Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Spin-3/2 physics of semiconductor hole nanowires: Valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings

Csontos, D. ; Brusheim, Patrik LU ; Zuelicke, U. and Xu, Hongqi LU (2009) In Physical Review B (Condensed Matter and Materials Physics) 79(15).
Abstract
We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum wires. The spin-3/2 character of the topmost bulk-valence-band states results in a strong variation in subband-edge g factors between different subbands. We elucidate the interplay between quantum confinement and heavy-hole-light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband edges with respect to changes in the shape or strength of the wire potential. The ability to address individual subband edges in, e.g., transport or optical experiments enables the study of hole states with nonstandard spin polarization, which do not exist in spin-3/2 systems. Changing the aspect ratio of hole wires with... (More)
We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum wires. The spin-3/2 character of the topmost bulk-valence-band states results in a strong variation in subband-edge g factors between different subbands. We elucidate the interplay between quantum confinement and heavy-hole-light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband edges with respect to changes in the shape or strength of the wire potential. The ability to address individual subband edges in, e.g., transport or optical experiments enables the study of hole states with nonstandard spin polarization, which do not exist in spin-3/2 systems. Changing the aspect ratio of hole wires with rectangular cross section turns out to strongly affect the g factor of subband edges, providing an opportunity for versatile in situ tuning of hole-spin properties with possible application in spintronics. The relative importance of cubic crystal symmetry is discussed, as well as the spin splitting away from zone-center subband edges. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
keywords
spin polarised transport, semiconductor quantum wires, nanowires, magnetoelectronics, g-factor, bound states, crystal symmetry, spin, systems, valence bands, Zeeman effect
in
Physical Review B (Condensed Matter and Materials Physics)
volume
79
issue
15
article number
155323
publisher
American Physical Society
external identifiers
  • wos:000265944200088
  • scopus:66249095992
ISSN
1098-0121
DOI
10.1103/PhysRevB.79.155323
language
English
LU publication?
yes
id
1ec918ad-7093-4268-a691-ea5f26d22e7d (old id 1425841)
date added to LUP
2016-04-01 14:30:51
date last changed
2022-04-06 19:01:49
@article{1ec918ad-7093-4268-a691-ea5f26d22e7d,
  abstract     = {{We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum wires. The spin-3/2 character of the topmost bulk-valence-band states results in a strong variation in subband-edge g factors between different subbands. We elucidate the interplay between quantum confinement and heavy-hole-light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband edges with respect to changes in the shape or strength of the wire potential. The ability to address individual subband edges in, e.g., transport or optical experiments enables the study of hole states with nonstandard spin polarization, which do not exist in spin-3/2 systems. Changing the aspect ratio of hole wires with rectangular cross section turns out to strongly affect the g factor of subband edges, providing an opportunity for versatile in situ tuning of hole-spin properties with possible application in spintronics. The relative importance of cubic crystal symmetry is discussed, as well as the spin splitting away from zone-center subband edges.}},
  author       = {{Csontos, D. and Brusheim, Patrik and Zuelicke, U. and Xu, Hongqi}},
  issn         = {{1098-0121}},
  keywords     = {{spin polarised transport; semiconductor quantum wires; nanowires; magnetoelectronics; g-factor; bound states; crystal symmetry; spin; systems; valence bands; Zeeman effect}},
  language     = {{eng}},
  number       = {{15}},
  publisher    = {{American Physical Society}},
  series       = {{Physical Review B (Condensed Matter and Materials Physics)}},
  title        = {{Spin-3/2 physics of semiconductor hole nanowires: Valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings}},
  url          = {{http://dx.doi.org/10.1103/PhysRevB.79.155323}},
  doi          = {{10.1103/PhysRevB.79.155323}},
  volume       = {{79}},
  year         = {{2009}},
}