene Family and Obesity

The obesity associated PNPLA3 variants rs12483959 and
rs2072907 showed association with insulin sensitivity (Table 3)
and disposition index (rs12483959: n =264, GG: 122[66-208],
GA: 109[61-214], AA: 74[52-197], B=—0.14, p=0.017 and
rs2072907: n=265, GG: 121[66-209], GC: 109[58-215], CC:
83[56-192], p=—0.12, p=0.043). Adjusting for BMI-SDS did
not affect the association with insulin sensitivity (= —0.053,
»=0.015 and B=—0.049, p=0.022, respectively) or disposition
index (B=—0.15, p=0.012 and B=—0.12, p=0.031, respective-
ly).

Discussion

The genetic analysis using TagSNPs in the five genes included
in the adiponutrin gene family revealed that some variants within
these genes exert a weak but significant effect on obesity in
children and adolescents. In this study the association was limited
to the two genes PNPLAI and PNPLA3. Findings concerning
PNPLA3 variants were attenuated when adjusting for age and
gender but further analysis indicated that they might influence
msulin sensitivity.

Childhood obesity is associated with increased risk of cardio-
vascular disease [12] and reduced life expectancy [13,14]. It is
therefore of great importance to study this group in order to
identify markers that could recognize individuals predisposed to
obesity at an early stage. However, the polygenic nature of obesity
makes the search for risk altering genes difficult. Recent studies
have identified two strong obesity candidate genes, the fat mass
and obesity associated (/70) and melanocortin 4 receptor (MC4R)
[15-18]. Genes involved in lipid metabolism such as lipases would
be relevant to investigate in relation with obesity since it is a state
of excessive storage of lipids. In the obese state, the adipose tissue is
less efficient in buffering lipids resulting in increased levels in the
circulation. These lipids will then be stored in other tissues thereby
promoting development of insulin resistance and possibly type 2
diabetes [19]. Genetic studies of for example the important lipase
hormone sensitive lipase (/ZSL) show significant associations with
measures of obesity suggesting that genes coding for proteins with
lipase activity are of importance [20-25]. The five adiponutrin
gene family members encode proteins that are able to both
catalyze the build-up and breakdown of fat thus identifying them
as possible candidate genes [1-3]. Data presented here, for the
most part, failed to clearly confirm this candidacy. We found
borderline association with obesity for PNPLAI and PNPLA3, but
these data would not hold for multiple corrections. Given the

@ PLoS ONE | www.plosone.org

Table 2. Genetic variants in PNPLA1 and PNPLA3 showing significant association with obesity using logistic regression.
Gene SNP N (case/control) MAF (cases) OR 95% CI P Padjusted
PNPLAT rs9380559 451/484 043 1.42 (1.02-1.98) 0.63 0.038
rs12212459 440/464 0.41 0.70 (0.50-0.99) 0.94 0.043
rs1467912 455/482 037 0.71 (0.51-1.00) 0.61 0.049
rs4713951 451/479 0.46 0.71 (0.51-0.98) 0.67 0.037
rs10947600 456/482 041 0.72 (0.52-0.99) 0.87 0.042
rs12199580 451/485 0.41 0.70 (0.51-0.96) 0.64 0.028
PNPLA3 rs139051 453/469 0.35 0.99 (0.71-1.38) 0.014 0.97
rs12483959 450/484 0.16 0.79 (0.52-1.20) 0.023 0.27
rs2072907 455/477 0.17 0.82 (0.55-1.24) 0.041 0.35
p-values are calculated using Logistic regression including gender and age as covariates, additive model. The presented Odds ratios (OR) are adjusted for age and
gender. SNP - Single nucleotide polymorphism, MAF — Minor Allele Frequency, OR - Odds ratio, 95% Cl - 95% confidence interval.
doi:10.1371/journal.pone.0005327.t002
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PNPLA Gene Family and Obesity

Table 3. Obesity-associated variants in PNPLAT and PNPLA3 and the association with phenotypes using multiple regression
analyses.
SNP BMI-SDS Insulin sensitivity (Si*10~°/pM/min) HOMA-IR
rs9380559 n 323 271 224
—0.058 0.0062 -0.15
P 0.60 073 0.47
AA 6.07 (5.19-7.20) 0.29 (0.18-0.46) 3.40 (1.99-4.91)
AG 5.61 (4.97-5.68) 0.33 (0.19-0.48) 3.38 (2.46-4.52)
GG 6.03 (5.29-6.71) 0.37 (0.25-0.49) 3.22 (2.35-4.40)
rs12212459 n 316 268 220
0.24 0.0098 0.012
P 0.036 0.58 0.96
AA 5.76 (4.86-6.67) 0.32 (0.19-0.43) 3.44 (2.48-4.61)
AC 5.76 (5.15-6.85) 0.33 (0.19-0.49) 3.38 (2.24-4.90)
cc 6.07 (5.30-7.56) 0.33 (0.21-0.52) 3.30 (1.80-4.48)
rs1467912 n 329 276 229
B 0.26 0.0048 —0.068
P 0.022 0.80 0.76
cc 5.82 (4.95-6.68) 0.32 (0.19-0.45) 3.36 (245-4.61)
cT 5.66 (5.08-6.69) 0.34 (0.20-0.51) 3.35 (2.10-4.74)
TT 6.22 (5.53-7.61) 0.32 (0.21-0.46) 343 (2.27-4.63)
rs4713951 n 326 275 228
B 0.22 —-0.014 —0.080
P 0.052 045 0.72
cc 5.66 (4.98-6.68) 0.33 (0.20-0.47) 3.30 (2.45-4.19)
cT 5.81 (5.02-6.90) 0.31 (0.18-0.49) 3.64 (2.34-4.83)
TT 6.11 (5.37-7.37) 0.33 (0.22-0.42) 3.19 (1.92-4.53)
rs10947600 n 327 275 228
B 0.024 0.015 -0.28
P 0.83 041 0.20
GG 5.89 (4.97-6.88) 0.33 (0.18-0.48) 3.56 (2.49-5.03)
GA 5.83 (5.12-6.93) 0.33 (0.21-0.48) 3.25 (2.31-4.55)
AA 5.83 (5.02-7.01) 0.28 (0.19-0.45) 3.24 (1.89-4.78)
rs12199580 n 323 271 224
0.078 0.0067 -038
P 0.48 0.72 0.088
cc 5.82 (4.92-6.68) 0.34 (0.19-0.49) 3.54 (2.46-5.21)
CA 5.87 (5.14-6.97) 0.33 (0.21-0.47) 3.33 (2.45-4.54)
AA 5.83 (5.14-7.05) 0.28 (0.19-0.45) 3.07 (1.83-4.61)
rs139051 n 326 274 227
B —0.060 —0.0223 0.14
P 0.59 0.23 0.46
GG 5.90 (4.98-7.15) 0.33 (0.22-0.50) 3.43 (2.37-4.58)
GA 5.75 (5.00-6.57) 0.33 (0.18-0.47) 3.35 (2.30-4.80)
AA 5.95 (5.14-6.89) 0.30 (0.21-0.42) 3.61 (2.34-4.75)
rs12483959 n 324 274 228
B 0.029 —0.053 -0.30
P 0.83 0.016 0.25
GG 5.83 (5.00-7.09) 0.33 (0.21-0.49) 3.32 (2.36-4.63)
GA 5.81 (5.05-6.54) 0.33 (0.16-0.42) 3.56 (2.39-5.03)
AA 6.14 (5.28-7.32) 0.34 (0.28-0.65) 2.50 (2.14-4.00)
rs2072907 n 327 275 229
B 0.034 —0.049 -0.21
@ PLoS ONE | www.plosone.org 3 April 2009 | Volume 4 | Issue 4 | e5327



Table 3. Cont.

PNPLA Gene Family and Obesity

SNP BMI-SDS Insulin sensitivity (Si*10~°/pM/min) HOMA-IR
P 0.79 0.024 0.40
GG 5.81 (4.99-7.04) 0.33 (0.22-0.49) 3.29 (2.35-4.63)
GC 5.88 (5.02-6.65) 0.27 (0.16-0.42) 3.56 (2.39-4.72)
ccC 6.24 (5.47-7.16) 0.33 (0.25-0.64) 2.67 (2.28-4.48)

assessment - Insulin Resistance.
doi:10.1371/journal.pone.0005327.t003

hypothesis generating nature of the study it is important to
underline that the results should be interpreted with caution and
need confirmation elsewhere.

So far little is known concerning genetic variation in the
adiponutrin gene family and its possible influence on metabolic
disease. Only the PNPLA2 and PNPLA3 have been studied in this
context before. For PNPLAZ, common variants has been associated
with free fatty acid levels, triglyceride levels and type 2 diabetes
suggesting that the gene may play an important role for the risk
factors associated with obesity rather than obesity per se [9]. Rare
mutations in the PNPLA2 gene, resulting in a truncated protein
with no capacity to bind to lipid droplets but with an intact patatin
domain, has been identified in a subgroup of patients with neutral
lipid storage disorder (NLSD) with mild myopathy [26]. NLSD is a
disorder characterized by storage of triglyceride-containing
cytoplasmic droplets in for example leukocytes, bone marrow,
skin and muscle (OMIM #610717). In our study we did not find
any association between PNPLAZ2 and obesity and therefore no
further analysis was conducted. As stated in both previous studies
regarding PNPLAZ, no association was found with obesity and the
NLSD patients carrying PNPLA2 mutations were not obese [9,26].

Genetic variants in PNPLA3 have previously been associated
with obesity [8]. In this study we confirm these data but also
demonstrate an association with insulin sensitivity. The association
with obesity disappears when adjusting for age while that with
msulin sensitivity association remains. Data may suggest that
variants in PNPLA3 rather affect insulin sensitivity. Although obese
adolescents in general are insulin resistant, the degree of obesity is
not a major determining factor [27] and together with age,
cardiorespiratory fitness, and truncal fat, only 25% of individual
variation can be explained [28]. Thus, it is likely that genetic
vulnerability is of importance and it is possible that PNPLA3
variation may play a role It has been shown that both genetic
variants and insulin resistance regulate adipose PNPLA3 gene
expression [8,29].

Genetic variants in the PNPLAI, PNPLA4 and PNPLA) genes
have not been studied before. We found an association between
PNPLAI and juvenile obesity but no associations were found for
PNPLA4 or PNPLAS. These data need to be replicated due to the
relatively small study material used in this study.

In conclusion, although members of the adiponutrin gene family
are clear candidate genes for obesity we were unable to clearly
confirm this candidacy for obesity in children and adolescents. We
did find a modest effect of PNPLAI on obesity and PNPLAS on
insulin sensitivity although these data need confirmatory studies.
Furthermore, although PNPLA2, PNPLA4 and PNPLA5 did not
show any significant association with obesity and insulin sensitivity,
we cannot rule out a possible implication in the pathogenesis due
to the low power of this study.

@ PLoS ONE | www.plosone.org

p-values are calculated using multiple regression including gender and age as covariates. SNP - Single nucleotide polymorphism. n - number of observations, -
Regression coefficient, p - p-value for t-statistic. f — fasting samples, BMI-SDS - Body Mass Index - Standard Deviation Score, HOMA-IR — homeostasis model of

Materials and Methods

Study subjects

We studied 466 obese children and adolescents referred to the
National Childhood Obesity Centre at Karolinska University
Hospital and Karolinska Institute and 491 non-obese adolescents
recruited from 17 upper secondary schools around Stockholm
(Table 1) [11]. For the obese children we had available blood
samples, growth charts, clinical journal notes, medical examina-
tion and laboratory reports as well as questionnaires completed by
the parents of the children at enrolment. The lean adolescents
were asked through the school nurse if they wanted to participate
in the study. Blood was collected and every adolescent completed a
questionnaire concerning ethnicity, health and the use of medical
drugs. Subjects with overweight/obesity or chronic diseases were
excluded from the control group.

Height (Ulmer Stadiometer, Ulm, Germany), and weight (Vetek
TI-1200, Vadds, Sweden) were measured with subjects in light
clothing and body mass index (BMI; kg/m? calculated. Body
weight and height was measured at the first visit to the nearest
0.1 kg and 1 cm, respectively. All subjects in the obese group were
obese according to international age and sex adjusted standards
[30]. Values of a BMI standard deviation score (BMI-SDS) was
calculated from weight, height, age and gender based on a French
material from 1982 [31]. All subjects gave their written informed
consent and the Regional Committee of Ethics, Stockholm,
approved the study. The study was conducted according to the
principles of the Helsinki Declaration.

Laboratory analysis

Blood samples from the obese children for measurement of
glucose, (glucose-6-phosphate dehydrogenase method, Kebo Lab,
Stockholm, Sweden), insulin (Pharmacia Diagnostics AB, Uppsala,
Sweden), HDL-cholesterol and triglycerides (Boehringer, Man-
nheim, Germany) were obtained after an over-night fast. Analyses
were performed at a certified laboratory (Department of Clinical
Chemistry, Karolinska University Hospital). The control subjects
were not fasting when the blood samples were obtained. Therefore
insulin and glucose were measured only in the obese cohort.
Insulin resistance was estimated by homeostasis model of
assessment (HOMA-IR) [32]. Insulin sensitivity index representing
the effect of insulin to catalyze the clearance of glucose from
plasma after an intravenous glucose load were calculated using the
Bergman minimal model approach [11,33]. Acute insulin response
reflects the first phase of endogenous secretion in response to
glucose infusion and was calculated as area under the curve during
the first 10 minutes [11,34]. Genomic DNA was prepared by
standard methods. DNA was extracted from whole blood by using
QiaGen MaxiPrep (QiaGen, Germany) at the DNA/RNA
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Genotyping Lab, SWEGENE Resource Center for Profiling
Polygenic Disease, Lund University, Malmé University Hospital,
Malmo, Sweden.

Genotyping

SNPs were selected by using data from the HapMap consortium
for each of the sequences coding for the selected five genes
including an extra 5000 bases upstream and downstream [35].
TagSNPs were then selected using Tagger in the Haploview
program for all five genes [36]. Additional coding SNPs were
selected from the National Center for Biotechnology Information
(NCBI) SNP database (http://www.ncbi.nlm.nih.gov/SNP/). In
total, 85 SNPs passed the assay design and were genotyped using
the Sequenom platform (MALDI-TOF) at the DNA/RNA
Genotyping Lab, SWEGENE Resource Center for Profiling
Polygenic Disease, Lund University, Malmé University Hospital,
Malmo, Sweden. 24 SNPs failed genotyping and Hardy Weinberg
equilibrium. These SNPs were removed from further analysis
leaving a total of 61 SNPs for analysis (T'able SI and Figures S1,
S2, 53, 54, S5). A selection of SNPs were re-analyzed in a subset of
283 patients using the TagMan allelic discrimination method on
the ABI 7900HT according to manufacturers’ recommendations
(Applied Biosystems). Success rate was 98.6%.

Statistical analysis

Logistic regression with age and gender as covariates were used
for estimating the genotype association. Linear multiple regres-
sions were performed in order to test for SNP effects on obesity
and insulin resistance (HOMA-IR) as quantitative traits. All traits
were log transformed for normal distribution. These analyses were
adjusted for age and gender. Also, the obesity analysis was
adjusted for insulin resistance and vice versa insulin resistance
analysis for obesity. All p-values are based on additive models for
the genetic variants. Data are presented as median with
interquartile range within brackets [25™-75"] or odds ratio
(OR) with 95% confidence interval (CI). All statistical calculations
were performed using PLINK (http://pngu.mgh.harvard.edu/
purcell/plink/index.shtml) [37]. Furthermore, the power to detect
an additive OR of 1.2 in this material when the minor allele
frequency (MAF) is 0.05 is 17% and 53% for a MAF of 0.5 when o
is set at 0.05.

Supporting Information

Table S1 Hardy Weinberg equilibrium (HWE) for genetic
variants analyzed in the Adiponutrin gene family.

Found at: doi:10.1371/journal.pone.0005327.s001 (0.12 MB
DOC)
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Table S2 Variants in the five genes in the Adiponutrin gene
family and the association with obesity using logistic regression

analyses.
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Figure S1 Graphical overview of the patatin-like phospholipase

1 (PNPLAI) gene and linkage disequilibrium obtained from
HapMap (http://www.hapmap.org/). SNPs successfully geno-
typed by MALDI-TOF MS are marked with a black square.
Found at: doi:10.1371/journal.pone.0005327.s003 (0.62 MB
PNG)

Figure 82 Graphical overview of the patatin-like phospholipase
2 (PNPLA2) gene and linkage disequilibrium obtained from
HapMap (http://www.hapmap.org/). SNPs successfully geno-
typed by MALDI-TOF MS are marked with a black square. One
SNP, the rs1138693, is not included since it was not present in the
HapMap database at the time of data extraction. It was included
in the study because it is a coding SNP.

Found at: doi:10.1371/journal.pone.0005327.s004 (0.01 MB
PNG)

Figure 83 Graphical overview of the patatin-like phospholipase
3 (PNPLA3) gene and linkage disequilibrium obtained from
HapMap (http://www.hapmap.org/). SNPs successfully geno-
typed by MALDI-TOF MS are marked with a black square.

Found at: doi:10.1371/journal.pone.0005327.s005 (0.26 MB
PNG)
Figure S4 Graphical overview of the patatin-like phospholipase

4 (PNPLA4) gene and linkage disequilibrium obtained from
HapMap (http://www.hapmap.org/). SNPs successfully geno-
typed by MALDI-TOF MS are marked with a black square.
Found at: doi:10.1371/journal.pone.0005327.s006 (0.06 MB
PNG)

Figure S5 Graphical overview of the patatin-like phospholipase
5 (PNPLA5) gene and linkage disequilibrium obtained from
HapMap (http://www.hapmap.org/). SNPs successfully geno-
typed by MALDI-TOF MS are marked with a black square.
Found at: doi:10.1371/journal.pone.0005327.s007 (0.17 MB
PNG)
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