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Abstract- In the last years, many vehicle manufacturers 
have introduced advance driver support in some of their auto- 
mobiles. One of those new features is  Adaptive Cruise Control 
(ACC), which extends the conventional cruise control system 
to control of relative speed and distance to other vehicles. 
In order to design an ACC controller it is  suitable to have a 
model on drivers’ behavior. Our approach to find dynamical 
models of the drivers’ behavior was to use system identifica- 
tion Basic data analysis was made by means of system iden- 
tijication methodology, and several models of drivers’ longitu- 
dinal behavior are proposed, including both linear regression 
models and subspace based models. Detection when a driver 
is chauging his behavior in various situations to a deviant 
behavior is usefd. To that purpose a GARCH model was used 
to model the driver in arousal situations, where the driver 
changes behavior, is proposed. 

I. INTRODUCTION 
Systems that support a driver in traffic situations and 

reduce the total driver workload, have been studied since 
the 1950s. Several of these support systems aim to- 
wards fully or partially automatic driver assistance sys- 
tem, such as those for longitudinal control often called 
ACC system [lo], Ill], [12], [17]. Much attention to ACC 
devices has also appeared in the PATH project [9]. The 
motivation for these systems is that they are aiming to  
increase the driving comfort, reduce the traffic accidents 
and increase the flow throughput. These ACC systems 
autonomously adjust the vehicle’s speed according t o  cur- 
rent driving conditions. In order to accomplish driver 
comfort the system must resemble driver behavior in 
traffic and the system must avoid irritation of the driver 
and the surrounding traffic. Therefore, to design a sys- 
tem that resembles the natural longitudinal behavior a 
good model of a driver is needed. There exist several 
models of the drivers’ longitudinal behavior, which all 
aim to describe various parts of the drivers’ behavior. 
The model structures are different, some are based on 
cognitive models [6], [7], [15], [18] or are general longitu- 
dinal models 121, [16], 1221 or only car-following models 
[4], [l], [3]. Most of them have one thing in common in 
that they are using static models. 

II. MATERIAL AND METHODS 

A Equipment and experimental setup 
Fig. 1 shows a car following situation. The speed of 

the preceding and following vehicle is denoted V I  and vf, 

Follower Leader 

Body-fixed 

Fig. 1. Body-ked and earth-ked reference frames. 

and the distance between the vehicles is denoted A Y ,  
headway A Y  = y~ - y f .  The relative speed is defined as: 

There are four types of situations, where data have 
been collected following, cutting-in, braking, and mode 
changing. Cutting-in situations describe a scenario 
wherein a vehicle cuts in front of the driver’s vehicle 
from an another lane. In the braking situations the 
headway distance decreased under the individual mini- 
mal headway distance, and the driver braked to reestab- 
lish the headway distance. In mode-changing situations 
the driver shifted from uninfluenced driving to car fol- 
lowing. Data collection of various situations have been 
done on public roads as well as on test tracks. Seven dif- 
ferent drivers of various sex and age (23-35) participated 
in the data collection. The data acquisition was per- 
formed in the summer of 2000 during good weather con- 
ditions. The equipment consisted of two cars, Volvo S70, 
one car was equipped with a radar from CelciusTech, 
that was used to measure the distance to the front vehi- 
cle AY and it’s relative speed AV. A practical difliculty 
was that the radar must have good resolution, also at 
small distances and that the relative speed measured 
with high resolution. In some of the situations, a laser 
from IBEO was also used, to measure A Y  and AV. The 
other car used as front vehicle had the property that it 
was possible to program the car to drive along a trajec- 
tory. By using that feature, it was possible to reproduce 
the situation and to let all the different drivers drive the 
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Fig. 2. Data collection from of the inputs in one following situation. 
Data are from 7 different drivers. 

same situation. 

B. Data Analysis 
The collected data variables are space headway ( A Y ) ,  

differential velocity (AV), velocity ( u f ) ,  throttle angle 
(at), brake pressure (p~). A natural choice of inputs 
to the driver model are A Y ,  AV,  and vf. The outputs are 
then at, Pb.  
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Fig. 3. Data collection from of the outputs in one following situation. 
Data are from 7 different drivers. 

Fig. 2 and 3 shows data from a following situation in 
which seven different drivers participated. There are in- 
dividual differences between the drivers, but also large 
similarities among their behaviors. The major differ- 
ences between the drivers consist in the choice of space 
headway and safety distance. 

Basic data analysis was made by means of system iden- 
tification methodology [ 131. Autospectra, cross-spectra 
and coherence spectra of the inputs (AY, AV, and vf) 
and outputs (at and P b ) ,  were made for assessment of 
the various signals levels and relationship. 

. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  : I :  : : :::I . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Frequency [Hz] 

. . . . . . . . . . . . . . . . . . . . . . . . . .  

1 o4 1 o - ~  10" io-' 
Frequency [Hz] 

Fig. 4. Coherence spectra between the inputs and the outputs. "he 
upper figure: coherence between inputs [ A Y  Au up] and the out- 
put pb. The lower figure: coherence between inputs [AY A u  up] 
and the output at. 

In Fig. 4 the coherence among inputs and outputs axe 
shown. The coherence is high, which can be interpreted 
as an indication that there exists a linear relationship 
between the inputs and the outputs. Note that the co- 
herence spectra for Pb is higher, than for at. 

C. Modeling 
The human driver is a closed-loop system, as in Fig. 

5 ,  where the feedback is the front vehicles velocity VI. 
All the experiments were performed in closed-loop feed- 
back operation and there may be systematic problems 
how to obtain relevant information fiom this type of ex- 
periments [13, Ch. 81. If there is feedback during the 
experiment the data may not be informative enough to 
design a valid model of the driver. The system is of 
multi-input multi-output structure. 

W U 

I I 

Fig. 5. Structure of a human driver in car-following. r is the inputs 
to the driver from the lead vehicle. U is the observation noise, w 
is the motor noise, and y is the car position and velocity. 

We use the inputs and outputs chosen to make a di- 
rect identification of the human driver. Different models 
have been used, which in short described below. 
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C . l  Linear regression models 
To h d  ifthere is some relationship between the input 

data and the output, a linear regression model is esti- 
mated, with the regressors. The linear regression model 
takes on the format 

Iu. " L T S  AND VALIDATION 

Yk = [AY& ... 6Yk -, AVk ... AVk ... v f ~  ... vf~,] e + ek ( 2 )  

where n is the estimated order and ek is additive errors. 
A linear regression model of high order was estimated. 
Since the model order is high, it may be assumed that 
the computed residual &k is a good approximation of the 
noise eh. The residual sequence is used in pseudolinear 
regression to  estimate a model of lower order. 

C.2 State-space models using subspace-based identifica- 

A discrete-time time-invariant system in state-space 
tion 

realization: 

Xh+l = A X k  + BUk + W k  

Y h  = cxk  + DUk -k U& 

where W h  and Uk are noise. 
The problem is to  estimate the order n of the system and 
the system matrices A, B ,  C, D .  In Fig. 6 is a schematic 
representation of the identifkation problem. The sub- 

Wk uk 

Fig. 6. 

space method is well suited for modeling of multivariable 
systems [13]. The subspace method base the criteria of 
determinate the order of the model on singular-values. 
To determinate the order a Hankel matrix is constructed 
1201, [19]. The choice of order is based on the singu- 
lar values of the Hankel matrix. However, if there is a 
strong noise influence then this criterion degrades and 
becomes non-conclusive. 

C.3 Behavioral model 
Behavioral model identacation may be suggested in 

cases without clear-cut distinction of signals as inputs 
or outputs [21], [14]. This may be preferable since there 
is interaction between the driver and the car. There 
are also interactions between the driver and other ve- 
hicle, for example in cutting-in situations. The behav- 
ioral method has great similarities with the subspace 
method, but differs in its absence of explicit separation 
among inputs and outputs. Thus, the estimated state- 
space model represents all the dynamics, both for the 
inputs and for the outputs. Then by matrix fiaction de- 
scription an input-output model is obtained. 

In all cases, identification accuracy was measured us- 
ing Variance-Accounted-For (VAF) . 

(3) 

In the model estimation the normalized AY, AV, vf, at 
and p t  was used. 

A. Linear regression 

A linear regression model of order n=30 was estimated 
and is shown in Fig 7. The model captures some of the 
driver behavior. One reason why not even this high- 
order model succeeds in modeling the driver may be that 
the experiment setup is a closed-loop system. The model 
is better in predicting the driver's throttle angle at be- 
havior, than the brake pressure Pb behavior. A possible 
background would be that the acceleration and decelera- 
tion have Merent  explanations, for example that decel- 
eration could be expIained by air resistance or topogra- 
phy. The residual analysis of the model is shown in Fig 
8 and it is found that the residual fiom output at and 
the output Pb have Merent  distributions. The residuals 
of this high order model were further used to estimate 
a pseudolinear regression model. The result is shown in 
Fig. 9, and the model capture most of the driver's be- 
havior, even the braking behavior. 
VAF scores for the linear regression model are 41.1% ( p b )  
and 46.2% (at)  whereas the VAF scores for the pseu- 
dolinear regression model: 89.9% ( P b )  and 73.2% (at)  
respectively. 

4 .. , . I _ .  . . . . . .,;:::. .. . . . . .!. . .. . . . .!. . ... . . .!.. . . . . . . . ; . . . . . . . . . I _ ,  . . . .. . 
: :: . .. 
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Time [SI 

Fig. 7. Data (grey) and simulated output data from a linear regression 
model of order n=30 (black). 
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Fig. 8. Histogram and auto-correlation of the residuals from a thir- 
tieth order linear regression model. To the left is the residuals of 
output pb. To the right is the residuals of output at. 
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Fig. 10. Data (g.ey) and simulated output data from state-space 
models using subspace methods, n=5 (dashdot), and n=15(solid). 

"\ $1 L 

Fig. 11. Histogram and auto-correlation of the residuals from a fifteen 
ordm sub-spaced model. To the left is the residuals of output Pb.  
To the right is the residuals of output at. 

Fig. 9. Data (grey) and simulated output data from a pseudohear 
regression model of first order (black). 

B. Subspace-based identification 
The state-space models using subspace methods have 

been designed by using the SMI Toolbox1 in Matlab. n 
Fig. 10 the data and simulated output data have been 
compared and it is found that lower order models of 
state-space models have problems to capture the behav- 
ior of the driver. The state-space models capture some 
of the driver's behavior (Fig. 10). Best result was ob- 
tained for the model order n=15, but there are some pos- 
sible time delays. The estimated model n=15 is better 
to capture the driver's throttle behavior than the brake 
behavior with VAF scores: 44.3% ( P b )  and 48.7% (at). 
The residual analysis of the model is shown in Fig. 11 
and like in for the linear regression model the residual 
for at have different different distributions. 

C. Behavioral model 
A behavioral model of order n=7 was estimated and is 

shown in Fig 12. The model captures the driver behavior 
very good, it captures both the braking behavior and the 
throttle behavior. The residual analysis of the model is 
shown in Fig. 13 and they both seem to  have normal 

'http://mntrol-lab.et.tudelft.nl/ haver/smi/smi.html 

distributions. VAI? scores for the behavioral model are 
81.9% ( P b )  and 92.2% (at). 

D. The 'arousal behavior' 
We notice that the residual E from the seventh order 

behavior model for P b  becomes large when the braking 
starts. We may call this phenomenon 'arousal behav- 
ior' and estimate a Generalized Auto-Regressive Con- 
ditional Heteroscedasticity (GARCH) model [5], [8]. A 
GARCH(r,m) model is: 

U t  = ut& (4) 

where ut is an independently distributed Gaussian se- 
quence with zero mean and unit variance and ht is: 

ht = K + &ht + &ht-2 + . + &ht+ 
+alut-l 2 + a 2 ~ : - 2  + . . * + a m U t - m  2 (5) 

where K = [l - 61 - 6 2  - ... - 6,]<. In Fig. 14 the 
squared residual sequence is shown, and the residual 
of Pb seems to  increase linearly during the brake part. 
The estimated third order linear regression models for 
the different drivers capture the behavior of the resid- 
ual well, Fig. 14, 15, and 16. In Fig. 17 the impulse 
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Fig. 12. Data (grey) and simulated output data from a behavioral 
model( black). 
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Fig. 13. Residuals of output pb from a behavior model n=7 (left). 
Residuals of output at from a behavior model n=7 (right). Notice 
that the residual of the output Pb becomes large when the time is 
around 460s. 

response from the linear regression of the second driver. 
Notice that there is an association between the arousal 
behavior in the brake situation and the throttle behav- 
ior, respectively. 

IV. CONCLUSION 

We have studied the dynamical longitudinal behav- 
ior of drivers' and models designed with various model 
structure. The design approach to  use system identifica- 
tion, such as linear regression, state-space models using 
subspace methods, and behavioral models was found to 
work fairly well, especially with the behavioral models. 
The accuracy differs between the various model struc- 
tures, and the best VAF scores are achieved by the be- 
havioral model. Progress of the VAF scores for increas- 
ing model orders and for various model structures is 
shown in Fig. 18. The modeling of the arousal behavior 
was found to  work well. The proposed model captures 
the deviant behavior in arousal situations. 

0 20 40 60 80 
IS! 

I 

--I 
1 

- 0  20 40 60 80 al 
151 Is1 

I 

94 o -5' I 
r o o  20 40 60 80 

Time [SI 
Fig. 14. Upper figure shows squared residuals E from the behavioral 

model n=7, illustrating the hetemscedasticity variance properties. 
Center and lower figures show residuals E from driver 1 (dashed) 
and simulated residuals E from a linear regression model (solid). 
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Fig. 15. Residuals E from driver 2 (dashed) and simulated residuals 

E from a linear regression model (solid). 
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