Skip to main content

Lund University Publications

LUND UNIVERSITY LIBRARIES

Microbial food webs in the dark: independence of Lake Plankton from recent algal production

Daniel, C ; Gutseit, K ; Anesio, Alexandre Magno LU and Granéli, Wilhelm LU (2005) In Aquatic Microbial Ecology 38(2). p.113-123
Abstract
We investigated the development of a heterotrophic plankton food web with or without phytoplankton primary production in a long-term (>1 yr) laboratory experiment. Water from 3 Swedish lakes (humic, oligotrophic clearwater, eutrophic) was exposed to low light or kept in total darkness in triplicate 100 1 cylinders. Dissolved organic carbon (DOC) dynamics, bacterial growth and biomass of protozoans, rotifers and microcrustaceans were followed over 18 mo. In the dark treatments, no primary production was detected and DOC concentrations decreased by between 19 and 27% (1.3 to 3.2 mg C l(-1)). There was bacterial and protozoan growth in the dark during the whole experimental period. However, numbers and production of bacteria, as well as... (More)
We investigated the development of a heterotrophic plankton food web with or without phytoplankton primary production in a long-term (>1 yr) laboratory experiment. Water from 3 Swedish lakes (humic, oligotrophic clearwater, eutrophic) was exposed to low light or kept in total darkness in triplicate 100 1 cylinders. Dissolved organic carbon (DOC) dynamics, bacterial growth and biomass of protozoans, rotifers and microcrustaceans were followed over 18 mo. In the dark treatments, no primary production was detected and DOC concentrations decreased by between 19 and 27% (1.3 to 3.2 mg C l(-1)). There was bacterial and protozoan growth in the dark during the whole experimental period. However, numbers and production of bacteria, as well as protozoan biomass, were significantly lower in darkness. Dissolved (DOM) and particulate organic matter (POM) initially present in the water (i.e. 18 mo old at the end of the experiment) helped to support substantial metazoan biomasses in dark treatments in the humic and eutrophic waters, but not in the oligotrophic clearwater lake. DOM in the humic water, thus largely of allochthonous origin, gave the highest and most prolonged support to zooplankton living in darkness. Our study indicates that a microbial food web, based on allochthonous organic matter and developing independently from phytoplankton, can act as a link to metazoan zooplankton, especially in oligotrophic humic lakes. These results confirm studies using stable C isotopes, showing a substantial incorporation of terrestrial carbon into zooplankton. (Less)
Please use this url to cite or link to this publication:
author
; ; and
organization
publishing date
type
Contribution to journal
publication status
published
subject
in
Aquatic Microbial Ecology
volume
38
issue
2
pages
113 - 123
publisher
Inter-Research
external identifiers
  • wos:000227276200002
  • scopus:14844330774
ISSN
0948-3055
language
English
LU publication?
yes
id
1e7c4f67-473e-4901-bb8d-b0a7b50c6d18 (old id 146508)
alternative location
http://www.int-res.com/articles/ame2004/38/a038p113.pdf
date added to LUP
2016-04-01 12:14:29
date last changed
2022-01-27 00:55:09
@article{1e7c4f67-473e-4901-bb8d-b0a7b50c6d18,
  abstract     = {{We investigated the development of a heterotrophic plankton food web with or without phytoplankton primary production in a long-term (>1 yr) laboratory experiment. Water from 3 Swedish lakes (humic, oligotrophic clearwater, eutrophic) was exposed to low light or kept in total darkness in triplicate 100 1 cylinders. Dissolved organic carbon (DOC) dynamics, bacterial growth and biomass of protozoans, rotifers and microcrustaceans were followed over 18 mo. In the dark treatments, no primary production was detected and DOC concentrations decreased by between 19 and 27% (1.3 to 3.2 mg C l(-1)). There was bacterial and protozoan growth in the dark during the whole experimental period. However, numbers and production of bacteria, as well as protozoan biomass, were significantly lower in darkness. Dissolved (DOM) and particulate organic matter (POM) initially present in the water (i.e. 18 mo old at the end of the experiment) helped to support substantial metazoan biomasses in dark treatments in the humic and eutrophic waters, but not in the oligotrophic clearwater lake. DOM in the humic water, thus largely of allochthonous origin, gave the highest and most prolonged support to zooplankton living in darkness. Our study indicates that a microbial food web, based on allochthonous organic matter and developing independently from phytoplankton, can act as a link to metazoan zooplankton, especially in oligotrophic humic lakes. These results confirm studies using stable C isotopes, showing a substantial incorporation of terrestrial carbon into zooplankton.}},
  author       = {{Daniel, C and Gutseit, K and Anesio, Alexandre Magno and Granéli, Wilhelm}},
  issn         = {{0948-3055}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{113--123}},
  publisher    = {{Inter-Research}},
  series       = {{Aquatic Microbial Ecology}},
  title        = {{Microbial food webs in the dark: independence of Lake Plankton from recent algal production}},
  url          = {{http://www.int-res.com/articles/ame2004/38/a038p113.pdf}},
  volume       = {{38}},
  year         = {{2005}},
}