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“My conclusion is that there is no reason to believe any of the dogmas
of traditional theology and, further, that there is no reason to wish that they
were true. Man, in so far as he is not subject to natural forces, is free to work
out his own destiny. The responsibility is his, and so is the opportunity.”

— Bertrand Russell, 1952





Preface

This thesis is based on six papers (A, B, C, D, E and F). In Part I of the thesis, an
introduction to the subject and a summary of the results obtained in papers A to F, shall
be given. The papers, each of which shall be presented in Part II of the thesis, are the
following:

A. J. Öinert, S. D. Silvestrov, Commutativity and Ideals in Algebraic Crossed Products,
J. Gen. Lie. T. Appl. 2 (2008), no. 4, 287–302.

B. J. Öinert, S. D. Silvestrov, Commutativity and Ideals in Pre-Crystalline Graded Rings.
To appear in Acta Appl. Math.

C. J. Öinert, S. D. Silvestrov, Crossed Product-Like and Pre-Crystalline Graded Rings,
Chapter 24 in S. Silvestrov, E. Paal, V. Abramov, A. Stolin (Eds.), Generalized Lie
theory in Mathematics, Physics and Beyond, pp. 281–296, Springer-Verlag, Berlin,
Heidelberg, 2009.

D. J. Öinert, S. Silvestrov, T. Theohari-Apostolidi, H. Vavatsoulas, Commutativity and
Ideals in Strongly Graded Rings. To appear in Acta Appl. Math.

E. J. Öinert, Simple Group Graded Rings and Maximal Commutativity. To appear in
the Contemp. Math. series of the AMS.

F. J. Öinert, P. Lundström, Commutativity and Ideals in Category Crossed Products. To
appear in the Proceedings of the Estonian Academy of Sciences.

In addition to the above, there are two other papers by the author. These, however,
will not be included in the thesis:

� J. Öinert, S. D. Silvestrov, On a Correspondence Between Ideals and Commutativity
in Algebraic Crossed Products, J. Gen. Lie. T. Appl. 2 (2008), no. 3, 216–220.

� J. Öinert, P. Lundström, Noncrossed Product Matrix Subrings and Ideals of Graded
Rings, Preprints in Mathematical Sciences 2009:10, ISSN 1403-9338, LUTFMA-
5112-2009, Centre for Mathematical Sciences, Lund University, 2009.
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Chapter 1

Introduction

In this chapter we shall give a review of the basics of graded ring theory and also describe
the background to the problems that we are considering. More specifically, in Section 1.1
we lay out the general theory of (group) graded rings and describe some special cases; skew
group rings, twisted group rings, crossed products, strongly graded rings, pre-crystalline
graded rings, crystalline graded rings and crossed product-like rings. In Section 1.2 we
establish the notation and terminology that we use for the more general situation of cat-
egory graded rings. In Section 1.3 we describe the background to the research, stemming
from C∗-crossed product algebras associated to topological dynamical systems. Finally,
in Chapter 2 we summarize the results which are obtained in papers A, B, C, D, E and F.

1.1 Graded rings

Throughout this thesis all rings are assumed to be associative and any ring R is unital,
with a multiplicative identity 1R ∈ R. We assume that ring homomorphisms are unital,
i.e. they respect the multiplicative identities. If X and Y are nonempty subsets of a ring
R, then XY denotes the set of all finite sums of elements of the form xy where x ∈ X
and y ∈ Y . The group of multiplication invertible elements of a ring R will be denoted
by U(R).

Definition 1.1.1 (Graded ring). LetM be a monoid with neutral element e. A ringR is
said to be graded byM , or M -graded, if there is a family {Rs}s∈M of additive subgroups
Rs of R such that

R =
⊕

s∈M

Rs

and
RsRt ⊆ Rst (1.1)

for all s, t ∈M . The additive subgroupRs is called the homogeneous component of R of
degree s ∈M . If R is an M -graded ring such that RsRt = Rst holds for all s, t ∈M ,
then we say that R is strongly graded by M or strongly M -graded.

The set h(R) =
⋃

s∈M Rs is the set of homogeneous elements of R. A nonzero
element x ∈ Rs is said to be homogeneous of degree s and we write deg(x) = s. Each
element r ∈ R has a unique decomposition r =

∑
s∈M rs with rs ∈ Rs for all s ∈M ,

and the sum is finite, i.e. almost all rs are zero. The support of r in M is denoted by
supp(r) = {s ∈M | rs 6= 0}.

3



CHAPTER 1.

It may happen thatM is in fact a group and when we want to emphasize that a ringR
is graded by a monoid respectively a group we shall say that it is monoid graded respectively
group graded. Whenever we say that a ring is G-graded it should be understood that G is
a group with neutral element e, unless otherwise specified. Similarly, when we say that a
ring is M -graded it should be understood that M is a monoid with neutral element e.

Remark 1.1.2. Note that any ring R is (strongly) group graded by chosing the trivial
group G = {e} as grading group and putting Re = R. This grading is called the trivial
grading (or trivial gradation). We shall mainly be interested in nontrivial grading groups.

Strongly group graded rings have different names in the literature. They are some-
times referred to as generalized crossed products (see e.g. [3]) or as fully graded rings (see
e.g. [4]).

Remark 1.1.3. If R =
⊕

s∈M Rs is an M -graded ring, then it follows from (1.1) that
Re is a subring of R. We shall refer to Re as the neutral component subring or simply the
neutral component. Furthermore, for each s ∈ M , the homogeneous component Rs is
an Re-bimodule.

Proposition 1.1.4. LetR =
⊕

g∈GRg be aG-graded ring. The following assertions hold:

(i) Re is a subring of R and 1R ∈ Re.

(ii) If r ∈ U(R) is a homogeneous element of degree h ∈ G, then its inverse r−1 is a
homogeneous element of degree h−1.

(iii) R is a strongly G-graded ring if and only if 1R ∈ Rg Rg−1 for each g ∈ G.

Proof. (i) It is clear that Re is a subring of R. To prove that 1R ∈ Re, let 1R =∑
g∈G rg be the decomposition of 1R with rg ∈ Rg for each g ∈ G. For any sh ∈ Rh,

h ∈ G, we have
sh = sh 1R =

∑

g∈G

sh rg

and sh rg ∈ Rhg . Consequently, for each g 6= e we have sh rg = 0 and hence s rg = 0
for any s ∈ R. In particular, for s = 1 we obtain rg = 0 for any g 6= e. Thus,
1R = re ∈ Re.

(ii) Assume that r ∈ U(R) ∩ Rh for some h ∈ G. If r−1 =
∑

g∈G(r−1)g

with (r−1)g ∈ Rg , then 1R = r r−1 =
∑

g∈G r (r−1)g. Since 1R ∈ Re and
r (r−1)g ∈ Rhg we have that r (r−1)g = 0 for any g 6= h−1. Since r ∈ U(R) we
get that (r−1)g = 0 for g 6= h−1, and therefore r−1 = (r−1)h−1 ∈ Rh−1 .

(iii) Suppose that 1R ∈ Rg Rg−1 for each g ∈ G. For each g, h ∈ G we have

Rgh = 1RRgh ⊆ RgRg−1Rgh ⊆ Rg Rg−1gh = Rg Rh ⊆ Rgh

4



1.1. GRADED RINGS

which shows that Rgh = Rg Rh, and hence R is strongly G-graded. Conversely, if
R is strongly G-graded, then it follows from (i) that 1R ∈ Re = Rg Rg−1 for each
g ∈ G.

1.1.1 The commutant of Re in a group graded ring R
Let S be a subset of a ring R. The commutant of S in R is defined to be the set

CR(S) = {a ∈ R | ab = ba, ∀b ∈ S}
and one easily verifies that CR(S) is a subring of R. The center of R, i.e. CR(R), is
denoted by Z(R). If S is a subring of R, then Z(S) ⊆ CR(S) always holds and in
particular if S is commutative then S ⊆ CR(S).

Definition 1.1.5. A commutative subring S of a ringR is said to be maximal commuta-
tive in R if and only if

S = CR(S).

Remark 1.1.6. For any G-graded ring R, the commutant of Re in R is always a G-
graded ring. Indeed, write Dg = CR(Re) ∩ Rg for each g ∈ G. It is clear that
CR(Re) =

⊕
g∈GDg and it is readily verified that DgDh ⊆ Dgh for all g, h ∈ G.

1.1.2 Skew group rings

LetR0 be a ring andG a group. In this construction, the groupG acts as automorphisms
of the ring R0, i.e. there is a group homomorphism σ : G → Aut(R0). Let {ug}g∈G

be a copy (as a set) of G. The skew group ring R0 oσ G is a free leftR0-module with the
basis {ug}g∈G, that is

R0 oσ G =




∑

g∈G

rg ug

∣∣∣∣ rg ∈ R0 and rg = 0 for all but finitely many g ∈ G



 .

The multiplication on R0 oσ G is defined as the bilinear extension of the rule

(a ug)(b uh) = a σg(b)ugh

for a, b ∈ R0 and g, h ∈ G and one easily verifies that this makesR0 oσ G into a unital
and associative ring. The multiplicative identity is given by 1R0 ue.

1.1.3 Twisted group rings

Let R0 be a ring, G a group and α : G × G → U(R0) a map such that for any triple
g, h, s ∈ G the following equalities hold:

α(g, h)α(gh, s) = α(h, s)α(g, hs)
α(g, e) = α(e, g) = 1R0

5



CHAPTER 1.

Let {ug}g∈G be a copy (as a set) of G. The twisted group ring R0 oα G is a free left
R0-module with the basis {ug}g∈G, that is

R0 oα G =




∑

g∈G

rg ug

∣∣∣∣ rg ∈ R0 and rg = 0 for all but finitely many g ∈ G



 .

The multiplication on R0 oα G is defined as the bilinear extension of the rule

(a ug)(b uh) = a b α(g, h)ugh

for a, b ∈ R0 and g, h ∈ G. One may verify that this multiplication makes R0 oα G
into a unital and associative ring.

1.1.4 Crossed products

A G-crossed system is a quadruple {R0, G, σ, α} consisting of a ring R0, a group G and
two maps σ : G → Aut(R0) and α : G × G → U(R), satisfying the following three
conditions for any triple g, h, s ∈ G and a ∈ R0:

(i) σg(σh(a)) = α(g, h)σgh(a)α(g, h)−1

(ii) α(g, h)α(gh, s) = σg(α(h, s))α(g, hs)
(iii) α(g, e) = α(e, g) = 1R0

Let {ug}g∈G be a copy (as a set) of G. The crossed product R0 oα
σ G is a free left

R0-module with the basis {ug}g∈G, that is

R0 oα
σ G =




∑

g∈G

rg ug

∣∣∣∣ rg ∈ R0 and rg = 0 for all but finitely many g ∈ G



 .

The multiplication on R0 oα
σ G is defined as the bilinear extension of the rule

(a ug)(b uh) = a σg(b)α(g, h)ugh

for a, b ∈ R0 and g, h ∈ G. This multiplication makes R0 oα
σ G into a unital and

associative ring with multiplicative identity 1R0 ue.

We shall now see how the two previous constructions can be obtained as special cases
of the crossed product construction.

Example 1.1.7 (Skew group ring). Let {R0, G, σ, α} be a G-crossed system where α is
the trivial map, i.e. α(g, h) = 1R0 for all g, h ∈ G. First of all, it is easy to see that α
must satisfy conditions (ii) and (iii) of the above. Furthermore, since α is trivial we see by
(i) that G acts as automorphisms of R0. Hence, the crossed product that is given by this
G-crossed system is a skew group ring.

6



1.1. GRADED RINGS

Example 1.1.8 (Twisted group ring). Let {R0, G, σ, α} be a G-crossed system where σ
is the trivial map, i.e σg = idR0 for each g ∈ G. It is easy to see that the crossed product
that is given by this G-crossed system is a twisted group ring.

We shall now describe another, more abstract, way to look at crossed products. After
stating the definition we shall see that it gives rise to exactly the same type of rings as in
the concrete construction of crossed products given above.

Definition 1.1.9 (G-crossed product). Let R =
⊕

g∈GRg be a G-graded ring. If

U(R)
⋂
Rg 6= ∅

for each g ∈ G, then R is called a G-crossed product.

Let Ugr(R) denote the graded units of R, i.e. Ugr(R) =
⋃

g∈G(Rg ∩ U(R)).
The degree map deg : h(R) → G is defined as deg(a) = g if and only if a ∈ Rg ,
for g ∈ G. From Definition 1.1.9 it is clear that a G-graded ring R =

⊕
g∈GRg is a

G-crossed product if and only if the following sequence is an exact sequence of groups.

1R // U(Re)
� � ι // Ugr(R)

deg
// G // e

The map ι denotes the inclusion. In general, the map deg need not be surjective, but for
G-crossed products it is.

Proposition 1.1.10. The ringR0 oα
σG (coming from theG-crossed system {R0, G, σ, α})

is G-graded by (R0 oα
σ G)g = R0 ug, for g ∈ G, and it is a G-crossed product.

Proof. From the definition of R0 oα
σ G we have

R0 oα
σ G =

⊕

g∈G

R0 ug

and
(R0 ug)(R0 uh) = R0 ugh

for each g, h ∈ G and therefore R0 oα
σ G is a (strongly) G-graded ring. For each g ∈ G

we have ug ug−1 = α(g, g−1)ue and ug−1 ug = α(g−1, g)ue. Since α(g, g−1) and
α(g−1, g) are invertible elements of R0, we conclude that ug and ug−1 are invertible
elements of R0 oα

σ G, and this shows that R0 oα
σ G is a G-crossed product.

Proposition 1.1.11. Every G-crossed product R =
⊕

g∈GRg is of the form R0 oα
σ G for

some G-crossed system {R0, G, σ, α}.

7
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Proof. Start by putting R0 = Re. Since Rg ∩ U(R) 6= ∅ for each g ∈ G, we may
choose some ug ∈ Rg ∩ U(R) for each g ∈ G. We take ue = 1R. Then it is clear
that Rg = Re ug = ug Re, and that the set {ug}g∈G is a basis for R as a left (and
right) Re-module. Let us define the map σ : G → Aut(Re) by σg(a) = ug a u

−1
g for

g ∈ G, a ∈ Re and α : G × G → U(Re) by α(g, h) = ug uh u
−1
gh for g, h ∈ G.

We shall now show that σ and α satisfy conditions (i), (ii) and (iii) in the definition of a
G-crossed system. Indeed, for any g, h ∈ G and a ∈ Re we get

σg(σh(a)) = ug (uh a u
−1
h )u−1

g = ug uh u
−1
gh (ugh a u

−1
gh )ugh u

−1
h u−1

g

= α(g, h)σgh(a)α(g, h)−1

and therefore (i) holds. For any triple g, h, s ∈ G we get

α(g, h)α(gh, s) = ug uh u
−1
gh ugh us u

−1
ghs

= ug uh us u
−1
ghs = ug uh us u

−1
hs uhs u

−1
ghs

= ug α(h, s)u−1
g ug uhs u

−1
ghs = σg(α(h, s))α(g, hs)

so (ii) holds too. Since ue = 1R we have

α(g, e) = ug ue u
−1
g = 1R

and similarly we get α(e, g) = 1R and therefore (iii) holds. Let a ∈ Rg and b ∈ Rh be
homogeneous elements of R for g, h ∈ G. We compute the product ab via the maps σ
and α. We have that a and b can be uniquely expressed as a = ag ug and b = bh uh for
some ag, bh ∈ Re. Then

ab = (ag ug)(bh uh) = ag(ug bh u
−1
g )ug uh

= ag(ug bh u
−1
g )(ug uh u

−1
gh )ugh

= ag σg(bh)α(g, h)ugh.

This entails that the ring R is isomorphic to R0 oα
σ G.

1.1.5 Strongly graded rings

Each G-crossed product is a strongly G-graded ring. Indeed, if R =
⊕

g∈GRg is a
G-crossed product, then for each g ∈ G we can find some ug ∈ U(R) ∩ Rg and by
Proposition 1.1.4 (ii) it follows that u−1

g ∈ Rg−1 . Hence, 1R ∈ Rg Rg−1 for each
g ∈ G and by Proposition 1.1.4 (iii) we conclude that R is a strongly G-graded ring.

The converse is not true in general, i.e. strongly graded rings need not be crossed
products, as the following example will show. This explains why strongly group graded
rings are sometimes referred to as generalized crossed products.

8
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Example 1.1.12. Let A be a ring and R = M3(A) the matrix ring over A. By putting

R0 =




A A 0
A A 0
0 0 A


 and R1 =




0 0 A
0 0 A
A A 0




one may verify that this defines a strong Z2-gradation on R. Note that R is not a Z2-
crossed product with this grading since R1 contains only singular matrices.

Lemma 1.1.13. Let R =
⊕

g∈GRg be a strongly G-graded ring. If a ∈ R is such that

aRg = {0} or Rg a = {0}
for some g ∈ G, then a = 0.

Proof. Suppose that aRg = {0} for some g ∈ G, a ∈ R. We then have aRg Rg−1 =
{0} or equivalently aRe = {0}. From the fact that 1R ∈ Re, we conclude that a = 0.
The other case is treated analogously.

From the preceding lemma we see that for a strongly G-graded ring R =
⊕

g∈GRg

we must always haveRg 6= {0}, for each g ∈ G.

Remark 1.1.14. If R is a strongly group graded ring which is commutative, then one
can easily show that the grading group is necessarily abelian.

Lemma 1.1.15. If R =
⊕

g∈GRg is a G-graded ring and N is a normal subgroup of G,
then R can be regarded as a G/N -graded ring, where the homogeneous components are given
by

RgN =
⊕

x∈gN

Rx

for gN ∈ G/N . Moreover, if R is a crossed product (or strongly graded ring) of G over Re,
then R can also be regarded as a crossed product (or stronglyG/N -graded ring) of G/N over

RN =
⊕

x∈N

Rx.

Proof. Let T be a transversal for N in G. It is obvious that

R =
⊕

t∈T

RtN .

For any t1, t2 ∈ T , we have

Rt1N Rt2N =

( ⊕

x∈t1N

Rx

)
 ⊕

y∈t2N

Ry


 ⊆

⊕

x∈t1N
y∈t2N

Rxy

=
⊕

z∈t1t2N

Rz = Rt1t2N

9
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which shows that R is G/N -graded. Assume that R is a G-crossed product. There exists
a unit ug ∈ U(R) ∩ Rg for each g ∈ G, and in particular ug ∈ Rg ⊆ RgN so R is a
G/N -crossed product with the new grading. Assume that R is a stronglyG-graded ring,
then for each t ∈ T we get

RtN Rt−1N =

(⊕

x∈tN

Rx

)
 ⊕

y∈t−1N

Ry


 =

⊕

x∈tN
y∈t−1N

Rxy

=
⊕

z∈tt−1N

Rz = ReN ⊇ Re 3 1R

and by Proposition 1.1.4 (iii) we conclude that R is a strongly G/N -graded ring.

If R =
⊕

g∈GRg is a strongly G-graded ring, then it follows that 1R ∈ Re =
RgRg−1 for each g ∈ G. Thus, for each g ∈ G there exists a positive integer ng and

elements a(i)
g ∈ Rg , b(i)g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}, such that

ng∑

i=1

a(i)
g b

(i)
g−1 = 1R.

For every λ ∈ CR(Re), and in particular for every λ ∈ Z(Re) ⊆ CR(Re), and g ∈ G
we define

σg(λ) =
ng∑

i=1

a(i)
g λ b

(i)
g−1 .

Lemma 1.1.16. Let R =
⊕

g∈GRg be a strongly G-graded ring, g ∈ G and write
∑ng

i=1 a
(i)
g b

(i)

g−1 = 1R for some ng > 0 and a
(i)
g ∈ Rg, b

(i)

g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}.

For each λ ∈ CR(Re) define σg(λ) by σg(λ) =
∑ng

i=1 a
(i)
g λ b

(i)
g−1 . The following proper-

ties hold:

(i) σg(λ) is the unique element of R satisfying

rg λ = σg(λ) rg , ∀ rg ∈ Rg.

Furthermore, σg(λ) ∈ CR(Re) and if λ ∈ Z(Re), then σg(λ) ∈ Z(Re).

(ii) The group G acts as automorphisms of the rings CR(Re) and Z(Re), with each
g ∈ G sending any λ ∈ CR(Re) and λ ∈ Z(Re), respectively, to σg(λ).

(iii) Z(R) = {λ ∈ CR(Re) | σg(λ) = λ, ∀g ∈ G}, i.e. Z(R) is the fixed subring
CR(Re)G of CR(Re) with respect to the action of G.

Proof. See the proof of Lemma D.4.3 in Paper D.

10
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1.1.6 Crossed product-like rings

This class of rings were introduced in Paper C in order to generalize pre-crystalline graded
rings and allow broader classes of examples to fit in.

Definition 1.1.17 (Crossed product-like ring). An associative and unital ring A is said
to be crossed product-like if

• There is a monoid M (with neutral element e) and a map u : M → A, s 7→ us

such that ue = 1A and us 6= 0A for every s ∈M .

• There is a subringA0 ⊆ A containing 1A.

such that the following conditions are satisfied:

(P1) A =
⊕

s∈M A0 us ;

(P2) For each s ∈M , usA0 ⊆ A0 us and A0 us is a free left A0-module of rank one;

(P3) The decomposition in P1 makes A into an M -graded ring with A0 = Ae.

Lemma 1.1.18. With notation and definitions as above:

(i) For every s ∈ M , there is a set map σs : A0 → A0 defined by usa = σs(a)us for
a ∈ A0. The map σs is additive and multiplicative. Moreover, σe = idA0 .

(ii) There is a set map α : M ×M → A0 defined by usut = α(s, t)ust for s, t ∈ M .
For any triple s, t, w ∈M and a ∈ A0 the following equalities hold:

α(s, t)α(st, w) = σs(α(t, w))α(s, tw)
σs(σt(a))α(s, t) = α(s, t)σst(a)

(iii) For every s ∈M we have α(s, e) = α(e, s) = 1A0 .

Proof. (i) It follows from (P2) that σs, s ∈M , is well-defined. For a, b ∈ A0 we get:

us (ab) = (us a) b =⇒ σs(ab) = σs(a)σs(b)
us (a+ b) = us a+ us b =⇒ σs(a+ b) = σs(a) + σs(b)

using that A0us is a free left A0-module with basis us and that A is associative.
For any a ∈ A0 we have

a = uea = σe(a)

and hence σe = idA0 .

11



CHAPTER 1.

(ii) It follows from (P3) that α is well-defined. For any triple s, t, w ∈ M we have
(us ut)uw = us (ut uw). Hence,

α(s, t)α(st, w)ustw = σs(α(t, w))α(s, tw)ustw

and the claim follows from the fact thatA0ustw is a free leftA0-module with basis
ustw. Secondly, for any a ∈ A0 we have us (ut a) = (us ut) a and this yields

σs(σt(a))α(s, t)ust = α(s, t)σst(a)ust.

Thus proving the second claim.

(iii) For any s ∈ M we have us = us ue = α(s, e)us which yields α(s, e) = 1A0 .
Analogously we obtain α(e, s) = 1A0 .

By the foregoing lemma we see that, for arbitrary a, b ∈ A0 and s, t ∈ M , the
product of a us and b ut in the crossed product-like ring A may be written as

(a us)(b ut) = a σs(b)α(s, t)ust

and this is the motivation for the name crossed product-like. A crossed product-like ring
A with the above properties will be denoted by A0♦α

σM , indicating the maps σ and α.

Remark 1.1.19. Note that for s ∈M \{e}we need not necessarily have σs(1A0) = 1A0

and hence σs need not be a ring morphism.

1.1.7 Pre-crystalline and crystalline graded rings

Crystalline graded rings were introduced by E. Nauwelaerts and F. Van Oystaeyen in [28]
and have been further studied in [29–32, 34, 39–41].

Definition 1.1.20 (Pre-crystalline graded ring). A crossed product-like ring
A0♦α

σM where for each s ∈ M , A0 us = usA0, is said to be a pre-crystalline graded
ring.

Lemma 1.1.21. If A0♦α
σM is a pre-crystalline graded ring, then the following holds:

(i) For every s ∈M , the map σs : A0 → A0 is a surjective ring morphism.

(ii) If M is a group, then

α(g, g−1) = σg(α(g−1, g))

for each g ∈M .

12
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Proof. (i) It follows from Lemma 1.1.18 that σs, s ∈ M , is additive and multiplicative.
The surjectivity of σs follows from A0 us ⊆ usA0, i.e. for an arbitrary b ∈ A0 we have
that b us = us a for some a ∈ A0, thus b = σs(a). In particular the surjectivity implies
σs(1A0) = 1A0 for each s ∈M .
(ii) By putting s = g, t = g−1 and w = g in Lemma 1.1.18, we obtain

α(g, g−1)α(e, g) = σg(α(g−1, g))α(g, e)

and by using α(e, g) = α(g, e) = 1A0 we conclude that

α(g, g−1) = σg(α(g−1, g))

for any g ∈ G.

In a pre-crystalline graded ring, one may show that for s, t ∈M , the α(s, t) are nor-
malizing elements of A0 in the sense that A0α(s, t) = α(s, t)A0 (see [28, Proposition
2.3]). If we in addition assume that A0 is commutative, then we see by Lemma 1.1.18
that the map σ : M → End(A0) is a monoid morphism.

For a pre-crystalline group graded ring A0♦α
σG, we let S(G) denote the multiplica-

tive set inA0 generated by {α(g, g−1) | g ∈ G} and let S(G×G) be the multiplicative
set generated by {α(g, h) | g, h ∈ G}. Recall that A0 is said to be S(G)-torsion free if

tS(G)(A0) = {a ∈ A0 | sa = 0 for some s ∈ S(G)} = {0}.

Lemma 1.1.22 (see [28]). If A = A0♦α
σG is a pre-crystalline group graded ring, then the

following are equivalent:

• A0 is S(G)-torsion free.

• A is S(G)-torsion free.

• α(g, g−1)a0 = 0 for some g ∈ G implies a0 = 0.

• α(g, h)a0 = 0 for some g, h ∈ G implies a0 = 0.

• A0ug = ugA0 is also free as a right A0-module, with basis ug, for every g ∈ G.

• For every g ∈ G, σg is bijective and hence a ring automorphism of A0.

From Lemma 1.1.22 we see that when A0 is S(G)-torsion free in a pre-crystalline
group graded ring A0♦α

σG, we have im(σ) ⊆ Aut(A0). We shall now state the defini-
tion of a crystalline graded ring.

Definition 1.1.23 (Crystalline graded ring). A pre-crystalline group graded ringA0♦α
σG

which is S(G)-torsion free is said to be a crystalline graded ring.

13
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1.1.8 Examples of graded rings

Recall that every ring R is (strongly) group graded by the trivial group G = {e} by
putting Re = R. We shall now give examples of some nontrivial monoid gradings and
group gradings.

Example 1.1.24 (Polynomial ring). Let A be a ring and consider the polynomial ring
R = A[X ] in the indeterminate X . By putting

• Rn = AXn, for n ∈ Z≥0

• Rm = {0}, for m ∈ Z<0

we have defined a Z-gradation on R. Note, however, that this is not a strong gradation.

In the preceding example, the ring R = A[X ] may also be regarded as strongly
graded by the monoid (Z≥0,+).

Example 1.1.25 (Laurent polynomial ring). Let A be a ring and consider the Laurent
polynomial ring R = A[X,X−1] in the indeterminate X . By putting

• Rn = AXn, for n ∈ Z

we have defined a Z-gradation on R, which clearly makes R into a Z-crossed product.

Example 1.1.26 (The first Weyl algebra). Let R = C〈x,y〉
(yx−xy−1) , the so called first Weyl

algebra. If we put

• R0 = C[xy]

• Rn = C[xy]xn for n ∈ Z>0

• Rm = C[xy] y−m for m ∈ Z<0

then one may verify that this defines a Z-gradation on R.

Example 1.1.27 (Field extensions). Let K ⊆ E be a field extension and suppose that
E = K(α), where α is algebraic over K , and has a minimal polynomial of the form
p(X) = Xn− a for some a ∈ K and n ∈ Z>0. Then the elements 1, α, α2, . . . , αn−1

form a basis for E over K . Thus,

E =
n−1⊕

i=0

K αi

and this defines a Zn-gradation on E with E0 = K . Moreover, E is a crossed product
with this gradation.

14
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A special case of Example 1.1.27 is given by the following familiar example.

Example 1.1.28 (Complex numbers). The field of complex numbers is an extension of
the field of real numbers, where the imaginary unit i is algebraic over R with minimal
polynomial p(X) = X2 + 1. Thus, C = R⊕ Ri is clearly a Z2-graded ring.

Example 1.1.29 (The real quaternion algebra). Let H = R ⊕ Ri ⊕ Rj ⊕ Rk with
multiplication defined by i2 = −1, j2 = −1 and ij = −ji = k. This is a 4-dimensional
R-algebra with center R. By putting

deg(1) = (0, 0) , deg(i) = (0, 1) , deg(j) = (1, 0) and deg(k) = (1, 1)

one may verify that H is a Z2 × Z2-graded algebra, which is in fact a crossed product.
This means that H = R oα

σ (Z2 × Z2) and we shall now determine the maps σ and
α explicitly. The coefficient ring R is the center of H and hence we must have σ1 =
σi = σj = σk = idR which means that H is a twisted group algebra. The map
α : (Z2 × Z2)× (Z2 × Z2) → U(R) is defined by

α(1, 1) = 1 α(1, i) = 1 α(1, j) = 1 α(1, k) = 1
α(i, 1) = 1 α(i, i) = −1 α(i, j) = 1 α(i, k) = −1
α(j, 1) = 1 α(j, i) = −1 α(j, j) = −1 α(j, k) = 1
α(k, 1) = 1 α(k, i) = 1 α(k, j) = −1 α(k, k) = −1.

In the above description, the elements 1, i, j, k are to be identified with their respective
group elements in Z2 × Z2 corresponding to their degree.

Remark 1.1.30. The real quaternion algebra is an example of a so called division ring
(sometimes also referred to as a skew field), i.e. a ring with 0 6= 1 for which every nonzero
element has a multiplicative inverse. It was a common belief that all division rings were
crossed products, until S. Amitsur [1] constructed the first example of a noncrossed product
division ring in 1972.

1.2 Category and groupoid graded rings

In papers A to E we mainly consider group gradings (and occasionally monoid gradings).
In Paper F we consider category gradings which is the most general type of grading. For
this reason we include this short section where we shall recall some basics and particularly
highlight the difference to the situation of Defininition 1.1.1.

Let C be a small category. We shall denote by ob(C) the set of objects of C and by
mor(C) the set of morphisms of C. If α is a morphism of C then we shall indicate this by
writing α ∈ mor(C) or simply α ∈ C. The domain and codomain of a morphism α is
denoted by d(α) and c(α) respectively. An object a of C will often be identified with its
identity morphism ida. The set of identity morphisms is denoted by C0.

15
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Given two objects a, b ∈ ob(C), the set of morphisms from a to b will be denoted by
homC(a, b) or hom(a, b). By C(2) we denote the set of all composable pairs of morphisms
of C. This means that (α, β) ∈ C(2) if and only if d(α) = c(β). If (α, β) ∈ C(2), then
the composition morphism

d(β)
β−→ c(β) α−→ c(α)

is denoted by αβ. We say that a category is cancellable if each morphism of the category
is both an epimorphism and a monomorphism.

Definition 1.2.1. A category is called a groupoid if each morphism is an isomorphism.

Obviously, a groupoid is cancellable.

Definition 1.2.2 (Category graded ring). Let C be a category. A ring R is said to be
graded by C if there is a family {Rs}s∈C of additive subgroups of R, such that

R =
⊕

s∈C
Rs and RsRt ⊆

{
Rst if (s, t) ∈ C(2)

{0} otherwise.

IfRsRt = Rst holds for all (s, t) ∈ C(2), then we say that R is strongly graded by C.
Definition 1.2.2 is a generalization of Definition 1.1.1 from rings graded by a one-object
category to rings graded by a general category.

The category of graded rings

The category of all rings is denoted by RING. If C is a category, then the category of C-
graded rings, denoted by C-RING, is obtained by taking all C-graded rings as the objects
and for the morphisms between C-graded rings R =

⊕
s∈CRs and S =

⊕
t∈C St we

take the ring morphisms ϕ : R→ S such that ϕ(Rs) ⊆ Ss for every s ∈ C.

Different gradations on a given ring

Let G be a group and R =
⊕

g∈GRg a G-graded ring. For any nonempty subset X of
G we denote

RX =
⊕

x∈X

Rx.

In particular, if H is a subgroup of G, then RH =
⊕

h∈H Rh is a subring of R, and
it is in fact an H-graded ring. Clearly the correspondence R 7→ RH defines a functor
( )H : G-RING → H-RING. If N is a normal subgroup of G, then R can be
regarded as a G/N -graded ring (as seen in Lemma 1.1.15) by writing

R =
⊕

gN∈G/N


⊕

x∈gN

Rx


 .
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Therefore R has a natural G/N -grading and we can define a functor
UG/N : G-RING → G/N -RING, associating to the G-graded ring R the same
ring with the G/N -grading described above. If N = G, then G/G-RING = RING,
and the functor UG/G is exactly the forgetful functor U : G-RING → RING, which
associates to the G-graded ring R the underlying ring R.

1.3 Motivation coming from C∗-algebras

In this section we shall briefly explain how one constructs a C∗-crossed product algebra
from a C∗-dynamical system. Furthermore, we will show how to associate a transfor-
mation group C∗-algebra to any given topological dynamical system. Finally, we state
Theorem 1.3.3 which establishes a connection between the dynamics of a topological
dynamical system and algebraic properties of its associated C∗-crossed product algebra.

C∗-dynamical systems and C∗-crossed product algebras

Recall that a C∗-algebra A is a Banach ∗-algebra over C, the field of complex numbers,
satisfying the so called C∗-identity, i.e.

||a∗a||A= ||a||2A, ∀a ∈ A.

Definition 1.3.1. A C∗-dynamical system is a triple {A, G, α}, consisting of a C∗-
algebra A, a locally compact group G and a strongly continuous representation α : G→
Aut(A), i.e. sn → s in G implies ||αsn(a)− αs(a)||A→ 0 for all a ∈ A.

To each C∗-dynamical system one may associate a C∗-crossed product algebra. We
are now going to explain how this can be done for a C∗-dynamical system {A, G, α} by
restricting our attention to the case whenG is a countable discrete group and A is a unital
C∗-algebra.

A covariant representation of the C∗-dynamical system, is a pair (π, V ) where π is a
∗-representation of A on a Hilbert space H and s → Vs is a unitary representation of G
on the same space such that

Vs π(A)V ∗
s = π(αs(A)) for all A ∈ A, s ∈ G.

The space of continuous compactly supported A-valued functions on G is just the
space of all finite formal sums f =

∑
t∈GAtut with coefficients At ∈ A, for t ∈ G. Let

A oα G denote the usual algebraic skew group algebra, i.e. the multiplication is defined
by the rule utAut−1 = αt(A) for A ∈ A and t ∈ G. One may define an involution on
A oα G by putting u∗s = us−1 for s ∈ G. This yields

(Aus)∗ = u∗sA
∗ = us−1A∗usus−1 = α−1

s (A∗)us−1

17
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for A ∈ A and s ∈ G. Hence, for an arbitrary f =
∑

t∈GAtut ∈ A oα G, we get

f∗ =
∑

t∈G

αt(A∗
t−1)ut.

The covariant representation (π, V ) of {A, G, α} yields a ∗-representation of {A, G, α}
by

ϕ(f) =
∑

t∈G

π(At)Vt

for f =
∑

t∈GAtut ∈ A oα G. Indeed,

ϕ(f)∗ =
∑

t∈G

V ∗
t π(At)∗ =

∑

t∈G

Vt−1π(A∗
t )VtVt−1

=
∑

s∈G

π(αs(A∗
s−1))Vs = ϕ(f∗)

and

ϕ(f)ϕ(g) =
∑

t∈G

∑

w∈G

π(At)Vtπ(Bw)Vw

=
∑

t∈G

∑

w∈G

π(At)(Vtπ(Bw)V ∗
t )VtVw

=
∑

t∈G

∑

w∈G

π(At)π(αt(Bw))Vtw

=
∑

s∈G

(∑

t∈G

π(Atαt(Bt−1s))

)
Vs = ϕ(fg)

for f =
∑

t∈GAtut and g =
∑

w∈GBwuw in AoαG. Conversely, any ∗-representation
of A oα G yields a covariant representation of {A, G, α} simply by the restrictions

π(A) = ϕ(Aue) and Vs = ϕ(us).

for A ∈ A and s ∈ G. Indeed,

Vsπ(A)V ∗
s = ϕ(us)ϕ(Aue)ϕ(us)∗ = ϕ(usAus−1) = ϕ(αs(A)ue) = π(αs(A)).

We can introduce a norm on A oα G by

||f ||1=
∑

t∈G

||At||A

for f =
∑

t∈GAtut. The completion of AoαG with respect to this norm is a Banach ∗-
algebra which we denote by `1(AoαG). One can show that there is a natural one-to-one
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correspondence between ∗-representations of `1(AoαG) and covariant representations of

{A, G, α} (see [2]). TheC∗-crossed product algebra, which we shall denote by A
C∗

oα G,
is defined as the enveloping C∗-algebra of `1(A oα G). That is, one defines a C∗-norm
by

||f ||= sup
ϕ
||ϕ(f)||1

and ϕ runs over all ∗-representations of `1(A oα G), which can be shown to be a
nonempty family of representations [2, 9].

C∗-crossed products associated to topological dynamical systems

A topological dynamical system Σ = (X,h) is a pair consisting of a compact Hausdorff
space X and a homeomorphism

h : X → X.

Proposition (see [33]). Let C(X) be the algebra of all complex-valued continuous func-
tions on a compact space X , where the involution on C(X) is given by pointwise
complex conjugation, i.e. f∗(x) = f(x) for all x ∈ X and the norm is given by
||f ||= supx∈X |f(x)|. Then C(X) is a unital C∗-algebra.

To each topological dynamical system Σ = (X,h), one may associate aC∗-dynamical
system. Indeed, choose A = C(X) and G = (Z,+) (a countable discrete group), and
let h̃ : Z → Aut(C(X)) be the action defined by

h̃s(f)(x) = f(h◦(−s)(x)), f ∈ C(X), x ∈ X

for s ∈ Z. One may verify that h̃ is a strongly continuous group representation of Z
in Aut(C(X)). This shows that (C(X),Z, h̃) is a C∗-dynamical system and hence we
may define its associated C∗-crossed product.

Definition 1.3.2. Let Σ = (X,h) be a topological dynamical system. Then

C(X)
C∗

oh̃ Z

is called the transformation group C∗-algebra associated to Σ = (X,h).

Given a topological dynamical system, Z acts onX in an obvious way by taking iterations
of h and h−1. For this dynamical system we shall now define the following sets:

(i) Pern(X,h) := {x ∈ X | x = h◦(n)(x)}

(ii) Pern(X,h) := Pern(X,h) \ {⋃n−1
m=1 Perm(X,h)}
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(iii) Per(X,h) :=
⋃

m∈Z>0
Perm(X,h)

(iv) Per∞(X,h) := X \ Per(X,h)

From this definition we see that Pern(X,h) contains points which have period n (or
fixed points if n = 1) or a period of which n is a multiple. The set Pern(X,h) contains
points of exactly period n. The set Per(X,h) contains all points that are periodic or fixed
points. Points which belong to Per∞(X,h) are called aperiodic points.

The following theorem can be found in the book [49] by J. Tomiyama.

Theorem 1.3.3. Let Σ = (X,h) be a topological dynamical system. The following three
assertions are equivalent:

(i) Per∞(X,h) is dense in X ;

(ii) I ∩ C(X) 6= {0}, for any closed nonzero ideal I of C(X)
C∗

oh̃ Z;

(iii) C(X) is a maximal commutative C∗-subalgebra of C(X)
C∗

oh̃ Z.

In the work of C. Svensson, S. Silvestrov and M. de Jeu [46–48], an algebraic ana-
logue of the above theorem is proven for the Z-graded skew group algebra which embeds
densely into this C∗-crossed product algebra. Their work also includes other algebraic
generalizations of the above theorem.
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Summary of the thesis

For C∗-crossed product algebras associated to topological dynamical systems, there is
a well-known connection between maximal commutativity of a certain commutative
C∗-subalgebra of the C∗-crossed product algebra, and the way in which ideals intersect
this C∗-subalgebra, as displayed by Theorem 1.3.3 in Section 1.3.

In [46–48], C. Svensson, S. Silvestrov and M. de Jeu prove various analogues of
Theorem 1.3.3, for (algebraic) skew group algebras graded by (Z,+). This makes it
natural to ask whether or not this can be further generalized to more general classes of
graded rings.

Let A be a (noncommutative) ring which contains a commutative subring A0 such
that 1A ∈ A0. Consider the following two assertions:

S1: A0 is a maximal commutative subring of A.
S2: I ∩ A0 6= {0}, for each nonzero twosided ideal I of A.

If S2 is satisfied, then A0 is said to have the ideal intersection property. The question
that we are asking is: When are S1 and S2 equivalent? We consider this question for
different types of graded rings, where A0 is chosen to be the neutral component of a
graded ring A. As we shall see, for almost all the types of graded rings that we consider,
the assertion S1 implies the assertion S2. The converse, however, need not always hold.

Ideal intersection properties of this kind are not only interesting in their own right,
they also play a key role when describing simplicity of the ring itself. When investigating
simplicity of strongly group graded rings, this will be very useful.

Skew group rings have been studied in depth, see e.g. [25], but necessary and suffi-
cient conditions for a skew group ring to be simple are not known. For skew group rings
with commutative neutral component, we resolve this problem (see Paper E).

The results in this thesis generalize results from [6, 7, 15, 45–48]. In the following
sections we shall give an overview of the results obtained in the papers of Part II and also
make a short comment on some further results.

2.1 Overview of Paper A

In this paper the focus lies on algebraic crossed products. We give an explicit description of
the center of a general crossed product ringAoσ

αG (Proposition A.3.1) and describe the
commutantCAoσ

αG(A) of the coefficient ringA (Theorem A.4.1). From this we directly
obtain necessary and sufficient conditions for maximal commutativity of A in A oσ

α G
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(Corollary A.4.3). We generalize [46, Proposition 2.1] by giving sufficient conditions for
CAoσ

αG(A) to be commutative (Proposition A.4.11). The main theorem of the paper is
the following (Theorem A.5.1).

Theorem. If A is commutative and Aoσ
α G is a G-crossed product, then

I ∩ CAoσ
αG(A) 6= {0}

for each nonzero twosided ideal I of Aoσ
α G.

From the above theorem, we immediately conclude that if the coefficient ring A is
maximal commutative in the algebraic crossed product A oσ

α G, then A has the ideal
intersection property. A method to construct nonzero ideals which have zero intersection
with the coefficient ring A of a G-crossed product A oσ

α G is given by Theorem A.5.4.
As a corollary to this result, we obtain the following (Corollary A.5.8).

Corollary. Let A oσ G be a skew group ring where G is abelian. If A has the ideal
intersection property, then ker(σ) = {e}.

This result indicates that for the neutral component of a skew group ring one can
still hope to obtain an equivalence between having the ideal intersection property and
being maximal commutative. This investigation is continued in Paper B and eventually
completed in Paper E. If we, in addition to the above corollary, assume that A is an
integral domain, then we conclude that if A has the ideal intersection property then A is
maximal commutative in the skew group ringAoσ G (Theorem A.5.11). Several results
obtained in this paper generalize results in [45–48].

2.2 Overview of Paper B

In this paper we turn our focus to pre-crystalline graded rings and skew group rings. Recall
that algebraic crossed products are examples of (pre-) crystalline graded rings, and hence
we are now considering a broader class of rings than in Paper A. Generalizing the work in
Paper A, we give an explicit description of both the center of a pre-crystalline graded ring
A = A0♦α

σG (Proposition B.3.9) and the commutant CA(A0) of the neutral compo-
nent subringA0 (Theorem B.3.1). We generalize some of the results obtained in Paper A,
and in particular we obtain the following (Corollary B.3.13) which generalizes Theorem
A.5.1 in Paper A.

Corollary. If A = A0♦α
σG is a crystalline graded ring where A0 is commutative, then

I ∩ CA(A0) 6= {0}

for each nonzero twosided ideal I of A.
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The conclusion is that even for a crystalline graded ring A0♦α
σG, maximal commu-

tativity of the neutral component subring A0 implies that it has the ideal intersection
property.

Continuing the work on skew group rings from Paper A, we now consider skew group
ringsA0 oσG whereA0 is commutative andG is a torsion-free abelian group. We show
that ifA0 has the ideal intersection property, then it is maximal commutative in the skew
group ring. This is summed up in the following (Theorem B.3.16).

Theorem. Let A0 oσ G be a skew group ring. If either of the following two conditions
is satisfied:

(i) A0 is an integral domain and G is an abelian group;

(ii) A0 is commutative and G is a torsion-free abelian group.

ThenA0 is maximal commutative inA0 oσG if and only ifA0 has the ideal intersection
property.

By giving an example of a twisted group ring we show that in general the ideal intersec-
tion property is not enough to ensure maximal commutativity of the neutral component
of a graded ring (Example B.4.2). We also provide sufficient conditions for maximal
commutativity of A0 to be equivalent to A0 having the ideal intersection property in a
crystalline graded ring (Theorem B.3.17).

2.3 Overview of Paper C

In this paper we introduce crossed product-like rings as a class of rings (see Definition C.2.2)
containing the pre-crystalline graded rings, and therefore also the crossed product rings,
as special examples. These rings share many properties with classical crossed product,
but they need not be group graded and they allow more general examples to fit in. We
provide explicit descriptions of the center (Proposition C.4.1) and the commutant of
the neutral component (Theorem C.3.1) in these rings and give an example of a crossed
product-like ringA = A0♦α

σM in which there actually exists a nonzero ideal I for which
I ∩ CA(A0) = {0} (Proposition C.5.1). This displays a difference between the group
graded and the monoid graded situation. The rest of this paper has a substantial overlap
with Paper B.

2.4 Overview of Paper D

In this paper we turn our attention to general strongly graded rings, not necessarily crossed
products. Given a G-graded ring R =

⊕
g∈GRg and a subgroup H of G, one may

consider the restriction of R to H , i.e. RH =
⊕

h∈H Rh, which is an H-graded
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subring of R. We prove the following theorem which gives an explicit description of the
commutant of RH in R (Theorem D.4.7) and this generalizes [15, Proposition 1.8 iii].

Theorem. Let R =
⊕

g∈GRg be a strongly G-graded ring, H a subgroup of G and
denote RH =

⊕
h∈H Rh. If σ : G → Aut(CR(Re)) is the action defined in (D.5),

then it follows that

CR(RH) =
{
λ =

∑

g∈G

λg ∈ R
∣∣∣ λg ∈ CR(Re) ∩Rg,

σh(λg) = λhgh−1 , ∀g ∈ G, ∀h ∈ H
}

= {λ ∈ CR(Re) | σh(λ) = λ, ∀h ∈ H} .

This theorem also generalizes the previous description given in Paper A, where we
only considered H = {e} and only for algebraic crossed products, not general strongly
graded rings. We also prove the following theorem (Theorem D.4.9).

Theorem. Let R =
⊕

g∈GRg be a strongly G-graded ring where Re is commuta-
tive and ker(σ) is the kernel of the previously defined action σ : G → Aut(Re), i.e.
ker(σ) = {g ∈ G | σg(λe) = λe, ∀λe ∈ Re}. If H is a subgroup of G which is
contained in ker(σ) ∩ Z(G), then

I ∩CR(RH) 6= {0}

for each nonzero twosided ideal I of R.

As a corollary to this we get the following (Corollary D.4.11) which generalizes The-
orem A.5.1 in Paper A, from a G-crossed product to a general strongly graded ring.

Corollary. If R =
⊕

g∈GRg is a strongly G-graded ring where Re is commutative,
then

I ∩ CR(Re) 6= {0}

for each nonzero twosided ideal I of R.

From this we conclude that for strongly group graded rings where the neutral compo-
nent is maximal commutative, it will also have the ideal intersection property. Finally, we
consider crystalline graded rings. Given a subgroup H of G we give a description of the
commutant ofAH in the crystalline graded ringA and give sufficient conditions for each
nonzero twosided ideal I of A to have a nonzero intersection with CA(AH) (Theorem
D.5.7).
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2.5 Overview of Paper E

In this paper, the connection between simplicity of group graded rings and G-simplicity
of certain subrings is studied. For this purpose, results about intersections between ideals
and certain subrings are very important. We begin by improving some of the results
from the previous papers. First we prove the following result (Theorem E.3.1) which
generalizes Corollary D.4.11.

Theorem. If R =
⊕

g∈GRg is a strongly G-graded ring, then

I ∩ CR(Z(Re)) 6= {0}

for each nonzero ideal I of R.

An analogue of this theorem is also proven for crystalline graded rings under a certain
condition (Theorem E.3.3). We move on to prove the following theorem (Theorem
E.3.5) and thereby generalizing Theorem A.5.11, Theorem B.3.16 and several results in
[45–48].

Theorem. LetR = ReoσG be a skew group ring withRe commutative. The following
two assertions are equivalent:

(i) Re is a maximal commutative subring of R.

(ii) I ∩Re 6= {0} for each nonzero ideal I of R.

For each strongly group graded ring R =
⊕

g∈GRg there is a canonical action
σ : G → Aut(CR(Re)) and the main goal of the second half of this paper is to relate
G-simplicity of CR(Re) andZ(Re) to simplicity of the graded ring itself. The following
theorem gives sufficient conditions for a strongly graded ring to be simple.

Theorem (F. Van Oystaeyen, 1984). Let R =
⊕

g∈GRg be a strongly G-graded ring
such that the morphism G → Pic(Re), defined by g → [Rg], is injective. If Re is a
simple ring, then R is a simple ring.

For a general strongly graded ring with commutative neutral component, we prove
the following (Theorem E.6.6) which does not requireRe to be simple, and which relates
simplicity of the graded ring to G-simplicity of the commutative neutral component.

Theorem. Let R =
⊕

g∈GRg be a strongly G-graded ring. If Re is maximal commu-
tative in R, then the following two assertions are equivalent:

(i) Re is a G-simple ring (with respect to the canonical action).

(ii) R is a simple ring.
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Necessary and sufficient conditions for a general skew group ring to be simple are not
known, but for skew group rings with a commutative neutral component the following
result (Theorem E.6.13) resolves this problem.

Theorem. LetR = ReoσG be a skew group ring withRe commutative. The following
two assertions are equivalent:

(i) Re is a maximal commutative subring of R and Re is G-simple.

(ii) R is a simple ring.

The following theorem appears in [7, Theorem 2.2] and is one of the main results in
the thesis [6].

Theorem (K. Crow, 2005). Suppose A is a commutative semiprime ring and σ is an
action of a group G on A. Assume that e is the only element of G whose image under σ
is the identity on some nonzero ideal of A. Then A oσ G is simple if and only if A is
G-simple.

In Paper E it is pointed out that Theorem E.6.13 is a generalization of Crow’s result.
To make this clear, we are now going to show explicitly how Crow’s result can be retrieved
directly from either Theorem E.6.6 or Theorem E.6.13. For a subset S of a commutative
ring A, the annihilator ideal of S in A is defined to be the set AnnA(S) = {b ∈ A |
sb = 0, ∀s ∈ S}. The following useful proposition appears in [7, Proposition 2.2 (a)].

Proposition 2.5.1. Let A be a semiprime ring and f an automorphism of A. If A is
commutative, then the following are equivalent:

(i) f is X-inner.

(ii) AnnA((f − idA)(A)) 6= {0}.

(iii) There is a nonzero ideal I in A so that f is the identity on I .

The following proposition shows that the assumptions made in [7, Theorem 2.2]
actually force the coefficient ring to be maximal commutative in the skew group ring and
hence both Theorem E.6.6 and Theorem E.6.13 are applicable, thus yielding the desired
conclusion.

Proposition 2.5.2. If A is a commutative semiprime ring and σ is an action of a group
G on A, such that e is the only element of G whose image under σ is the identity on some
nonzero ideal of A, then A is maximal commutative in Aoσ G.

Proof. Pick an arbitrary pair (s, rs) ∈ (G \ {e})× (A \ {0}). By Proposition 2.5.1 we
conclude that AnnA(σs − idA)(A) = {0}. Hence we can pick some a ∈ A such that
σs(a)− a 6∈ Ann(rs). By Corollary A.4.3 we conclude that A is maximal commutative
in Aoσ G.
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At the end of the paper we consider the skew group algebra C(X) oh̃ Z associated
to a topological dynamical system (X,h) and prove the following (Theorem E.7.6).

Theorem. If (X,h) is a topological dynamical system withX infinite, then the following
assertions are equivalent:

(i) C(X) oh̃ Z is a simple algebra.

(ii) C(X) is maximal commutative in C(X) oh̃ Z and C(X) is Z-simple.

(iii) (X,h) is a minimal dynamical system.

This result is an analogue of a well-known result in the theory of C∗-algebras and
topological dynamics.

2.6 Overview of Paper F

In this paper we introduce category crossed products as a natural generalization of group
graded algebraic crossed products and crystalline graded rings. This class of rings also gen-
eralize matrix rings. There is one big difference between the rings considered in this paper,
compared to the rings considered in the previous papers. In papers A, B, C, D and E the
rings that we study are all group graded (and occassionally monoid graded). However, in
this paper the rings are usually graded by a general category and sometimes a groupoid.
We are able to generalize most of the results in Paper A to groupoid crossed products.
We give an explicit description of the center of a category crossed product (Proposition
F.2.4) and also describe the commutant of the neutral component A =

⊕
e∈ob(G)Aeue

in a category crossed product A oσ
α G (Proposition F.3.1). For a groupoid G with a

finite number of objects, we let A denote the neutral component subring and show the
following (Theorem F.4.1).

Theorem. IfAoσ
αG is a groupoid crossed product such that for every s ∈ G, α(s, s−1)

is not a zero divisor in Ac(s), then every intersection of a nonzero twosided ideal of
Aoσ

α G with the commutant of Z(A) in Aoσ
α G is nonzero.

The preceding theorem is a generalization of Theorem A.5.1 in a direction which
is different compared to the previous generalizations. We conclude that if the neutral
component subring A is maximal commutative in the groupoid crossed product, then
it has the ideal intersection property. In the last part of the paper we provide different
ways to construct nonzero ideals of the category crossed product, which have zero in-
tersection with the neutral component subring (Proposition F.4.5, Proposition F.4.6 and
Proposition F.4.7). For skew groupoid rings we give sufficient conditions to obtain an
equivalence between maximal commutativity of the neutral component A and the neu-
tral component having the ideal intersection property (Proposition F.4.8). In this paper
we also give some examples of category crossed products.
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2.7 A comment on further results

In the recent preprint [36] it has actually been shown that Theorem E.3.1, Theorem
E.3.3 and Theorem F.4.1 can be simultaneously generalized to general groupoid graded
rings with a certain ideal property. Furthermore, Theorem E.3.5 can be generalized to
more general types of groupoid graded rings.

28



Bibliography

[1] Amitsur, S. A., On Central Division Algebras, Israel, J. Math 12 (1972), 408–420.

[2] Blackadar, B., Operator algebras: Theory of C∗-algebras and von Neumann alge-
bras, Encyclopaedia of Mathematical Sciences, 122. Operator Algebras and Non-
commutative Geometry, III. Springer-Verlag, Berlin, 2006.

[3] Caenepeel, S., Van Oystaeyen, F., Brauer groups and the cohomology of graded rings,
Monographs and Textbooks in Pure and Applied Mathematics, 121, Marcel Dekker,
Inc., New York, 1988.

[4] Childs, L. N., Garfinkel, G., Orzech, M., The Brauer group of graded Azumaya
algebras, Trans. Amer. Math. Soc. 175 (1973), 299–326.

[5] Cohen, M., Montgomery, S., Group-Graded Rings, Smash Products and Group Ac-
tions, Trans. Amer. Math. Soc. 282 (1984), no. 1, 237-258.

[6] Crow, K., Von Neumann regular skew group rings, PhD Thesis, University of Cali-
fornia, Santa Barbara, 2004.

[7] Crow, K., Simple regular skew group rings, J. Algebra Appl. 4 (2005), no. 2, 127–137.

[8] Dade, E. C., The equivalence of various generalizations of group rings and modules,
Math. Z. 181 (1982), no. 3, 335–344.

[9] Davidson, K. R., C∗-algebras by example, Fields Institute Monographs, 6. American
Mathematical Society, Providence, RI, 1996.

[10] Fisher, J.W., Montgomery, S., Semiprime Skew Group Rings, J. Algebra 52 (1978),
no. 1, 241-247.

[11] Formanek, E., Lichtman, A.I., Ideals in Group Rings of Free Products, Israel J. Math.
31 (1978), no. 1, 101-104.

[12] Irving, R.S., Prime Ideals of Ore Extensions over Commutative Rings, J. Algebra 56
(1979), 315-342.

[13] Irving, R.S., Prime Ideals of Ore Extensions over Commutative Rings II, J. Algebra 58
(1979), 399-423.

29



BIBLIOGRAPHY

[14] Jacobson, N., Structure of Rings, American Mathematical Sociedty Colloquium Pub-
lications, Vol. 37, 1964.

[15] Karpilovsky, G., The Algebraic Structure of Crossed Products, x+348 pp. North-
Holland Mathematics Studies, 142. Notas de Matemática, 118. North-Holland,
Amsterdam, 1987.

[16] Lang, S., Algebra. Revised third edition. Corrected forth printing. Graduate Texts
in Mathematics, 211. Springer-Verlag, New York, 2005.

[17] Launois, S., Lenagan, T.H., Rigal, L., Quantum unique factorisation domains, J.
London Math. Soc. 74 (2006), no. 2, 321-340.

[18] Leroy, A., Matczuk, J., Primitivity of Skew Polynomial and Skew Laurent Polynomial
Rings, Comm. Algebra 24 (1996), no. 7, 2271-2284.

[19] Li, B.-R., Introduction to Operator Algebras. World Scientific Publishing Co., Singa-
pore, 1992.

[20] Lorenz, M., Passman, D.S., Centers and Prime Ideals in Group Algebras of Polycyclic-
by-Finite Groups, J. Algebra 57 (1979), 355-386.

[21] Lorenz, M., Passman, D.S., Prime Ideals in Crossed Products of Finite Groups, Israel
J. Math. 33 (1979), no. 2, 89-132.

[22] Lorenz, M., Passman, D.S., Addendum - Prime Ideals in Crossed Products of Finite
Groups, Israel J. Math. 35 (1980), no. 4, 311-322.

[23] Marubayashi, H., Nauwelaerts, E., Van Oystaeyen, F., Graded Rings over Arithmeti-
cal Orders, Comm. Algebra 12 (1984), no.6, 774-775.

[24] McConnell, J.C., Robson, J.C., Noncommutative Noetherian Rings, Pure & Applied
Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, John
Wiley & Sons, 1987.

[25] Montgomery, S., Fixed rings of finite automorphism groups of associative rings, Lecture
Notes in Mathematics, 818. Springer, Berlin, 1980.

[26] Montgomery, S, Passman, D.S., Crossed Products over Prime Rings, Israel J. Math.
31 (1978), nos. 3-4, 224-256.
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Paper A

Commutativity and ideals in algebraic
crossed products

Johan Öinert and Sergei D. Silvestrov

Abstract. We investigate properties of commutative subrings and ideals in non-commutative
algebraic crossed products for actions by arbitrary groups. A description of the commutant of
the coefficient subring in the crossed product ring is given. Conditions for commutativity and
maximal commutativity of the commutant of the coefficient subring are provided in terms of
the action as well as in terms of the intersection of ideals in the crossed product ring with
the coefficient subring, specially taking into account both the case of coefficient rings without
non-trivial zero-divisors and the case of coefficient rings with non-trivial zero-divisors.

A.1 Introduction

The description of commutative subrings and commutative subalgebras and of the ideals
in non-commutative rings and algebras are important directions of investigation for any
class of non-commutative algebras or rings, because it allows one to relate representation
theory, non-commutative properties, graded structures, ideals and subalgebras, homologi-
cal and other properties of non-commutative algebras to spectral theory, duality, algebraic
geometry and topology naturally associated with the commutative subalgebras. In rep-
resentation theory, for example, one of the keys to the construction and classification of
representations is the method of induced representations. The underlying structures be-
hind this method are the semi-direct products or crossed products of rings and algebras
by various actions. When a non-commutative ring or algebra is given, one looks for a
subring or a subalgebra such that its representations can be studied and classified more
easily, and such that the whole ring or algebra can be decomposed as a crossed product of
this subring or subalgebra by a suitable action. Then the representations for the subring
or subalgebra are extended to representations of the whole ring or algebra using the ac-
tion and its properties. A description of representations is most tractable for commutative
subrings or subalgebras as being, via the spectral theory and duality, directly connected to
algebraic geometry, topology or measure theory.

If one has found a way to present a non-commutative ring or algebra as a crossed
product of a commutative subring or subalgebra by some action on it of the elements from
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outside the subring or subalgebra, then it is important to know whether this subring or
subalgebra is maximal abelian or, if not, to find a maximal abelian subring or subalgebra
containing the given subalgebra, since if the selected subring or subalgebra is not maximal
abelian, then the action will not be entirely responsible for the non-commutative part
as one would hope, but will also have the commutative trivial part taking care of the
elements commuting with everything in the selected commutative subring or subalgebra.
This maximality of a commutative subring or subalgebra and associated properties of the
action are intimately related to the description and classifications of representations of the
non-commutative ring or algebra.

Little is known in general about connections between properties of the commuta-
tive subalgebras of crossed product rings and algebras and properties of the action. A
remarkable result in this direction is known, however, in the context of crossed product
C∗-algebras. In the case of the crossed productC∗-algebraC(X)oαZ of theC∗-algebra
of complex-valued continuous functions on a compact Hausdorff spaceX by an action of
Z via the composition automorphism associated with a homeomorphism σ : X → X ,
it is known that C(X) sits inside the C∗-crossed product as a maximal abelian C∗-
subalgebra if and only if for every positive integer n, the set of points in X having period
n under iterations of σ has no interior points [26, Theorem 5.4], [25, Corollary 3.3.3],
[27, Proposition 4.14], [10, Lemma 7.3.11]. This condition is equivalent to the action of
Z on X being topologically free in the sense that the non-periodic points of σ are dense
in X . In [24], a purely algebraic variant of the crossed product allowing for more gen-
eral classes of algebras than merely continuous functions on compact Hausdorff spaces
serving as coefficient algebras in the crossed products was considered. In the general set
theoretical framework of a crossed product algebra Aoα Z of an arbitrary subalgebra A
of the algebra CX of complex-valued functions on a set X (under the usual pointwise
operations) by Z acting on A via a composition automorphism defined by a bijection of
X , the essence of the matter is revealed. Topological notions are not available here and
thus the condition of freeness of the dynamics as described above is not applicable, so
that it has to be generalized in a proper way in order to be equivalent to the maximal
commutativity of A. In [24] such a generalization was provided by involving separation
properties of A with respect to the spaceX and the action for significantly more arbitrary
classes of coefficient algebras and associated spaces and actions. The (unique) maximal
abelian subalgebra containingA was described as well as general results and examples and
counterexamples on equivalence of maximal commutativity of A in the crossed product
and the generalization of topological freeness of the action.

In this article, we bring these results and interplay into a more general algebraic con-
text of crossed product rings (or algebras) for crossed systems with arbitrary group actions
and twisting cocycle maps [17]. We investigate the connections with the ideal structure
of a general crossed product ring, describe the center of crossed product rings, describe
the commutant of the coefficient subring in a crossed product ring of a general crossed
system, and obtain conditions for maximal commutativity of the commutant of the co-
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efficient subring in terms of the action as well as in terms of intersection of ideals in the
crossed product ring with the coefficient subring, specially taking into account both the
case of coefficient rings without non-trivial zero-divisors and the case of coefficient rings
with non-trivial zero-divisors.

A.2 Preliminaries

In this section we recall the notation from [17], which is necessary for the understanding
of the rest of this article. Throughout this article all rings are assumed to be associative
rings.

Definition A.2.1. Let G be a group with unit element e. The ring R is G-graded if
there is a family {Rσ}σ∈G of additive subgroups Rσ of R such that R =

⊕
σ∈GRσ

and RσRτ ⊆ Rστ (stronglyG-graded if, in addition, ⊇ also holds) for every σ, τ ∈ G.

Definition A.2.2. A unital and G-graded ring R is called a G-crossed product if
U(R) ∩ Rσ 6= ∅ for every σ ∈ G, where U(R) denotes the group of multiplication
invertible elements of R. Note that every G-crossed product is strongly G-graded, as
explained in [17, p.2].

Definition A.2.3. AG-crossed system is a quadruple {A, G, σ, α}, consisting of a unital
ring A, a group G (with unit element e), a map σ : G → Aut(A) and a σ-cocycle map
α : G ×G→ U(A) such that for any x, y, z ∈ G and a ∈ A the following conditions
hold:

(i) σx(σy(a)) = α(x, y)σxy(a)α(x, y)−1

(ii) α(x, y)α(xy, z) = σx(α(y, z))α(x, yz)

(iii) α(x, e) = α(e, x) = 1A

Remark A.2.4. Note that, by combining conditions (i) and (iii), we get σe(σe(a)) =
σe(a) for all a ∈ A. Furthermore, σe : A → A is an automorphism and hence
σe = idA. Also note that, from the definition of Aut(A), we have σg(0A) = 0A and
σg(1A) = 1A for any g ∈ G. From condition (i) it immediately follows that σ is a group
homomorphism if A is commutative or if α is trivial.

Definition A.2.5. LetG be a copy (as a set) ofG. Given aG-crossed system {A, G, σ, α},
we denote by Aoσ

α G the free left A-module having G as its basis and we define a mul-
tiplication on this set by

(a1 x)(a2 y) = a1σx(a2)α(x, y)xy (A.1)
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for all a1, a2 ∈ A and x, y ∈ G. Each element of A oσ
α G may be expressed as a sum∑

g∈G ag g where ag ∈ A and ag = 0A for all but a finite number of g ∈ G. Ex-
plicitly, the addition and multiplication of two arbitrary elements

∑
s∈G as s,

∑
t∈G bt t

∈ Aoσ
α G is given by
∑

s∈G

as s+
∑

t∈G

bt t =
∑

g∈G

(ag + bg) g

(∑

s∈G

as s

)(∑

t∈G

bt t

)
=

∑

(s,t)∈G×G

(as s)(bt t) =
∑

(s,t)∈G×G

as σs(bt)α(s, t) st

=
∑

g∈G


 ∑

{(s,t)∈G×G|st=g}
as σs(bt)α(s, t)


 g (A.2)

Remark A.2.6. The ring A is unital, with unit element 1A, and it is easy to see that
(1A e) is the multiplicative identity in Aoσ

α G.

By abuse of notation, we shall sometimes let 0 denote the zero element inAoσ
αG and

sometimes the unit element in the abelian group (Z,+). The proofs of the two following
propositions can be found in [17, Proposition 1.4.1, p.11] and [17, Proposition 1.4.2,
pp.12-13] respectively (see also [18], [19]).

Proposition A.2.7. Let {A, G, σ, α} be aG-crossed system. ThenAoσ
αG is an associative

ring (with the multiplication defined in (A.1)). Moreover, this ring is G-graded, Aoσ
α G =⊕

g∈G A g, and it is a G-crossed product.

Proposition A.2.8. Every G-crossed product R is of the form Aoσ
α G for some ring A and

some maps σ, α.

Remark A.2.9. If k is a field and A is a k-algebra, then so is Aoσ
α G.

The coefficient ring A is naturally embedded as a subring into Aoσ
α G via the canonical

isomorphism ι : A ↪→ A oσ
α G defined by a 7→ a e. We denote by Ã the image of A

under ι and by AG = {a ∈ A | σs(a) = a, ∀s ∈ G} the fixed ring of A. If A is
commutative we define Ann(r) = {c ∈ A | r · c = 0A} for r ∈ A.

Remark A.2.10. Obviously,A is commutative if and only if Ã is commutative.

Example A.2.11. Let A be commutative and B = A oσ
α G a crossed product. For

x ∈ G and c, d ∈ A we may write

(c x)(d e) = c σx(d)x = (σx(d) e)(c x)

Let b = c x, a = d e and f : B → B be a map defined by f = ι ◦ σx ◦ ι−1. Then the
above relation may be written as b a = f(a) b, which is a re-ordering formula frequently
appearing in physical applications.
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A.3 Commutativity in Aoσ
α G

From the definition of the product in Aoσ
α G, given by (A.2), we see that two elements∑

s∈G as s and
∑

t∈G bt t commute if and only if

∑

{(s,t)∈G×G|st=g}
as σs(bt)α(s, t) =

∑

{(s,t)∈G×G|st=g}
bs σs(at)α(s, t) (A.3)

for each g ∈ G. The crossed product Aoσ
α G is in general non-commutative and in the

following proposition we give a description of its center.

Proposition A.3.1. The center of Aoσ
α G is

Z(Aoσ
α G) =

{∑

g∈G

rg g
∣∣∣ rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t),

rs σs(a) = a rs, ∀a ∈ A, (s, t) ∈ G×G
}

Proof. Let
∑

g∈G rg g ∈ Aoσ
α G be an element which commutes with every element of

Aoσ
αG. Then, in particular

∑
g∈G rg g must commute with a e for every a ∈ A. From

(A.3) we immediately see that this implies rs σs(a) = a rs for every a ∈ A and s ∈ G.
Furthermore,

∑
g∈G rg g must commute with 1A s for any s ∈ G. This yields

∑

t∈G

rts−1 α(ts−1, s) t =
∑

g∈G

rg α(g, s) gs =
∑

g∈G

rg σg(1A)α(g, s) gs

=


∑

g∈G

rg g


 (1A s) = (1A s)


∑

g∈G

rg g




=
∑

g∈G

1A σs(rg)α(s, g) sg =
∑

g∈G

σs(rg)α(s, g) sg

=
∑

t∈G

σs(rs−1t)α(s, s−1t) t

and hence, for each (s, t) ∈ G×G, we have rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t).

Conversely, suppose that
∑

g∈G rg g ∈ Aoσ
α G is an element satisfying rs σs(a) =

a rs and rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t) for every a ∈ A and (s, t) ∈ G×G.
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Let
∑

s∈G as s ∈ Aoσ
α G be arbitrary. Then


∑

g∈G

rg g



(∑

s∈G

as s

)
=

∑

(g,s)∈G×G

rg σg(as)α(g, s) gs

=
∑

(g,s)∈G×G

as rg α(g, s) gs

=
∑

(t,s)∈G×G

as (rts−1 α(ts−1, s)) t

=
∑

(t,s)∈G×G

as σs(rs−1t)α(s, s−1t) t

=
∑

(g,s)∈G×G

as σs(rg)α(s, g) sg

=

(∑

s∈G

as s

)
∑

g∈G

rg g




and hence
∑

g∈G rg g commutes with every element of Aoσ
α G.

A few corollaries follow from Proposition A.3.1, showing how a successive addition
of restrictions on the corresponding G-crossed system, leads to a simplified description of
Z(Aoσ

α G).

Corollary A.3.2 (Center of a twisted group ring). If σ ≡ idA, then the center ofAoσ
α G

is

Z(Aoσ
α G) =

{∑

g∈G

rg g
∣∣∣ rs ∈ Z(A), rts−1 α(ts−1, s) = rs−1t α(s, s−1t),

∀a ∈ A, (s, t) ∈ G×G
}

Corollary A.3.3. If G is abelian and α is symmetric1, then the center of Aoσ
α G is

Z(Aoσ
α G) =

{∑

g∈G

rg g
∣∣∣ rs σs(a) = a rs, rs ∈ AG, ∀a ∈ A, s ∈ G

}

Corollary A.3.4. IfA is commutative,G is abelian and α ≡ 1A, then the center ofAoσ
αG

is

Z(Aoσ
α G) =

{∑

g∈G

rg g
∣∣∣ rs ∈ AG, σs(a)− a ∈ Ann(rs), ∀a ∈ A, s ∈ G

}

1Symmetric in the sense that α(x, y) = α(y, x) for every (x, y) ∈ G×G.
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Remark A.3.5. Note that in the proof of Theorem A.3.1, the property that the image of
α is contained in U(A) is not used and therefore the theorem is true in greater generality.
Consider the case when A is an integral domain and let α take its values in A \ {0A}.
In this case it is clear that rs σs(a) = a rs for all a ∈ A ⇐⇒ rs(σs(a) − a) = 0 for
all a ∈ A ⇐⇒ rs = 0 for s 6∈ σ−1(idA) = {g ∈ G | σg = idA}. After a change of
variable via x = s−1t the first condition in the description of the center may be written
as σs(rx)α(s, x) = rsxs−1 α(sxs−1, s) for all (s, x) ∈ G × G. From this relation we
conclude that rx = 0 if and only if rsxs−1 = 0, and hence it is trivially satisfied if we put
rx = 0 whenever x 6∈ σ−1(idA). This case has been presented in [19, Proposition 2.2]
with a more elaborate proof.

The final corollary describes the exceptional situation when Z(A oσ
α G) coincides

with Aoσ
α G, that is when Aoσ

α G is commutative.

Corollary A.3.6. Aoσ
α G is commutative if and only if all of the following hold:

(i) A is commutative

(ii) σs = idA for each s ∈ G
(iii) G is abelian

(iv) α is symmetric

Proof. Suppose that Z(Aoσ
α G) = Aoσ

α G. Then, Ã ⊆ Aoσ
α G = Z(Aoσ

α G) and
hence (i) follows by Remark A.2.10. By assumption, 1A s ∈ Z(Aoσ

α G) for any s ∈ G
and by Proposition A.3.1 we see that σs = idA for every s ∈ G, and hence (ii). For any
(x, y) ∈ G × G we have α(x, y)xy = (1A x)(1A y) = (1A y)(1A x) = α(y, x) yx,
but α(x, y) 6= 0A which implies xy = yx and also α(x, y) = α(y, x), which shows
(iii) and (iv). The converse implication is easily verified.

A.4 The commutant of Ã in Aoσ
α G

From now on we shall assume that G 6= {e}. As we have seen, Ã is a subring of Aoσ
αG

and we define its commutant by Comm(Ã) = {b ∈ A oσ
α G | ab = ba, ∀a ∈ Ã}.

Theorem A.4.1 tells us exactly when an element of Aoσ
α G lies in Comm(Ã).

Theorem A.4.1. The commutant of Ã in Aoσ
α G is

Comm(Ã) =

{∑

s∈G

rs s ∈ Aoσ
α G

∣∣∣ rs σs(a) = a rs, ∀a ∈ A, s ∈ G
}
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Proof. The proof is established through the following sequence of equivalences:

∑

s∈G

rs s ∈ Comm(Ã) ⇐⇒
(∑

s∈G

rs s

)
(a e) = (a e)

(∑

s∈G

rs s

)
, ∀a ∈ A

⇐⇒
∑

s∈G

rs σs(a)α(s, e) se

=
∑

s∈G

a σe(rs)α(e, s) es, ∀a ∈ A

⇐⇒
∑

s∈G

rs σs(a) s =
∑

s∈G

a rs s, ∀a ∈ A

⇐⇒ For each s ∈ G : rs σs(a) = a rs, ∀a ∈ A

Here we have used the fact that α(s, e) = α(e, s) = 1A for all s ∈ G. The above
equivalence can also be deduced directly from (A.3).

When A is commutative we get the following description of the commutant by The-
orem A.4.1.

Corollary A.4.2. If A is commutative, then the commutant of Ã in Aoσ
α G is

Comm(Ã) =

{∑

s∈G

rs s ∈ Aoσ
α G

∣∣∣ σs(a)− a ∈ Ann(rs), ∀a ∈ A, s ∈ G
}

When A is commutative it is clear that Ã ⊆ Comm(Ã). Using the explicit de-
scription of Comm(Ã) in Corollary A.4.2, we are now able to state exactly when Ã is
maximal commutative, i.e. Comm(Ã) = Ã.

Corollary A.4.3. Let A be commutative. Ã is maximal commutative in A oσ
α G if and

only if, for each pair (s, rs) ∈ (G \ {e}) × (A \ {0A}), there exists a ∈ A such that
σs(a)− a 6∈ Ann(rs).

Example A.4.4 (The crossed product associated to a dynamical system). In this example
we follow the notation of [24]. Let σ : X → X be a bijection on a non-empty setX , and
A ⊆ CX an algebra of functions, such that if h ∈ A then h ◦ σ ∈ A and h ◦ σ−1 ∈ A.
Let σ̃ : Z → Aut(A) be defined by σ̃n : f 7→ f ◦ σ◦(−n) for f ∈ A. We now
have a Z-crossed system (with trivial σ̃-cocycle) and we may form the crossed product
A oσ̃ Z. Recall the definition of the set Sepn

A(X) = {x ∈ X | ∃h ∈ A, s.t. h(x) 6=
(σ̃n(h))(x)}. Corollary A.4.3 is a generalization of [24, Theorem 3.5] and the easiest
way to see this is by negating the statements. Suppose thatA is not maximal commutative
in Aoσ̃ Z. Then, by Corollary A.4.3, there exists a pair (n, fn) ∈ (Z\{0})× (A\{0})
such that σ̃n(g)−g ∈ Ann(fn) for every g ∈ A, i.e. supp(σ̃n(g)−g)∩supp(fn) = ∅
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for every g ∈ A. In particular, this means that fn is identically zero on Sepn
A(X).

However, fn ∈ A\{0} is not identically zero on X and hence Sepn
A(X) is not a domain

of uniqueness (as defined in [24, Definition 3.2]). The converse can be proved similarly.

Corollary A.4.5. LetA be commutative. If for each s ∈ G\{e} it is always possible to find
some a ∈ A such that σs(a)− a is not a zero-divisor in A, then Ã is maximal commutative
in Aoσ

α G.

The next corollary is a consequence of Corollary A.4.3 and shows how maximal
commutativity of the coefficient ring in the crossed product has an impact on the non-
triviality of the action σ.

Corollary A.4.6. If Ã is maximal commutative in A oσ
α G, then σg 6= idA for every

g ∈ G \ {e}.

The description of the commutant Comm(Ã) from Corollary A.4.2 can be further
refined in the case when A is an integral domain.

Corollary A.4.7. If A is an integral domain2, then the commutant of Ã in Aoσ
α G is

Comm(Ã) =
{ ∑

s∈σ−1(idA)

rs s ∈ Aoσ
α G

∣∣∣ rs ∈ A
}

where σ−1(idA) = {g ∈ G | σg = idA}.

Corollary A.4.8. Let A be an integral domain. Ã is maximal commutative in A oσ
α G if

and only if σg 6= idA for every g ∈ G \ {e}.

Corollary A.4.8 can be derived directly from Corollary A.4.6 together with either
Corollary A.4.5 or A.4.7.

Remark A.4.9. Recall that whenA is commutative, σ is a group homomorphism. Thus,
to say that σg 6= idA for all g ∈ G \ {e} is another way of saying that ker(σ) = {e}, i.e.
σ is injective.

Example A.4.10. Let A = C[x1, . . . , xn] be the polynomial ring in n commuting
variables x1, . . . , xn and G = Sn the symmetric group on n elements. An element
τ ∈ Sn is a permutation which maps the sequence (1, . . . , n) into (τ(1), . . . , τ(n)).
The group Sn acts on C[x1, . . . , xn] in a natural way. To each τ ∈ Sn we may associate
a map A → A, which sends any polynomial f(x1, ..., xn) ∈ C[x1, . . . , xn] into a new
polynomial g, defined by g(x1, . . . , xn) = f(xτ(1), . . . , xτ(n)). It is clear that each such
mapping is a ring automorphism on A. Let σ be the embedding Sn ↪→ Aut(A) and
α ≡ 1A. Note that C[x1, . . . , xn] is an integral domain and that σ is injective. Hence,
by Corollary A.4.8 and Remark A.4.9 it is clear that the embedding of C[x1, . . . , xn] is
maximal commutative in C[x1, . . . , xn] oσ Sn.

2By an integral domain we shall mean a commutative ring with an additive identity 0A and a multiplicative
identity 1A such that 0A 6= 1A, in which the product of any two non-zero elements is always non-zero.
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One might want to describe properties of the σ-cocycle in the case when Ã is maximal
commutative, but unfortunately this will lead to a dead end. The explaination for this
is revealed by condition (iii) in the definition of a G-crossed system, where we see that
α(e, g) = α(g, e) = 1A for all g ∈ G and hence we are not able to extract any interesting
information about α by assuming that Ã is maximal commutative. Also note that in a
twisted group ring A oα G, i.e. with σ ≡ idA, Ã can never be maximal commutative
(when G 6= {e}), since for each g ∈ G, g centralizes Ã. If A is commutative, then this
follows immediately from Corollary A.4.6. We shall now give a sufficient condition for
Comm(Ã) to be commutative.

Proposition A.4.11. If A is a commutive ring, G is an abelian group and α is symmetric,
then Comm(Ã) is commutative.

Proof. Let
∑

s∈G rs s and
∑

t∈G pt t be arbitrary elements of Comm(Ã). By our as-
sumptions and Corollary A.4.2 we get

(∑

s∈G

rs s

)(∑

t∈G

pt t

)
=

∑

(s,t)∈G×G

rs σs(pt)α(s, t) st

=
∑

(s,t)∈G×G

rs pt α(s, t) st

=
∑

(s,t)∈G×G

pt σt(rs)α(t, s) ts

=

(∑

t∈G

pt t

)(∑

s∈G

rs s

)

This shows that Comm(Ã) is commutative.

This proposition is a generalization of [24, Proposition 2.1] from a function algebra
to an arbitrary unital associative commutative ring A, from Z to an arbitrary abelian
group G and from a trivial to a possibly non-trivial symmetric σ-cocycle α.

Remark A.4.12. By using Proposition A.4.11 and the arguments made in the previous
example on the crossed product associated to a dynamical system it is clear that Corollary
A.4.2 is a generalization of [24, Theorem 3.3]. Furthermore, we see that Corollary A.3.4
is a generalization of [24, Theorem 3.6].

A.5 Ideals in Aoσ
α G

In this section we describe properties of the ideals inAoσ
αG in connection with maximal

commutativity and properties of the action σ.
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Theorem A.5.1. If A is commutative, then

I ∩ Comm(Ã) 6= {0}

for every non-zero two-sided ideal I in Aoσ
α G.

Proof. Let A be commutative. Then Ã is also commutative. Let I ⊆ A oσ
α G be an

arbitrary non-zero two-sided ideal in Aoσ
α G.

Part 1:
For each g ∈ G we define a map Tg : A oσ

α G → A oσ
α G by

∑
s∈G as s 7→(∑

s∈G as s
)
g. Note that, for any g ∈ G, I is invariant3 under Tg. We have

Tg

(∑

s∈G

as s

)
=

(∑

s∈G

as s

)
g =

∑

s∈G

as α(s, g) sg

for every g ∈ G. It is important to note that if as 6= 0A, then as α(s, g) 6= 0A and
hence this operation does not kill coefficients, it only translates and deformes them. If
we have a non-zero element

∑
s∈G as s for which ae = 0A, then we may pick some

non-zero coefficient, say ap and apply the map Tp−1 to end up with

Tp−1

(∑

s∈G

as s

)
=
∑

s∈G

as α(s, p−1) sp−1 =
∑

t∈G

dt t

This resulting element will then have the following properties:

• de = ap α(p, p−1) 6= 0A
• #{s ∈ G | as 6= 0A} = #{t ∈ G | dt 6= 0A}

Part 2:
For each a ∈ A we define a map Da : Aoσ

α G→ Aoσ
α G by

∑

s∈G

as s 7→ (a e)

(∑

s∈G

as s

)
−
(∑

s∈G

as s

)
(a e)

Note that, for each a ∈ A, I is invariant under Da. By assumption A is commutative

3By invariant we mean that the set is closed under this operation.
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and hence the above expression can be simplified.

Da

(∑

s∈G

as s

)
= (a e)

(∑

s∈G

as s

)
−
(∑

s∈G

as s

)
(a e)

=

(∑

s∈G

a σe(as)α(e, s) es

)
−
(∑

s∈G

as σs(a)α(s, e) se

)

=
∑

s∈G

a as︸︷︷︸
=as a

s−
∑

s∈G

as σs(a) s =
∑

s∈G

as (a− σs(a)) s

=
∑

s6=e

as (a− σs(a)) s =
∑

s6=e

ds s

The maps {Da}a∈A all share the property that they kill the coefficient in front e. Hence,
if ae 6= 0A, then the number of non-zero coefficients of the resulting element will always
be reduced by at least one. Note that Comm(Ã) =

⋂
a∈A ker(Da). This means that for

each non-zero
∑

s∈G as s in Aoσ
α G \ Comm(Ã) we may always choose some a ∈ A

such that
∑

s∈G as s 6∈ ker(Da). By choosing such an a we note that, using the same
notation as above, we get

#{s ∈ G | as 6= 0A} ≥ #{s ∈ G | ds 6= 0A} ≥ 1

for each non-zero
∑

s∈G as s ∈ Aoσ
α G \ Comm(Ã).

Part 3:
The ideal I is assumed to be non-zero, which means that we can pick some non-zero
element

∑
s∈G rs s ∈ I . If

∑
s∈G rs s ∈ Comm(Ã), then we are finished, so assume

that this is not the case. Note that rs 6= 0A for finitely many s ∈ G. Recall that the ideal
I is invariant under Tg and Da for all g ∈ G and a ∈ A. We may now use the maps
{Tg}g∈G and {Da}a∈A to generate new elements of I . More specifically, we may use the
Tg:s to translate our element

∑
s∈G rs s into a new element which has a non-zero coef-

ficient in front of e (if needed) after which we use the map Da to kill this coefficient and
end up with yet another new element of I which is non-zero but has a smaller number of
non-zero coefficients. We may repeat this procedure and in a finite number of iterations
arrive at an element of I which lies in Comm(Ã) \ Ã and if not we continue the above
procedure until we reach an element which is of the form b e with some non-zero b ∈ A.
In particular Ã ⊆ Comm(Ã) and hence I ∩Comm(Ã) 6= {0}.

The embedded coefficient ring Ã is maximal commutative if and only if
Ã = Comm(Ã) and hence we have the following corollary.

Corollary A.5.2. If the subring Ã is maximal commutative in Aoσ
α G, then

I ∩ Ã 6= {0}
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for every non-zero two-sided ideal I in Aoσ
α G.

Proposition A.5.3. Let I be a subset of A and define

J =

{∑

s∈G

as s ∈ Aoσ
α G | as ∈ I

}

The following assertions hold:

(i) If I is a right ideal in A, then J is a right ideal in Aoσ
α G

(ii) If I is a two-sided ideal inA such that I ⊆ AG, then J is a two-sided ideal inAoσ
αG

Proof. If I is a (possibly one-sided) ideal inA, then J is an additive subgroup ofAoσ
αG.

(i). Let I be a right ideal in A. Then

(∑

s∈G

as s

)(∑

t∈G

bt t

)
=

∑

(s,t)∈G×G

as σs(bt)α(s, t)︸ ︷︷ ︸
∈I

st ∈ J

for arbitrary
∑

s∈G as s ∈ J and
∑

t∈G bt t ∈ Aoσ
α G and hence J is a right ideal.

(ii). Let I be a two-sided ideal in A such that I ⊆ AG. By (i) it is clear that J is a right
ideal. Let

∑
s∈G as s ∈ J and

∑
t∈G bt t ∈ Aoσ

α G be arbitrary. Then

(∑

t∈G

bt t

)(∑

s∈G

as s

)
=

∑

(t,s)∈G×G

bt σt(as)α(t, s) ts

=
∑

(t,s)∈G×G

bt as α(t, s)︸ ︷︷ ︸
∈I

ts ∈ J

which shows that J is also a left ideal.

Theorem A.5.4. Let σ : G → Aut(A) be a group homomorphism and N be a normal
subgroup of G, contained in σ−1(idA) = {g ∈ G | σg = idA}. Let ϕ : G → G/N be
the quotient group homomorphism and suppose that α is such that α(s, t) = 1A whenever
s ∈ N or t ∈ N . Furthermore, suppose that there exists a map β : G/N ×G/N → U(A)
such that β(ϕ(s), ϕ(t)) = α(s, t) for each (s, t) ∈ G × G. If I is an ideal in A oσ

α G
generated by an element

∑
s∈N as s for which the coefficients (of which all but finitely many

are zero) satisfy
∑

s∈N as = 0A, then

I ∩ Ã = {0}
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Proof. Let I ⊆ Aoσ
αG be the ideal generated by an element

∑
s∈N as s, which satisfies∑

s∈N as = 0A. The quotient homomorphism ϕ : G → G/N, s 7→ sN satisfies
ker(ϕ) = N . By assumption, the map σ is a group homomorphism and σ(N) = idA.
Hence by the universal property, see for example [7, p.16], there exists a unique group
homomorphism ρ making the following diagram commute:

G
σ //

ϕ

��

Aut(A)

G/N

ρ

::u
u

uu
u

By assumption there exists β such that β(ϕ(s), ϕ(t)) = α(s, t) for each (s, t) ∈ G×G.
One may verify that β is a ρ-cocycle and hence we can define a new crossed product
Aoρ

β G/N . Let T be a transversal to N in G and define Γ to be the map

Γ : Aoσ
α G→ Aoρ

β G/N,
∑

s∈G

as s 7→
∑

t∈T

(∑

s∈tN

as

)
tN

which is a ring homomorphism. Indeed, Γ is clearly additive and due to the assumptions,
for any two elements

∑
g∈G ag g and

∑
h∈G bh h in A oσ

α G, the multiplicativity of Γ
follows by

Γ


∑

g∈G

ag g


 Γ

(∑

h∈G

bh h

)

=


∑

s∈T


∑

g∈sN

ag


 sN



(∑

t∈T

(∑

h∈tN

bh

)
tN

)

=
∑

q∈T




∑

{(s,t)∈T×T |
sNtN=qN}




∑

g∈sN

ag


 ρsN

(∑

h∈tN

bh

)
β(sN, tN)





 qN

=
∑

q∈T




∑

{(s,t)∈T×T |
sNtN=qN}


 ∑

(g,h)∈sN×tN

ag ρsN (bh)β(sN, tN)





 qN
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=
∑

q∈T




∑

{(s,t)∈T×T |
sNtN=qN}


 ∑

(g,h)∈sN×tN

ag ρsN (bh)β(gN, hN)





 qN

=
∑

q∈T




∑

{(g,h)∈G×G|
gNhN=qN}

ag ρgN (bh)β(gN, hN)


 qN

=
∑

q∈T




∑

{(g,h)∈G×G|
ghN=qN}

ag σg(bh)α(g, h)


 qN

=
∑

q∈T



∑

p∈qN




∑

{(g,h)∈G×G|
gh=p}

ag σg(bh)α(g, h)





 qN

= Γ



∑

p∈G




∑

{(g,h)∈G×G|
gh=p}

agσg(bh)α(g, h)


 p




= Γ




∑

g∈G

ag g



(∑

h∈G

bh h

)


and hence Γ defines a ring homomorphism. We shall note that the generator of I is
mapped onto zero, i.e.

Γ

(∑

s∈N

as s

)
=

(∑

s∈N

as

)
N = 0AN = 0

and hence Γ|I≡ 0. Furthermore, we see that

Γ (b e) = 0 =⇒ bN = 0 ⇔ b = 0A ⇔ b e = 0

and hence Γ|Ã is injective. We may now conclude that if c ∈ I ∩ Ã, then Γ(c) = 0 and
so necessarily c = 0. This shows that I ∩ Ã = {0}.

If A is commutaive, then σ is automatically a group homomorphism and we get the
following.
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Corollary A.5.5. Let A be commutative and N ⊆ σ−1(idA) = {g ∈ G | σg = idA}
a normal subgroup of G. Let ϕ : G → G/N be the quotient group homomorphism and
suppose that α is such that α(s, t) = 1A whenever s ∈ N or t ∈ N . Furthermore, suppose
that there exists a map β : G/N ×G/N → U(A) such that β(ϕ(s), ϕ(t)) = α(s, t) for
each (s, t) ∈ G × G. If I is an ideal in A oσ

α G generated by an element
∑

s∈N as s for
which the coefficients (of which all but finitely many are zero) satisfy

∑
s∈N as = 0A, then

I ∩ Ã = {0}.

When α ≡ 1A we need not assume that A is commutative, in order to make σ a
group homomorphism. In this case we may choose β ≡ 1A and by Theorem A.5.4 we
have the following corollaries.

Corollary A.5.6. Let α ≡ 1A and N ⊆ σ−1(idA) = {g ∈ G | σg = idA} be a
normal subgroup of G. If I is an ideal in A oσ

α G generated by an element
∑

s∈N as s for
which the coefficients (of which all but finitely many are zero) satisfy

∑
s∈N as = 0A, then

I ∩ Ã = {0}.

Corollary A.5.7. If α ≡ 1A, then the following implication holds:

(i) Z(G) ∩ σ−1(idA) 6= {e}
⇓

(ii) For each g ∈ Z(G) ∩ σ−1(idA), the ideal Ig generated by the element
∑

n∈Z an gn

for which
∑

n∈Z an = 0A has the property Ig ∩ Ã = {0}

Proof. Suppose that there exists a g ∈ (Z(G) ∩ σ−1(idA)) \ {e}. Let Ig ⊆ Aoσ
α G be

the ideal generated by
∑

n∈Z an gn, where
∑

n∈Z an = 0A. The element g commutes
with each element of G and hence the cyclic subgroupN = 〈g〉 generated by g is normal
in G and since σ is a group homomorphism N ⊆ σ−1(idA). Hence Ig ∩ Ã = {0} by
Corollary A.5.6.

Corollary A.5.8. If α ≡ 1A and G is abelian, then the following implication holds:

(i): I ∩ Ã 6= {0}, for every non-zero two-sided ideal I in Aoσ
α G

⇓
(ii): σg 6= idA for all g ∈ G \ {e}

Proof by contrapositivity. Since G is abelian, G = Z(G). Suppose that (ii) is false, i.e.
there exists g ∈ G \ {e} such that σg = idA. Pick such a g and let Ig ⊆ A oσ

α G be
the ideal generated by 1A e − 1A g. Then obviously Ig 6= {0} and by Corollary A.5.7
we get Ig ∩ Ã = {0} and hence (i) is false. This concludes the proof.

Example A.5.9. We should note that in the proof of Corollary A.5.8 one could have
chosen the ideal in many different ways. The ideal generated by 1A e− 1A g + 1A g2 −
1A g3 + . . . + 1A g2n − 1A g2n+1 = (1A e − 1A g)

∑n
k=0 1A g2k is contained in
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the ideal Ig , generated by 1A e − 1A g, and therefore it has zero intersection with Ã if
Ig ∩ Ã = {0}. Also note that for α ≡ 1A we may always write

1A e− 1A gn = (1A e− 1A g)

(
n−1∑

k=0

1A gk

)

and hence 1A e− 1A g is a zero-divisor in Aoσ
α G whenever g is a torsion element.

Example A.5.10. We now give an example of how one may choose β as in Theorem
A.5.4. Let N ⊆ σ−1(idA) be a normal subgroup of G such that for g ∈ N , α(s, g) =
1A for all s ∈ G and let α be symmetric. Since α is the σ-cocycle map of a G-system,
we get

α(g, s)α(gs, t) = σg(α(s, t))α(g, st) ⇐⇒ α(g, s)α(gs, t) = α(s, t)α(g, st)
⇐⇒ α(gs, t) = α(s, t)

for all (s, t) ∈ G × G. Using the last equality and the symmetry of α we immediately
see that

α(gs, ht) = α(s, t) ∀s, t ∈ G
for all g, h ∈ N . The last equality means that α is constant on the pairs of right cosets
which coincide with the left cosets by normality of N . It is therefore clear that we can
define
β : G/N ×G/N → Aut(A) by β(ϕ(s), ϕ(t)) = α(s, t) for s, t ∈ G.

Theorem A.5.11. IfA is an integral domain, G is an abelian group and α ≡ 1A, then the
following implication holds:

(i): I ∩ Ã 6= {0}, for every non-zero two-sided ideal I in Aoσ
α G

⇓
(ii): Ã is a maximal commutative subring in Aoσ

α G

Proof. This follows from Corollary A.4.8 and Corollary A.5.8.

Example A.5.12 (The quantum torus). Let q ∈ C \ {0, 1} and denote by
Cq[x, x−1, y, y−1] the twisted Laurent polynomial ring in two non-commuting variables
under the twisting

y x = q x y (A.4)

The ring Cq[x, x−1, y, y−1] is known as the quantum torus. Now let A = C[x, x−1],
G = (Z,+), σn : P (x) 7→ P (qnx) for n ∈ G and P (x) ∈ A, and let α(s, t) = 1A
for all s, t ∈ G. It is easily verified that σ and α together satisfy conditions (i)-(iii) of a
G-system and it is not hard to see that A oσ

α G
∼= Cq[x, x−1, y, y−1]. In the current
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example, A is an integral domain, G is abelian, α ≡ 1A and hence all the conditions of
Theorem A.5.11 are satisfied. Note that the commutation relation (A.4) implies

yn xm = qmn xm yn, ∀n,m ∈ Z (A.5)

It is important to distinguish between two different cases:

Case 1 (q is a root of unity). Suppose that qn = 1 for some n 6= 0. From equality
(A.5) we note that yn ∈ Z(Cq[x, x−1, y, y−1]) and hence C[x, x−1] is not maximal
commutative in Cq[x, x−1, y, y−1]. Thus, according to Theorem A.5.11, there must
exist some non-zero ideal I which has zero intersection with C[x, x−1].

Case 2 (q is not a root of unity). Suppose that qn 6= 1 for all n ∈ Z \ {0}. One
can show that this implies that Cq[x, x−1, y, y−1] is simple. This means that the only
non-zero ideal is Cq[x, x−1, y, y−1] itself and this ideal obviously intersects C[x, x−1]
non-trivially. Hence, by Theorem A.5.11, we conclude that C[x, x−1] is maximal com-
mutative in Cq[x, x−1, y, y−1].

A.6 Ideals, intersections and zero-divisors

Let D denote the subset of zero-divisors in A and note that D is always non-empty since
0A ∈ D. By D̃ we denote the image of D under the embedding ι.

Theorem A.6.1. If A is commutative, then the following implication holds:

(i): I ∩
(
Ã \ D̃

)
6= ∅, for every non-zero two-sided ideal I in Aoσ

α G

⇓
(ii): D ∩AG = {0A}, i.e. the only zero-divisor that is fixed under all automorphisms is 0A

Proof by contrapositivity. Let A be commutative. Suppose that D ∩ AG 6= {0A}. Then
there exist some c ∈ D \ {0A} such that σs(c) = c for all s ∈ G. There is also some
d ∈ D\{0A}, such that c·d = 0A. Consider the ideal Ann(c) = {a ∈ A | a·c = 0A}
in A. It is clearly non-empty since we always have 0A ∈ Ann(c) and d ∈ Ann(c). Let
θ : A → A/Ann(c) be the quotient homomorphism defined by a 7→ a+ Ann(c). Let
us define a map ρ : G→ Aut(A/Ann(c)) by ρs(a+ Ann(c)) = σs(a) + Ann(c) for
a+Ann(c) ∈ A/Ann(c) and s ∈ G. Note that Ann(c) is invariant under σs for every
s ∈ G and thus it is easily verified that ρs is a well-defined automorphism onA/Ann(c)
for each s ∈ G. Define a map β : G×G→ U(A/Ann(c)) by (s, t) 7→ (θ ◦ α)(s, t).
It is not hard to see that {A/Ann(c), G, ρ, β} is in fact a G-crossed system. Consider
the map Γ : A oσ

α G → A/Ann(c) oρ
β G defined by

∑
s∈G as s 7→

∑
s∈G θ(as) s.

54



A.6. IDEALS, INTERSECTIONS AND ZERO-DIVISORS

For any two elements
∑

s∈G as s,
∑

t∈G bt t ∈ Aoσ
α G the additivity of Γ follows by

Γ

(∑

s∈G

as s+
∑

t∈G

bt t

)
= Γ

(∑

s∈G

(as + bs) s

)
=
∑

s∈G

θ(as + bs) s

=
∑

s∈G

θ(as) s+
∑

t∈G

θ(bt) t

= Γ

(∑

s∈G

as s

)
+ Γ

(∑

t∈G

bt t

)

and due to the assumptions, the multiplicativity follows by

Γ

(∑

s∈G

as s
∑

t∈G

bt t

)
= Γ


 ∑

(s,t)∈G×G

as σs(bt)α(s, t) st




=
∑

(s,t)∈G×G

θ(as σs(bt)α(s, t)) st

=
∑

(s,t)∈G×G

θ(as) θ(σs(bt)) θ(α(s, t)) st

=
∑

(s,t)∈G×G

θ(as) ρs(θ(bt))β(s, t) st

=

(∑

s∈G

θ(as) s

)(∑

t∈G

θ(bt) t

)

= Γ

(∑

s∈G

as s

)
Γ

(∑

t∈G

bt t

)

where we have used that β = θ◦α and θ(σs(bt)) = ρs(θ(bt)) for all bt ∈ A and s ∈ G.
This shows that Γ is a ring homomorphism. Now, pick some g 6= e and let I be the ideal
generated by d g. Clearly I 6= {0} and Γ|I≡ 0. Note that ker(θ) = Ann(c) and in

particular Γ(a e) = 0 implies a ∈ Ann(c). Takeme ∈ I∩
(
Ã \ D̃

)
. Then Γ(me) = 0

and hence m ∈ Ann(c) ⊆ D, which is a contradiction. Thus, I ∩
(
Ã \ D̃

)
= ∅ and

by contrapositivity this concludes the proof.

Example A.6.2 (The truncated quantum torus). Let q ∈ C \ {0, 1}, m ∈ N and

consider the ring C[x,y,y−1]
(y x−q x y , xm) which is commonly referred to as the truncated quantum

torus. It is easily verified that this ring is isomorphic to A oσ
α G with A = C[x]/(xm),

G = (Z,+), σn : P (x) 7→ P (qnx) for n ∈ G and P (x) ∈ A, and α(s, t) = 1A for
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all s, t ∈ G. One should note that in this case A is commutative, but not an integral
domain. In fact, the zero-divisors in C[x]/(xm) are precisely those polynomials where
the constant term is zero, i.e. p(x) =

∑m−1
i=0 ai x

i, with ai ∈ C, such that a0 = 0. It
is also important to remark that, unlike the quantum torus, A oσ

α G is never simple (for
m > 1). In fact we always have a chain of two-sided ideals

C[x, y, y−1]
(y x− q x y , xm)

⊃ 〈x〉 ⊃ 〈x2〉 ⊃ . . . ⊃ 〈xm−1〉 ⊃ {0}

independent of the value of q. Moreover, the two-sided ideal J = 〈xm−1〉 is contained in
Comm(C[x]/(xm)) and contains elements outside of C[x]/(xm). Hence we conclude

that C[x]/(xm) is not maximal commutative in C[x,y,y−1]
(y x−q x y , xm) . When q is a root of

unity, with qn = 1 for some n < m, we are able to say more. Consider the polynomial
p(x) = xn, which is a non-trival zero-divisor in C[x]/(xm). For every s ∈ Z we see
that p(x) = xn is fixed under the automorphism σs and therefore, by Theorem A.6.1,

we conclude that there exists a non-zero two-sided ideal in C[x,y,y−1]
(y x−q x y , xm) such that its

intersection with Ã \ D̃ is empty.

A.7 Comments to the literature

The literature contains several different types of intersection theorems for group rings,
Ore extensions and crossed products. Typically these theorems rely on heavy restrictions
on the coefficient rings and the groups involved. We shall now give references to some
interesting results in the literature.

It was proven in [23, Theorem 1, Theorem 2] that the center of a semiprimitive
(semisimple in the sense of Jacobson [6]) P.I. ring respectively semiprime P.I. ring has
a non-zero intersection with every non-zero ideal in such a ring. For crossed products
satisfying the conditions in [23, Theorem 2], it offers a more precise result than Theorem
A.5.1 since Z(A oσ

α G) ⊆ Comm(Ã). However, every crossed product need not be
semiprime nor a P.I. ring and this justifies the need for Theorem A.5.1.

In [12, Lemma 2.6] it was proven that if the coefficient ring A of a crossed product
A oσ

α G is prime, P is a prime ideal in Aoσ
α G such that P ∩ Ã = 0 and I is an ideal

in A oσ
α G properly containing P , then I ∩ Ã 6= 0. Furthermore, in [12, Proposition

5.4] it was proven that the crossed product A oσ
α G with G abelian and A a G-prime

ring has the property that, if Ginn = {e}, then every non-zero ideal in A oσ
α G has a

non-zero intersection with Ã. It was shown in [2, Corollary 3] that ifA is semiprime and
Ginn = {e}, then every non-zero ideal in A oσ

α G has a non-zero intersection with Ã.
In [13, Lemma 3.8] it was shown that ifA is a G-prime ring, P a prime ideal in Aoσ

αG
with P ∩ Ã = 0 and if I is an ideal in Aoσ

α G properly containing P , then I ∩ Ã 6= 0.
In [16, Proposition 2.6] it was shown that if A is a prime ring and I is a non-zero ideal
in A oσ

α G, then I ∩ (A oσ
α Ginn) 6= 0. In [16, Proposition 2.11] it was shown that
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for a crossed product A oσ
α G with prime ring A, every non-zero ideal in A oσ

α G has
a non-zero intersection with Ã if and only if Ct[Ginn] is G-simple and in particular if
|Ginn| <∞, then every non-zero ideal in Aoσ

α G has a non-zero intersection with Ã if
and only if Aoσ

α G is prime.
Corollary A.5.2 shows that if Ã is maximal commutative in A oσ

α G, without any
further conditions on the coefficient ring or the group, we are able to conclude that every
non-zero ideal in Aoσ

α G has a non-zero intersection with Ã.
In the theory of group rings (crossed products with no action or twisting) the inter-

section properties of ideals with certain subrings have played an important role and are
studied in depth in for example [3], [11] and [22]. Some further properties of intersec-
tions of ideals and homogeneous components in graded rings have been studied in for
example [1], [14].

For ideals in Ore extensions there are interesting results in [4, Theorem 4.1] and [8,
Lemma 2.2, Theorem 2.3, Corollary 2.4], explaining a correspondence between certain
ideals in the Ore extension and certain ideals in its coefficient ring. Given a domain A of
characteristic 0 and a non-zero derivation δ it is shown in [5, Proposition 2.6] that every
non-zero ideal in the Ore extension R = A[x; δ] intersects A in a non-zero δ-invariant
ideal. Similar types of intersection results for ideals in Ore extension rings can be found
in for example [9] and [15].

The results in this article appeared initially in the preprint [20].
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[17] C. Nǎstǎsescu and F. Van Oystaeyen. Methods of Graded Rings. Lecture Notes in

Mathematics, 1836. Springer-Verlag, Berlin, 2004.
[18] E. Nauwelaerts and F. Van Oystaeyen. Introducing crystalline graded rings. to ap-

pear in Algebr. Represent. Theory, 2007.
[19] T. Neijens, F. Van Oystaeyen and W. W. Yu. Centers of certain crystalline graded

rings. Preprint in preparation, 2007.
[20] J. Öinert and S. D. Silvestrov. Commutativity and ideals in algebraic crossed Prod-

ucts. Preprints in Mathematical Sciences 2007:4, ISSN 1403-9338, LUTFMA-

59



REFERENCES

5080-2007, Centre for Mathematical Sciences, Lund University, 2007.
[21] D. S. Passman. Infinite Crossed Products. Academic Press, 1989.
[22] D. S. Passman. The Algebraic Structure of Group Rings. Pure and Applied Mathe-

matics. Wiley-Interscience (John Wiley & Sons), New York-London-Sydney, 1977.
[23] L. Rowen. Some results on the center of a ring with polynomial identity. Bull. Amer.

Math. Soc., 79 (1973), no. 1, 219-223.
[24] C. Svensson, S. Silvestrov and M. de Jeu. Dynamical systems and commutants in

crossed products. Internat. J. Math., 18 (2007), no. 4, 455-471.
[25] J. Tomiyama. Invitation to C∗-algebras and Topological Dynamics. World Scien-

tific Advanced Series in Dynamical Systems, 3. World Scientific Publishing Co.,
Singapore, 1987.

[26] J. Tomiyama. The Interplay Between Topological Dynamics and Theory of C∗-
algebras. Lecture Notes Series, 2. Global Anal. Research Center, Seoul, 1992.

[27] G. Zeller-Meier. Produits croisés d’une C∗-algèbre par un groupe
d’automorphismes. J. Math. Pures Appl., 47 (1968), 101-239.

60



B

Paper B

To appear in Acta Applicandae Mathematicae.





Paper B

Commutativity and ideals in
pre-crystalline graded rings

Johan Öinert and Sergei D. Silvestrov

Abstract. Pre-crystalline graded rings constitute a class of rings which share many properties
with classical crossed products. Given a pre-crystalline graded ringA, we describe its center, the
commutant CA(A0) of the degree zero grading part, and investigate the connection between
maximal commutativity of A0 in A and the way in which two-sided ideals intersect A0.

B.1 Introduction

Given a ring A containing a commutative subring A0, one may consider the following
two assertions:

S1: The ring A0 is a maximal commutative subring in A.

S2: For every non-zero two-sided ideal I in A, I ∩ A0 6= {0}.

Different types of intersection properties, closely related to S2, have been studied for
rings with specific restrictions like primeness, semi-primeness, semisimplicity, P.I. prop-
erty and semiprimitivity in [2–6, 11–18, 25, 26].

It has been shown in [22, 23, 27–33], that for some types of algebraic crossed prod-
ucts as well as C∗-crossed products, there is a connection between these two assertions.
Under some conditions on the crossed products the two statements are in fact equivalent,
but not in general. In the recent paper [20], by E. Nauwelaerts and F. Van Oystaeyen, so
called crystalline graded rings, which generalize algebraic crossed products, were defined.
In the paper [21], by T. Neijens, F. Van Oystaeyen and W.W. Yu, the structure of the
center of special classes of crystalline graded rings and generalized Clifford algebras was
studied. In this paper we describe the center Z(A) and the commutant CA(A0) of the
degree zero grading part in general pre-crystalline graded rings. Furthermore, we show
that for some types of pre-crystalline and crystalline graded rings there is a close connec-
tion between the two assertions S1 and S2. In particular, for crystalline graded rings and
skew group rings, we provide sufficient conditions on the degree zero grading component
A0, the grading group G, the cocycle and the action for equivalence between S1 and
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S2 (Theorems B.3.16 and B.3.17). We also provide an example of a situation in which
the equivalence does not hold (Example B.4.2). For pre-crystalline graded rings with
commutative A0, we show that under a certain condition each non-zero two-sided ideal
has a non-zero intersection with the commutant CA(A0) (Theorem B.3.11). In partic-
ular this yields sufficient conditions for S1 to imply S2 for general pre-crystalline graded
rings (Corollary B.3.12). For crystalline graded rings we show that if A0 is commutative,
then each non-zero two-sided ideal always has a non-zero intersection with the commu-
tant CA(A0) and this immediately implies that when A0 is maximal commutative, S1
implies S2 (Corollary B.3.13 and B.3.14).

B.2 Definitions and background

We shall begin by recalling some basic definitions and properties following [20]. For a
thorough exposition of the theory of graded rings we refer to [1, 19].

Definition B.2.1 (Pre-crystalline graded ring). An associative and unital ring A is said
to be pre-crystalline graded if

(i) there is a group G (with neutral element e),

(ii) there is a map u : G → A, g 7→ ug such that ue = 1A and ug 6= 0 for every
g ∈ G,

(iii) there is a subringA0 ⊆ A containing 1A = 1A0 ,

such that the following conditions are satisfied:

(P1) A =
⊕

g∈GA0 ug ;

(P2) For every g ∈ G, ug A0 = A0 ug and this is a free left A0-module of rank one;

(P3) The decomposition in P1 makes A into a G-graded ring with A0 = Ae.

Lemma B.2.2 (see [20]). With notation and definitions as above:

(i) For every g ∈ G, there is a set map σg : A0 → A0 defined by ug a = σg(a)ug for
a ∈ A0. The map σg is a surjective ring morphism. Moreover, σe = idA0 .

(ii) There is a set map α : G × G → A0 defined by us ut = α(s, t)ust for s, t ∈ G.
For any triple s, t, w ∈ G and a ∈ A0, the following equalities hold:

α(s, t)α(st, w) = σs(α(t, w))α(s, tw) (B.1)

σs(σt(a))α(s, t) = α(s, t)σst(a) (B.2)

(iii) For every g ∈ G we have α(g, e) = α(e, g) = 1A0 and
α(g, g−1) = σg(α(g−1, g)).
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A pre-crystalline graded ringA with the above properties will be denoted byA0♦α
σG.

In [20] it was shown that for pre-crystalline graded rings, the elements α(s, t) are nor-
malizing elements of A0, i.e. A0 α(s, t) = α(s, t)A0 for each s, t ∈ G. For a pre-
crystalline graded ring A0♦α

σG, we let S(G) denote the multiplicative set in A0 gener-
ated by {α(g, g−1) | g ∈ G} and let S(G×G) denote the multiplicative set generated
by {α(g, h) | g, h ∈ G}.

Lemma B.2.3 (see [20]). IfA = A0♦α
σG is a pre-crystalline graded ring, then the following

are equivalent:

(i) A0 is S(G)-torsion free.

(ii) A is S(G)-torsion free.

(iii) α(g, g−1) a0 = 0 for some g ∈ G implies a0 = 0.

(iv) α(g, h) a0 = 0 for some g, h ∈ G implies a0 = 0.

(v) A0 ug = ug A0 is also free as a right A0-module, with basis ug, for every g ∈ G.

(vi) For every g ∈ G, σg is bijective and hence a ring automorphism of A0.

Definition B.2.4 (Crystalline graded ring). A pre-crystalline graded ringA0♦α
σG, which

is S(G)-torsion free, is said to be a crystalline graded ring.

B.3 Commutant, center and ideals

The commutant of the subring A0 in the pre-crystalline graded ring A = A0♦α
σG will

be denoted by
CA(A0) = {b ∈ A | ab = ba, ∀a ∈ A0}.

In this section we give a description of the commutant of A0 in various pre-crystalline
graded rings. Theorem B.3.1 tells us exactly when an element of a pre-crystalline graded
ring A0♦α

σG lies in CA(A0).

Theorem B.3.1. In a pre-crystalline graded ring A = A0♦α
σG, we have

CA(A0) =

{∑

s∈G

rs us ∈ A0♦α
σG

∣∣∣ rs σs(a) = a rs, ∀a ∈ A0, s ∈ G
}
.

Proof. The proof is established through the following sequence of equivalences:

∑

s∈G

rs us ∈ CA(A0) ⇐⇒
(∑

s∈G

rs us

)
a = a

(∑

s∈G

rsus

)
, ∀a ∈ A0

⇐⇒
∑

s∈G

rs σs(a)us =
∑

s∈G

a rs us, ∀a ∈ A0

⇐⇒ For each s ∈ G : rs σs(a) = a rs, ∀a ∈ A0.
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If A0 is commutative, then for r ∈ A0 we denote its annihilator ideal in A0 by
Ann(r) = {a ∈ A0 | ar = 0} and get a simplified description of CA(A0).

Corollary B.3.2. If A = A0♦α
σG is a pre-crystalline graded ring and A0 is commutative,

then

CA(A0) =

{∑

s∈G

rsus ∈ A0♦α
σG

∣∣∣ σs(a)− a ∈ Ann(rs), ∀a ∈ A0, s ∈ G
}
.

When A0 is commutative it is clear that A0 ⊆ CA(A0). Using the explicit de-
scription of CA(A0) in Corollary B.3.2, we immediately get necessary and sufficient
conditions for A0 to be maximal commutative, i.e. A0 = CA(A0).

Corollary B.3.3. IfA0♦α
σG is a pre-crystalline graded ring where A0 is commutative, then

A0 is maximal commutative in A0♦α
σG if and only if, for each pair (s, rs) ∈ (G \ {e})×

(A0 \ {0A0}), there exists a ∈ A0 such that σs(a)− a 6∈ Ann(rs).

Corollary B.3.4. Let A0♦α
σG be a pre-crystalline graded ring where A0 is commutative. If

for each s ∈ G \ {e} it is always possible to find some a ∈ A0 such that σs(a) − a is not a
zero-divisor in A0, then A0 is maximal commutative in A0♦α

σG.

The next corollary is a consequence of Corollary B.3.3.

Corollary B.3.5. If the subring A0 of a pre-crystalline graded ring A0♦α
σG is maximal

commutative, then σs 6= idA0 for each s ∈ G \ {e}.

The description of the commutant CA(A0) from Corollary B.3.2 can be further
refined in the case when A0 is an integral domain.

Corollary B.3.6. If A0 is an integral domain, then the commutant of A0 in the pre-
crystalline graded ring A0♦α

σG is

CA(A0) =
{ ∑

s∈σ−1(idA0 )

rsus ∈ A0♦α
σG

∣∣∣ rs ∈ A0

}

where σ−1(idA0) = {s ∈ G | σs = idA0}.

The following corollary can be derived directly from Corollary B.3.5 together with
either Corollary B.3.4 or Corollary B.3.6.

Corollary B.3.7. IfA0♦α
σG is a pre-crystalline graded ring whereA0 is an integral domain,

then σs 6= idA0 for each s ∈ G\{e} if and only ifA0 is maximal commutative inA0♦α
σG.

We will now give a sufficient condition for CA(A0) to be commutative.

66



B.3. COMMUTANT, CENTER AND IDEALS

Proposition B.3.8. IfA = A0♦α
σG is a pre-crystalline graded ring whereA0 is commutive,

G is abelian and α(s, t) = α(t, s) for all s, t ∈ G, then CA(A0) is commutative.

Proof. Let
∑

s∈G rsus and
∑

t∈G ptut be arbitrary elements of CA(A0), then by our
assumptions and Corollary B.3.2 we get

(∑

s∈G

rs us

)(∑

t∈G

pt ut

)
=

∑

(s,t)∈G×G

rs σs(pt)α(s, t)ust

=
∑

(s,t)∈G×G

rs pt α(s, t)ust

=
∑

(s,t)∈G×G

pt σt(rs)α(t, s)uts

=

(∑

t∈G

pt ut

)(∑

s∈G

rs us

)
.

B.3.1 The center in A0♦α
σG

In this section we will describe the center Z(A) of a pre-crystalline graded ring A =
A0♦α

σG. Note that Z(A) ⊆ CA(A0).

Proposition B.3.9. The center of a pre-crystalline graded ring A = A0♦α
σG is

Z(A) =
{∑

g∈G

rg ug

∣∣∣ rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t),

rs σs(a) = a rs, ∀a ∈ A0, (s, t) ∈ G×G
}
.

Proof. Let
∑

g∈G rg ug ∈ A0♦α
σG be an element which commutes with every element in

A0♦α
σG. In particular

∑
g∈G rg ug must commute with every a ∈ A0. From Theorem

B.3.1 we immediately see that this implies rs σs(a) = a rs for every a ∈ A0 and s ∈ G.
Furthermore,

∑
g∈G rg ug must commute with us for every s ∈ G. This yields

∑

t∈G

rts−1 α(ts−1, s)ut =
∑

g∈G

rg α(g, s)ugs =


∑

g∈G

rg ug


 us

= us


∑

g∈G

rg ug


 =

∑

g∈G

σs(rg)α(s, g)usg =
∑

t∈G

σs(rs−1t)α(s, s−1t)ut
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and hence, for each (s, t) ∈ G×G, we have rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t).
Conversely, suppose that

∑
g∈G rg ug ∈ A0♦α

σG is an element satisfying rs σs(a) =
a rs and rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t) for every a ∈ A and (s, t) ∈ G×G.
Let
∑

s∈G as us ∈ A0♦α
σG be arbitrary. Then


∑

g∈G

rg ug



(∑

s∈G

as us

)
=

∑

(g,s)∈G×G

rg σg(as)α(g, s)ugs

=
∑

(g,s)∈G×G

as rg α(g, s)ugs

=
∑

(t,s)∈G×G

as (rts−1 α(ts−1, s))ut

=
∑

(t,s)∈G×G

as σs(rs−1t)α(s, s−1t)ut

=
∑

(g,s)∈G×G

as σs(rg)α(s, g)usg

=

(∑

s∈G

as us

)
∑

g∈G

rg ug




and hence
∑

g∈G rg ug commutes with every element in A0♦α
σG.

Remark B.3.10. Consider the case when A0 is an integral domain and let α take its
values inA0\{0}. In this case it is clear that the following three assertions are equivalent:

1. rs σs(a) = a rs for all a ∈ A0

2. rs(σs(a)− a) = 0 for all a ∈ A0

3. rs = 0 if s 6∈ σ−1(idA0) = {g ∈ G | σg = idA0}

After changing the variable via x = s−1t, the first condition in Proposition B.3.9 may
be written as σs(rx)α(s, x) = rsxs−1 α(sxs−1, s) for all (s, x) ∈ G × G. From this
relation we conclude that rx = 0 if and only if rsxs−1 = 0, and hence it is trivially
satisfied if we put rx = 0 whenever x 6∈ σ−1(idA0). This case has been presented in
[21, Proposition 2.2] with a more elaborate proof.
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B.3.2 Ideals

Given a pre-crystalline graded ring A = A0♦α
σG, for each b ∈ A0 we define the com-

mutator to be

Db : A → A,
∑

s∈G

as us 7→ b

(∑

s∈G

as us

)
−
(∑

s∈G

as us

)
b.

From the definition of the multiplication we have

Db

(∑

s∈G

as us

)
= b

(∑

s∈G

as us

)
−
(∑

s∈G

as us

)
b

=

(∑

s∈G

b as us

)
−
(∑

s∈G

as σs(b)us

)

=
∑

s∈G

(
b as − as σs(b)

)
us

for each b ∈ A0.

Theorem B.3.11 (see [24]). If A = A0♦α
σG is a pre-crystalline graded ring where A0

is commutative and for each
∑

s∈G as us ∈ A \ CA(A0) there exists s ∈ G such that
as 6∈ ker(σs ◦ σs−1), then

I ∩ CA(A0) 6= {0}
for every non-zero two-sided ideal I in A.

Proof. Let I be an arbitrary non-zero two-sided ideal in A and assume that A0 is com-
mutative and that for each

∑
s∈G as us ∈ A \ CA(A0) there exists s ∈ G such that

as 6∈ ker(σs ◦ σs−1). For each g ∈ G we may define a translation operator

Tg : A → A,
∑

s∈G

as us 7→
(∑

s∈G

as us

)
ug.

Note that, for each g ∈ G, I is invariant under Tg . We have

Tg

(∑

s∈G

as us

)
=

(∑

s∈G

as us

)
ug =

∑

s∈G

as α(s, g)usg

for every g ∈ G. By the assumptions and together with [20, Corollary 2.4] it is clear that
for each element c ∈ A \CA(A0) it is always possible to choose some g ∈ G and let Tg

operate on c to end up with an element where the coefficient in front of ue is non-zero.
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Note that, for each b ∈ A0, I is invariant under Db. Furthermore, we have

Db

(∑

s∈G

as us

)
=

∑

s∈G

(b as − as σs(b))us =

=
∑

s6=e

(b as − as σs(b))us =
∑

s6=e

ds us

since (b ae − ae σe(b)) = b ae − ae b = 0. Note that CA(A0) =
⋂

b∈A0
ker(Db) and

hence for any
∑

s∈G as us ∈ A \CA(A0) we are always able to choose b ∈ A0 and the
corresponding Db and have

∑
s∈G as us 6∈ ker(Db). Therefore we can always pick an

operator Db which kills the coefficient in front of ue without killing everything. Hence,
if ae 6= 0A0 , the number of non-zero coefficients of the resulting element will always be
reduced by at least one.

The ideal I is assumed to be non-zero, which means that we can pick some non-zero
element

∑
s∈G rs us ∈ I . If

∑
s∈G rs us ∈ CA(A0), then we are finished, so assume

that this is not the case. Note that rs 6= 0A0 for finitely many s ∈ G. Recall that the
ideal I is invariant under Tg and Da for all g ∈ G and a ∈ A0. We may now use the
operators {Tg}g∈G and {Da}a∈A0 to generate new elements of I . More specifically, we
may use the Tg :s to translate our element

∑
s∈G rs us into a new element which has a

non-zero coefficient in front of ue (if needed) after which we use the Da operator to kill
this coefficient and end up with yet another new element of I which is non-zero but has
a smaller number of non-zero coefficients. We may repeat this procedure and in a finite
number of iterations arrive at an element of I which lies in CA(A0) \ A0, and if not we
continue the above procedure until we reach an element in A0 \ {0A0}. In particular
A0 ⊆ CA(A0) since A0 is commutative and hence I ∩ CA(A0) 6= {0}.

Corollary B.3.12. If A = A0♦α
σG is a pre-crystalline graded ring where A0 is maximal

commutative and for each
∑

s∈G as us ∈ A \ A0 there exists s ∈ G such that as 6∈
ker(σs ◦ σs−1), then

I ∩ A0 6= {0}
for every non-zero two-sided ideal I in A.

A crystalline graded ring has no S(G)-torsion and hence ker(σs ◦ σs−1) = {0A0}
by [20, Corollary 2.4]. Therefore we get the following corollary which is a generalization
of a result for algebraic crossed products in [22].

Corollary B.3.13. If A = A0♦α
σG is a crystalline graded ring where A0 is commutative,

then
I ∩ CA(A0) 6= {0}

for every non-zero two-sided ideal I in A.

When A0 is maximal commutative we get the following corollary.
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Corollary B.3.14. If A0♦α
σG is a crystalline graded ring where A0 is maximal commuta-

tive, then

I ∩ A0 6= {0}
for every non-zero two-sided ideal I in A0♦α

σG.

This shows that in a crystalline graded ring where A0 is commutative, the assertion
S1 always implies S2. The following lemma can be found in [22].

Lemma B.3.15. If A0♦σG is a skew group ring where G is abelian, then the assertion S2

implies σg 6= idA0 for every g ∈ G \ {e}.

Theorem B.3.16. LetA0♦σG be a skew group ring. If either of the following two conditions
is satisfied:

(i) A0 is an integral domain and G is an abelian group;

(ii) A0 is commutative and G is a torsion-free abelian group;

then the two assertions S1 and S2 are equivalent.

Proof. Let A0♦σG be a skew group ring. In both of the two cases (i) and (ii), A0 is
commutative and hence it follows from Corollary B.3.14 that S1 implies S2. Assume that
(i) is satisfied. By Lemma B.3.15 and Corollary B.3.7 it follows that S2 implies S1. Now
assume that (ii) is satisfied. Suppose that A0 is not maximal commutative. By Corollary
B.3.3 there exists some s ∈ G \ {e} and rs ∈ A0 \ {0} such that rs σs(a) = rs a
for all a ∈ A0. Let us choose such an rs and let I be the two-sided ideal in A0♦σG
generated by rs + rs us. The ideal I is obviously non-zero, and furthermore it is spanned
by elements of the form ag ug (rs + rs us) ah uh where g, h ∈ G and ag, ah ∈ A0. We
may now rewrite this expression.

ag ug (rs + rs us) ah uh = ag ug (rs ah + rs σs(ah)︸ ︷︷ ︸
=rs ah

us)uh

= ag σg(rs ah)ug (1A + us)uh

= ag σg(rs ah) (ugh + ugsh)
= ag σg(rs ah)︸ ︷︷ ︸

:=b

ugh + ag σg(rs ah)ugsh

= b ugh + b ugsh

Since G is abelian, it is clear that any element of I may be written in the form

∑

t∈G

(ct ut + ct uts) (B.3)
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for some ct ∈ A0, where t only runs over a finite subset of G. By assumtion s 6= e and
hence t 6= ts for every t ∈ G. In particular this means that every contribution from
ce to the e-graded part of the element in (B.3) comes with an equal contribution to the
s-graded part. Similarly cs:s contribution to the s-graded part equals its contribution to
the cs2 -graded part. Recall that G is assumed to be torsion-free, i.e. sn 6= e for every
n ∈ Z \ {0}, and hence the element in (B.3) can never be a non-zero element of degree
e, which means I ∩A0 = {0}. By contra positivity we conclude that S2 =⇒ S1 and this
finishes the proof.

Theorem B.3.17. If A0♦α
σG is a crystalline graded ring where A0 is an integral domain,

G is an abelian torsion-free group and α is such that α(s, t) = 1A0 whenever σs = idA0 or
σt = idA0 , then the two assertions S1 and S2 are equivalent.

Proof. It is clear from Corollary B.3.14 that S1 =⇒ S2. Suppose that A0 is not maximal
commutative. Since A0 is an integral domain, by Corollary B.3.7 there exists some
s ∈ G \ {e} such that σs = idA0 . For arbitrary g, h ∈ G we may use condition
(2) in Lemma B.2.2 and the assumptions we made on α to arrive at

α(s, g)︸ ︷︷ ︸
=1A0

α(sg, h) = σs(α(g, h))︸ ︷︷ ︸
=α(g,h)

α(s, gh)︸ ︷︷ ︸
=1A0

and since G is abelian we get α(gs, h) = α(sg, h) = α(g, h). Now, similarly to the
proof of Theorem B.3.16, let I be the two-sided ideal in A0♦α

σG generated by 1A + us

and note that

ag ug (1A + us) ah uh = ag ug ah (1A + us)uh

= ag ug ah uh + ag ug ah us uh

= ag σg(ah)ug uh + ag σg(ah)ug us uh

= ag σg(ah)α(g, h)ugh + ag σg(ah) α(g, s)︸ ︷︷ ︸
=1A0

ugs uh

= ag σg(ah)α(g, h)︸ ︷︷ ︸
:=b

ugh + ag σg(ah) α(gs, h)︸ ︷︷ ︸
=α(g,h)

ugsh

= b ugh + b ugsh

for any g, h ∈ G, ag, bh ∈ A0. The rest is analogous to the proof of Theorem B.3.16.

Remark B.3.18. Note that, a twisted group ring can never fit into the conditions of
Theorem B.3.17, because if σ is trivial then the conditions force α to be trivial as well.
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B.4 Examples

Example B.4.1 (Group rings). Let A0 be a commutative (non-zero) ring and G any
(non-trivial) group and denote the group ring by A0 oG. Note that this corresponds to
the crossed product with trivial σ and α maps. We may define the so called augmentation
map

ε : A0 oG→ A0,
∑

s∈G

as us 7→
∑

s∈G

as

and it is straightforward to check that it is in fact a ring morphism. The kernel of this map,
ker(ε) is a two-sided ideal in A0 oG and it is not hard to see that ker(ε) ∩ A0 = {0}.
This gives us an example of a non-zero two-sided ideal which has zero intersection with
the coefficient ring A0, i.e. S2 is false. However, for each s ∈ G, us commutes with
every element in A0 and hence S1 is never true for a group ring. In other words, in a
group ring the two assertions S1 and S2 are always equivalent.

In a twisted group ring A0 oα G, just like for group rings mentioned above, the
action σ is trivial and hence for each s ∈ G the element us commutes with every element
in A0. In other words, A0 is never maximal commutative in a twisted group ring.

Example B.4.2 (The field of complex numbers). Let A0 = R, G = (Z2,+) and define
the cocycle α : Z2 × Z2 → R \ {0} by α(0, 0) = 1, α(0, 1) = 1, α(1, 0) = 1 and
α(1, 1) = −1. It is easy to see that R oα Z2

∼= C. This twisted group ring is simple,
hence C is the only non-zero ideal and clearly C ∩ R 6= {0}. However, as mentioned
earlier, the coefficient ring R is not maximal commutative in C.

Example B.4.2 shows that in a twisted group ring, S1 may be false even though S2 is
true.

Example B.4.3 (The first Weyl algebra). Following [20], let A1(C) = C〈x, y〉/(yx −
xy − 1) be the first Weyl algebra. If we put deg(x) = 1 and deg(y) = −1 and

A1(C)0 = C[xy]
A1(C)n = C[xy]xn, for n ≥ 0
A1(C)m = C[xy]y−m, for m ≤ 0

then this defines a Z-gradation on A1(C). We set un = xn if n ≥ 0 and um = y−m

if m ≤ 0. We put σn = σxn for n ≥ 0 and σm = σy−m for m ≤ 0. It is clear
that σx(xy) = xy − 1 because x(xy) = (xy − 1)x and σy(xy) = xy + 1 because
y(xy) = (1 + xy)y. Let us put t = xy, then

σ : Z → AutC(C[t]), n 7→ (t 7→ t− n).
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We can also calculate, for example

α(n,−n) = xnyn = xn−1tyn−1 = (t− (n− 1))xn−1yn−1

= (t− n+ 1) · (t− n+ 2) · . . . · (t− 2) · (t− 1) · t.

Furthermore α(n,−m) with n > m (n,m ∈ N) can be calculated from

xnym = xn−mxmym = xn−mα(m,−m) = σn−m
x (α(m,−m))xn−m

and so
α(n,−m) = σn−m

x (α(m,−m)).

Note that σ−1(idA0) = {0} and clearly α(0,−m) = 1 and α(n, 0) = 1. By applying
Theorem B.3.17 it is clear that the assertions S1 and S2 are equivalent for the first Weyl
algebra. Of course, in this specific case this also follows easily since A1(C) is known to
be a simple algebra and hence the only non-zero two-sided ideal is A1(C) itself, which
clearly has a non-zero intersection with C[xy]. Furthermore, C[xy] is an integral domain
and σn 6= idC[xy] for each n 6= 0 and by Corollary B.3.7 the base ring C[xy] is maximal
commutative in A1(C). This shows that in this particular example of a crystalline graded
ring, the two assertions S1 and S2 are always true.

Example B.4.4 (The quantum Weyl algebra). Consider the quantum Weyl algebraA =
C〈x, y〉/(yx − qxy − 1) where q ∈ C \ {0, 1} (see e.g. [8]). Put A0 = C[xy] just like
for the first Weyl algebra. If we set un = xn for n ≥ 0 and um = y−m for m ≤ 0, then
we obtain a Z-grading on A. Furthermore we get

σn
x (xy) = q−nxy − q−n − . . .− q−1 (B.4)

and
σn

y (xy) = qnxy + qn−1 + . . .+ q + 1. (B.5)

One may define α(n,−n) = xnym for n ∈ Z≥0 and derive formulas for the values
of α in a similar fashion as for the first Weyl algebra. If q is not a root of unity, then
σ−1(idA0) = {0} and we may apply Theorem B.3.17 to conclude that S1 and S2 are
equivalent. Furthermore by Corollary B.3.7, A0 is maximal commutative and hence we
conclude that every non-zero two-sided ideal has a non-zero intersection with A0. Note
that A is not simple, in fact there is a whole collection of proper ideals as explained in
[7].

If q 6= 1 is a root of unity and n is the smallest positive integers such that qn = 1,
then from (B.4) and (B.5) and Corollary B.3.6 we see that

CA(A0) =

{∑

k∈nN
pk(xy)xk +

∑

l∈nN
pl(xy) yl

∣∣∣ pk(xy), pl(xy) ∈ C[xy]

}

and hence A0 is not maximal commutative.
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Theorems B.3.16 and B.3.17 partly rely on the grading group G being torsion-free,
which obviously excludes all finite groups. In the following we give an example of an
algebra which is graded by a finite group and in which the two assertions S1 and S2 are
in fact true and hence equivalent.

Example B.4.5 (Central simple algebras). Let A be a finite-dimensional central simple
algebra over a field F . By Wedderburn’s theorem A ∼= Mi(D) where D is a division
algebra over F and i is some integer. If K is a maximal separable subfield of D then
[K : F ] = n where [D : F ] = n2. We shall assume that K is normal over F and that
[A : F ] = [K : F ]2 (see [9] for motivation). Let Gal(K/F ) be the Galois group of K
over F . For k ∈ K and σs ∈ Gal(K/F ) we shall write σs(k) for the image of k under
σs. By the Noether-Skolem theorem there is an invertible element us ∈ A such that
σs(k) = usku

−1
s for every k ∈ K . One can show that the us’s are linearly independent

over K . However, the linear span over K of the us’s has dimension n2 over F , hence
must be all of A. In short A = {∑s∈G ks us | ks ∈ K}. If σs, σt ∈ Gal(K/F ) and
k ∈ K , then

us ut k u
−1
t u−1

s = us σt(k)u−1
s = σst(k) = ust k u

−1
st

This says that u−1
st (us ut) ∈ CA(K) = K , in other words us ut = f(s, t)ust where

f(s, t) 6= 0 is inK . SinceA is an associative algebra one may verify that f : Gal(K/F )×
Gal(K/F ) → K \ {0} is in fact a cocycle. By Theorem 4.4.1 in [9], if K is a normal
extension of F with Galois group Gal(K/F ) and f is a cocycle (factor set), then the
crossed product K oσ

f Gal(K/F ) is a central simple algebra over F and hence in this
situation both S1 and S2 are in fact true.

B.5 Comments to the literature

As we have mentioned in the introduction, the literature contains several different types
of intersection theorems for group rings, Ore extensions and crossed products. Typically
these theorems rely on heavy restrictions on the coefficient rings and the groups involved.

It was proven in [26, Theorem 1, Theorem 2] that the center of a semiprimitive
(semisimple in the sense of Jacobson [10]) P.I. ring respectively semiprime P.I. ring has
a non-zero intersection with every non-zero ideal in such a ring. For crystalline graded
rings satisfying the conditions in [26, Theorem 2], it offers a more precise result than
Corollary B.3.13 since Z(A) ⊆ CA(A0). However, every crystalline graded ring need
not be semiprime nor a P.I. ring and this justifies the need for Corollary B.3.13.

In [14, Lemma 2.6] it was proven that if the coefficient ring A0 of a crossed product
A0 ∗ G is prime, P is a prime ideal in A0 ∗G such that P ∩ A0 = 0 and I is an ideal
in A0 ∗ G properly containing P , then I ∩ A0 6= 0. Furthermore, in [14, Proposition
5.4] it was proven that the crossed product A0 ∗ G with G abelian and A0 a G-prime
ring has the property that, if Ginn = {e}, then every non-zero ideal in A0 ∗ G has a
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non-zero intersection with A0. It was shown in [3, Corollary 3] that if A0 is semiprime
and Ginn = {e}, then every non-zero ideal in A0 ∗ G has a non-zero intersection with
A0. In [15, Lemma 3.8] it was shown that if A0 is a G-prime ring, P a prime ideal in
A0 ∗ G with P ∩ A0 = 0 and if I is an ideal in A0 ∗ G properly containing P , then
I ∩ A0 6= 0. In [18, Proposition 2.6] it was shown that if A0 is a prime ring and I is a
non-zero ideal in A0 ∗ G, then I ∩ (A0 ∗ Ginn) 6= 0. In [18, Proposition 2.11] it was
shown that for a crossed product A0 ∗ G with prime ring A0, every non-zero ideal in
A0 ∗ G has a non-zero intersection with A0 if and only if Ct[Ginn] is G-simple and in
particular if |Ginn| <∞, then every non-zero ideal inA0 ∗G has a non-zero intersection
with A0 if and only if A0 ∗G is prime.

Corollary B.3.14 shows that if A0 is maximal commutative in the crystalline graded
ringA0♦α

σG, without any further conditions on the ringA0 or the groupG, we are able
to conclude that every non-zero ideal in A0♦α

σG has a non-zero intersection with A0.
In the theory of group rings (crossed products with no action or twisting) the inter-

section properties of ideals with certain subrings have played an important role and are
studied in depth in for example [4], [13] and [25]. Some further properties of intersec-
tions of ideals and homogeneous components in graded rings have been studied in for
example [2], [16].

For ideals in Ore extensions there are interesting results in [5, Theorem 4.1] and [11,
Lemma 2.2, Theorem 2.3, Corollary 2.4], explaining a correspondence between certain
ideals in the Ore extension and certain ideals in its coefficient ring. Given a domain A of
characteristic 0 and a non-zero derivation δ it is shown in [6, Proposition 2.6] that every
non-zero ideal in the Ore extension R = A[x; δ] intersects A in a non-zero δ-invariant
ideal. Similar types of intersection results for ideals in Ore extension rings can be found
in for example [12] and [17].
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No. 1151, 1–71 (2000)

[33] Zeller-Meier, G.: Produits croisés d’une C∗-algèbre par un groupe
d’automorphismes, J. Math. Pures Appl. (9) 47, 101–239 (1968)

79





C
Paper C

Chapter 24 in S. Silvestrov, E. Paal, V. Abramov, A. Stolin (Eds.),
Generalized Lie theory in Mathematics, Physics and Beyond, pp.

281–296, Springer-Verlag, Berlin, Heidelberg, 2009.





Paper C

Crossed product-like and pre-crystalline
graded rings

Johan Öinert and Sergei D. Silvestrov

Abstract. We introduce crossed product-like rings, as a natural generalization of crystalline
graded rings, and describe their basic properties. Furthermore, we prove that for certain pre-
crystalline graded rings and every crystalline graded ring A, for which the base subring A0 is
commutative, each non-zero two-sided ideal has a non-zero intersection with CA(A0), i.e.
the commutant of A0 in A. We also show that in general this property need not hold for
crossed product-like rings.

C.1 Introduction

In the recent paper [3], by E. Nauwelaerts and F. Van Oystaeyen, so called crystalline
graded rings were introduced, as a general class of group graded rings containing as special
examples the algebraic crossed products, the Weyl algebras, the generalized Weyl algebras
and generalizations of Clifford algebras. In the paper [4], by T. Neijens, F. Van Oystaeyen
and W.W. Yu, the structure of the center of special classes of crystalline graded rings and
generalized Clifford algebras was studied.

In this paper we prove that if A is a crystalline graded ring, where the base subring
A0 is commutative, then each non-zero two-sided ideal has a non-zero intersection with
CA(A0) = {b ∈ A | ab = ba, ∀a ∈ A0}, i.e. the commutant of A0 in A (Corollary
C.5.5). Furthermore, we define pre-crystalline graded rings as the obvious generalization of
crystalline graded rings, and show that under certain conditions the previously mentioned
property also holds for pre-crystalline group graded rings (Theorem C.5.3).

We also introduce crossed product-like rings which is a broad class of rings, containing
as special cases the pre-crystalline graded rings and hence also the crystalline graded rings.
Crossed product-like rings are in general only monoid graded in contrast to crystalline
graded rings and algebraic crossed products, which are group graded. A crossed product-
like ring graded by the monoid M and with base ring A0 will be denoted by A0♦α

σM ,
where σs : A0 → A0 is an additive and multiplicative set map for each s ∈ M and
α : M ×M → A0 is another set map (see Lemma C.2.3 for details). The product in
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A0♦α
σM is given by the bilinear extension of the rule

(a us)(b ut) = a σs(b)α(s, t)ust

for a, b ∈ A0 and s, t ∈M . In contrary to the case of algebraic crossed products or more
generally crystalline graded rings, for crossed product-like rings the maps σs, s ∈ M ,
may be non-surjective, thus allowing non-standard examples of rings to fit in (Example
C.6.2).

The center Z(A) (Proposition C.4.1) and the commutant CA(A0) of the base sub-
ring in a general crossed product-like ring A = A0♦α

σM (Theorem C.3.1) will be de-
scribed and we will give an example of a (possibly) non-invertible dynamical system, to
which we associate a monoid graded crossed product-like ring and show that it contains a
non-zero two-sided ideal which has zero intersection with the commutant of the base sub-
ring (Proposition C.5.1). This displays a difference between monoid graded and group
graded rings with regards to the intersection property that we are investigating.

C.2 Preliminaries and definitions

We shall begin by giving the definitions of the rings that we are investigating and also
describe some of their basic properties.

Definition C.2.1 (Graded ring). LetM be a monoid with neutral element e. A ringR is
said to be graded by M if R =

⊕
s∈M Rs for additive subgroupsRs, s ∈M , satisfying

RsRt ⊆ Rst for all s, t ∈ M . Moreover, if RsRt = Rst holds for all s, t ∈ M , then
R is said to be strongly graded by M .

It may happen thatM is in fact a group and when we want to emphasize that a ringR
is graded by a monoid respectively a group we shall say that it is monoid graded respectively
group graded. It is worth noting that in an associative and graded ring R =

⊕
s∈M Rs,

by the gradation property,Re will always be a subring and furthermore for every s ∈M ,
Rs is an Re-bimodule. For a thorough exposition of the theory of graded rings we refer
to [1, 2].

So called crystalline graded rings were defined in [3] and further investigated in [4].
Right now we wish to weaken some of the conditions in the definition of those rings, in
order to allow more general rings to fit in.

Definition C.2.2 (Crossed product-like ring). An associative and unital ringA is said to
be crossed product-like if

• There is a monoid M (with neutral element e).

• There is a map u : M → A, s 7→ us such that ue = 1A and us 6= 0A for every
s ∈M .
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• There is a subringA0 ⊆ A containing 1A.

such that the following conditions are satisfied:

(P1) A =
⊕

s∈M A0 us.

(P2) For every s ∈M , usA0 ⊆ A0 us andA0 us is a free leftA0-module of rank one.

(P3) The decomposition in P1 makes A into an M -graded ring with A0 = Ae.

If M is a group and we want to emphasize that, then we shall say that A is a crossed
product-like group graded ring. If we want to emphasize thatM is only a monoid, we shall
say that A is a crossed product-like monoid graded ring.

Similarly to the case of algebraic crossed products, one is able to find maps that can
be used to describe the formation of arbitrary products in the ring. Some key properties
of these maps are highlighted in the following lemma.

Lemma C.2.3. With notation and definitions as above:

(i) For every s ∈ M , there is a set map σs : A0 → A0 defined by usa = σs(a)us for
a ∈ A0. The map σs is additive and multiplicative. Moreover, σe = idA0 .

(ii) There is a set map α : M ×M → A0 defined by usut = α(s, t)ust for s, t ∈ M .
For any triple s, t, w ∈M and a ∈ A0 the following equalities hold:

α(s, t)α(st, w) = σs(α(t, w))α(s, tw) (C.1)

σs(σt(a))α(s, t) = α(s, t)σst(a) (C.2)

(iii) For every s ∈M we have α(s, e) = α(e, s) = 1A.

Proof. The proof is analogous to the proof of Lemma 2.1 in [3].

By the foregoing lemma we see that, for arbitrary a, b ∈ A0 and s, t ∈ M , the
product of a us and b ut in the crossed product-like ring A may be written as

(a us)(b ut) = a σs(b)α(s, t)ust

and this is the motivation for the name crossed product-like. A crossed product-like ring
A with the above properties will be denoted by A0♦α

σM , indicating the maps σ and α.

Remark C.2.4. Note that for s ∈M \{e} we need not necessarily have σs(1A0) = 1A0

and hence σs need not be a ring morphism.

Definition C.2.5 (Pre-crystalline graded ring). A crossed product-like ring A0♦α
σM

where for each s ∈M , A0 us = usA0, is said to be a pre-crystalline graded ring.
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For a pre-crystalline graded ring A0♦α
σM , the following lemma gives us additional

information about the maps σ and α defined in Lemma C.2.3.

Lemma C.2.6. If A0♦α
σM is a pre-crystalline graded ring, then the following holds:

(i) For every s ∈M , the map σs : A0 → A0 is a surjective ring morphism.

(ii) If M is a group, then

α(g, g−1) = σg(α(g−1, g))

for each g ∈M .

Proof. The proof is the same as for Lemma 2.1 in [3].

In a pre-crystalline graded ring, one may show that for s, t ∈ M , the α(s, t) are
normalizing elements ofA0 in the sense thatA0α(s, t) = α(s, t)A0 (see [3, Proposition
2.3]). If we in addition assume that A0 is commutative, then we see by Lemma C.2.3
that the map σ : M → End(A0) is a monoid morphism.

For a pre-crystalline group graded ring A0♦α
σG, we let S(G) denote the multiplica-

tive set inA0 generated by {α(g, g−1) | g ∈ G} and let S(G×G) be the multiplicative
set generated by {α(g, h) | g, h ∈ G}.

Lemma C.2.7 (Corollary 2.7 in [3]). If A = A0♦α
σG is a pre-crystalline group graded

ring, then the following are equivalent:

• A0 is S(G)-torsion free.

• A is S(G)-torsion free.

• α(g, g−1)a0 = 0 for some g ∈ G implies a0 = 0.

• α(g, h)a0 = 0 for some g, h ∈ G implies a0 = 0.

• A0ug = ugA0 is also free as a right A0-module, with basis ug, for every g ∈ G.

• For every g ∈ G, σg is bijective and hence a ring automorphism of A0.

From Lemma C.2.7 we see that when A0 is S(G)-torsion free in a pre-crystalline
group graded ring A0♦α

σG, we have im(σ) ⊆ Aut(A0). We shall now state the defini-
tion of a crystalline graded ring.

Definition C.2.8 (Crystalline graded ring). A pre-crystalline group graded ringA0♦α
σG

which is S(G)-torsion free is said to be a crystalline graded ring.
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C.3 The commutant ofA0 in a crossed product-like ring

The commutant of the subring A0 in the crossed product-like ring A = A0♦α
σM is

defined by
CA(A0) = {b ∈ A | ab = ba, ∀a ∈ A0}.

In this section we will describe CA(A0) in various crossed product-like rings. Theorem
C.3.1 tells us exactly when an element of a crossed product-like ring A = A0♦α

σM lies
in CA(A0).

Theorem C.3.1. In a crossed product-like ring A = A0♦α
σM , we have

CA(A0) =

{∑

s∈M

rs us ∈ A0♦α
σM

∣∣∣ rs σs(a) = a rs, ∀a ∈ A0, s ∈M
}
.

Proof. The proof is established through the following sequence of equivalences:

∑

s∈M

rs us ∈ CA(A0) ⇐⇒
(∑

s∈M

rs us

)
a = a

(∑

s∈M

rsus

)
, ∀a ∈ A0

⇐⇒
∑

s∈M

rs σs(a)us =
∑

s∈M

a rs us, ∀a ∈ A0

⇐⇒ For each s ∈M : rs σs(a) = a rs, ∀a ∈ A0.

If A0 is commutative, then for each r ∈ A0 we denote its annihilator ideal in A0 by
Ann(r) = {a ∈ A0 | ar = 0} and get a simplified description of CA(A0).

Corollary C.3.2. If A = A0♦α
σM is a crossed product-like ring and A0 is commutative,

then

CA(A0) =

{∑

s∈M

rsus ∈ A0♦α
σM

∣∣∣ σs(a)− a ∈ Ann(rs), ∀a ∈ A0, s ∈M
}
.

When A0 is commutative it is clear that A0 ⊆ CA(A0). Using the explicit de-
scription of CA(A0) in Corollary C.3.2, we immediately get necessary and sufficient
conditions for A0 to be maximal commutative in A, i.e. A0 = CA(A0).

Corollary C.3.3. If A0♦α
σM is a crossed product-like ring where A0 is commutative, then

A0 is maximal commutative inA0♦α
σM if and only if, for each pair (s, rs) ∈ (M \{e})×

(A0 \ {0A0}), there exists a ∈ A0 such that σs(a)− a 6∈ Ann(rs).
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Corollary C.3.4. Let A0♦α
σM be a crossed product-like ring where A0 is commutative. If

for each s ∈M \ {e} it is always possible to find some a ∈ A0 such that σs(a)− a is not a
zero-divisor in A0, then A0 is maximal commutative in A0♦α

σM .

The next corollary is a consequence of Corollary C.3.3.

Corollary C.3.5. If the subring A0 in the crossed product-like ring A0♦α
σM is maximal

commutative, then σs 6= idA0 for each s ∈M \ {e}.

The description of the commutant CA(A0) from Corollary C.3.2 can be further
refined in the case when A0 is an integral domain.

Corollary C.3.6. If A0 is an integral domain, then the commutant of A0 in the crossed
product-like ring A0♦α

σM is

CA(A0) =
{ ∑

s∈σ−1(idA0)

rsus ∈ A0♦α
σM

∣∣∣ rs ∈ A0

}

where σ−1(idA0) = {s ∈M | σs = idA0}.

The following corollary can be derived directly from Corollary C.3.5 together with
either Corollary C.3.4 or Corollary C.3.6.

Corollary C.3.7. IfA0♦α
σM is a crossed product-like ring whereA0 is an integral domain,

then σs 6= idA0 for all s ∈M \{e} if and only ifA0 is maximal commutative inA0♦α
σM .

We will now give a sufficient condition for CA(A0) to be commutative.

Proposition C.3.8. IfA0♦α
σM is a crossed product-like ring where A0 is commutative,M

is abelian and α(s, t) = α(t, s) for all s, t ∈M , then CA(A0) is commutative.

Proof. Let
∑

s∈M rsus and
∑

t∈M ptut be arbitrary elements in CA(A0). By our as-
sumptions and Corollary C.3.2 we get

(∑

s∈M

rs us

)(∑

t∈M

pt ut

)
=

∑

(s,t)∈M×M

rs σs(pt)α(s, t)ust

=
∑

(s,t)∈M×M

rs pt α(s, t)ust

=
∑

(s,t)∈M×M

pt σt(rs)α(t, s)uts

=

(∑

t∈M

pt ut

)(∑

s∈M

rs us

)
.
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C.4 The center of a crossed product-like ring A0♦α
σM

In this section we will describe the center Z(A) = {b ∈ A | ab = ba, ∀a ∈ A} of a
crossed product-like ring A = A0♦α

σM . Note that Z(A0♦α
σM) ⊆ CA(A0).

Proposition C.4.1. The center of a crossed product-like ring A = A0♦α
σM is

Z(A) =

{ ∑

g∈M

rg ug

∣∣∣
∑

g∈M

rg α(g, s)ugs =
∑

g∈M

σs(rg)α(s, g)usg

rs σs(a) = a rs, ∀a ∈ A0, s ∈M
}
.

Proof. Let
∑

g∈M rg ug ∈ A0♦α
σM be an element which commutes with every element

in A0♦α
σM . Then, in particular

∑
g∈M rg ug must commute with every a ∈ A0. From

Theorem C.3.1 we immediately see that this implies rs σs(a) = a rs for every a ∈ A0

and s ∈ M . Furthermore,
∑

g∈M rg ug must commute with us for every s ∈ M . This
yields

∑

g∈M

rg α(g, s)ugs =


∑

g∈M

rg ug


us = us


∑

g∈M

rg ug




=
∑

g∈M

σs(rg)α(s, g)usg

for each s ∈M .
Conversely, suppose that

∑
g∈M rg ug ∈ A0♦α

σM is an element satisfying rs σs(a) =
a rs and

∑
g∈M rg α(g, s)ugs =

∑
g∈M σs(rg)α(s, g)usg for every a ∈ A0 and

s ∈M . Let
∑

s∈M as us ∈ A0♦α
σM be arbitrary. Then


∑

g∈M

rg ug



(∑

s∈M

as us

)
=

∑

(g,s)∈M×M

rg σg(as)α(g, s)ugs

=
∑

(g,s)∈M×M

as rg α(g, s)ugs

=
∑

s∈M

as


∑

g∈M

rg α(g, s)ugs
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=
∑

s∈M

as


∑

g∈M

σs(rg)α(s, g)usg




=
∑

(s,g)∈M×M

as σs(rg)α(s, g)usg

=

(∑

s∈M

as us

)
∑

g∈M

rg ug




and hence
∑

g∈M rg ug commutes with every element in A0♦α
σM .

A crossed product-like group graded ring offers a more simple description of its center.

Corollary C.4.2. The center of a crossed product-like group graded ring A = A0♦α
σG is

Z(A) =

{∑

g∈G

rg ug

∣∣∣ rts−1 α(ts−1, s) = σs(rs−1t)α(s, s−1t),

rs σs(a) = a rs, ∀a ∈ A0, (s, t) ∈ G×G

}
.

Corollary C.4.3. The center of a crossed product-like ring A = A0♦α
σG graded by an

abelian group G is

Z(A) =

{∑

g∈G

rg ug

∣∣∣ rg α(g, s) = σs(rg)α(s, g),

rs σs(a) = a rs, ∀a ∈ A0, s ∈ G
}
.

C.5 Intersection theorems

For any group graded algebraic crossed product A, where the base ring A0 is commuta-
tive, it was shown in [5] that

I ∩ CA(A0) 6= {0}
for each non-zero two-sided ideal I in A (see also [6]). In this section we will investigate
if this property holds for more general classes of rings. It turns out that it need not
hold in a crossed product-like monoid graded ring. However, we shall see that under
certain conditions it will hold for pre-crystalline graded rings and that it always holds for
crystalline graded rings if A0 is assumed to be commutative.
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C.5.1 Crossed product-like monoid graded rings

Let X be a non-empty set and γ : X → X a map (not necessarily injective nor surjec-
tive). We define the following sets:

Pern(γ) = {x ∈ X | γ◦(n)(x) = x}, n ∈ Z≥0

Per(γ) =
⋃

n∈Z≥0

Pern(γ)

Aper(γ) = X \ Per(γ)

We let CX denote the algebra of complex-valued functions on X , with addition and
multplication being the usual pointwise operations. We define a map

σ : Z≥0 → End(CX)

by
σn(f) = f ◦ γ◦(n), f ∈ CX

for n ∈ Z≥0. Let A be the ring consisting of finite sums of the form
∑

s∈Z≥0
fs us

where fs ∈ CX for s ∈ Z≥0, and where ui are non-zero elements satisfying u0 = 1,
us ut = us+t for all s, t ∈ Z≥0 and

us f = σs(f)us , for f ∈ CX .

It is easy to see that A = CX♦σZ≥0 is a crossed product-like ring. We omit to indicate
the map α : Z≥0 × Z≥0 → CX since it is mapped onto the identity in CX everywhere.

Proposition C.5.1. With conventions and notation as above, if Aper(γ) 6= ∅, then there
exists a non-zero two-sided ideal I in A = CX♦σZ≥0 such that

I ∩ CA(CX) = {0}.
Proof. Suppose that Aper(γ) 6= ∅. Clearly, γ(Per(γ)) ⊆ Per(γ) and γ(Aper(γ)) ⊆
Aper(γ). For the pre-images we have γ−1(Per(γ)) ⊆ Per(γ) and γ−1(Aper(γ)) ⊆
Aper(γ). Choose some non-zero f ∈ CX such that supp(f) ⊆ Aper(γ) and let I be
the ideal in A generated by fu1. An arbitrary element c ∈ I may be written as

c =
∑

k∈Z≥0


 ∑

r1,r2∈Z≥0

gr1,k ur1 f u1 hr2,k ur2




where gi,j , hi,j ∈ CX for i, j ∈ Z≥0. This may be rewritten as

c =
∑

t∈Z>0




∑

r1,r2∈Z≥0
r1+r2+1=t

∑

k∈Z≥0

gr1,k σr1(f)σr1+1(hr2,k)




︸ ︷︷ ︸
=at

ut.
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By elementary properties of the support of a function, we get

supp(at) ⊆
⋃

r1,r2∈Z≥0
r1+r2+1=t

⋃

k∈Z≥0

(
supp(gr1,k) ∩ (γ◦(r1))−1(supp(f))

∩(γ◦(r1+1))−1(supp(hr2,k))
)

from which we conclude that

supp(at) ⊆
⋃

r1∈Z≥0
r1+1=t

(γ◦(r1))−1(supp(f)). (C.3)

It follows from Corollary C.3.2 that
∑

t∈Z≥0
at ut lies in CA(CX) if and only if

supp(at) ⊆ Pert(γ) for each t > 0. If we can show that Pert(γ)
⋂

supp(at) = ∅ for
every t, then we are finished. Suppose that there exists some t for which
Pert(γ)

⋂
supp(at) 6= ∅. It now follows by (C.3) that

Pert(γ)
⋂ ⋃

r1∈Z≥0
r1+1=t

(γ◦(r1))−1(supp(f)) 6= ∅

which is absurd, after noting that
⋃

r1∈Z≥0,r1+1=t(γ
◦(r1))−1(supp(f)) ⊆ Aper(γ),

Pert(γ) ⊆ Per(γ) for each t ∈ Z>0 and that Per(γ) ∩ Aper(γ) = ∅. This concludes
the proof.

Remark C.5.2. Let X be a non-empty set and γ : X → X a bijection. The bijection
gives rise to a map γ̃ : Z → Aut(CX) given by γ̃n(f) = f ◦ γ◦(n), for f ∈ CX , and
we may define the Z-graded crossed product A = CX oγ̃ Z (see for example [7–9]). It
follows from [9, Theorem 3.1] or more generally from [5, Theorem 2], that

I ∩CA(CX) 6= {0}

for each non-zero two-sided ideal I in CX oγ̃ Z.

Proposition C.5.1 and Remark C.5.2 display a difference between monoid graded
crossed product-like rings and group graded crossed products.

C.5.2 Group graded pre-crystalline and crystalline graded rings

Given a pre-crystalline graded ring A = A0♦α
σG, for each b ∈ A0 we define the com-

mutator to be

Db : A → A,
∑

s∈G

as us 7→ b

(∑

s∈G

as us

)
−
(∑

s∈G

as us

)
b.
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From the definition of the multiplication we have

Db

(∑

s∈G

as us

)
= b

(∑

s∈G

as us

)
−
(∑

s∈G

as us

)
b

=

(∑

s∈G

b as us

)
−
(∑

s∈G

as σs(b)us

)

=
∑

s∈G

(
b as − as σs(b)

)
us

for each b ∈ A0.

Theorem C.5.3. If A = A0♦α
σG is a pre-crystalline group graded ring where A0 is

commutative and for each
∑

s∈G as us ∈ A \ CA(A0) there exists s ∈ G such that
as 6∈ ker(σs ◦ σs−1), then

I ∩ CA(A0) 6= {0}
for every non-zero two-sided ideal I in A.

Proof. Let I be an arbitrary non-zero two-sided ideal in A and assume that A0 is com-
mutative and that for each

∑
s∈G as us ∈ A \ CA(A0) there exists s ∈ G such that

as 6∈ ker(σs ◦ σs−1). For each g ∈ G we may define a translation operator

Tg : A → A,
∑

s∈G

as us 7→
(∑

s∈G

as us

)
ug.

Note that, for each g ∈ G, I is invariant under Tg . We have

Tg

(∑

s∈G

as us

)
=

(∑

s∈G

as us

)
ug =

∑

s∈G

as α(s, g)usg

for every g ∈ G. By the assumptions and together with [3, Corollary 2.4] it is clear that
for each element c ∈ A \CA(A0) it is always possible to choose some g ∈ G and let Tg

operate on c to end up with an element where the coefficient in front of ue is non-zero.
Note that, for each b ∈ A0, I is invariant under Db. Furthermore, we have

Db

(∑

s∈G

as us

)
=

∑

s∈G

(b as − as σs(b))us =

=
∑

s6=e

(b as − as σs(b))us =
∑

s6=e

ds us

since (b ae − ae σe(b)) = b ae − ae b = 0. Note that CA(A0) =
⋂

b∈A0
ker(Db) and

hence for any
∑

s∈G as us ∈ A \ CA(A0) we are always able to choose b ∈ A0 and the
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corresponding Db and have
∑

s∈G as us 6∈ ker(Db). Therefore we can always pick an
operator Db which kills the coefficient in front of ue without killing everything. Hence,
if ae 6= 0A0 , the number of non-zero coefficients of the resulting element will always be
reduced by at least one.

The ideal I is assumed to be non-zero, which means that we can pick some non-zero
element

∑
s∈G rs us ∈ I . If

∑
s∈G rs us ∈ CA(A0), then we are finished, so assume

that this is not the case. Note that rs 6= 0A0 for finitely many s ∈ G. Recall that the
ideal I is invariant under Tg and Da for all g ∈ G and a ∈ A0. We may now use the
operators {Tg}g∈G and {Da}a∈A0 to generate new elements of I . More specifically, we
may use the Tg :s to translate our element

∑
s∈G rs us into a new element which has a

non-zero coefficient in front of ue (if needed) after which we use the Da operator to kill
this coefficient and end up with yet another new element of I which is non-zero but has
a smaller number of non-zero coefficients. We may repeat this procedure and in a finite
number of iterations arrive at an element of I which lies in CA(A0) \ A0, and if not we
continue the above procedure until we reach an element in A0 \ {0A0}. In particular
A0 ⊆ CA(A0) since A0 is commutative and hence I ∩ CA(A0) 6= {0}.

Corollary C.5.4. If A = A0♦α
σG is a pre-crystalline group graded ring where A0 is max-

imal commutative and for each
∑

s∈G as us ∈ A \ A0 there exists s ∈ G such that
as 6∈ ker(σs ◦ σs−1), then

I ∩ A0 6= {0}

for every non-zero two-sided ideal I in A.

A crystalline graded ring has no S(G)-torsion and hence ker(σs ◦ σs−1) = {0A0}
by [3, Corollary 2.4]. Therefore we get the following corollary which is a generalization
of a result for algebraic crossed products in [5, Theorem 2].

Corollary C.5.5. If A = A0♦α
σG is a crystalline graded ring where A0 is commutative,

then

I ∩ CA(A0) 6= {0}

for every non-zero two-sided ideal I in A.

When A0 is maximal commutative we get the following corollary.

Corollary C.5.6. IfA0♦α
σG is a crystalline graded ring whereA0 is maximal commutative,

then

I ∩ A0 6= {0}

for every non-zero two-sided ideal I in A0♦α
σG.
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C.6 Examples of crossed product-like and crystalline graded

rings

Example C.6.1 (The quantum torus). Let q ∈ C\{0, 1}. Denote by Cq[x, x−1, y, y−1]
the unital ring of polynomials over C with four generators {x, x−1, y, y−1} and the
defining commutation relations xx−1 = x−1x = 1, yy−1 = y−1y = 1 and

y x = q x y. (C.4)

This means that Cq[x, x−1, y, y−1] = C〈x,x−1,y,y−1〉
{xx−1=x−1x=1, yy−1=y−1y=1, y x=q x y} . This

ring is sometimes called the twisted Laurent polynomial ring or the quantum torus. Follow-
ing the notation of Definition C.2.2, let A0 = C[x, x−1], M = (Z,+) and un = yn

for n ∈M . It is not difficult to show that

A = Cq[x, x−1, y, y−1] =
⊕

n∈Z
C[x, x−1]yn =

⊕

n∈M

A0 un

and that the other conditions in Definition C.2.2 are satisfied as well. Therefore,
Cq[x, x−1, y, y−1] can be viewed as a crossed product-like group graded ring. From
the defining commutation relations and the choice of un, it follows that σn : P (x) 7→
P (qnx) for n ∈ M and P (x) ∈ A0, and that α(s, t) = 1A for all s, t ∈ M , following
the notation of Lemma C.2.3.

In the current example, A0 is an integral domain. Thus, by Corollary C.3.7, the
subring A0 = C[x, x−1] is maximal commutative in Cq[x, x−1, y, y−1] if and only if
qnx 6= x for every n 6= 0 or equivalently if and only if q is not a root of unity.

Example C.6.2 (Twisted functions in the complex plane). Let CC be the algebra of
functions C → C, with addition and multiplication being the usual pointwise operations.
Fix a pair of numbers q ∈ C \ {0} and d ∈ Z>0 and consider the map

γ : C → C, z 7→ qzd.

We define
σn : CC → CC, f 7→ f ◦ γ◦(n)

for n ∈ Z>0 and set σ0 = idCC . If n ≥ 2, then this yields

(σn(f))(z) = f(q1+d+...+dn−1
zdn

)

for f ∈ CC and z ∈ C. Let A be the algebra consisting of finite sums of the form∑
i∈Z≥0

fi ui, where fi ∈ CC for each i ∈ Z≥0, and ui are non-zero elements satisfying

1. u0 = 1
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2. unum = un+m, for all n,m ∈ Z≥0

and also such that ui does not in general commute with CC, but satisfy

unf = σn(f)un, for f ∈ CC and n ∈ Z≥0.

One may easily verify that this corresponds to the crossed product-like monoid graded
ring CC♦σZ≥0. Consider the set

Pern(γ) = {z ∈ C | σn(f)(z) = f(z), ∀f ∈ CC}. (C.5)

Note that Per0(γ) = C and that Per1(γ) contains the solutions to the equation qzd =
z. For n ∈ Z≥2 we have

Pern(γ) = {z ∈ C | q1+d+...+dn−1
zdn

= z}. (C.6)

By using the formula for a geometric series, it is easy to see that, for each n ∈ Z≥1,
Pern contains the point z = 0 and dn − 1 points equally distributed along a circle with

radius r = |q| 1
1−d and with its center in the origin in the complex plane.

The following proposition follows from Corollary C.3.2.

Proposition C.6.3. With notation and definitions as above, for A = CC♦σ Z≥0 we have

CA(CC) =




∑

i∈Z≥0

fi ui

∣∣∣ supp(fi) ⊆ Peri(γ), i ∈ Z≥0



 .

It now becomes clear that CC is never maximal commutative in CC♦σZ≥0. In fact
Proposition C.6.3 makes it possible to explicitly provide the elements in the commutant
CA(CC) that are not in CC. If f0, f1, f2 ∈ CC, then by using (C.5) and (C.6) and
Proposition C.6.3, we conclude that a = f0 + f1 u1 + f2 u2 lies in CA(CC) if and only
if, supp(f1) respectively supp(f2) is contained in Per1(γ) respectively Per2(γ).

Example C.6.4 (The first Weyl algebra). Following [3], let

A1(C) = C〈x, y〉/(yx− xy − 1)

be the first Weyl algebra. If we put deg(x) = 1 and deg(y) = −1 and

A1(C)0 = C[xy]
A1(C)n = C[xy]xn, for n ≥ 0
A1(C)m = C[xy]y−m, for m ≤ 0
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then this defines a Z-gradation on A1(C). We set un = xn if n ≥ 0 and um = y−m if
m ≤ 0. It is clear that σ1(xy) = xy − 1 because x(xy) = (xy − 1)x and σ−1(xy) =
xy + 1 because y(xy) = (1 + xy)y. Let us put t = xy, then

σ : Z → AutC(C[t]), n 7→ (t 7→ t− n).

We can also calculate, for example

α(n,−n) = xnyn = xn−1tyn−1 = (t− (n− 1))xn−1yn−1

= (t− n+ 1) · (t− n+ 2) · . . . · (t− 2) · (t− 1) · t.

Furthermore α(n,−m) with n > m (n,m ∈ Z≥0) can be calculated from

xnym = xn−mxmym = xn−mα(m,−m) = σn−m(α(m,−m))xn−m

and so
α(n,−m) = σn−m(α(m,−m)).

It is well-known that A1(C) is a simple algebra and hence the only non-zero two-sided
ideal is A1(C) itself, which clearly has a non-zero intersection with C[xy]. Furthermore,
C[xy] is an integral domain and σn 6= idC[xy] for each n 6= 0 and by Corollary C.3.7,
the base ring C[xy] is maximal commutative in A1(C).

Example C.6.5 (Generalized Weyl algebras). Let A0 be an associative and unital ring
and fix a positive integer n and set n = {1, 2, . . . , n} and let σ = (σ1, σ2, . . . , σn)
be a set of commuting automorphisms of A0. Let a = (a1, a2, . . . , an) be an n-tuple
with nonzero entries in Z(A0) such that σi(aj) = aj for i 6= j. The generalized
Weyl algebra A = A0(σ, a) is defined as the ring generated by A0 and 2n symbols
X1, . . . , Xn, Y1, . . . , Yn satisfying the following rules:

1. For each i ∈ {1, . . . , n} :

YiXi = ai, and XiYi = σi(ai)

2. For all d ∈ A0 and each i ∈ {1, . . . , n},

Xid = σi(d)Xi, and Yid = σ−1
i (d)Yi

3. For i 6= j,

[Yi, Yj ] = 0
[Xi, Xj] = 0
[Xi, Yj ] = 0

where [x, y] = xy − yx.
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Now for m ∈ Z we write um(i) = (Xi)m if m > 0 and um(i) = (Yi)−m if m < 0.
For k = (k1, k2, . . . , kn) ∈ Zn we set uk = uk1(1) · . . . · ukn(n). By putting A =⊕

k∈Zn Ak where Ak = A0uk , we see that A is a Zn-graded ring, which is crystalline
graded (see [3]). If the base ring A0 is commutative, just like in many of the examples
of this class of rings, we get by Corollary C.5.5 that each nonzero two-sided ideal in the
generalized Weyl algebraA contains a non-zero element which commutes with all of A0.
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Paper D

Commutativity and ideals in strongly
graded rings

Johan Öinert, Sergei Silvestrov, Theodora
Theohari-Apostolidi and Harilaos Vavatsoulas

Abstract. In some recent papers by the first two authors it was shown that for any algebraic
crossed product A, where A0, the subring in the degree zero component of the grading, is a
commutative ring, each non-zero two-sided ideal in A has a non-zero intersection with the
commutant CA(A0) of A0 in A. This result has also been generalized to crystalline graded
rings; a more general class of graded rings to which algebraic crossed products belong. In this
paper we generalize this result in another direction, namely to strongly graded rings (in some
literature referred to as generalized crossed products) where the subring A0, the degree zero
component of the grading, is a commutative ring. We also give a description of the intersection
between arbitrary ideals and commutants to bigger subrings than A0, and this is done both
for strongly graded rings and crystalline graded rings.

D.1 Introduction

Dynamical systems, generated by the iteration of homeomorphisms of compact Haus-
dorff spaces, lead to crossed product algebras of continuous functions on the space, by the
action of the additive group of integers via composition of continuous functions with the
iterations of the homeomorphisms. In the context of C∗-algebras, the interplay between
topological properties of the dynamical system such as minimality, transitivity, freeness on
one hand, and properties of ideals, subalgebras and representations of the corresponding
crossed product on the other hand, has been a subject of intensive investigation at least
since the 1960’s, both for single map dynamics and for more general actions of groups
and semigroups, that is in particular iterations of several transformations called iterated
function systems in the literature on fractals and dynamical systems. Such constant and
growing interest to this interplay between dynamics, actions and non-commutative alge-
bras can be explained by the fundamental importance of this interplay and its implica-
tions for operator representations of the corresponding crossed product algebras, spectral
and harmonic analysis and non-commutative analysis and non-commutative geometry
fundamental for the mathematical foundations of quantum mechanics, quantum field
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theory, string theory, integrable systems, lattice models, quantization, symmetry analysis,
renormalization, and recently in analysis and geometry of fractals and in wavelet analy-
sis and its applications in signal and image processing (see [1–5, 7, 9–14, 19–21, 28–
30, 33, 39, 42, 44, 55, 56, 58] and references therein).

There has been a substantial progress on the interplay between C∗-algebras and dy-
namics of iterations of continuous transformations and more general actions of groups
on compact Hausdorff spaces [2, 10, 44, 55–57]. However, the investigation of actions
of not necessarily continuous transformations on more general and more irregular spaces
than Hausdorff spaces requires an extension of this interplay beyond C∗-algebras to a
purely algebraic framework of general algebras and rings. Only partial progress in this im-
portant direction has been made. In [45–48], extensions and modifications of this result
and the interplay between dynamics and maximal commutativity properties of the canon-
ical coefficient subalgebra, the degree zero component of the grading, and its intersection
with ideals was investigated for dynamical systems that are not topologically free on more
general spaces than Hausdorff spaces both in the context of algebraic crossed products by
Z and for the corresponding Banach algebra and C∗-algebra crossed products in the case
of single homeomorphism dynamical systems or more general dynamical systems gener-
ated by an invertible map. Also in these works, this interplay has been considered from the
point of view of representations as well as with respect to duality in the crossed product
algebras. Some results, that could be considered as related to this direction of interplay,
have been scattered within the purely algebraic literature on graded rings and algebras
[6, 8, 15–18, 22–27, 31–35, 40, 41, 43, 49–54]. In many of these related results, very
special properties are assumed for the coefficient subring or for the whole crossed prod-
uct or graded ring or algebra, such as being a ring without zero-divisors, semi-simple or
simple ring, etc. This has been motivated in most cases by the desire to use the algebraic
constructions, tools and techniques that were available at the time. However, it turns
out that these restrictions often exclude for example many important classes of algebras
arising in physics and associated to actions on algebras and rings of functions on infinite
spaces or other algebras and rings with zero-divisors, and many other situations. Thus, it
is desirable to investigate the above mentioned interplay between actions and properties
of ideals and subalgebras for general graded rings and crossed product rings and algebras
and their generalizations, without any restrictive artificially imposed conditions. It turns
out that many interesting properties and results hold in such much greater generality and
also as a consequence, new previously not noticed results and constructions come to light.

In this paper we focus on the connections between the structure of ideals and the
commutant of subrings in generalizations of crossed product rings and in general classes
of graded rings. This, in particular, provides a general understanding of the conditions
for maximal commutativity of the degree zero component subalgebra of the grading and
properties of more general subalgebras important for representation theory. In this paper
we substantially extend the approach and some of the key results in [36–38] to more
general subrings than the degree zero component of the grading in crossed products, or
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more general graded rings.
In Section 2 we briefly recall the basics of graded rings and crossed products. Given a

ring R and a subset S ⊆ R, we denote by

CR(S) = {r ∈ R | rs = sr, ∀s ∈ S}

the commutant of S in R. The following theorem was shown in [36].

Theorem D.1.1. IfR =
⊕

g∈GRg is aG-crossed product whereRe is commutative, then

I ∩CR(Re) 6= {0}

for every non-zero two-sided ideal I in R.

Given a normal subgroupN ofG one can consider the subringRN =
⊕

n∈N Rn in
R and obtain a generalization of Theorem D.1.1 by considering the intersection between
arbitrary non-zero ideals and CR(RN ). This is done in Section 3 (Theorem D.3.3).

In Section 4 we consider general strongly graded rings R =
⊕

g∈GRg , which are
not necessarily crossed products. Given any subgroup H of G we give a description of
the commutant of RH in R (Theorem D.4.7) and prove the main theorem (Theorem
D.4.9). We obtain some interesting corollaries (Corollary D.4.10, Corollary D.4.12 and
Corollary D.4.13) which generalize the results obtained in Section 2 and generalize The-
orem D.1.1 to general strongly graded rings.

In Section 5 we recall the definition and basic properties of crystalline graded rings,
a class of graded rings which are not necessarily strongly graded (for more details see
[34, 35, 38]). Given a subgroup H of G we give a description of the commutant of AH

in the crystalline graded ringA and give sufficient conditions for each non-zero two-sided
ideal I in A to have a non-zero intersection with CA(AH) (Theorem D.5.7).

D.2 Preliminaries

Throughout this paper all rings are assumed to be unital and associative and we let G be
an arbitrary group with neutral element e.

A ring R is said to be G-graded if

R =
⊕

g∈G

Rg and RgRh ⊆ Rgh

for all g, h ∈ G, where {Rg}g∈G is a family of additive subgroups in R. The additive
subgroupRg is called the homogeneous component of R of degree g ∈ G. Moreover, if
RgRh = Rgh holds for all g, h ∈ G, then R is said to be strongly graded by G and if we
in addition have

U(R) ∩Rg 6= ∅
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for each g ∈ G, where U(R) denotes the group of multiplication invertible elements in
R, then R is said to be a G-crossed product.

Suppose that we are given a group G, a ring Re and two maps σ : G → Aut(Re)
and α : G×G→ U(Re) satisfying the following conditions

σg(σh(a))α(g, h) = α(g, h)σgh(a) (D.1)

α(g, h)α(gh, s) = σg(α(h, s))α(g, hs) (D.2)

α(g, e) = α(e, g) = 1Re (D.3)

for all g, h, s ∈ G and a ∈ Re. We may then choose a family of symbols {vg}g∈G and
define R′ to be the free left Re-module with basis {vg}g∈G and define a multiplication
on the set R′ by

(a1 vg)(a2 vh) = a1 σg(a2)α(g, h) vgh

for a1, a2 ∈ Re and g, h ∈ G. It turns out that R′ is an associative and unital ring with
this multiplication and that it is in fact a G-crossed product, where the homogeneous
component of degree g ∈ G is given by Re vg .

Conversely, given a G-crossed product R =
⊕

g∈GRg , one can choose a family of
elements {ug}g∈G in R such that ug ∈ U(R) ∩Rg for each g ∈ G and put ue = 1R.
It is clear that Rg = Re ug = ugRe and that the set {ug}g∈G is a basis for R as a left
(and right) Re-module. We may now define a map

σ : G→ Aut(Re)

by ug a = σg(a)ug for all a ∈ R and g ∈ G. Furthermore, we define a map

α : G×G→ U(Re)

by α(g, h) = ug uh u
−1
gh and it is straight forward to check that these maps satisfy con-

ditions (1)-(3) above. Furthermore, one can use these maps together with G andRe and
make the previous construction and obtain a G-crossed product R′ which actually turns
out to be isomorphic to the G-crossed product R that we started with. For more details
on this we refer to [33, Proposition 1.4.1 and Proposition 1.4.2].

Remark D.2.1. The above crossed product will be denoted byRe oσ
αG, to indicate the

maps σ and α.

D.3 Subrings graded by subgroups

Given a G-graded ring R =
⊕

g∈GRg and a non-empty subset X of G, we denote

RX =
⊕

x∈X

Rx.
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In particular, if H is a subgroup of G, then RH =
⊕

h∈H Rh is a subring in R, and it
is in fact an H-graded ring. The following lemma can be found in [22, Proposition 1.7].

Lemma D.3.1. If R =
⊕

g∈GRg is a G-graded ring and N is a normal subgroup of G,
then R can be regarded as a G/N -graded ring, where the homogeneous components are given
by

RgN =
⊕

x∈gN

Rx

for gN ∈ G/N . Moreover, if R is a crossed product of G over Re, then R can also be
regarded as a crossed product of G/N over

RN =
⊕

x∈N

Rx.

Proposition D.3.2. Let R =
⊕

g∈GRg = Re oσ
α G be a G-crossed product and suppose

that N is a subgroup of G. If the following conditions are satisfied

(i) Re is commutative

(ii) N ⊆ Z(G)
⋂

ker(σ)

(iii) α(x, y) = α(y, x) for all (x, y) ∈ N ×N

then RN is commutative.

Proof. Let the family of elements {ug}g∈G be chosen as in Section 2. To prove that RN

is commutative, it suffices to show that for any g, h ∈ N and ag, bh ∈ Re the two
elements ag ug and bh uh commute. By our assumptions, we have

(ag ug) (bh uh) = ag σg(bh)α(g, h)ugh = ag bh α(g, h)ugh

= bh ag α(h, g)uhg = bh σh(ag)α(h, g)uhg = (bh uh) (ag ug)

and hence RN is commutative.

Theorem D.3.3. IfR =
⊕

g∈GRg = Re oσ
αG is a G-crossed product and the following

conditions are satisfied

(i) Re is commutative

(ii) N is a subgroup of G, such that N ⊆ Z(G)
⋂

ker(σ)

(iii) α(x, y) = α(y, x) for all (x, y) ∈ N ×N

then
I ∩ CR(RN ) 6= {0}

for every non-zero two-sided ideal I in R.
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Proof. It is clear thatN is normal inG and it follows from Lemma D.3.1 thatReoσ
αG =

RN oσ′
α′ G/N for some maps σ′ and α′. By our assumptions and Proposition D.3.2 we

see that RN is commutative, and hence by Theorem D.1.1 it follows that each non-zero
two-sided ideal in R has a non-zero intersection with CR(RN ).

Corollary D.3.4. If R =
⊕

g∈GRg = Re oσ G is a G-graded skew group ring where
Re is commutative and N ⊆ Z(G)

⋂
ker(σ) is a subgroup of G, then

I ∩CR(RN ) 6= {0}

for every non-zero two-sided ideal I in R.

Remark D.3.5. Let R =
⊕

g∈GRg be a G-graded ring. If

{e} ⊆ . . . ⊆ Gk ⊆ Z(G) ⊆ Gn ⊆ . . . ⊆ G

is an increasing chain of subgroups of G, then we get

Re ⊆ . . . ⊆ RGk
⊆ RZ(G) ⊆ RGn ⊆ . . . ⊆ R

as an increasing chain of subrings in R and the corresponding

CR(Re) ⊇ . . . ⊇ CR(RGk
) ⊇ CR(RZ(G)) ⊇ CR(RGn) ⊇ . . . ⊇ CR(R) = Z(R)

as a decreasing chain of subrings in R. The existence of non-trivial subgroups N of G
satisfying the conditions of Theorem D.3.3 therefore provides more precise information
about the ideals in the crossed product than the previous Theorem D.1.1. By the argu-
ments made above it is clear that N = Z(G) ∩ ker(σ), the biggest normal subgroup to
fit into our theorems, is the most interesting case to consider since it makes CR(RN ) as
small as possible.

D.4 Strongly graded rings

In this section we let R =
⊕

g∈GRg be a strongly G-graded ring, not necessarily a
crossed product. It follows that 1R ∈ Re since R is G-graded (see [33, Proposition
1.1.1]), and that RgRg−1 = Re for each g ∈ G since R is strongly G-graded. Thus,

for each g ∈ G there exists a positive integer ng and elements a(i)
g ∈ Rg , b(i)g−1 ∈ Rg−1

for i ∈ {1, . . . , ng}, such that

ng∑

i=1

a(i)
g b

(i)

g−1 = 1R. (D.4)

For every λ ∈ CR(Re), and in particular for every λ ∈ Z(Re) ⊆ CR(Re), and g ∈ G
we define
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σg(λ) =
ng∑

i=1

a(i)
g λ b

(i)
g−1 . (D.5)

Remark D.4.1. The definition of σg is independent of the choice of the a(i)
g ’s and b(i)b−1 ’s.

Indeed, given positive integers ng, n
′
g and elements a(i)

g , c
(j)
g ∈ Rg , b(i)g−1 , d

(j)
g−1 ∈ Rg−1

for i ∈ {1, . . . , ng} and j ∈ {1, . . . , n′g} such that

ng∑

i=1

a(i)
g b

(i)
g−1 = 1R and

n′g∑

j=1

c(j)g d
(j)
g−1 = 1R,

for λ ∈ CR(Re) we get

( ng∑

i=1

a(i)
g λ b

(i)
g−1

)
−




n′g∑

j=1

c(j)g λd
(j)
g−1




= 1R

( ng∑

i=1

a(i)
g λ b

(i)
g−1

)
−




n′g∑

j=1

c(j)g λd
(j)
g−1


 1R

=
n′g∑

j=1

ng∑

i=1

c(j)g d
(j)
g−1 a

(i)
g︸ ︷︷ ︸

∈Re

λ b
(i)
g−1 −

n′g∑

j=1

ng∑

i=1

c(j)g λd
(j)
g−1 a

(i)
g b

(i)
g−1

=
n′g∑

j=1

ng∑

i=1

c(j)g λd
(j)
g−1 a

(i)
g b

(i)
g−1 −

n′g∑

j=1

ng∑

i=1

c(j)g λd
(j)
g−1 a

(i)
g b

(i)
g−1 = 0.

Lemma D.4.2. Let R =
⊕

g∈GRg be a strongly G-graded ring. If a ∈ R is such that

aRg = {0}

for some g ∈ G, then a = 0.

Proof. Suppose that aRg = {0} for some g ∈ G, a ∈ R. We then have aRg Rg−1 =
{0} or equivalently aRe = {0}. From the fact that 1R ∈ Re, we conclude that
a = 0.

For the convenience of the reader we include the following lemma from [22, Propo-
sition 1.8].

Lemma D.4.3. Let R =
⊕

g∈GRg be a strongly G-graded ring, g ∈ G and write
∑ng

i=1 a
(i)
g b

(i)
g−1 = 1R for someng > 0 and a

(i)
g ∈ Rg , b

(i)
g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}.
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For each λ ∈ CR(Re) define σg(λ) by σg(λ) =
∑ng

i=1 a
(i)
g λ b

(i)
g−1 . The following proper-

ties hold:

(i) σg(λ) is a unique element of R satisfying

rg λ = σg(λ) rg , ∀ rg ∈ Rg. (D.6)

Furthermore, σg(λ) ∈ CR(Re) and if λ ∈ Z(Re), then σg(λ) ∈ Z(Re).

(ii) The group G acts as automorphisms of the rings CR(Re) and Z(Re), with each
g ∈ G sending any λ ∈ CR(Re) and λ ∈ Z(Re), respectively, into σg(λ).

(iii) Z(R) = {λ ∈ CR(Re) | σg(λ) = λ, ∀g ∈ G}, i.e. Z(R) is the fixed subring
CR(Re)G of CR(Re) with respect to the action of G.

Proof. (i) Let g ∈ G. If rg ∈ Rg , then b(i)g−1 rg ∈ Rg−1Rg = Re and so b(i)g−1rg
commutes with λ ∈ CR(Re) for each i ∈ {1, . . . , ng}. It follows that

σg(λ) rg =
ng∑

i=1

a(i)
g λ b

(i)

g−1 rg =
ng∑

i=1

a(i)
g b

(i)

g−1 rg λ = rg λ.

Take an arbitrary λ ∈ CR(Re) and let x ∈ R be an element satisfying a(i)
g λ =

xa
(i)
g for all i ∈ {1, . . . , ng}. This yields

σg(λ) =
ng∑

i=1

a(i)
g λ b

(i)
g−1 =

ng∑

i=1

xa(i)
g b

(i)
g−1 = x

which shows that σg(λ) is a unique element satisfying (D.6). By the strong grada-
tion it follows that if λ ∈ Re, then σg(λ) ∈ Re. In particular if λ ∈ Z(Re) ⊆
CR(Re), then σg(λ) ∈ Z(Re). Indeed, for λ ∈ Z(Re) and c ∈ Re we have

c σg(λ) = 1R c σg(λ) =
ng∑

i=1

n′g∑

j=1

a′(j)g b
′(j)
g−1 c a

(i)
g︸ ︷︷ ︸

∈Re

λ b
(i)
g−1

=
ng∑

i=1

n′g∑

j=1

a′(j)g λ b
′(j)
g−1 c a

(i)
g b

(i)
g−1 = σg(λ) c 1R = σg(λ) c

where
∑n′g

j=1 a
′(j)
g b

′(j)
g−1 = 1R, and hence it only remains to verify that σg(λ) ∈

CR(Re) for an arbitrary λ ∈ CR(Re). If rg ∈ Rg and z ∈ Re, then z rg ∈
ReRg = Rg , so we have

(σg(λ) z) rg = σg(λ) (z rg) = (z rg)λ
= z (rg λ) = z (σg(λ) rg) = (z σg(λ)) rg
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which means that (σg(λ) z− z σg(λ))Rg = {0}. By Lemma D.4.2 we conclude
that σg(λ) z = z σg(λ) and hence σg(λ) ∈ CR(Re).

(ii) Since 1R ∈ Re, we have for each λ ∈ CR(Re) that

λ = 1R λ = σe(λ) 1R = σe(λ).

If g, h ∈ G, rg ∈ Rg and rh ∈ Rh, then rg rh ∈ Rgh and for λ ∈ CR(Re) we
have

σgh(λ) (rg rh) = (rg rh)λ = rg (rh λ) = rg (σh(λ) rh)
= (rg σh(λ)) rh = (σg(σh(λ)) rg) rh = σg(σh(λ)) (rg rh).

The products of the form rg rh generate the submoduleRgh and by Lemma D.4.2
we conclude that

σg(σh(λ)) = σgh(λ)

proving that (g, λ) 7→ σg(λ) is an action of G on the set CR(Re). Now take an
arbitrary g ∈ G and fix it. By the definition of σg(λ), the map λ 7→ σg(λ) is

clearly additive. For some positive integer ng−1 we may choose c(j)g−1 ∈ Rg−1 and

d
(j)
g ∈ R for j ∈ {1, . . . , ng−1}, such that 1R =

∑ng−1

j=1 c
(j)
g−1 d

(j)
g and define

σg−1 following (D.5). Then, for each λ ∈ CR(Re), we get

σg−1 (σg(λ)) =
ng−1∑

j=1

c
(j)
g−1

( ng∑

i=1

a(i)
g λ b

(i)
g−1

)
d(j)

g

=
ng−1∑

j=1

c
(j)
g−1




ng∑

i=1

a(i)
g λ b

(i)
g−1 d

(j)
g︸ ︷︷ ︸

∈Re




=
ng−1∑

j=1

c
(j)
g−1

( ng∑

i=1

a(i)
g b

(i)
g−1 d

(j)
g λ

)

=
ng−1∑

j=1

c
(j)
g−1

( ng∑

i=1

a(i)
g b

(i)
g−1

)

︸ ︷︷ ︸
=1R

d(j)
g λ =

ng−1∑

j=1

c
(j)
g−1 d

(j)
g

︸ ︷︷ ︸
=1R

λ = λ

and hence σg−1 is the inverse of σg . For any λ, t ∈ CR(Re) and rg ∈ Rg , we get

σg(λt) rg = rg (λt) = (rg λ) t = (σg(λ) rg) t
= σg(λ) (rg t) = σg(λ) (σg(t) rg) = (σg(λ)σg(t)) rg.

By Lemma D.4.2 this implies σg(λt) = σg(λ)σg(t). Therefore, for each g ∈ G,
the map λ 7→ σg(λ) is an automorphism of the ring CR(Re).
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(iii) Since R =
⊕

g∈GRg is strongly G-graded, we have

Z(R) =
⋂

g∈G

CR(Rg) = {λ ∈ CR(Re) | λ ∈ CR(Rg), ∀g ∈ G}

and the result now follows from the fact that an element λ ∈ CR(Re) centralizes
Rg , g ∈ G, if and only if σg(λ) = λ. Indeed, if σg(λ) = λ for some λ ∈
CR(Re), then clearly λ centralizes Rg . Conversely, if we suppose that Rg is
centralized by some λ ∈ CR(Re), then we have (σg(λ) − λ)Rg = {0} and
hence by Lemma D.4.2 we have σg(λ) = λ.

Remark D.4.4. We have shown that G acts as automorphisms of CR(Re). However,
note that since Re is not assumed to be commutative, we may have Re 6⊆ CR(Re) and
hence G does not necessarily act as automorphisms of Re. This should be compared to
the case of an algebraic crossed product as described in the previous section. For crossed
products, if Re is commutative, then we see that G acts as automorphisms of Re, but in
general this is not true.

Lemma D.4.5. Let R =
⊕

g∈GRg be a strongly G-graded ring and
σ : G → Aut(CR(Re)) defined as in (D.5). If Re is maximal commutative in R, then
ker(σ) = {e}.

Proof. By our assumption Re = CR(Re) is maximal commutative in R and hence for
each g 6= e and all rg ∈ Rg , there must exist some λ ∈ Re such that λ rg 6= rg λ =
σg(λ) rg , using the definition of σ : G → Aut(Re). Hence σg 6= idRe for each
g 6= e.

We shall now state an obvious, but useful lemma.

Lemma D.4.6. If R =
⊕

g∈GRg is a stronglyG-graded ring, then

CR(Re) =



λ =

∑

g∈G

λg ∈ R
∣∣∣ λg ∈ Rg, re λg = λg re, ∀g ∈ G , ∀re ∈ Re





=



λ =

∑

g∈G

λg ∈ R
∣∣∣ λg ∈ Rg ∩CR(Re), ∀g ∈ G





=
⊕

g∈G

(Rg ∩ CR(Re))

The following theorem is a generalization of (iii) of Lemma D.4.3.
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Theorem D.4.7. LetR =
⊕

g∈GRg be a stronglyG-graded ring,H a subgroup of G and
denoteRH =

⊕
h∈H Rh. If σ : G→ Aut(CR(Re)) is the action defined in (D.5), then

it follows that

CR(RH) =
{
λ =

∑

g∈G

λg ∈ R
∣∣∣ λg ∈ CR(Re) ∩Rg,

σh(λg) = λhgh−1 , ∀g ∈ G, ∀h ∈ H
}

= {λ ∈ CR(Re) | σh(λ) = λ, ∀h ∈ H} .
Proof. Let λ =

∑
g∈G λg ∈ CR(RH), with λg ∈ Rg , be arbitrary. Since Re ⊆ RH ,

we have λ ∈ CR(Re) and from Lemma D.4.6 we see that λg ∈ CR(Re) for each
g ∈ G. For every rh ∈ Rh, h ∈ H , we have

rh
∑

g∈G

λg =
∑

g∈G

λgrh

since λ ∈ CR(RH), but λg ∈ CR(Re) so from (D.6) we get
∑

g∈G

σh(λg)rh =
∑

g∈G

λgrh

which is an equality in R =
⊕

g∈GRg . If we look in the RhRgRh−1Rh = Rhg

component, for all g ∈ G, h ∈ H , we deduce that

σh(λg) rh = λhgh−1 rh, ∀ rh ∈ Rh

since the sumR =
⊕

g∈GRg is direct. Applying the above equality to the elements a(i)
h

of Rh in (D.4), we get

σh(λg) a
(i)
h = λhgh−1 a

(i)
h

for each i ∈ {1, . . . , nh}, which implies

σh(λg) = σh(λg) 1R = σh(λg)
nh∑

i=1

a
(i)
h b

(i)
h−1 =

nh∑

i=1

σh(λg) a(i)
h b

(i)
h−1

=
nh∑

i=1

λhgh−1 a
(i)
h b

(i)
h−1 = λhgh−1

nh∑

i=1

a
(i)
h b

(i)
h−1 = λhgh−1 .

Conversely, let λ =
∑

g∈G λg ∈ R, where λg ∈ CR(Re) ∩ Rg and σh(λg) =
λhgh−1 , for all g ∈ G, h ∈ H . Then, for every rh ∈ Rh,

rh λ =
∑

g∈G

rh λg =
∑

g∈G

σh(λg) rh =
∑

g∈G

λhgh−1 rh =
∑

k∈G

λk rh = λ rh
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and hence λ ∈ CR(RH). This concludes the proof.

Remark D.4.8. IfRe is commutative, then Re = Z(Re). Thus, if Re is commutative,
then G acts as automorphisms of the ring Re.

Theorem D.4.9. Let R =
⊕

g∈GRg be a strongly G-graded ring where Re is commu-
tative and ker(σ) is the kernel of the previously defined action σ : G → Aut(Re), i.e.
ker(σ) = {g ∈ G | σg(λe) = λe, ∀λe ∈ Re}. If H is a subgroup of G which is
contained in ker(σ) ∩ Z(G), then

I ∩CR(RH) 6= {0}

for every non-zero two-sided ideal I in R.

Proof. Let I be an arbitrary non-zero two-sided ideal in R. For every h ∈ H and rh ∈
Rh we define a kill operator

Drh
: R→ R, Drh


∑

g∈G

λg


 = rh

∑

g∈G

λg −
∑

g∈G

λgrh =
∑

k∈G

dk.

Note that for every non-zero summand λg ∈ Rg of λ =
∑

g∈G λg , we take a summand
dhg = rhλg − λgrh ∈ Rgh = Rhg of Drh

(λ) which may be zero or non-zero, but

dh = rh λe − λe rh = σh(λe) rh − λe rh = λe rh − λerh = 0.

Thus, for λ =
∑

g∈G λg ∈ R with λe 6= 0 and Drh
(λ) =

∑
k∈G dk, we get

#supp(λ) = #{s ∈ G | λs 6= 0} > #{s ∈ G | ds 6= 0} = #supp(Drh
(λ)).

Furthermore, note that for all rh ∈ Rh, I is invariant under Drh
and

CR(RH) =
⋂

h∈H
rh∈Rh

ker(Drh
).

Now, let λ =
∑

g∈G λg ∈ I be non-zero. We can assume that λe 6= 0. Otherwise there
exists some non-zero λ′ =

∑
g∈G λ

′
g ∈ I with λ′e 6= 0. Indeed, λ 6= 0 so there exists

t ∈ G such that λt 6= 0. There exists, as well, some j ∈ {1, . . . , nt} such that b(j)t−1λt 6=
0, where b(j)t−1 ∈ Rt−1 is as in (D.4), because if b(i)t−1λt = 0, ∀i ∈ {1, . . . , nt}, then

λt = 1R · λt =
nt∑

i=1

a
(i)
t b

(i)

t−1λt = 0.
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Thus, for every non-zero elementλ of I we can have an element b(j)t−1λ = λ′ =
∑

g∈G λ
′
g

of I with λ′e = b
(j)
t−1λt 6= 0, and #supp(λ) ≥ #supp(λ′) ≥ 1.

We return to the element λ =
∑

g∈G λg ∈ I with λe 6= 0. If λ ∈ CR(RH)
we have nothing to prove. If λ /∈ CR(RH), then there exists h ∈ H and rh ∈ Rh

such that Drh
(λ) 6= 0. But Drh

(λ) ∈ I so we have a new element of I with smaller
support. If we continue in the same way, the procedure must eventually end, because
supp(λ) < ∞. So, there will be a stop of this procedure which gives an element µ =∑

g∈G µg ∈ I ∩ CR(RH), with µe 6= 0.

The following corollary generalizes Theorem D.3.3 to the situation when RN need
not necessarily be commutative.

Corollary D.4.10. If R =
⊕

g∈GRg = Re oσ′
α′ G is a G-crossed product and both of

the following conditions are satisfied

(i) Re is commutative

(ii) N is a subgroup of G, such that N ⊆ Z(G)
⋂

ker(σ′)

then

I ∩ CR(RN ) 6= {0}

for every non-zero two-sided ideal I in R.

Proof. For each g ∈ G we may choose ug ∈ U(R)∩Rg . It follows from [33, Proposition
1.1.1] that (ug)−1 ∈ Rg−1 . Clearly ug u

−1
g = 1R and following (D.5) we define

σg(a) = ug a u
−1
g for all a ∈ CR(Re). In particular Re ⊆ CR(Re) since Re is

commutative, and it is now clear that the restriction of σg to Re is equal to σ′g for each
g ∈ G. From Theorem D.4.9 it now follows that each non-zero two-sided ideal in R has
a non-zero intersection with CR(RN ).

The following corollary generalizes [36, Theorem 2] from G-crossed products to
strongly G-graded rings.

Corollary D.4.11. If R =
⊕

g∈GRg is a strongly G-graded ring where Re is commuta-
tive, then

I ∩CR(Re) 6= {0}

for every non-zero two-sided ideal I in R.

Proof. Consider the subgroup {e} of G. Clearly {e} ⊆ Z(G) ∩ ker(σ) and since Re is
commutative it follows from Theorem D.4.9 that I ∩CR(Re) 6= {0} for each non-zero
two-sided ideal I in R.
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Corollary D.4.12. If R =
⊕

g∈GRg is a strongly G-graded ring where Re is maximal
commutative in R, then

I ∩Re 6= {0}
for every non-zero two-sided ideal I in R.

Proof. By the assumption Re is maximal commutative in R, i.e. CR(Re) = Re, and
hence the desired conclusion follows immediately from Corollary D.4.11.

Corollary D.4.13. If R =
⊕

g∈GRg is a twisted group ring, where Re is commutative
and G is abelian, then

I ∩ Z(R) 6= {0}
for every non-zero two-sided ideal I in R.

Proof. Since R is a twisted group ring, all homogeneous elements commute with Re.
Hence, ker(σ) = G and moreover G = Z(G) since G is abelian. Consider the sub-
group ker(σ)

⋂
Z(G) = G ∩ G = G of G and note that CR(RG) = Z(R). By our

assumptions Re is commutative and it now follows from Theorem D.4.9 that

I ∩ Z(R) 6= {0}

for each non-zero two-sided ideal I in R.

Remark D.4.14. It was shown in [43, Theorem 2] that if R is a semiprime P.I. ring,
then I ∩ Z(R) 6= {0} for each non-zero ideal I in R.

D.5 Crystalline graded rings

We shall begin this section by recalling the definition of a crystalline graded ring. We
would also like to emphasize that rings of this class are in general not strongly graded.

Definition D.5.1 (Pre-crystalline graded ring). An associative and unital ring A is said
to be pre-crystalline graded if

(i) there is a group G (with neutral element e),

(ii) there is a map u : G → A, g 7→ ug such that ue = 1A and ug 6= 0 for every
g ∈ G,

(iii) there is a subringA0 ⊆ A containing 1A,

such that the following conditions are satisfied:

(P1) A =
⊕

g∈GA0 ug ;
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(P2) For every g ∈ G, ug A0 = A0 ug and this is a free left A0-module of rank one ;

(P3) The decomposition in P1 makes A into a G-graded ring with A0 = Ae.

Lemma D.5.2 (see [34]). With notation and definitions as above:

(i) For every g ∈ G, there is a set map σg : A0 → A0 defined by ug a = σg(a)ug for
a ∈ A0. The map σg is a surjective ring morphism. Moreover, σe = idA0 .

(ii) There is a set map α : G × G → A0 defined by us ut = α(s, t)ust for s, t ∈ G.
For any triple s, t, w ∈ G and a ∈ A0 the following equalities hold:

α(s, t)α(st, w) = σs(α(t, w))α(s, tw) (D.7)

σs(σt(a))α(s, t) = α(s, t)σst(a) (D.8)

(iii) For every g ∈ G we have α(g, e) = α(e, g) = 1A0

and α(g, g−1) = σg(α(g−1, g)).

A pre-crystalline graded ringA with the above properties will be denoted byA0♦α
σG

and each element of this ring is written as a sum
∑

g∈G rg ug with coefficients rg ∈ A0,
of which only finitely many are non-zero. In [34] it was shown that for pre-crystalline
graded rings, the elements α(s, t) are normalizing elements of A0, i.e. A0 α(s, t) =
α(s, t)A0 for each s, t ∈ G. For a pre-crystalline graded ring A0♦α

σG, we let S(G)
denote the multiplicative set inA0 generated by {α(g, g−1) | g ∈ G} and let S(G×G)
denote the multiplicative set generated by {α(g, h) | g, h ∈ G}.

Lemma D.5.3 (see [34]). IfA = A0♦α
σG is a pre-crystalline graded ring, then the following

assertions are equivalent:

(i) A0 is S(G)-torsion free.

(ii) A is S(G)-torsion free.

(iii) α(g, g−1) a0 = 0 for some g ∈ G implies a0 = 0.

(iv) α(g, h) a0 = 0 for some g, h ∈ G implies a0 = 0.

(v) A0 ug = ug A0 is also free as a right A0-module, with basis ug, for every g ∈ G.

(vi) For every g ∈ G, σg is bijective and hence a ring automorphism of A0.

Definition D.5.4 (Crystalline graded ring). A pre-crystalline graded ringA0♦α
σG, which

is S(G)-torsion free, is said to be a crystalline graded ring.

Examples of crystalline graded rings are given by the algebraic crossed products, the
generalized twisted group rings, the Weyl algebras, the quantum Weyl algebra, the gener-
alized Weyl algebras, quantum sl2 etc. For more examples we refer to [34].
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Proposition D.5.5. Let A = A0♦α
σG be a pre-crystalline graded ring, H a subgroup of G

and consider the subring AH = A0♦α
σH in A. The commutant of AH in A is

CA(AH) =
{∑

g∈G

rg ug ∈ A
∣∣∣ rth−1 α(th−1, h) = σh(rh−1t)α(h, h−1t),

rt σt(a) = a rt, ∀a ∈ A0, ∀h ∈ H, ∀t ∈ G
}
.

Proof. Suppose that
∑

g∈G rg ug ∈ CA(AH). Clearly A0 ⊆ AH and hence for any
a ∈ A0, we have

a


∑

g∈G

rg ug


 =


∑

g∈G

rg ug


 a ⇐⇒

∑

g∈G

a rg ug =
∑

g∈G

rg σg(a)ug

⇐⇒ a rg = rg σg(a), ∀g ∈ G.

Furthermore, let h ∈ H be arbitrary. Since uh ∈ AH we have

uh


∑

g∈G

rg ug


 =


∑

g∈G

rg ug


uh ⇐⇒

∑

g∈G

σh(rg)α(h, g)uhg =
∑

g∈G

rg α(g, h)ugh ⇐⇒
∑

t∈G

σh(rh−1t)α(h, h−1t)ut =
∑

t∈G

rth−1 α(th−1, h)ut ⇐⇒

σh(rh−1t)α(h, h−1t) = rth−1 α(th−1, h), ∀t ∈ G.

Conversely, suppose that the coefficients of an element
∑

g∈G rg ug satisfy the following
two conditions:

1. rt σt(a) = a rt for all a ∈ A0 and t ∈ G.

2. rth−1 α(th−1, h) = σh(rh−1t)α(h, h−1t) for all h ∈ H , t ∈ G.

By carrying out calculations similar to the ones presented above, for any
∑

h∈H bh uh ∈
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AH we get

(∑

h∈H

bh uh

)
∑

g∈G

rg ug


 =

∑

h∈H

bh


∑

g∈G

rg ug


 uh

=
∑

h∈H


∑

g∈G

rg ug


 bh uh

=


∑

g∈G

rg ug



(∑

h∈H

bh uh

)

which shows that
∑

g∈G rg ug ∈ CA(AH). This concludes the proof.

Remark D.5.6. By putting H = {e} respectively H = G we get expressions for
CA(A0) respectively Z(A).

Theorem D.5.7. If A = A0♦α
σG is a crystalline graded ring, where A0 is commutative

and H is a subgroup of G contained in Z(G)
⋂

ker(σ), then

I ∩ CA(AH) 6= {0}

for every non-zero two-sided ideal I in A.

Proof. Let I be an arbitrary non-zero two-sided ideal in A and assume that A0 is com-
mutative. For each g ∈ G we define a map

Tg : A → A,
∑

s∈G

as us 7→
(∑

s∈G

as us

)
ug.

Note that, for each g ∈ G, I is invariant under Tg . We have

Tg

(∑

s∈G

as us

)
=

(∑

s∈G

as us

)
ug =

∑

s∈G

as α(s, g)usg

for every g ∈ G. Suppose that
∑

s∈G as us is such that ae = 0 but ap 6= 0 for some
p 6= e. Then, we get Tp−1(

∑
s∈G as us) =

∑
s∈G as α(s, p−1)usp−1 . In particular we

see that the coefficient in front of ue is given by ap α(p, p−1) and since A is assumed to
have no S(G)-torsion and A0 is assumed to be commutative, we see by (iii) in Lemma
D.5.3 that ap α(p, p−1) 6= 0. It is now clear that for each non-zero element c ∈ A it is
always possible to choose some g ∈ G and let Tg operate on c to end up with an element
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where the coefficient in front of ue is non-zero. For each b ∈ A0 and h ∈ H , we define
a map

Db uh
: A → A,

∑

s∈G

as us 7→ b uh

(∑

s∈G

as us

)
−
(∑

s∈G

as us

)
b uh.

Note that, for each b ∈ A0 and h ∈ H , I is invariant under Db uh
. Furthermore, due to

the fact that H ⊆ Z(G)
⋂

ker(σ), we have

Db uh

(∑

s∈G

as us

)
=

(∑

s∈G

b σh(as)α(h, s)uhs

)

−
(∑

s∈G

as σs(b)α(s, h)ush

)

=
∑

s∈G

(b as α(h, s)− as σs(b)α(s, h)) uhs =
∑

t∈G\{h}
dt ut

since dh = (b ae α(h, e)− ae σe(b)α(e, h)) = 0. It is important to note that

CA(AH) =
⋂

b∈A0
h∈H

ker(Db uh
)

and hence for any
∑

s∈G as us ∈ A\CA(AH) we are always able to choose b ∈ A0 and
h ∈ H and the corresponding Db uh

and have
∑

s∈G as us 6∈ ker(Db uh
). Therefore

we can always pick an operator Db uh
which kills the coefficient dh (coming from ae)

without killing everything. Hence, if ae 6= 0, the number of non-zero coefficients of the
resulting element will always be reduced by at least one.

The ideal I is assumed to be non-zero, which means that we can pick some non-zero
element

∑
s∈G rs us ∈ I . If

∑
s∈G rs us ∈ CA(AH), then we are finished, so assume

that this is not the case. Note that rs 6= 0 for finitely many s ∈ G. Recall that the ideal
I is invariant under Tg and Db uh

for all g ∈ G, b ∈ A0 and h ∈ H . We may now
use the operators {Tg}g∈G and {Db uh

}b∈A0,h∈H to generate new elements of I . More
specifically, we may use the Tg:s to translate our element

∑
s∈G rs us into a new element

which has a non-zero coefficient in front of ue (if needed) after which we use the Db uh

operator to kill this coefficient and end up with yet another new element of I which is
non-zero but has a smaller number of non-zero coefficients. We may repeat this procedure
and in a finite number of iterations arrive at an element of I which lies in CA(AH)\A0,
and if not we continue the above procedure until we reach an element in A0 \ {0}. In
particularA0 ⊆ CA(AH) sinceA0 is commutative and hence I∩CA(AH) 6= {0}.
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[33] Nǎstǎsescu, C., Van Oystaeyen, F.: Methods of Graded Rings, xiv+304 pp. Lecture
Notes in Mathematics, 1836. Springer-Verlag, Berlin (2004)

[34] Nauwelaerts, E., Van Oystaeyen, F.: Introducing Crystalline Graded Algebras, Al-
gebr. Represent. Theory 11, no. 2, 133–148 (2008)

[35] Neijens, T., Van Oystaeyen, F., Yu, W.W.: Centers of Certain Crystalline Graded
Rings. Preprint in preparation (2007)

[36] Öinert, J., Silvestrov, S. D.: Commutativity and Ideals in Algebraic Crossed Prod-
ucts, J. Gen. Lie. T. Appl. 2, no. 4, 287–302 (2008)

[37] Öinert, J., Silvestrov, S. D.: On a Correspondence Between Ideals and Commu-
tativity in Algebraic Crossed Products, J. Gen. Lie. T. Appl. 2, No. 3, 216–220
(2008)

[38] Öinert, J., Silvestrov, S. D.: Crossed Product-Like and Pre-Crystalline Graded
Rings, Chapter 24 in S. Silvestrov, E. Paal, V. Abramov, A. Stolin (Eds.), General-
ized Lie theory in Mathematics, Physics and Beyond, pp. 281–296, Springer-Verlag,
Berlin, Heidelberg (2008)

[39] Ostrovskyı̆, V., Samoı̆lenko, Yu.: Introduction to the Theory of Representations of
Finitely Presented ∗-Algebras. I, iv+261 pp. Representations by bounded operators.
Reviews in Mathematics and Mathematical Physics, 11, pt.1. Harwood Academic
Publishers, Amsterdam (1999)

[40] Passman, D. S.: Infinite Crossed Products. Pure and Applied Mathematics, 135.
Academic Press, Boston (1989)

125



REFERENCES

[41] Passman, D. S.: The Algebraic Structure of Group Rings, xiv+720 pp. Pure and
Applied Mathematics. Wiley-Interscience (John Wiley & Sons), New York-London-
Sydney (1977)

[42] Pedersen, G. K.: C∗-algebras and their automorphism groups. London Mathemat-
ical Society Monographs, 14. Academic Press, London-New York (1979)

[43] Rowen, L.: Some results on the center of a ring with polynomial identity, Bull.
Amer. Math. Soc. 79, 219–223 (1973)

[44] Silvestrov, S. D., Tomiyama, J.: Topological Dynamical Systems of Type I, Expo.
Math. 20, no. 2, 117–142 (2002)

[45] Svensson, C., Silvestrov, S., de Jeu, M.: Dynamical Systems and Commutants in
Crossed Products, Internat. J. Math. 18, no. 4, 455–471 (2007)

[46] Svensson, C., Silvestrov S., de Jeu M.: Connections Between Dynamical Systems
and Crossed Products of Banach Algebras by Z, in "Methods of Spectral Analysis in
Mathematical Physics, Conference on Operator Theory, Analysis and Mathematical
Physics (OTAMP) 2006, Lund, Sweden", Operator Theory: Advances and Appli-
cations, Vol. 186, Janas, J.; Kurasov, P.; Laptev, A.; Naboko, S.; Stolz, G. (Eds.), pp.
391–401, Birkhäuser (2009)

[47] Svensson, C., Silvestrov S., de Jeu M.: Dynamical systems associated to crossed
products, Preprints in Mathematical Sciences 2007:22, LUFTMA-5088-2007; Lei-
den Mathematical Institute report 2007-30; arxiv:0707.1881. To appear in Acta
Applicandae Mathematicae.

[48] Svensson, C., Tomiyama, J.: On the commutant of C(X) in C∗-crossed products
by Z and their representations. arXiv:0807.2940

[49] Theohari-Apostolidi, Th., Vavatsoulas, H.: On strongly group graded algebras and
orders, pp. 179–186. New techniques in Hopf algebras and graded ring theory, K.
Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels (2007)

[50] Theohari-Apostolidi, Th., Vavatsoulas, H.: Induced modules of strongly group-
graded algebras, Colloq. Math. 108, no. 1, 93–104 (2007)

[51] Theohari-Apostolidi, Th., Vavatsoulas, H.: On strongly graded Gorestein orders,
Algebra Discrete Math. 2005, no. 2, 80–89 (2005)

[52] Theohari-Apostolidi, Th., Vavatsoulas, H.: On the separability of the restriction
functor, Algebra Discrete Math. 2003, no. 3, 95–101 (2003)

126



REFERENCES

[53] Theohari-Apostolidi, Th., Vavatsoulas, H.: Induction and Auslander-Reiten se-
quences over crossed products, pp. 765–774 in Formal power series and algebraic
combinatorics (Moscow, 2000). Springer, Berlin (2000)

[54] Theohari-Apostolidi, Th., Vavatsoulas, H.: On induced modules over strongly
group-graded algebras, Beiträge Algebra Geom. 40, no. 2, 373–383 (1999)

[55] Tomiyama, J.: Invitation to C∗-algebras and topological dynamics, x+167 pp.
World Scientific Advanced Series in Dynamical Systems, 3. World Scientific, Singa-
pore (1987)

[56] Tomiyama, J.: The interplay between topological dynamics and theory of C∗-
algebras, vi+69 pp. Lecture Notes Series, 2. Seoul National University, Research
Institute of Mathematics, Global Anal. Research Center, Seoul (1992)

[57] Tomiyama, J.: The interplay between topological dynamics and theory of C∗-
algebras II (after the Seoul lecture note 1992), Sūrikaisekikenkyūsho Kōkyūroku,
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Paper E

Simple group graded rings and maximal
commutativity

Johan Öinert

Abstract. In this paper we provide necessary and sufficient conditions for strongly group graded
rings to be simple. For a strongly group graded ring R =

⊕
g∈GRg the grading group G

acts, in a natural way, as automorphisms of the commutant of the neutral component subring
Re in R and of the center of Re. We show that if R is a strongly G-graded ring where
Re is maximal commutative in R, then R is a simple ring if and only if Re is G-simple
(i.e. there are no nontrivial G-invariant ideals). We also show that if Re is commutative
(not necessarily maximal commutative) and the commutant of Re is G-simple, then R is
a simple ring. These results apply to G-crossed products in particular. A skew group ring
Re oσ G, where Re is commutative, is shown to be a simple ring if and only if Re is
G-simple and maximal commutative in Re oσ G. As an interesting example we consider
the skew group algebra C(X) oh̃ Z associated to a topological dynamical system (X,h).
We obtain necessary and sufficient conditions for simplicity of C(X) oh̃ Z with respect to
the dynamics of the dynamical system (X,h), but also with respect to algebraic properties of
C(X) as a subalgebra of C(X) oh̃ Z. Furthermore, we show that for any stronglyG-graded
ring R each nonzero ideal of R has a nonzero intersection with the commutant of the center
of the neutral component.

E.1 Introduction

The aim of this paper is to highlight the important role that maximal commutativity of
the neutral component subring plays in a strongly group graded ring when investigat-
ing simplicity of the ring itself. The motivation comes from the theory of C∗-crossed
product algebras associated to topological dynamical systems. To each topological dy-
namical system, (X,h), consisting of a compact Hausdorff space X and a homeomor-

phism h : X → X , one may associate a C∗-crossed product algebra1 C(X)
C∗

oh̃ Z (see

1To avoid confusion, we let C(X)
C∗
oh̃ Z denote the C∗-crossed product algebra in contrast to the (alge-

braic) skew group algebra, which is denoted C(X) oh̃ Z.
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e.g. [23]). In the recent paper [22], C. Svensson and J. Tomiyama prove the following
theorem.

Theorem E.1.1. The following assertions are equivalent:

(i) (X,h) is topologically free (i.e. the aperiodic points are dense in X).

(ii) I ∩ C(X) 6= {0} for each nonzero ideal I of C(X)
C∗

oh̃ Z.

(iii) C(X) is a maximal commutative C∗-subalgebra of C(X)
C∗

oh̃ Z.

This theorem is a generalization (from closed ideals to arbitrary ideals) of a well-
known theorem in the theory of C∗-crossed products associated to topological dynamical
system (see e.g. [23] for details). Theorem E.1.1 is very useful when proving the following
theorem, which originally appeared in [17].

Theorem E.1.2. Suppose that X is infinite. Then C(X)
C∗

oh̃ Z is simple if and only if
(X,h) is minimal (i.e. each orbit is dense in X).

In [19–21] C. Svensson, S. Silvestrov and M. de Jeu proved various analogues of
Theorem E.1.1 for (algebraic) skew group algebras which are strongly graded by Z. It
then became natural to investigate if their results could be generalized to other types
of (strongly) graded rings and in [11–14] an extensive investigation of the intersection
between arbitrary nonzero ideals of various types of graded rings and certain subrings,
was carried out. Given a subset S of a ring R we denote by CR(S) the commutant of
S in R, i.e. the set of all elements of R which commute with each element of S. In
particular CR(R), i.e. the center of R, is denoted by Z(R). In the recent paper [15],
the following theorem was proven.

Theorem E.1.3. IfR =
⊕

g∈GRg is a stronglyG-graded ring, whereRe is commutative,
then

I ∩ CR(Re) 6= {0}
for each nonzero ideal I of R.

This implies that if R is a stronglyG-graded ring whereRe is maximal commutative
inR, then each nonzero ideal ofR has a nontrivial intersection withRe. For skew group
rings the following was shown in [14, Theorem 3].

Theorem E.1.4. Let R = Re oσ G be a skew group ring satisfying either of the following
two conditions:

• Re is an integral domain and G is an abelian group.

• Re is commutative and G is a torsion-free abelian group.

132



E.1. INTRODUCTION

Then the following two assertions are equivalent:

(i) The ring Re is a maximal commutative subring of R.

(ii) I ∩Re 6= {0} for each nonzero ideal I of R.

This theorem can be seen as a generalization of the algebraic analogue of Theorem
E.1.1 and it is applicable to the skew group algebra which sits densely inside the C∗-

crossed product algebra C(X)
C∗

oh̃ Z. In the theory of graded rings, one theorem which
provides sufficient conditions for a strongly group graded ring to be simple is the follow-
ing, proven by F. Van Oystaeyen in [25, Theorem 3.4].

Theorem E.1.5. Let R =
⊕

g∈GRg be a strongly G-graded ring such that the morphism
G→ Pic(Re), defined by g → [Rg], is injective. IfRe is a simple ring, then R is a simple
ring. (The Picard group, Pic(Re), is defined in Section E.2.2.)

A skew group ring is an example of a strongly graded ring. Given a skew group ring
R = Re oσ G, the grading group G acts as automorphisms of Re. The results in [3]
show that simplicity of a skew group ringR is intimately connected to the nonexistence of
G-invariant nonzero proper ideals of Re. Given a stronglyG-graded ringR, the grading
groupG acts, in a canonical way, as automorphisms of CR(Re) (see Section E.2.1). This
means that for an arbitrary strongly G-graded ring R =

⊕
g∈GRg , one may speak of

G-invariant nonzero proper ideals of CR(Re) and try to relate the nonexistence of such
ideals to simplicity of R, in a manner similar to the case of skew group rings.

In Section E.2 we give definitions and background information necessary for the
understanding of the rest of this paper. In Section E.3 we generalize [15, Corollary 3] and
show that in a strongly G-graded ring R each nonzero ideal has a nonzero intersection
with CR(Z(Re)) (Theorem E.3.1). Furthermore, we generalize [14, Theorem 3] and
show that for a skew group ring Re oσ G whereRe is commutative, each nonzero ideal
ofReoσG has a nonzero intersection withRe if and only ifRe is maximal commutative
in Re oσ G (Theorem E.3.5).

The main objective of Section E.4 is to describe the connection between maximal
commutativity of Re in a strongly group graded ring R and injectivity of the canonical
mapG→ Pic(Re). In Section E.5 we show that ifA0♦α

σG is a simple crystalline graded
ring where A0 is commutative, then A0 is G-simple (Proposition E.5.1). In Example
E.5.3 we apply this result to the first Weyl algebra. In Section E.6 we investigate simplicity
of a strongly G-graded ring R with respect to G-simplicity and maximal commutativity
of Re. In particular we show that if R is a strongly G-graded ring where Re is maximal
commutative in R, then Re is G-simple if and only if R is simple (Theorem E.6.6). We
also show the slightly more general result in one direction, namely that that if CR(Re) is
G-simple (with respect to the canonical action) and Re is commutative (not necessarily
maximal commutative!), then R is simple (Proposition E.6.5). Thereafter we investigate
the simplicity of skew group rings and generalize [3, Corollary 2.1] and [3, Theorem 2.2],
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by showing that ifRe is commutative, then the skew group ringRe oσG is a simple ring
if and only ifRe isG-simple and a maximal commutative subring ofRe oσG (Theorem
E.6.13). As an example, we consider the skew group algebra associated to a dynamical
system.

In Section E.7 we consider the algebraic crossed product C(X) oh̃ Z associated to
a topological dynamical system (X,h). Under the assumption that X is infinite, we
show that C(X) oh̃ Z is simple if and only if (X,h) is a minimal dynamical system or
equivalently if and only if C(X) is Z-simple and maximal commutative in C(X) oh̃ Z
(Theorem E.7.6). This result is a complete analogue to the well-known result for C∗-
crossed product algebras associated to topological dynamical systems.

E.2 Preliminaries

Throughout this paper all rings are assumed to be unital and associative and unless oth-
erwise is stated we let G be an arbitrary group with neutral element e.

A ring R is said to be G-graded if there is a family {Rg}g∈G of additive subgroups
of R such that

R =
⊕

g∈G

Rg and RgRh ⊆ Rgh

for all g, h ∈ G. Moreover, if RgRh = Rgh holds for all g, h ∈ G, then R is said to be
strongly G-graded. The product RgRh is here the usual module product consisting of all
finite sums of ring products rgrh of elements rg ∈ Rg and rh ∈ Rh, and not just the
set of all such ring products. For any graded ringR it follows directly from the gradation
that Re is a subring of R, and that Rg is an Re-bimodule for each g ∈ G. We shall
refer to Rg as the homogeneous component of degree g ∈ G, and in particular to Re as the
neutral component. Let U(R) denote the group of multiplication invertible elements of
R. We shall say that R is a G-crossed product if U(R) ∩Rg 6= ∅ for each g ∈ G.

E.2.1 Strongly G-graded rings

For each G-graded ring R =
⊕

g∈GRg one has 1R ∈ Re (see [9, Proposition 1.1.1]),
and if we in addition assume that R is a strongly G-graded ring, i.e. RgRg−1 = Re

for each g ∈ G, then for each g ∈ G there exists a positive integer ng and elements

a
(i)
g ∈ Rg , b(i)g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}, such that

ng∑

i=1

a(i)
g b

(i)
g−1 = 1R. (E.1)

For every λ ∈ CR(Re), and in particular for every λ ∈ Z(Re) ⊆ CR(Re), and g ∈ G
we define
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σg(λ) =
ng∑

i=1

a(i)
g λ b

(i)
g−1 . (E.2)

The definition of σg is independent of the choice of the a(i)
g ’s and b(i)b−1 ’s (see e.g. [15]).

For a proof of the following lemma we refer to [15, Lemma 3].

Lemma E.2.1. Let R =
⊕

g∈GRg be a strongly G-graded ring, g ∈ G and write
∑ng

i=1 a
(i)
g b

(i)
g−1 = 1R for someng > 0 and a

(i)
g ∈ Rg , b

(i)
g−1 ∈ Rg−1 for i ∈ {1, . . . , ng}.

For each λ ∈ CR(Re) define σg(λ) by σg(λ) =
∑ng

i=1 a
(i)
g λ b

(i)
g−1 . The following proper-

ties hold:

(i) σg(λ) is the unique element of R satisfying

rg λ = σg(λ) rg , ∀ rg ∈ Rg. (E.3)

Furthermore, σg(λ) ∈ CR(Re) and if λ ∈ Z(Re), then σg(λ) ∈ Z(Re).

(ii) The group G acts as automorphisms of the rings CR(Re) and Z(Re), with each
g ∈ G sending any λ ∈ CR(Re) and λ ∈ Z(Re), respectively, to σg(λ).

(iii) Z(R) = {λ ∈ CR(Re) | σg(λ) = λ, ∀g ∈ G}, i.e. Z(R) is the fixed subring
CR(Re)G of CR(Re) with respect to the action of G.

The map σ, defined in Lemma E.2.1, will be referred to as the canonical action.

E.2.2 The Picard group of Re, Pic(Re)

We shall now give a brief description of the Picard group of Re in a strongly graded ring
R =

⊕
g∈GRg . For more details we refer to [2].

Definition E.2.2 (Invertible module). Let A be a ring. An A-bimodule M is said to
be invertible if and only if there exists an A-bimodule N such that M ⊗A N ∼= A ∼=
N ⊗A M as A-bimodules.

Given a ring A, the Picard group of A, denoted Pic(A), is defined as the set of
A-bimodule isomorphism classes of invertible A-bimodules, and the group operation is
given by ⊗A.

If R =
⊕

g∈GRg is a strongly G-graded ring, the homomorphism of Rg ⊗Re Rh

into Rgh sending rg ⊗ rh into rgrh for all rg ∈ Rg and rh ∈ Rh, is an isomorphism of
Re-bimodules, for any g, h ∈ G (see [4, p.336]). This implies that Rg is an invertible
Re-bimodule for each g ∈ G. We may now define a group homomorphism ψ : G →
Pic(Re), g 7→ [Rg], i.e. each g ∈ G is mapped to the isomorphism class inside Pic(Re)
to which the invertibleRe-bimodule Rg belongs.
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E.2.3 Crystalline graded rings

We shall begin this section by recalling the definition of a crystalline graded ring. We
would also like to emphasize that rings belonging to this class are in general not strongly
graded.

Definition E.2.3 (Pre-crystalline graded ring). An associative and unital ring A is said
to be pre-crystalline graded if

(i) there is a group G (with neutral element e),

(ii) there is a map u : G → A, g 7→ ug such that ue = 1A and ug 6= 0 for every
g ∈ G,

(iii) there is a subringA0 ⊆ A containing 1A,

such that the following conditions are satisfied:

(P1) A =
⊕

g∈GA0 ug .

(P2) For every g ∈ G, ug A0 = A0 ug is a free left A0-module of rank one.

(P3) The decomposition in P1 makes A into a G-graded ring with A0 = Ae.

Lemma E.2.4 (see [10]). With notation and definitions as above:

(i) For every g ∈ G, there is a set map σg : A0 → A0 defined by ug a = σg(a)ug for
a ∈ A0. The map σg is a surjective ring morphism. Moreover, σe = idA0 .

(ii) There is a set map α : G × G → A0 defined by us ut = α(s, t)ust for s, t ∈ G.
For any triple s, t, w ∈ G and a ∈ A0 the following equalities hold:

α(s, t)α(st, w) = σs(α(t, w))α(s, tw) (E.4)

σs(σt(a))α(s, t) = α(s, t)σst(a) (E.5)

(iii) For every g ∈ G we have α(g, e) = α(e, g) = 1A0 and
α(g, g−1) = σg(α(g−1, g)).

A pre-crystalline graded ringA with the above properties will be denoted byA0♦α
σG

and each element of this ring is written as a sum
∑

g∈G rg ug with coefficients rg ∈ A0,
of which only finitely many are nonzero. In [10] it was shown that for pre-crystalline
graded rings, the elements α(s, t) are normalizing elements of A0, i.e. A0 α(s, t) =
α(s, t)A0 for each s, t ∈ G. For a pre-crystalline graded ring A0♦α

σG, we let S(G)
denote the multiplicative set inA0 generated by {α(g, g−1) | g ∈ G} and let S(G×G)
denote the multiplicative set generated by {α(g, h) | g, h ∈ G}.
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Lemma E.2.5 (see [10]). IfA = A0♦α
σG is a pre-crystalline graded ring, then the following

assertions are equivalent:

(i) A0 is S(G)-torsion free.

(ii) A is S(G)-torsion free.

(iii) α(g, g−1)a0 = 0 for some g ∈ G implies a0 = 0.

(iv) α(g, h)a0 = 0 for some g, h ∈ G implies a0 = 0.

(v) A0 ug = ug A0 is also free as a right A0-module, with basis ug, for every g ∈ G.

(vi) For every g ∈ G, σg is bijective and hence a ring automorphism of A0.

Definition E.2.6 (Crystalline graded ring). A pre-crystalline graded ringA0♦α
σG, which

is S(G)-torsion free, is said to be a crystalline graded ring.

Remark E.2.7. Note that G-crossed products are examples of crystalline graded rings.
In fact, suppose that R is a G-crossed product and put A = R. For each g ∈ G, we
may pick some ug ∈ Rg ∩ U(R). Choose ue = 1R and A0 = Re. It is now clear that
Rg = A0 ug = ug A0 for each g ∈ G, and that {ug}g∈G is a basis for A as a free left
(and right) A0-module. By assumption A =

⊕
g∈GA0ug with Ae = A0. This shows

that A is pre-crystalline graded. Recall that for each g ∈ G, ug is chosen to be a unit
in R and hence, from Lemma E.2.4 (ii), we get that α(s, t) = us ut u

−1
st ∈ U(A0) for

all s, t ∈ G. This certainly shows that A0 is S(G)-torsion free and hence A = R is a
crystalline graded ring.

The notation for G-crossed products is inherited from the crystalline graded rings,
e.g. we shall write {ug}g∈G for the basis elements. In particular, in the proof of Theorem
E.3.5 where we consider a skew group ring, which is a special case of aG-crossed product,
we shall use this notation. However, by custom we shall write Re oα

σ G instead of
Re♦α

σG.

E.3 Ideals of strongly graded rings

In this section we shall improve some earlier results. We begin by making a generalization
of Theorem E.1.3 ([15, Corollary 3]). The following proof is based on the same technique
as in [15], but we will make it somewhat shorter by doing a proof by contra positivity.

Theorem E.3.1. If R =
⊕

g∈GRg is a strongly G-graded ring, then

I ∩ CR(Z(Re)) 6= {0}

for each nonzero ideal I of R.
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Proof. Let I be an ideal of R such that I ∩ CR(Z(Re)) = {0}. If we can show that
I = {0}, then the desired conclusion follows by contra positivity. Take an arbitrary
x =

∑
g∈G xg ∈ I . If x ∈ I ∩CR(Z(Re)), then x = 0 by the assumption. Therefore,

suppose that I \ CR(Z(Re)) is not empty. We may choose some x ∈ I \ CR(Z(Re))
such that N = #supp(x) = #{g ∈ G | xg 6= 0} ∈ Z>0 is as small as possible.
Furthermore, we may assume that e ∈ supp(x). Indeed, take any t ∈ supp(x) and
choose some rt−1 ∈ Rt−1 such that x′ = rt−1x 6= 0 and e ∈ supp(x′). It is always

possible to choose such an rt−1 , because if 1R =
∑nt

i=1 a
(i)
t b

(i)
t−1 as in (E.1), then b(i)t−1xt

must be nonzero for some i ∈ {1, . . . , nt}, for otherwise we would have 1Rxt = 0
which would be contradictory (since xt 6= 0). Note that x′ ∈ I is nonzero and since
I ∩ CR(Z(Re)) = {0} we conclude that x′ ∈ I \ CR(Z(Re)). By the assumption on
N we conclude that #supp(x′) = supp(x) = N . Now, take an arbitrary a ∈ Z(Re).
Then x′′ = ax′−x′a ∈ I but clearly e /∈ supp(x′′) and hence by the assumption on N
we get that x′′ 6∈ I \CR(Z(Re)), thus x′′ = 0. Since a ∈ Z(Re) was chosen arbitrarily
we get x′ ∈ CR(Z(Re)) which is a contradiction.

Remark E.3.2. Note that Re ⊆ CR(Z(Re)). If Re is commutative, then clearly
Re = Z(Re) and we obtain Theorem E.1.3 as a special case of Theorem E.3.1.

For a crystalline graded ringA0♦α
σG we obtain the following result which generalizes

[14, Corollary 8].

Theorem E.3.3. IfA = A0♦α
σG is a crystalline graded ring with α(g, g−1) ∈ Z(A0) for

all g ∈ G, then
I ∩ CA(Z(A0)) 6= {0}

for each nonzero ideal I of A0♦α
σG.

Proof. Let x =
∑

g∈G ag ug, with ag ∈ A0 for g ∈ G, be a nonzero element of the
crystalline graded ring A0♦α

σG. Pick some t ∈ G such that at 6= 0. For x′ = xut−1

we have e ∈ supp(x′). Indeed, in degree e of x′ we have (at ut)ut−1 = at α(t, t−1) =
α(t, t−1) at and, by Lemma E.2.5 (iii), this is a nonzero element of A0. The rest of the
proof is analogous to the proof of Theorem E.3.1.

For an element r of a commutative ring A, the annihilator ideal of r in A is defined
to be the set Ann(r) = {b ∈ A | rb = 0}. The following lemma from [11, Corollary 6]
applies to G-crossed products and in particular skew group rings.

Lemma E.3.4. Let Re oα
σ G be a G-crossed product with Re commutative. The subring

Re is maximal commutative inRe oα
σ G if and only if, for each pair (s, rs) ∈ (G\{e})×

(Re \ {0}), there exists a ∈ Re such that σs(a)− a 6∈ Ann(rs).

The following theorem is a generalization of Theorem E.1.4 ([14, Theorem 3]) and
the proof makes use of the same idea as in [14]. However, in this proof we make a crucial
observation and are able to make use of an important map.
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Theorem E.3.5. Let R = Re oσ G be a skew group ring with Re commutative. The
following two assertions are equivalent:

(i) Re is a maximal commutative subring of R.

(ii) I ∩Re 6= {0} for each nonzero ideal I of R.

Proof. By Theorem E.3.1 (i) implies (ii) for the (strongly graded) skew group ringR. We
shall now show that (ii) implies (i). Suppose that Re is not maximal commutative in R.
If we can show that there exists a nonzero ideal I of R, such that I ∩ Re = {0}, then
by contra positivity we are done. Let {ug}g∈G be a basis for R as a free left (and right)
Re-module, as in Section E.2.3. By the assumption and Lemma E.3.4 there exists some
s ∈ G \ {e} and rs ∈ Re \ {0} such that rs σs(a) = rs a for each a ∈ Re. Let us
choose such a pair (s, rs) and let I be the twosided ideal of R generated by rs − rs us.
The ideal I is obviously nonzero, and furthermore it is spanned by elements of the form
ag ug (rs − rs us) ah uh where g, h ∈ G and ag, ah ∈ Re. By commutativity of Re

and the properties of rs we may rewrite this expression.

ag ug (rs − rs us) ah uh = ag ug (rs ah − rs σs(ah)︸ ︷︷ ︸
=rs ah

us)uh

= ag ug rs ah(1R − us)uh

= ag σg(rs ah)ug(1R − us)uh

= ag σg(rs ah)︸ ︷︷ ︸
:=b

(ugh − ugsh)

= b ugh − b ugsh (E.6)

Each element of I is a sum of elements of the form (E.6), where b ∈ Re and g, h ∈ G.
Define a map

ε : Re oσ G→Re,
∑

g∈G

agug 7→
∑

g∈G

ag.

It is clear that ε is additive and one easily sees that ε is identically zero on I . Furthermore,
ε|Re , i.e. the restriction of ε to Re, is injective. Take an arbitrary m ∈ I ∩ Re. Clearly
ε(m) = 0 since m ∈ I and by the injectivity of ε|Re we conclude that m = 0. Hence
I ∩Re = {0}. This concludes the proof.

Remark E.3.6. It is not difficult to see that the map ε is multiplicative if and only if the
action σ is trivial, i.e. Re oσ G is a group ring. In that situation the map ε is commonly
referred to as the augmentation map. However, note that the preceding proof does not
require ε to be multiplicative.
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E.4 The map ψ : G → Pic(Re) and simple strongly

graded rings

We begin by recalling a useful lemma.

Lemma E.4.1 ([15]). Let R =
⊕

g∈GRg be a strongly G-graded ring. If a ∈ R is such
that

aRg = {0} or Rg a = {0}
for some g ∈ G, then a = 0.

If we assume that Re is maximal commutative in the stronglyG-graded ringR, then
we can say the following about the canonical map ψ : G→ Pic(Re).

Proposition E.4.2. Let R =
⊕

g∈GRg be a strongly G-graded ring. If Re is maximal
commutative in R, then the map ψ : G→ Pic(Re), g 7→ [Rg], is injective.

Proof. Let Re be maximal commutative in R. Suppose that ψ : G → Pic(Re) is not
injective. This means that we can pick two distinct elements g, h ∈ G such that Rg

∼=
Rh as Re-bimodules. Let f : Rg → Rh be a bijective Re-bimodule homomorphism.
By our assumptions Re = CR(Re) and hence we can use the map σ : G → Aut(Re)
defined by (E.2) to write

σh(b) f(rg)︸ ︷︷ ︸
∈Rh

= f(rg) b = f(rg b) = f(σg(b) rg) = σg(b) f(rg) (E.7)

for any b ∈ Re and rg ∈ Rg . (It is important to note that σg(b) ∈ Re since b ∈
Re.) The map f is bijective and in particular surjective. Hence, by (E.7) we conclude
that (σh(b) − σg(b))Rh = {0} for any b ∈ Re. It follows from Lemma E.4.1 that
σh(b) − σg(b) = 0 for any b ∈ Re. Hence σg = σh in Aut(CR(Re)) = Aut(Re)
and this implies σg−1h = idRe . Now equation (E.3) shows that the homogeneous
component Rg−1h ( 6= Re since g 6= h) commutes with Re, and hence Re is not
maximal commutative in R. We have reached a contradiction and this shows that ψ :
G→ Pic(Re) is injective.

The following proposition is a direct consequence of Theorem E.1.4 and we shall
therefore omit the proof.

Proposition E.4.3. Let R = Re oσ G be a skew group ring, where Re is a field and G is
an abelian group. The following assertions are equivalent:

(i) The subring Re is maximal commutative in R.

(ii) R is a simple ring.
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Example E.4.4. Consider the group ring R = C[Z], which corresponds to the special
case of a skew group ring with trivial action. The so called augmentation ideal, which is
the kernel, ker(ε), of the augmentation map

ε : C[Z] → C,
∑

k∈Z
ck k 7→

∑

k∈Z
ck

is a nontrivial ideal of R and hence R = C[Z] is not a simple ring. This conclusion also
follows directly from Proposition E.4.3. Indeed, R = C[Z] is commutative and hence
R0 = C is not maximal commutative in C[Z].

The following proposition shows that in the case when Re is assumed to be commu-
tative, Theorem E.1.5 is equivalent to Corollary E.6.7 (see Section E.6).

Proposition E.4.5. Let R =
⊕

g∈GRg be a stronglyG-graded ring. IfRe is a field, then
the following two assertions are equivalent:

(i) Re is maximal commutative in R.

(ii) The map ψ : G→ Pic(Re) is injective.

Proof. It follows from Proposition E.4.2 that (i) implies (ii).
To prove that (ii) implies (i), let us assume thatRe is not maximal commutative inR.

We want to show that ψ is not injective and hence get the desired conclusion by contra
positivity.

By our assumptions, there exists some nonzero element rg ∈ Rg , for some g 6= e,
such that rg a = a rg for all a ∈ Re. Consider the set J = rg Rg−1 ⊆ Re. Since rg
commutes with Re and Rg−1 is an Re-bimodule, J is an ideal of Re and as rg Rg−1 6=
{0} (this follows from Lemma E.4.1 since rg 6= 0), we obtain rg Rg−1 = Re since
Re is simple. Consequently, we conclude that there exists an sg−1 ∈ Rg−1 such that
rg sg−1 = 1R. In a symmetrical way we get Rg−1 rg = Re which yields wg−1 rg = 1R
for some wg−1 ∈ Rg−1 . Clearly wg−1 = sg−1 .

From the gradation we immediately conclude that Re rg ⊆ Rg andRg sg−1 ⊆ Re.
By the equality sg−1rg = 1R we get Rg ⊆ Re rg and hence Rg = Re rg . Note
that rg is invertible and hence a basis for the Re-bimodule Re rg . This shows that Rg

and Re belong to the same isomorphism class in Pic(Re), and hence the morphism
ψ : G→ Pic(Re) is not injective. This concludes the proof.

Remark E.4.6. The previous proof uses the same techniques as the proof of [25, Theo-
rem 3.4].

E.5 G-simple subrings of crystalline graded rings

If A is a ring and σ : G → Aut(A) is a group action, then we say that an ideal I of
A is G-invariant if σg(I) ⊆ I for each g ∈ G. Note that it is equivalent to say that
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σg(I) = I for each g ∈ G. If there are no nontrivial G-invariant ideals of A, then we
say that A is G-simple. (Not to be confused with the term graded simple!)

Proposition E.5.1. Let A0♦α
σG be a crystalline graded ring, where A0 is commutative. If

A0♦α
σG is a simple ring, then A0 is a G-simple ring (with respect to the action defined in

Lemma E.2.4).

Proof. Note that since A0 is commutative, the map σ : G → Aut(A0) is a group
homomorphism. Let A0♦α

σG be a simple ring, and J an arbitrary nonzero G-invariant
ideal of A0. One may verify that J♦α

σG is a nonzero ideal of A0♦α
σG. (This follows

from the fact that for each g ∈ G, A0 ug is a free left A0-module with basis ug.) Since
A0♦α

σG is simple, we get J♦α
σG = A0♦α

σG. Therefore A0 ⊆ J♦α
σG, and from the

gradation it follows that
A0 ⊆ J ⊆ A0

and hence A0 = J , which shows that A0 is G-simple.

Corollary E.5.2. Let R =
⊕

g∈GRg be a G-crossed product, where Re is commutative.
If R is a simple ring, then Re is a G-simple ring (with respect to the canonical action).

Example E.5.3. It is well-known that the first Weyl algebra A = C〈x,y〉
(xy−yx−1) is simple.

The first Weyl algebra is an example of a crystalline graded ring, with G = (Z,+) and
Ae = A0 = C[xy] (see e.g. [10] for details). Note that C[xy] is not a simple ring.
However, by Proposition E.5.1 we conclude that A0 = C[xy] is in fact Z-simple. As a
side remark we should also mention that one can show that A0 = C[xy] is a maximal
commutative subring of the first Weyl algebraA.

E.6 G-simple subrings of strongly G-graded rings

In this section we shall describe how simplicity of a strongly G-graded ring
R =

⊕
g∈GRg is related to G-simplicity of the subrings Z(Re) and CR(Re). If Re is

commutative, then Re = Z(Re), and hence we have an action σ : G→ Aut(Re).

Proposition E.6.1. Let R =
⊕

g∈GRg be a strongly G-graded ring, where Re is com-
mutative. If R is a simple ring, then Re is a G-simple ring (with respect to the canonical
action).

Proof. Let J be an arbitrary nonzero G-invariant ideal of Re. Denote by JR the right
ideal of R generated by J . From the fact that J is a G-invariant ideal of Re we conclude
that JR is also a left ideal of R. Indeed, for g, h ∈ G and c ∈ J , rh ∈ Rh, sg ∈ Rg

we have sg c rh = σg(c) sg rh ∈ JR. Furthermore, R is unital and hence JR must be
nonzero. The ring R is simple and therefore we conclude that JR = R. In particular
we see that Re ⊆ JR. From the gradation we get

Re ⊆ JRe ⊆ J ⊆ Re
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and hence J = Re. This shows that Re is G-simple.

The preceding proposition is a generalization of Corollary E.5.2. In the following
useful lemma, Re is not required to be commutative.

Lemma E.6.2. Let R =
⊕

g∈GRg be a strongly G-graded ring and S a subring of
CR(Re) satisfying the following three conditions:

(i) 1R ∈ S.

(ii) S is invariant under G (with respect to the canonical action).

(iii) S is G-simple (with respect to the canonical action).

Then I ∩ S = {0} for each proper ideal I of R.

Proof. Let S be a subring of CR(Re) satisfying conditions (i)-(iii) of the above, and I be
an ideal of R such that I ∩ S 6= {0}. The set J = I ∩ S is an ideal of S. By (ii), for

any x ∈ J and every g ∈ G, we have σg(x) =
∑ng

i=1 a
(i)
g x b

(i)
g−1 ∈ I ∩ S = J . This

shows that J is a G-invariant ideal of S. By assumption J is nonzero and hence by (iii),
J = S. In particular this shows that 1R ∈ J ⊆ I , and hence R = I .

By observing that both CR(Re) and Z(Re) are subrings of CR(Re) satisfying con-
ditions (i) and (ii) of Lemma E.6.2 we obtain the following corollary.

Corollary E.6.3. LetR =
⊕

g∈GRg be a stronglyG-graded ring. IfCR(Re) (respectively
Z(Re)) is a G-simple ring (with respect to the canonical action), then I ∩ CR(Re) = {0}
(respectively I ∩ Z(Re) = {0}) for each proper ideal I of R.

Recall from [5], that a ring R is said to be a PI-ring (abbreviation for polynomial
identity ring) if for some n ∈ Z>0 there exists some f ∈ Z〈x1, x2, . . . , xn〉, i.e. the
free polynomial ring over Z in n variables, such that f(a1, a2, . . . , an) = 0 for each
(a1, a2, . . . , an) ∈ Rn. Furthermore, a ring is said to be semiprime if {0} is a semiprime
ideal [8, Definition 10.8, Definition 10.15].

Corollary E.6.4. Let R =
⊕

g∈GRg be a semiprime PI-ring which is strongly G-graded.
If either Z(Re) or CR(Re) is a G-simple ring (with respect to the canonical action), then
R is a simple ring.

Proof. Let I be a nonzero ideal of R. It follows from [18, Theorem 2] that I ∩ Z(R) 6=
{0}. Clearly Z(R) ⊆ Z(Re) ⊆ CR(Re) and hence by Corollary E.6.3 we conclude
that I = R.

As we shall see Theorem E.6.6 requiresRe not only to be commutative, but maximal
commutative in R. We begin by proving the following which applies to the more general
situation when Re is not necessarily maximal commutative in R.
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Proposition E.6.5. Let R =
⊕

g∈GRg be a strongly G-graded ring, where Re is com-
mutative. If CR(Re) is a G-simple ring (with respect to the canonical action), then R is a
simple ring.

Proof. Let I be an arbitrary nonzero ideal of R. SinceRe is commutative it follows from
Theorem E.1.3 that I ∩ CR(Re) 6= {0}. By Corollary E.6.3 we conclude that I = R
and hence R is a simple ring.

By combining Proposition E.6.1 and Proposition E.6.5 we get the following theorem.

Theorem E.6.6. Let R =
⊕

g∈GRg be a strongly G-graded ring. If Re is maximal
commutative in R, then the following two assertions are equivalent:

(i) Re is a G-simple ring (with respect to the canonical action).

(ii) R is a simple ring.

As an immediate consequence of Theorem E.6.6 we get the following corollary, which
can also be retrieved from Theorem E.1.5 together with Proposition E.4.2.

Corollary E.6.7. Let R =
⊕

g∈GRg be a strongly G-graded ring where Re is maximal
commutative in R. If Re is a simple ring, then R is a simple ring.

The following remark shows that the rings considered in Corollary E.6.7 are in fact
G-crossed products.

Remark E.6.8. Recall that a commutative and simple ring is a field. If R =
⊕

g∈GRg

is a strongly G-graded ring and Re is a field, then R is a G-crossed product. Indeed, for
each g ∈ G, we have Rg Rg−1 = Rg−1 Rg = Re. Hence, for an arbitrary g ∈ G we
may fix some nonzero a ∈ Rg and by Lemma E.4.1 choose some nonzero b ∈ Rg−1

such that ab = c ∈ Re \ {0}. This means that c is invertible in Re and hence a is right
invertible in R, with right inverse bc−1. The other half of Lemma E.4.1 may be used to
show that a also has a left inverse. We conclude that for each g ∈ G, Rg contains an
invertible element and hence R is a G-crossed product.

One should note that Proposition E.6.5 and Theorem E.6.6 are more general than
Theorem E.1.5 in the sense thatRe is not required to be simple. On the other hand, this
does not come for free. We have to make an additional assumption on Re, namely that
it be commutative.

Remark E.6.9. Note that Theorem E.6.6 especially applies to G-crossed products.

One may think that for a simple strongly graded ring R =
⊕

g∈GRg where Re is
commutative and G-simple, this would imply that Re would be maximal commutative
in R. In general this is not true, as the following example shows.
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Example E.6.10. Consider the field of complex numbers C = R oα Z2 as a Z2-graded
twisted group ring (see e.g. [12] for details). Clearly C is simple as is R. Hence R is also
Z2-simple, but it is not maximal commutative in C.

The purpose of the following example is to present a strongly group graded ring which
is not a crossed product, and to identify a G-simple subring.

Example E.6.11 (A strongly group graded, noncrossed product, matrix ring). Let R =
M3(C) denote the ring of 3× 3-matrices over C. By putting

R0 =




C C 0
C C 0
0 0 C


 and R1 =




0 0 C
0 0 C
C C 0




one may verify that this defines a strong Z2-gradation on R. However, note that R is
not a crossed product with this grading since the homogeneous component R1 does not
contain any invertible element of M3(C)! A simple calculation yields

Z(R0) =








a 0 0
0 a 0
0 0 b



∣∣∣∣∣ a, b ∈ C





and in fact one may verify that CR(R0) = Z(R0). In order to define an action σ :
Z2 → Aut(Z(R0)) we need to make a decomposition of the identity matrix I = 1R,
in accordance with (E.1). Let Ei,j denote the 3 × 3-matrix which has a 1 in position
(i, j) and zeros everywhere else. The decomposition in R0 is trivial, but in R1 we may
for example choose

I = E1,3E3,1 + E2,3E3,2 + E3,2E2,3.

From these decompositions we are now able to define the map σ : Z2 → Aut(Z(R0)).
One easily sees that Z(R0) has two nontrivial ideals. By calculating, we get

σ1(E1,1 + E2,2) = E3,3

and
σ1(E3,3) = E1,1 + E2,2.

From this we conclude that the two nontrivial ideals of Z(R0) are interchanged by the
map σ1, and therefore they are not invariant under the action of Z2. This shows that for
our simple ring M3(C), the subring Z(R0) = CR(R0) is in fact Z2-simple.

Remark E.6.12. Proposition E.6.1 shows that in a simple strongly graded ring R where
Re is commutative, we automatically have thatRe = Z(Re) isG-simple. In Proposition
E.6.5 we saw that for a strongly graded ring R where Re is commutative, G-simplicity
of CR(Re) implies simplicity of R. After seeing Example E.6.11 it is tempting to think
that the converse is also true (even for noncommutative Re), i.e. simplicity of R gives
rise to G-simple subrings. The natural questions are:
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1. If R is strongly group graded and simple, is CR(Re) necessarilyG-simple?

2. If R is strongly group graded and simple, is Z(Re) necessarilyG-simple?

Recall that the center of a simple ring is a field. Thus, if G is the trivial group, then the
answers to both questions are clearly affirmative. Let us therefore consider the case when
G is an arbitrary nontrivial group. Note that if R is commutative, then it is trivial to
verify that the answers to both questions are affirmative. As we have already mentioned,
if Re is commutative then the answer to question no. 2 is affirmative. Furthermore,
if Re is maximal commutative, then by Theorem E.6.6 we conclude that the answer to
question no. 1 is also affirmative. The case that remains to be investigated is that of
a noncommutative ring R where Re is not maximal commutative (we may not even
assume for it to be commutative) in R.

From Example E.6.10 we learnt that simplicity of a strongly graded ring R does not
immediately imply maximal commutativity of the neutral component Re. However, for
skew group rings there is in fact such an implication, as the following theorem shows.

Theorem E.6.13. Let R = Re oσ G be a skew group ring with Re commutative. The
following two assertions are equivalent:

(i) Re is a maximal commutative subring of R and Re is G-simple.

(ii) R is a simple ring.

Proof. By Theorem E.6.6, (i) implies (ii). Suppose that (ii) holds. It follows from Theo-
rem E.3.5 that Re is maximal commutative in R and by Proposition E.6.1 we conclude
that Re is G-simple. This concludes the proof.

It follows from [11, Corollary 10] that the assumptions made in [3, Corollary 2.1]
force the coefficient ring to be maximal commutative in the skew group ring. By the
assumptions made in [3, Theorem 2.2] the same conclusion follows by [3, Proposition
2.2] together with [11, Corollary 6]. This shows that Theorem E.6.13 is a generalization
of [3, Corollary 2.1] and [3, Theorem 2.2].

Remark E.6.14. Note that, in Theorem E.6.13, the implication from (i) to (ii) holds in
much greater generality. Indeed, it holds for any strongly graded ring.

A majority of the objects studied in [19–21] satisfy the conditions of Theorem E.6.13
and hence it applies. We shall show one such example.

Example E.6.15 (Skew group algebras associated to dynamical systems). Let h : X → X
be a bijection on a nonempty set X , and A ⊆ CX an algebra of functions, such that if
f ∈ A then f ◦ h ∈ A and f ◦ h−1 ∈ A. Let h̃ : Z → Aut(A) be defined by
h̃n : f 7→ f ◦h◦(n) for f ∈ A and n ∈ Z. We now have a Z-crossed system (with trivial
h̃-cocycle) and we may define the skew group algebra Aoh̃ Z. For more details we refer
to the papers [19–21], in which this construction has been studied thoroughly.
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By Theorem E.6.13 we get the following corollary, since CX is commutative.

Corollary E.6.16. Following Example E.6.15, let A oh̃ Z be the skew group algebra asso-
ciated to a dynamical system (X,h). The following assertions are equivalent:

(i) Aoh̃ Z is a simple algebra.

(ii) A is a maximal commutative subalgebra of Aoh̃ Z and A is Z-simple.

E.7 Application: Z-graded algebraic crossed products as-

sociated to topological dynamical systems

Let (X,h) be a topological dynamical system, i.e. X is a compact Hausdorff space and
h : X → X is a homeomorphism. The algebra of complex-valued continuous functions
on X , where addition and multiplication is defined pointwise, is denoted by C(X).
Define a map

h̃ : Z → Aut(C(X)), h̃n(f) = f ◦ h◦(n), f ∈ C(X)

and let C(X)oh̃ Z be the algebraic crossed product2 associated to our dynamical system.
Recall that elements of C(X) oh̃ Z are written as formal sums

∑
n∈Z fn un, where all

but a finite number of fn ∈ C(X), for n ∈ Z, are nonzero. The multiplication in
C(X) oh̃ Z is defined as the bilinear extension of the rule

(fn un)(gm um) = fn h̃n(gm)un+m

for n,m ∈ Z and fn, gm ∈ C(X). We now define the following sets:

Pern(h) =
{
x ∈ X | h◦(n)(x) = x

}
, n ∈ Z

Per(h) =
⋃

n∈Z>0

Pern(h)

Aper(h) = X \ Per(h)

Elements of Aper(h) are referred to as aperiodic points of the topological dynamical
system (X,h). By Urysohn’s lemma, C(X) separates points of X and hence by [19,
Corollary 3.4] we get the following.

Lemma E.7.1. The commutant of C(X) in R = C(X) oh̃ Z is given by

CR(C(X)) =

{∑

n∈Z
fn un

∣∣∣ supp(fn) ⊆ Pern(h), fn ∈ C(X), n ∈ Z

}
.

2In ring theory literature this would be referred to as a skew group algebra, but here we adopt the terminology
used in [19–21] which comes from the C∗-algebra literature. Note however, that this is not a C∗-crossed
product, but an algebraic crossed product.
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The topological dynamical system (X,h) is said to be topologically free if and only if
Aper(h) is dense inX . Using topological properties of our (completely regular) space X
together with the remarks made in [19], in particular [19, Theorem 3.5], one can prove
the following.

Lemma E.7.2. C(X) is maximal commutative in C(X) oh̃ Z if and only if (X,h) is
topologically free.

If I is an ideal of C(X) then we denote

supp(I) =
⋃

f∈I

supp(f)

where supp(f) = {x ∈ X | f(x) 6= 0} for f ∈ C(X). Note that a subset S ⊆ X is
Z-invariant if and only if h(S) = S.

Lemma E.7.3. C(X) is Z-simple if and only if there are no nonempty proper h-invariant
closed subsets of X .

Proof. Suppose that C(X) is not Z-simple. Then there exists some proper nonzero ideal
I ( C(X) such that supp(I) 6= ∅ is a proper h-invariant closed subset ofX . Conversely,
suppose that there exists some nonempty proper h-invariant closed subset S ( X . Let
B ⊆ C(X) be set of functions which vanish outside S. Clearly B is a proper nonzero
Z-invariant ideal of C(X) and hence C(X) is not Z-simple.

Definition E.7.4. A topological dynamical system (X,h) is said to be minimal if each
orbit of the dynamical system is dense in X .

Note that a topological dynamical system (X,h) is minimal if and only if there are
no nonempty proper h-invariant closed subsets of X .

Remark E.7.5. If X is infinite and (X,h) is minimal, then (X,h) is automatically free
and in particular topologically free. Indeed, take an arbitrary x ∈ X and suppose that it
is perodic. By minimality, the orbit of x which by periodicity is finite, must be dense in
X . This is a contradiction, since X is Hausdorff, and hence each x ∈ X is aperiodic.

Theorem E.7.6. If (X,h) is a topological dynamical system with X infinite, then the fol-
lowing assertions are equivalent:

(i) C(X) oh̃ Z is a simple algebra.

(ii) C(X) is maximal commutative in C(X) oh̃ Z and C(X) is Z-simple.

(iii) (X,h) is a minimal dynamical system.
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Proof. (i) ⇐⇒ (ii): This follows from Theorem E.6.13.
(iii) ⇒ (ii): Let (X,h) be minimal. By Remark E.7.5 (X,h) is topologically free and by
Lemma E.7.2 this implies that C(X) is maximal commutative in C(X) oh̃ Z. Further-
more, since (X,h) is minimal there is no nonempty proper h-invariant closed subset of
X and hence by Lemma E.7.3 it follows that C(X) is Z-simple.
(ii)⇒ (iii): Suppose that (X,h) is not minimal. Then there exists some nonempty proper
h-invariant closed subset of X and by Lemma E.7.3 C(X) is not Z-simple.

For C∗-crossed product algebras associated to topological dynamical systems the ana-
logue of the above theorem, Theorem E.1.2, is well-known (see e.g. [1], [17] or [23,
Theorem 4.3.3]).

Example E.7.7 (Finite single orbit dynamical systems). Suppose that X = {x, h(x),
h◦(2)(x), . . . , h◦(p−1)(x)} consists of a finite h-orbit of order p, where p is a positive
integer. One can then show that C(X) oh̃ Z ∼= Mp(C[t, t−1]), i.e. the skew group
algebra associated to our dynamical system is isomorphic (as a C-algebra) to the algebra of
p×p-matrices over the ring of Laurent polynomials over C. Indeed, let π : C(X)oh̃Z →
Mp(C[t, t−1]) be the C-algebra morphism defined by

π(f) =




f(x) 0 . . . 0
0 f ◦ h(x) . . . 0
...

...
. . .

...
0 0 . . . f ◦ h◦(p−1)(x)




for f ∈ C(X), and

π(u1) =




0 0 . . . 0 t
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0



.

Calculating, one sees that

π

(∑

n∈Z
fn un

)
=




∑
n∈Z fnp(x) tn . . .

∑
n∈Z f(n−1)p+1(x) tn∑

n∈Z fnp+1(h(x)) tn . . .
∑

n∈Z f(n−1)p+2(h(x)) tn∑
n∈Z fnp+2(h◦(2)(x)) tn . . .

∑
n∈Z f(n−1)p+3(h◦(2)(x)) tn

...
...

...∑
n∈Z f(n+1)p−1(h◦(p−1)(x)) tn . . .

∑
n∈Z fnp(h◦(p−1)(x)) tn
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and by looking at the above matrix row by row, it is straightforward to verify that π is
bijective (see [22, 24] for a similar isomorphism of C∗-algebras).

Clearly (X,h) is a minimal dynamical system and by Lemma E.7.3 we conclude that
C(X) is Z-simple. However, each element of X is n-periodic and hence (X,h) is not
topologically free, which by Lemma E.7.2 entails thatC(X) is not maximal commutative
inR = C(X)oh̃ Z. The ring C[t, t−1] is not simple (e.g. by Example E.4.4) and via the
isomorphism π we conclude that C(X) oh̃ Z is never simple. From Section E.2.1 it is
clear that the action h̃ extends to an action of Z on CR(C(X)). Finally, by Proposition
E.6.5, we conclude that the commutant of C(X) is never Z-simple for our finite single
orbit dynamical system.
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Paper F

Commutativity and ideals in category
crossed products

Johan Öinert and Patrik Lundström

Abstract. In order to simultaneously generalize matrix rings and group graded crossed prod-
ucts, we introduce category crossed products. For such algebras we describe the center and
the commutant of the coefficient ring. We also investigate the connection between on the one
hand maximal commutativity of the coefficient ring and on the other hand nonemptyness of
intersections of the coefficient ring by nonzero twosided ideals.

F.1 Introduction

Let R be a ring. By this we always mean that R is an additive group equipped with a
multiplication which is associative and unital. The identity element of R is denoted 1R

and the set of ring endomorphisms of R is denoted End(R). We always assume that ring
homomorphisms respect the multiplicative identities. The center of R is denoted Z(R)
and by the commutant of a subset of R we mean the collection of elements in R that
commute with all the elements in the subset.

Suppose that R1 is a subring of R, i.e. there is an injective ring homomorphism
R1 → R. Recall that if R1 is commutative, then it is called a maximal commutative
subring of R if it coincides with its commutant in R. A lot of work has been devoted
to investigating the connection between on the one hand maximal commutativity of R1

in R and on the other hand nonemptyness of intersections of R1 with nonzero twosided
ideals of R (see [2], [3], [6], [7], [10], [12], [13] and [18]). Recently (see [22], [23],
[24], [25] and [26]) such a connection was established for the commutant R1 of the
coefficient ring of crossed products R (see Theorem F.1.1 below). Recall that crossed
products are defined by first specifying a crossed system, i.e. a quadruple {A,G, σ, α}
where A is a ring, G is a group (written multiplicatively and with identity element e)
and σ : G → End(A) and α : G × G → A are maps satisfying the following four
conditions:

σe = idA (F.1)

α(s, e) = α(e, s) = 1A (F.2)
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α(s, t)α(st, r) = σs(α(t, r))α(s, tr) (F.3)

σs(σt(a))α(s, t) = α(s, t)σst(a) (F.4)

for all s, t, r ∈ G and all a ∈ A. The crossed product, denoted A oσ
α G, associated to

this quadruple, is the collection of formal sums
∑

s∈G asus, where as ∈ A, s ∈ G, are
chosen so that all but finitely many of them are zero. By abuse of notation we write us

instead of 1Aus for all s ∈ G. The addition on Aoσ
α G is defined pointwise

∑

s∈G

asus +
∑

s∈G

bsus =
∑

s∈G

(as + bs)us (F.5)

and the multiplication on Aoσ
α G is defined by the bilinear extension of the relation

(asus)(btut) = asσs(bt)α(s, t)ust (F.6)

for all s, t ∈ G and all as, bt ∈ A. By (F.1) and (F.2) ue is a multiplicative identity
of A oσ

α G and by (F.3) the multiplication on A oσ
α G is associative. There is also

an A-bimodule structure on A oσ
α G defined by the linear extension of the relations

a(bus) = (ab)us and (aus)b = (aσs(b))us for all a, b ∈ A and all s, t ∈ G, which,
by (F.4), makes A oσ

α G an A-algebra. In the article [22], the first author and Silvestrov
show the following result.

Theorem F.1.1. If A oσ
α G is a crossed product with A commutative, all σs, s ∈ G, are

ring automorphisms and all α(s, s−1), s ∈ G, are units in A, then every intersection of a
nonzero twosided ideal of Aoσ

α G with the commutant of A in Aoσ
α G is nonzero.

In loc. cit. the first author and Silvestrov determine the center of crossed products and
in particular when crossed products are commutative; they also give a description of the
commutant of A in Aoσ

α G. Theorem F.1.1 has been generalized somewhat by relaxing
the conditions on σ and α (see [24] and [25]) and by considering general strongly group
graded rings (see [26]). For more details concerning group graded rings in general and
crossed product algebras in particular, see e.g. [1], [8] and [19].

Many natural examples of rings, such as rings of matrices, crossed product algebras
defined by separable extensions and category rings, are not in any natural way graded by
groups, but instead by categories (see [14], [15], [16] and Remark F.2.6). The purpose
of this article is to define a category graded generalization of crossed products and to
analyze commutativity questions similar to the ones discussed above for such algebras. In
particular, we wish to generalize Theorem F.1.1 from groups to groupoids (see Theorem
F.4.1 in Section F.4). To be more precise, suppose that G is a category. The family of
objects of G is denoted ob(G); we will often identify an object in G with its associated
identity morphism. The family of morphisms in G is denoted mor(G); by abuse of
notation, we will often write s ∈ G when we mean s ∈ mor(G). The domain and
codomain of a morphism s inG is denoted d(s) and c(s) respectively. We letG(2) denote
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the collection of composable pairs of morphisms inG, i.e. all (s, t) in mor(G)×mor(G)
satisfying d(s) = c(t). Analogously, we let G(3) denote the collection of all composable
triples of morphisms in G, i.e. all (s, t, r) in mor(G) ×mor(G) × mor(G) satisfying
(s, t) ∈ G(2) and (t, r) ∈ G(2). Throughout the article G is assumed to be small,
i.e. with the property that mor(G) is a set. A category is called a groupoid1 if all its
morphisms are invertible. By a crossed system we mean a quadruple {A,G, σ, α} where
A is the direct sum of rings Ae, e ∈ ob(G), σs : Ad(s) → Ac(s), for s ∈ G, are
ring homomorphisms and α is a map from G(2) to the disjoint union of the sets Ae,
for e ∈ ob(G), with α(s, t) ∈ Ac(s), for (s, t) ∈ G(2), satisfying the following five
conditions:

σe = idAe (F.7)

α(s, d(s)) = 1Ac(s) (F.8)

α(c(t), t) = 1Ac(t) (F.9)

α(s, t)α(st, r) = σs(α(t, r))α(s, tr) (F.10)

σs(σt(a))α(s, t) = α(s, t)σst(a) (F.11)

for all e ∈ ob(G), all (s, t, r) ∈ G(3) and all a ∈ Ad(t). Let A oσ
α G denote the

collection of formal sums
∑

s∈G asus, where as ∈ Ac(s), s ∈ G, are chosen so that
all but finitely many of them are zero. Define addition on A oσ

α G by (F.5) and define
multiplication on A oσ

α G by (F.6) if (s, t) ∈ G(2) and (asus)(btut) = 0 otherwise
where as ∈ Ac(s) and bt ∈ Ac(t). By (F.7), (F.8) and (F.9) it follows that A oσ

α G has a
multiplicative identity if and only if ob(G) is finite; in that case the multiplicative identity
is
∑

e∈ob(G) ue. By (F.10) the multiplication on Aoσ
α G is associative. Define a left A-

module structure on Aoσ
α G by the bilinear extension of the rule ae(bsus) = (aebs)us

if e = c(s) and ae(bsus) = 0 otherwise for all ae ∈ Ae, bs ∈ Ac(s), e ∈ ob(G), s ∈ G.
Analogously, define a right A-module structure on A oσ

α G by the bilinear extension of
the rule (bsus)cf = (bsσs(cf ))us if f = d(s) and (bsus)cf = 0 otherwise for all
bs ∈ Ac(s), cf ∈ Af , f ∈ ob(G), s ∈ G. By (F.11) this A-bimodule structure makes
A oσ

α G an A-algebra. We will often identify A with
⊕

e∈ob(G)Aeue; this ring will be
referred to as the coefficient ring of Aoσ

α G. It is clear that Aoσ
α G is a category graded

ring in the sense defined in [15] and it is strongly graded if and only if each α(s, t),
(s, t) ∈ G(2), has a left inverse in Ac(s). We call A oσ

α G the category crossed product
algebra associated to the crossed system {A,G, σ, α}.

In Section F.2, we determine the center of category crossed products. In particular,
we determine when category crossed products are commutative. In Section F.3, we de-
scribe the commutant of the coefficient ring in category crossed products. In Section F.4,
we investigate the connection between on the one hand maximal commutativity of the

1The term groupoid has various meanings in the literature. E.g. in [9], a set with a binary operation is
referred to as a groupoid.
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coefficient ring and on the other hand nonemptyness of intersections of the coefficient
ring by nonzero twosided ideals. In the end of each section, we indicate how our results
generalize earlier results for other algebraic structures such as group crossed products and
matrix rings (see Remarks F.2.6-F.3.7 and Remark F.4.9).

F.2 The center

For the rest of the article, unless otherwise stated, we suppose that Aoσ
α G is a category

crossed product. We say that α is symmetric if α(s, t) = α(t, s) for all s, t ∈ G with
d(s) = c(s) = d(t) = c(t). We say that A oσ

α G is a monoid (groupoid, group)
crossed product if G is a monoid (groupoid, group). We say that A oσ

α G is a twisted
category (monoid, groupoid, group) algebra if each σs, s ∈ G, with d(s) = c(s) equals
the identity map on Ad(s) = Ac(s); in that case the category (monoid, groupoid, group)
crossed product is denoted A oα G. We say that A oσ

α G is a skew category (monoid,
groupoid, group) algebra if α(s, t) = 1Ac(s) , for (s, t) ∈ G(2); in that case the category
(monoid, groupoid, group) crossed product is denoted A oσ G. If G is a monoid, then
we let AG denote the set of elements in A fixed by all σs, s ∈ G. We say that G is
cancellable if any equality of the form s1t1 = s2t2, when (si, ti) ∈ G(2), for i = 1, 2,
implies that s1 = s2 (or t1 = t2) whenever t1 = t2 (or s1 = s2). For e, f ∈ ob(G) we
let Gf,e denote the collection of s ∈ G with c(s) = f and d(s) = e; we let Ge denote
the monoid Ge,e. We let the restriction of α (or σ) to G2

e (or Ge) be denoted by αe (or
σe). With this notation all Ae oσe

αe
Ge, for e ∈ ob(G), are monoid crossed products.

Proposition F.2.1. The center of a monoid crossed product A oσ
α G is the collection of∑

s∈G asus in A oσ
α G satisfying the following two conditions: (i) asσs(a) = aas, for

s ∈ G and a ∈ A; (ii) for all t, r ∈ G the following equality holds
∑

s∈G
st=r

asα(s, t) =∑
s∈G
ts=r

σt(as)α(t, s).

Proof. Let e denote the identity element of G. Take x :=
∑

s∈G asus in the center
of A oσ

α G. Condition (i) follows from the fact that xaue = auex for all a ∈ A.
Condition (ii) follows from the fact that xut = utx for all t ∈ G. Conversely, it is clear
that conditions (i) and (ii) are sufficient for x to be in the center of Aoσ

α G.

Corollary F.2.2. The center of a twisted monoid ringAoαG is the collection of
∑

s∈G asus

in A oα G satisfying the following two conditions: (i) as ∈ Z(A), for s ∈ G; (ii) for all
t, r ∈ G, the following equality holds

∑
s∈G
st=r

asα(s, t) =
∑

s∈G
ts=r

asα(t, s).

Proof. This follows immediately from Proposition F.2.1.

Corollary F.2.3. If G is an abelian cancellable monoid, α is symmetric and has the property
that none of the α(s, t), for (s, t) ∈ G(2), is a zerodivisor, then the center of Aoσ

α G is the
collection of

∑
s∈G asus in Aoσ

α G satisfying the following two conditions: (i) asσs(a) =
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aas, for s ∈ G and a ∈ A; (ii) as ∈ AG, for s ∈ G. In particular, if A oσ G is a
skew monoid ring where G is abelian and cancellable, then the same description of the center
is valid.

Proof. Take x :=
∑

s∈G asus in A oσ
α G. Suppose that x belongs to the center of

A oσ
α G. Condition (i) follows from the first part of Proposition F.2.1. Now we show

condition (ii). Take s, t ∈ G and let r = st. Since G is commutative and cancellable,
we get, by the second part of Proposition F.2.1, that asα(s, t) = σt(as)α(t, s). Since α
is symmetric and α(s, t) is not a zerodivisor, this implies that as = σt(as). Since s and
t were arbitrarily chosen from G, this implies that as ∈ AG, for s ∈ G. On the other
hand, by Proposition F.2.1, it is clear that (i) and (ii) are sufficient conditions for x to be
in the center of Aoσ

α G. The second part of the claim is obvious.

Now we show that the center of a category crossed product is a particular subring of
the direct sum of the centers of the corresponding monoid crossed products.

Proposition F.2.4. The center of a category crossed product Aoσ
α G equals the collection of∑

e∈ob(G)

∑
s∈Ge

asus in
∑

e∈ob(G) Z(Aeoσe
αe
Ge) satisfying

∑
s∈Ge
rs=g

σr(as)α(r, s) =∑
t∈Gf
tr=g

atα(t, r) for all e, f ∈ ob(G) with e 6= f , and all r, g ∈ Gf,e.

Proof. Take x :=
∑

s∈G asus in the center of Aoσ
αG. By the equalities uex = xue, for

e ∈ ob(G), it follows that as = 0 for all s ∈ Gwith d(s) 6= c(s). Therefore we can write
x =

∑
e∈ob(G)

∑
s∈Ge

asus where
∑

s∈Ge
asus ∈ Z(Ae oσe

αe
Ge), for e ∈ ob(G).

The last part of the claim follows from the fact that the equality ur

(∑
s∈Ge

asus

)
=(∑

s∈Ge
asus

)
ur holds for all e, f ∈ ob(G), all e 6= f , and all r ∈ Gf,e.

Proposition F.2.5. Suppose that A oσ
α G is a category crossed product and consider the

following five conditions: (0) all α(s, t), for (s, t) ∈ G(2), are nonzero; (i) A oσ
α G is

commutative; (ii) G is the disjoint union of the monoids Ge, for e ∈ ob(G), and they are
all abelian; (iii) each Ae oσe

αe
Ge, for e ∈ ob(G), is a twisted monoid algebra; (iv) A is

commutative; (v) α is symmetric. Then (a) Conditions (0) and (i) imply conditions (ii)-(v);
(b) Conditions (ii)-(v) imply condition (i).

Proof. (a) Suppose that conditions (0) and (i) hold. By Proposition F.2.4, we get that G
is the direct sum of Ge, for e ∈ ob(G), and that each Ae oσe

αe
Ge, for e ∈ ob(G), is

commutative. The latter and Proposition F.2.1(i) imply that (iii) holds. Corollary F.2.2
now implies that (iv) holds. For the rest of the proof we can suppose that G is a monoid.
Take s, t ∈ G. By the commutativity of A oσ

α G we get that α(s, t)ust = usut =
utus = α(t, s)uts for all s, t ∈ G. Since α is nonzero this implies that st = ts and that
α(s, t) = α(t, s) for all s, t ∈ G. Therefore, G is abelian and (v) holds.

Conversely, by Corollary F.2.2 and Corollary F.2.3 we get that conditions (ii)-(iv) are
sufficient for commutativity of Aoσ

α G.
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Remark F.2.6. Proposition F.2.4, Corollary F.2.2, Corollary F.2.3 and Proposition F.2.5
generalize Proposition 3 and Corollaries 1-4 in [22] from groups to categories.

Remark F.2.7. Let A oG be a category algebra where all the rings Ae, for e ∈ ob(G),
coincide with a fixed ring D. ThenAoG is the usual category algebraDG of G overD.
LetH denote the disjoint union of the monoids Ge, for e ∈ ob(G). By Proposition F.2.1
and Proposition F.2.4 the center of DG is the collection of

∑
s∈H asus, for as ∈ Z(D),

and s ∈ H , in the induced category algebra Z(D)H satisfying
∑

s∈H
st=r

as =
∑

s∈H
ts=r

as

for all r, t ∈ G. Note that if G is a groupoid, then the last condition simplifies to
art−1 = at−1r for all r, t ∈ G with c(r) = c(t) and d(r) = d(t). This result specializes
to two well known cases. First of all, ifG is a group, then we retrieve the usual description
of the center of a group ring (see e.g. [27]). Secondly, if G is the groupoid with the n
first positive integers as objects and as arrows all pairs (i, j), for 1 ≤ i, j ≤ n, equipped
with the partial binary operation defined by letting (i, j)(k, l) be defined and equal to
(i, l) precisely when j = k, then DG is the ring of square matrices over D of size n and
we retrieve the result that Z(Mn(D)) equals the Z(D)1n where 1n is the unit n × n
matrix.

Remark F.2.8. LetL/K be a finite separable (not necessarily normal) field extension. Let
N denote a normal closure ofL/K and let Gal(N/K) denote the Galois group ofN/K .
Furthermore, let L = L1, L2, . . . , Ln denote the different conjugate fields of L under
the action of Gal(N/K) and put F =

⊕n
i=1 Li. If 1 ≤ i, j ≤ n, then let Gij denote

the set of field isomorphisms from Lj to Li. If s ∈ Gij , then we indicate this by writing
d(s) = j and c(s) = i. If we let G be the union of the Gij , for 1 ≤ i, j ≤ n, then G is
a groupoid. For each s ∈ G, let σs = s. Suppose that α is a map G(2) → ⊔n

i=1 Li with
α(s, t) ∈ Lc(s), for (s, t) ∈ G(2) satisfying (F.2), (F.3) and (F.4) for all (s, t, r) ∈ G(3)

and all a ∈ Ld(t). The category crossed product Foσ
αG extends the construction usually

defined by Galois field extensions L/K . By Proposition F.2.4, the center of F oσ
α G is

the collection of
∑

e∈ob(G) aeue with ae = s(af ) for all e, f ∈ ob(G) and all s ∈ G

with c(s) = e and d(s) = f . Therefore the center is a field isomorphic to LG1,1 and we
retrieve the first part of Theorem 4 in [14].

F.3 The commutant of the coefficient ring

Proposition F.3.1. The commutant of A in A oσ
α G is the collection of

∑
s∈G asus in

A oσ
α G satisfying as = 0, for s ∈ G, with d(s) 6= c(s), and asσs(a) = aas, for s ∈ G

with d(s) = c(s) and a ∈ Ad(s).

Proof. The first claim follows from the fact that the equality
(
∑

s∈G asus)ue = ue(
∑

s∈G asus) holds for all e ∈ ob(G). The second claim follows
from the fact that the equality (

∑
s∈G asus)aue = aue(

∑
s∈G asus) holds for all e ∈

ob(G) and all a ∈ Ae.
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Recall that the annihilator of an element r in a commutative ring R is the collection,
denoted ann(r), of elements s in R with the property that rs = 0.

Corollary F.3.2. Suppose that A is commutative. Then the commutant of A in Aoσ
α G is

the collection of
∑

s∈G asus in A oσ
α G satisfying as = 0, for s ∈ G with d(s) 6= c(s),

and σs(a)− a ∈ ann(as), for s ∈ G with d(s) = c(s) and a ∈ Ad(s). In particular, A
is maximal commutative in A oσ

α G if and only if there for all choices of e ∈ ob(G), s ∈
Ge \{e}, as ∈ Ae, there is a nonzero a ∈ Ae with the property that σs(a)−a /∈ ann(as).

Proof. This follows immediately from Proposition F.3.1.

Corollary F.3.3. Suppose that each Ae, e ∈ ob(G), is an integral domain. Then the
commutant of A in A oσ

α G is the collection of
∑

s∈G asus in A oσ
α G satisfying as = 0

whenever σs is not an identity map. In particular, A is maximal commutative in Aoσ
α G if

and only if for all nonidentity s ∈ G, the map σs is not an identity map.

Proof. This follows immediately from Corollary F.3.2.

Proposition F.3.4. If A is commutative, G a disjoint union of abelian monoids and α
is symmetric, then the commutant of A in A oσ

α G is the unique maximal commutative
subalgebra of Aoσ

α G containing A.

Proof. We need to show that the commutant of A in A oσ
α G is commutative. By the

first part of Proposition F.3.1, we can assume that G is an abelian monoid. If we take∑
s∈G asus and

∑
t∈G btut in the commutant of A in A oσ

α G, then, by the second
part of Proposition F.3.1 and the fact that α is symmetric, we get that

∑

s∈G

asus

∑

t∈G

btut =
∑

s,t∈G

asσs(bt)α(s, t)ust =
∑

s,t∈G

asbtα(s, t)ust =

=
∑

s,t∈G

btasα(t, s)uts =
∑

s,t∈G

btσt(as)α(t, s)ust =
∑

t∈G

btut

∑

s∈G

asus

Remark F.3.5. Proposition F.3.1, Corollary F.3.2, Corollary F.3.3 and Proposition F.3.4
together generalize Theorem 1, Corollaries 5-10 and Proposition 4 in [22] from groups
to categories.

Remark F.3.6. Let A o G be a category algebra where all the rings Ae, e ∈ ob(G),
coincide with a fixed integral domain D. Then AoG is the usual category algebra DG
of G overD. By Corollary F.3.3, the commutant of D in DG is DG itself. In particular,
A is maximal commutative inDG if and only ifG is the disjoint union of | ob(G)| copies
of the trivial group.
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Remark F.3.7. Let L/K be a finite separable (not necessarily normal) field extension.
We use the same notation as in Remark F.2.8. By Corollary F.3.3, the commutant of F
in F oσ

α G is the collection of
∑n

i=1

∑
s∈Gii

asus satisfying as = 0 whenever σs is not
an identity map. In particular, F is maximal commutative in F oσ

α G if all groups Gi,i,
i = 1, . . . , n, are nontrivial; this of course happens in the case when L/K is a Galois
field extension.

F.4 Commutativity and ideals

In this section, we investigate the connection between on the one hand maximal com-
mutativity of the coefficient ring and on the other hand nonemptyness of intersections of
the coefficient ring by nonzero twosided ideals. For the rest of the article, we assume that
ob(G) is finite. Recall (from Section F.1) that this is equivalent to the fact that Aoσ

α G
has a multiplicative identity; in that case the multiplicative identity is

∑
e∈ob(G) ue.

Theorem F.4.1. If A oσ
α G is a groupoid crossed product such that for every s ∈ G,

α(s, s−1) is not a zero divisor in Ac(s), then every intersection of a nonzero twosided ideal
of Aoσ

α G with the commutant of Z(A) in Aoσ
α G is nonzero.

Proof. We show the contrapositive statement. Let C denote the commutant of Z(A)
in A oσ

α G and suppose that I is a twosided ideal of A oσ
α G with the property that

I
⋂
C = {0}. We wish to show that I = {0}. Take x ∈ I . If x ∈ C, then by the

assumption x = 0. Therefore we now assume that x =
∑

s∈G asus ∈ I , as ∈ Ac(s),
s ∈ G, and that x is chosen so that x /∈ C with the set S := {s ∈ G | as 6= 0} of
least possible cardinality N . Seeking a contradiction, suppose that N is positive. First
note that there is e ∈ ob(G) with uex ∈ I \ C. In fact, if uex ∈ C for all e ∈ ob(G),
then x = 1x =

∑
e∈ob(G) uex ∈ C which is a contradiction. By minimality of N

we can assume that c(s) = e, s ∈ S, for some fixed e ∈ ob(G). Take t ∈ S and
consider the element x′ := xut−1 ∈ I . Since α(t, t−1) is not a zero divisor we get
that x′ 6= 0. Therefore, since I

⋂
C = {0}, we get that x′ ∈ I \ C. Take a =∑

f∈ob(G) bfuf ∈ Z(A) and note that Z(A) =
⊕

f∈ob(G) Z(Af ). Then I 3 x′′ :=
ax′ − x′a =

∑
s∈S(bc(s)as − asσs(bd(s)))us. In the Ae component of this sum we

have beae − aebe = 0 since be ∈ Z(Ae). Thus, the summand vanishes for s = e, and
hence we get, by the assumption on N , that x′′ = 0. Since a ∈ Z(A) was arbitrarily
chosen, we get that x′ ∈ C which is a contradiction. Therefore N = 0 and hence S = ∅
which in turn implies that x = 0. Since x ∈ I was arbitrarily chosen, we finally get that
I = {0}.

Corollary F.4.2. If A oσ
α G is a groupoid crossed product with A maximal commutative

and for every s ∈ G, α(s, s−1) is not a zero divisor in Ac(s), then every intersection of a
nonzero twosided ideal of Aoσ

α G with A is nonzero.
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Proof. This follows immediately from Theorem F.4.1.

Now we examine conditions under which the opposite statement of Corollary F.4.2
is true. To this end, we recall some notions from category theory that we need in the
sequel (for the details see e.g. [17]). Let G be a category. A congruence relation R on
G is a collection of equivalence relations Ra,b on hom(a, b), a, b ∈ ob(G), chosen so
that if (s, s′) ∈ Ra,b and (t, t′) ∈ Rb,c, then (ts, t′s′) ∈ Ra,c for all a, b, c ∈ ob(G).
Given a congruence relation R on G we can define the corresponding quotient category
G/R as the category having as objects the objects of G and as arrows the corresponding
equivalence classes of arrows from G. In that case there is a full functor QR : G→ G/R
which is the identity on objects and sends each morphism of G to its equivalence class
in R. We will often use the notation [s] := QR(s), s ∈ G. Suppose that H is another
category and that F : G → H is a functor. The kernel of F , denoted ker(F ), is
the congruence relation on G defined by letting (s, t) ∈ ker(F )a,b, a, b ∈ ob(G),
whenever s, t ∈ hom(a, b) and F (s) = F (t). In that case there is a unique functor
PF : G/ ker(F ) → H with the property that PFQker(F ) = F . Furthermore, if there
is a congruence relation R on G contained in ker(F ), then there is a unique functor
N : G/R → G/ ker(F ) with the property that NQR = Qker(F ). In that case there is
therefore always a factorization F = PFNQR; we will refer to this factorization as the
canonical one.

Proposition F.4.3. Let {A,G, σ, α} and {A,H, τ, β} be crossed systems with ob(G) =
ob(H). Suppose that there is a functor F : G→ H satisfying the following three criteria: (i)
F is the identity map on objects; (ii) τF (s) = σs, for s ∈ G; (iii) β(F (s), F (t)) = α(s, t),
for (s, t) ∈ G(2). Then there is a unique A-algebra homomorphism Aoσ

α G→ Aoτ
β H ,

denoted F̃ , satisfying F̃ (us) = uF (s), for s ∈ G.

Proof. Take x :=
∑

s∈G asus in Aoσ
α G where as ∈ Ac(s), for s ∈ G. By A-linearity

we get that F̃ (x) =
∑

s∈G asF̃ (us) =
∑

s∈G asuF (s). Therefore F̃ is unique. It is

clear that F̃ is additive. By (i), F̃ respects the multiplicative identities. Now we show
that F̃ is multiplicative. Take another y :=

∑
s∈G bsus in A oσ

α G where bs ∈ Ac(s),
for s ∈ G. Then, by (ii) and (iii), we get that

F̃ (xy) = F̃


 ∑

(s,t)∈G(2)

asσs(bt)α(s, t)ust


 =

∑

(s,t)∈G(2)

asσs(bt)α(s, t)uF (st) =

=
∑

(s,t)∈G(2)

asτF (s)(bt)β(F (s), F (t))uF (s)F (t) = F̃ (x)F̃ (y)

163



PAPER F.

Remark F.4.4. Suppose that {A,G, σ, α} is a crossed system. By abuse of notation,
we let A denote the category with the rings Ae, for e ∈ ob(G), as objects and ring
homomorphisms Ae → Af , for e, f ∈ ob(G), as morphisms. Define a map σ : G→ A
on objects by σ(e) = Ae, for e ∈ ob(G), and on arrows by σ(s) = σs, for s ∈ G. By
equation (F.4) it is clear that σ is a functor if the following two conditions are satisfied:
(i) for all (s, t) ∈ G(2), α(s, t) belongs to the center of Ac(s); (ii) for all (s, t) ∈ G(2),
α(s, t) is not a zero divisor in Ac(s).

Proposition F.4.5. Let A oσ
α G be a category crossed product with σ : G → A a functor.

Suppose that R is a congruence relation on G with the property that the associated quadruple
{A,G/R, σ([·]), α([·], [·])} is a crossed system. If I is the twosided ideal in Aoσ

α G gener-
ated by an element

∑
s∈G asus, where as ∈ Ac(s), for s ∈ G, satisfying as = 0 if s does

not belong to any of the classes [e], for e ∈ ob(G), and
∑

s∈[e] as = 0, for e ∈ ob(G), then

A
⋂
I = {0}.

Proof. By Proposition F.4.3, the functor QR induces anA-algebra homomorphism Q̃R :
Aoσ

α G→ Aoσ([·])
α([·],[·]) G/R. By definition of the as, for s ∈ G, we get that

Q̃R

(∑

s∈G

asus

)
= Q̃R


 ∑

e∈ob(G)

∑

s∈[e]

asus


 =

=
∑

e∈ob(G)

∑

s∈[e]

asu[s] =
∑

e∈ob(G)


∑

s∈[e]

as


 u[e] = 0

This implies that Q̃R(I) = {0}. Since Q̃R|A = idA, we therefore get that I
⋂
A =

(Q̃R|A)(A
⋂
I) ⊆ Q̃R(I) = {0}.

LetG be a groupoid and suppose that we for each e ∈ ob(G) are given a subgroupNe

of Ge. We say thatN =
⋃

e∈ob(G)Ne is a normal subgroupoid ofG if sNd(s) = Nc(s)s
for all s ∈ G. The normal subgroupoidN induces a congruence relation∼ onG defined
by letting s ∼ t, for s, t ∈ G, if there is n in Nd(t) with s = nt. The corresponding
quotient category is a groupoid which is denoted G/N . For more details, see e.g. [5];
note that our definition of normal subgroupoids is more restrictive than the one used in
[5].

Proposition F.4.6. Let A oσ
α G be a groupoid crossed product such that for each (s, t) ∈

G(2), α(s, t) ∈ Z(Ac(s)) and α(s, t) is not a zero divisor in Ac(s). Suppose that N
is a normal subgroupoid of G with the property that σn = idAc(n) , for n ∈ N , and
α(s, t) = 1Ac(s) if s ∈ N or t ∈ N . If I is the twosided ideal in A oσ

α G generated
by an element

∑
s∈G asus, with as ∈ Ac(s), for s ∈ G, satisfying as = 0 if s does not

belong to any of the sets Ne, for e ∈ ob(G), and
∑

s∈Ne
as = 0, for e ∈ ob(G), then

A
⋂
I = {0}.
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Proof. By Remark F.4.4, σ is a functor G → A and ∼ ⊆ ker(σ). Therefore, by the
discussion preceding Proposition F.4.3, there is a well defined functor σ[·] : G/N → A.
Now we show that the induced map α([·], [·]) is well defined. By equation (F.3) with
s = n ∈ Nc(t) we get that α(n, t)α(nt, r) = σn(α(t, r))α(n, tr). By the assumptions
on α and σ we get that α(nt, r) = α(t, r). Analogously, by equation (F.3) with t = n ∈
Nd(r), we get that α(s, t) = α(s, tn). Therefore, α([·], [·]) is well defined. The rest of
the claim now follows immediately from Proposition F.4.5.

Proposition F.4.7. Let Aoσ G be a skew category algebra. Suppose that R is a congruence
relation on G contained in ker(σ). If I is the twosided ideal in A oσ G generated by
an element

∑
s∈G asus, where as ∈ Ac(s), for s ∈ G, satisfying as = 0 if s does not

belong to any of the classes [e], for e ∈ ob(G), and
∑

s∈[e] as = 0, for e ∈ ob(G), then

A
⋂
I = {0}.

Proof. By Remark F.4.4 and the discussion preceding Proposition F.4.3, there is a well
defined functor σ[·] : G/R→ A. The claim now follows immediately from Proposition
F.4.5.

Proposition F.4.8. Let AoσG be a skew groupoid ring with allAe, for e ∈ ob(G), equal
integral domains and each Ge, for e ∈ ob(G), an abelian group. If every intersection of a
nonzero twosided ideal of A oσ G and A is nonzero, then A is maximal commutative in
Aoσ G.

Proof. We show the contrapositive statement. Suppose that A is not maximal commu-
tative in A oσ G. By the second part of Corollary F.3.3, there is e ∈ ob(G) and a
nonidentity s ∈ Ge such that σs = idAe . Let Ne denote the cyclic subgroup of Ge

generated by s. Note that since Ge is abelian, Ne is a normal subgroup of Ge. For
each f ∈ ob(G), define a subgroup Nf of Gf in the following way. If Ge,f 6= ∅,
then let Nf = sNes

−1, where s is a morphism in Ge,f . If, on the other hand,
Ge,f = ∅, then let Nf = {f}. Note that if s1, s2 ∈ Ge,f , then s−1

2 s1 ∈ Ge and
hence s1Nes

−1
1 = s2s

−1
2 s1Ne(s−1

2 s1)−1s−1
2 = s2Nes

−1
2 . Therefore, Nf is well de-

fined. Now put N =
⋃

f∈ob(G)Nf . It is clear that N is a normal subgroupoid of G and
that σn = idAe , n ∈ N . Let I be the nonzero twosided ideal of A oσ G generated by
ue − us. By Proposition F.4.6 (or Proposition F.4.7) it follows that A

⋂
I = {0}.

Remark F.4.9. Proposition F.4.1, Corollary F.4.2 and Propositions F.4.5-F.4.8 together
generalize Theorem 2, Corollary 11, Theorem 3, Corollaries 12-15 and Theorem 4 in
[22] from groups to categories.

By combining Theorem F.4.1 and Proposition F.4.8, we get the follwing result.

Corollary F.4.10. If A oσ G is a skew groupoid ring with all Ae, for e ∈ ob(G), equal
integral domains and each Ge, for e ∈ ob(G), an abelian group, then A is maximal com-
mutative in Aoσ G if and only if every intersection of a nonzero twosided ideal of Aoσ G
and A is nonzero.
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